1
|
Jiang W, Xiao Q, Zhu W, Zhang F. Engineering the regulation strategy of active sites to explore the intrinsic mechanism over single‑atom catalysts in electrocatalysis. J Colloid Interface Sci 2025; 693:137595. [PMID: 40233691 DOI: 10.1016/j.jcis.2025.137595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
The development of efficient and sustainable energy sources is a crucial strategy for addressing energy and environmental crises, with a particular focus on high-performance catalysts. Single-atom catalysts (SACs) have attracted significant attention because of their exceptionally high atom utilization efficiency and outstanding selectivity, offering broad application prospects in energy development and chemical production. This review systematically summarizes the latest research progress on SACs in five key electrochemical reactions: hydrogen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and oxygen evolution reaction. Initially, a brief overview of the current understanding of electrocatalytic active sites in SACs is provided. Subsequently, the electrocatalytic mechanisms of these reactions are discussed. Emphasis is placed on various modification strategies for SAC surface-active sites, including coordination environment regulation, electronic structure modulation, support structure regulation, the introduction of structural defects, and multifunctional site design, all aimed at enhancing electrocatalytic performance. This review comprehensively examines SAC deactivation and poisoning mechanisms, highlighting the importance of stability enhancement for practical applications. It also explores the integration of density functional theory calculations and machine learning to elucidate the fundamental principles of catalyst design and performance optimization. Furthermore, various synthesis strategies for industrial-scale production are summarized, providing insights into commercialization. Finally, perspectives on future research directions for SACs are highlighted, including synthesis strategies, deeper insights into active sites, the application of artificial intelligence tools, and standardized testing and performance requirements.
Collapse
Affiliation(s)
- Wen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiang Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
| |
Collapse
|
2
|
Ye Y, Tang Q. Recent progress in the electrocatalytic applications of thiolate-protected metal nanoclusters. NANOSCALE HORIZONS 2025. [PMID: 40370048 DOI: 10.1039/d5nh00153f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Ultrasmall metal nanoclusters (NCs) with atomic precision possess a size range between individual atoms and plasmonic nanomaterials. These atomically precise materials represent an emerging class of nanocatalysts, offering unique opportunities to explore electrocatalytic properties and establish precise structure-property correlations at the atomic scale. Among the large number of metal NCs that are stabilized by various ligands, thiolate-protected metal NCs are a particularly prominent class for electrocatalytic investigations. Recent experimental and theoretical studies have demonstrated the significant potential of these materials in enhancing various electrocatalytic reactions, including hydrogen evolution, oxygen reduction and CO2 reduction reactions. However, comprehensive and in-depth discussions regarding their catalytic properties, particularly from a theoretical standpoint, are limited and require further explorations. In this review, we focus on the recent progress in thiolate-protected metal NCs in the field of electrocatalysis. The influences of structure, ligand, doping and interface control on their electrocatalytic activity/selectivity and the reaction mechanisms are discussed. Importantly, the perspectives we propose regarding future research endeavors are expected to offer valuable references for subsequent investigations in this area.
Collapse
Affiliation(s)
- Yuting Ye
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Zhu P, Zhu X, Zhou X, Sun F, Chen Y, Wang L, Tang Z, Tang Q. Computational and Experimental Elucidation of the Charge-Dependent Acid-Etching Dynamics and Electrocatalytic Performance of Au 25(SR) 18 q(q = -1, 0, +1) Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411226. [PMID: 39989091 DOI: 10.1002/smll.202411226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/26/2025] [Indexed: 02/25/2025]
Abstract
Using thiolate-protected Au25(SR)18 nanocluster (NC) with different charge states as the test candidate, how the charge effect affects the etching dynamics of thiolate ligands in acid and the electrocatalytic performance is explored. The ab initio molecular dynamics (AIMD) simulations revealed the charge-dependent reaction kinetics in acid, where the anionic and neutral Au25(SCH3)18 q (q = -1, 0) favorably react with the acid and partially remove the thiolate ligands via two-step proton attack, while the cationic Au25(SCH3)18 + NC is acid-resistant with no tendency for -SR removal. Density functional theory (DFT) calculations further predict that the dethiolated Au sites exhibit enhanced catalytic activity for CO2 electroreduction to CO, with the anionic Au25 - showing significantly superior activity. Acid etching and electrocatalytic experiments further confirmed partial removal of thiolate ligands in Au25(SCH3)18 q (q = -1, 0), with dethiolated Au25 NCs showing enhanced catalytic performance in CO2 electroreduction, particularly Au25 - exhibiting better activity than Au25 0. This work revealed an interesting charge state-mediated interface dynamics and electrocatalytic behaviors in Au25 NCs, which can be applied to modulate the interface and catalytic properties of other atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Pan Zhu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Xin Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xia Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
4
|
Xu G, Peng X, Wu C, Xi S, Xiang H, Feng L, Liu Z, Duan Y, Gan L, Chen S, Kong Y, Ma Y, Nie F, Zhao J, Hai X, Wei W, Zhou M, Wang T, Yao C, Zhou W, Yan H. Atomically precise Ni clusters inducing active NiN 2 sites with uniform-large vacancies towards efficient CO 2-to-CO conversion. Nat Commun 2025; 16:3774. [PMID: 40263289 PMCID: PMC12015452 DOI: 10.1038/s41467-025-59079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
CO2 electroreduction to CO promises to give an efficient strategy for CO2 fixation and transformation. However, current reported active sites fail to deliver sufficient activity with high CO Faradic efficiency (FEco) over a wide range of potential. Here, we show a general synthetic protocol to fabricate a batch of highly pure and active NiN2 catalysts with precise engineering of the uniform-large (UL) vacancy around the active sites, which is accomplished through the 'pre-deposition + pyrolysis' of various atomically precise Ni clusters (Nin) and in-situ etching of the support by the 'nano bomb' (sulfur-ligand in the clusters). The NiN2 sites with UL vacancies could achieve a high turnover frequency (TOF) of 350000 h-1 with ~100% FEco in a wide potential range of 1500 mV. In-situ infrared spectra and theoretical calculations reveal that a highly pure NiN2 site with UL vacancy contributes to this remarkable catalytic performance compared to the counterparts. This general synthetic strategy enables us to simultaneously engineer active sites and surrounding vacancies with the employment of atomically precise metal clusters, thereby enhancing catalytic performance for other specific reactions.
Collapse
Affiliation(s)
- Guangyuan Xu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xingjie Peng
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, PR China
| | - Chuanqiang Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, PR China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Huixin Xiang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, PR China
| | - Lei Feng
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Zhendong Liu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Yi Duan
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lijin Gan
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Si Chen
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Yuan Kong
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Yanzhe Ma
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Fujing Nie
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Jie Zhao
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiao Hai
- School of Materials Science and Engineering, Peking University, Beijing, PR China
| | - Wei Wei
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Chuanhao Yao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, PR China.
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, PR China
| | - Huan Yan
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
5
|
Zhong K, Xue J, Ji Y, Jiang Q, Zheng T, Xia C. Strategies for Enhancing Stability in Electrochemical CO 2 Reduction. Chem Asian J 2025:e202500174. [PMID: 40200798 DOI: 10.1002/asia.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a sustainable approach to address global energy challenges and reduce carbon emissions. However, achieving long-term stability in terms of catalytic performance remains a critical hurdle for large-scale commercial deployment. This mini-review provides a comprehensive exploration of the key factors influencing CO2RR stability, encompassing catalyst design, electrode architecture, electrolyzer optimization, and operational conditions. We examine how catalyst degradation occurs through mechanisms such as valence changes, elemental dissolution, structural reconfiguration, and active site poisoning and propose targeted strategies for improvement, including doping, alloying, and substrate engineering. Additionally, advancements in electrode design, such as structural modifications and membrane enhancements, are highlighted for their role in improving stability. Operational parameters such as temperature, pressure, and electrolyte composition also play crucial roles in extending the lifespan of the reaction. By addressing these diverse factors, this review aims to offer a deeper understanding of the determinants of long-term stability in the CO2RR, laying the groundwork for the development of robust, scalable technologies for efficient carbon dioxide conversion.
Collapse
Affiliation(s)
- Kexin Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
6
|
Pan P, Kang X, Zhu M. Preparation Methods of Metal Nanoclusters. Chemistry 2025; 31:e202404528. [PMID: 39985476 DOI: 10.1002/chem.202404528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoclusters, also known as ultrasmall nanoparticles, represent a promising class of nanomaterials due to their atomically precise characterizations and intriguing chemical-physical properties. The preparation is the cornerstone for advancing the nanocluster science, facilitating their structural determination, property investigation, and practical application. We have been devoted to exploring new and efficient approaches for the high-yield preparation of metal nanoclusters with customized structures and properties. We have proposed and developed four methodologies for the nanocluster preparation, including kinetic control, seeded growth, in situ two-phase ligand exchange, and metal exchange. More than 200 metal nanoclusters have been synthesized and structurally determined, laying the foundation for the elucidation of structure evolutions and structure-property correlations. In this concept, we emphasized our progress in proposing and developing the synthetic mythologies of metal nanoclusters. This Concept hopefully provides researchers attempting to study the preparation methods of metal nanoclusters with several feasible synthetic routes.
Collapse
Affiliation(s)
- Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
7
|
Takemae K, Tomihari S, Naito T, Takagi M, Shimazaki T, Kawawaki T, Tachikawa M, Negishi Y. Inclusion of gold ions in tiara-like nickel hexanuclear nanoclusters. NANOSCALE 2025; 17:3721-3727. [PMID: 39829273 DOI: 10.1039/d4nr04579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Tiara-like metal nanoclusters (TNCs) composed of group 10 transition metals and thiolates can easily change their number of polymerization and include various molecules or metal ions as guests within their ring structures. Therefore, they are expected to be applied in sensing, storage, and catalyst materials based on their selective inclusion characteristics. However, there are very few reports regarding the principles of selective inclusion for guest molecules/ions in TNCs. In this study, we focused on the nickel (Ni) hexanuclear TNC, Ni6(PET)12 (PET = 2-phenylethanethiolate), to clarify the kinds of metal ions that can be included in TNCs. As a result, we found that the gold (Au) ion can be selectively included in Ni6(PET)12 among various metal ions to form a stable structure. From various experiments and density functional theory calculations, we concluded that the main reasons for this are that [Ni6(PET)12]0 has (1) a pore large enough to include Au ions and (2) Ni and Au favour the formation of bonding orbitals based on charge transfer interactions. These insights are expected to lead to a better understanding of host-guest interactions in TNCs and provide clear design guidelines for forming various inclusion structures in the future.
Collapse
Affiliation(s)
- Kana Takemae
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Shiho Tomihari
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takumi Naito
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Makito Takagi
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Tomomi Shimazaki
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Masanori Tachikawa
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Deng G, Yun H, Chen Y, Yoo S, Lee K, Jang J, Liu X, Lee CW, Tang Q, Bootharaju MS, Hwang YJ, Hyeon T. Ferrocene-Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO 2 Electroreduction. Angew Chem Int Ed Engl 2025; 64:e202418264. [PMID: 39628114 DOI: 10.1002/anie.202418264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/14/2024]
Abstract
The integration of organometallic compounds with metal nanoparticles can, in principle, generate hybrid nanocatalysts endowed with augmented functionality, presenting substantial promise for catalytic applications. Herein, we synthesize an atomically precise metal cluster (Ag9Cu6) catalyst integrated with alkynylferrocene molecules (Ag9Cu6-Fc). This hybrid catalyst design facilitates a continuous electron transfer channel via an ethynyl bridge and establishes a distinctive local chemical environment, resulting in remarkably enhanced catalytic activity in CO2 electroreduction. The Ag9Cu6-Fc catalyst achieves a record-high product selectivity of CO Faradaic efficiency of 100 % and an industrial-level CO partial current density of -680 mA/cm2, surpassing the performance of the Ag9Cu6 cluster (62 % and -230 mA/cm2, respectively) without ferrocene functionalization in a membrane electrode assembly cell. Operando experimental and computational findings offer valuable insights into the role of ferrocene functionalization in synergistically improving the catalytic performance of metal clusters, propelling the advancement of metallic-organometallic hybrid nanoparticles for energy conversion technologies.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Shen H, Wang P, Xu J, Fu Z, Kang X, Pei Y, Zhu M. Symmetrical and asymmetrical surface structure expansions of silver nanoclusters with atomic precision. Chem Sci 2025; 16:2373-2381. [PMID: 39781223 PMCID: PMC11706232 DOI: 10.1039/d4sc06847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Controlling symmetrical or asymmetrical growth has allowed a series of novel nanomaterials with prominent physicochemical properties to be produced. However, precise and continuous size growth based on a preserved template has long been a challenging pursuit, yet little has been achieved in terms of manipulation at the atomic level. Here, a correlated silver cluster series has been established, enabling atomically precise manipulation of symmetrical and asymmetrical surface structure expansions of metal nanoclusters. Specifically, the C 3-axisymmetric Ag29(BDTA)12(PPh3)4 nanocluster underwent symmetrical and asymmetrical surface structure expansions via an acid-mediated synthetic procedure, giving rise to C 3-axisymmetric Ag32(BDTA)12(PPh3)10 and C 1-axisymmetric Ag33(BDTA)12(PPh3)11, respectively. In addition, structural transformations, including structural degradation from Ag32 to Ag29 and asymmetrical structural expansion from Ag32 to Ag33, were rationalized theoretically. More importantly, the asymmetrically structured Ag33 nanoclusters followed a chiral crystallization mode, and their crystals displayed high optical activity, derived from CD and CPL characterization. This work not only provides an important model for unlocking the symmetrical/asymmetrical size growth mechanism at the atomic level but also pioneers a promising approach to activate the optical activity of cluster-based nanomaterials.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Jiawei Xu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Ziwei Fu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| |
Collapse
|
10
|
Feng Y, Lv Y, Wei X, Yu H, Kang X, Zhu M. Relationship between Structural Defects and Free Electrons in Icosahedral Nanoclusters. J Phys Chem Lett 2024; 15:8910-8916. [PMID: 39172035 DOI: 10.1021/acs.jpclett.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
According to the classic superatom model, metal nanoclusters with a "magic number" of free valence electrons display high stability, manifesting as the closed-shell-dependent electronic robustness. The icosahedral nanobuilding blocks containing eight free electrons were the most common in constructing metal nanoclusters; however, the structure defect-dependent variations of the free electron count in icosahedral configurations are still far from thorough research. Here, we reported a hydride-containing [Pt2Ag15(SAdm)4(DPPOE)4H]2+ nanocluster with two largely defective Pt1Ag8 icosahedral cores. Together with previously reported complete or slightly defective icosahedra in metal nanoclusters, the largely defective Pt1Ag8 core provided important clues to reveal the evolutionary mode of structural defects and free electrons in icosahedral nanoclusters; the free electron count of icosahedron was reduced two-by-two (i.e., from 8e to 6e and then to 4e) accompanied by the structure defection. Overall, the work presented a novel Pt2Ag15 nanocluster with a largely defective core structure that enables an atomic-level understanding of the relationship between structural defects and free electrons in icosahedral nanoclusters.
Collapse
Affiliation(s)
- Yan Feng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
11
|
Su S, Zhou Y, Xiong L, Jin S, Du Y, Zhu M. Structure-Activity Relationships of the Structural Analogs Au 8Cu 1 and Au 8Ag 1 in the Electrocatalytic CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202404629. [PMID: 38845560 DOI: 10.1002/anie.202404629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.
Collapse
Affiliation(s)
- Shangyu Su
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yanting Zhou
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, PR China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yuanxin Du
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Anhui Tongyuan Environment Energy Saving Co., Ltd., Hefei, 230041, China
| |
Collapse
|
12
|
Han SM, Park M, Kim J, Lee D. Boosting the Electroreduction of CO 2 to CO by Ligand Engineering of Gold Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202404387. [PMID: 38757232 DOI: 10.1002/anie.202404387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been widely studied as a promising means to convert anthropogenic CO2 into valuable chemicals and fuels. In this process, the alkali metal ions present in the electrolyte are known to significantly influence the CO2RR activity and selectivity. In this study, we report a strategy for preparing efficient electrocatalysts by introducing a cation-relaying ligand, namely 6-mercaptohexanoic acid (MHA), into atom-precise Au25 nanoclusters (NCs). The CO2RR activity of the synthesized Au25(MHA)18 NCs was compared with that of Au25(HT)18 NCs (HT=1-hexanethiolate). While both NCs selectively produced CO over H2, the CO2-to-CO conversion activity of the Au25(MHA)18 NCs was significantly higher than that of the Au25(HT)18 NCs when the catholyte pH was higher than the pKa of MHA, demonstrating the cation-relaying effect of the anionic terminal group. Mechanistic investigations into the CO2RR occurring on the Au25 NCs in the presence of different catholyte cations and concentrations revealed that the CO2-to-CO conversion activities of these Au25 NCs increased in the order Li+
Collapse
Affiliation(s)
- Sang Myeong Han
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minyoung Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiyoung Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Sun Z, Wang J, Su L, Gu Z, Wu XP, Chen W, Ma W. Dynamic Evolution and Reversibility of a Single Au 25 Nanocluster for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:20059-20068. [PMID: 38994646 DOI: 10.1021/jacs.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ultrasmall metallic nanoclusters (NCs) protected by surface ligands represent the most promising catalytic materials; yet understanding the structure and catalytic activity of these NCs remains a challenge due to dynamic evolution of their active sites under reaction conditions. Herein, we employed a single-nanoparticle collision electrochemistry method for real-time monitoring of the dynamic electrocatalytic activity of a single fully ligand-protected Au25(PPh3)10(SC2H4Ph)5Cl22+ nanocluster (Au252+ NC) at a cavity carbon nanoelectrode toward the oxygen reduction reaction (ORR). Our experimental results and computational simulations indicated that the reversible depassivation and passivation of ligands on the surface of the Au252+ NC, combined with the dynamic conformation evolution of the Au259+ core, led to a characteristic current signal that involves "ON-OFF" switches and "ON" fluctuations during the ORR process of a single Au252+ NC. Our findings reinvent the new perception and comprehension of the structure-activity correlation of NCs at the atomic level.
Collapse
Affiliation(s)
- Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jia Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhihao Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
14
|
Sargeant E, Rodriguez P, Calle-Vallejo F. Cation Effects on the Adsorbed Intermediates of CO 2 Electroreduction Are Systematic and Predictable. ACS Catal 2024; 14:8814-8822. [PMID: 38868103 PMCID: PMC11165452 DOI: 10.1021/acscatal.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
The electrode-electrolyte interface, and in particular the nature of the cation, has considerable effects on the activity and product selectivity of the electrochemical reduction of CO2. Therefore, to improve the electrocatalysis of this challenging reaction, it is paramount to ascertain whether cation effects on adsorbed intermediates are systematic. Here, DFT calculations are used to show that the effects of K+, Na+, and Mg2+, on single carbon CO2 reduction intermediates can either be stabilizing or destabilizing depending on the metal and the adsorbate. Because systematic trends are observed, cation effects can be accurately predicted in simple terms for a wide variety of metals, cations and adsorbed species. These results are then applied to the reduction of CO2 to CO on four different catalytic surfaces (Au, Ag, Cu, Pd) and activation of weak-binding metals is consistently observed by virtue of the stabilization of the key intermediate *COOH.
Collapse
Affiliation(s)
- Elizabeth Sargeant
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Department
of Materials Science and Chemical Physics & Institute of Theoretical
and Computational Chemistry (IQTC), University
of Barcelona, Barcelona 08028, Spain
| | - Paramaconi Rodriguez
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Vitoria-Gasteiz 01510, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza de Euskadi 5, Bilbao 48009, Spain
| | - Federico Calle-Vallejo
- Department
of Materials Science and Chemical Physics & Institute of Theoretical
and Computational Chemistry (IQTC), University
of Barcelona, Barcelona 08028, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza de Euskadi 5, Bilbao 48009, Spain
- Nano-Bio
Spectroscopy Group and European Theoretical Spectroscopy Facility
(ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Avenida Tolosa 72, San Sebastian 20018, Spain
| |
Collapse
|
15
|
Tang J, Xu N, Ren A, Ma L, Xu W, Han Z, Chen Z, Li Q. Two-Orders-of-Magnitude Enhancement of Photoinitiation Activity via a Simple Surface Engineering of Metal Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202403645. [PMID: 38530138 DOI: 10.1002/anie.202403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Development of high-performance photoinitiator is the key to enhance the printing speed, structure resolution and product quality in 3D laser printing. Here, to improve the printing efficiency of 3D laser nanoprinting, we investigate the underlying photochemistry of gold and silver nanocluster initiators under multiphoton laser excitation. Experimental results and DFT calculations reveal the high cleavage probability of the surface S-C bonds in gold and silver nanoclusters which generate multiple radicals. Based on this understanding, we design several alkyl-thiolated gold nanoclusters and achieve a more than two-orders-of-magnitude enhancement of photoinitiation activity, as well as a significant improvement in printing resolution and fabrication window. Overall, this work for the first time unveils the detailed radical formation pathways of gold and silver nanoclusters under multiphoton activation and substantially improves their photoinitiation sensitivity via surface engineering, which pushes the limit of the printing efficiency of 3D laser lithography.
Collapse
Affiliation(s)
- Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ning Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - An Ren
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang Ma
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Zhongkang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zijie Chen
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Liu Z, Chen J, Li B, Jiang DE, Wang L, Yao Q, Xie J. Enzyme-Inspired Ligand Engineering of Gold Nanoclusters for Electrocatalytic Microenvironment Manipulation. J Am Chem Soc 2024; 146:11773-11781. [PMID: 38648616 DOI: 10.1021/jacs.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Natural enzymes intricately regulate substrate accessibility through specific amino acid sequences and folded structures at their active sites. Achieving such precise control over the microenvironment has proven to be challenging in nanocatalysis, especially in the realm of ligand-stabilized metal nanoparticles. Here, we use atomically precise metal nanoclusters (NCs) as model catalysts to demonstrate an effective ligand engineering strategy to control the local concentration of CO2 on the surface of gold (Au) NCs during electrocatalytic CO2 reduction reactions (CO2RR). The precise incorporation of two 2-thiouracil-5-carboxylic acid (TCA) ligands within the pocket-like cavity of [Au25(pMBA)18]- NCs (pMBA = para-mercaptobenzoic acid) leads to a substantial acceleration in the reaction kinetics of CO2RR. This enhancement is attributed to a more favorable microenvironment in proximity to the active site for CO2, facilitated by supramolecular interactions between the nucleophilic Nδ- of the pyrimidine ring of the TCA ligand and the electrophilic Cδ+ of CO2. A comprehensive investigation employing absorption spectroscopy, mass spectrometry, isotopic labeling measurements, electrochemical analyses, and quantum chemical computation highlights the pivotal role of local CO2 enrichment in enhancing the activity and selectivity of TCA-modified Au25 NCs for CO2RR. Notably, a high Faradaic efficiency of 98.6% toward CO has been achieved. The surface engineering approach and catalytic fundamentals elucidated in this study provide a systematic foundation for the molecular-level design of metal-based electrocatalysts.
Collapse
Affiliation(s)
- Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
17
|
Seong H, Chang K, Sun F, Lee S, Han SM, Kim Y, Choi CH, Tang Q, Lee D. ClAg 14 (C≡C t Bu) 12 Nanoclusters as Efficient and Selective Electrocatalysts Toward Industrially Relevant CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306089. [PMID: 38145332 PMCID: PMC10933691 DOI: 10.1002/advs.202306089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Indexed: 12/26/2023]
Abstract
Atomically precise metal nanoclusters (NCs) have emerged as a promising frontier in the field of electrochemical CO2 reduction reactions (CO2 RR) because of their distinctive catalytic properties. Although numerous metal NCs are developed for CO2 RR, their use in practical applications has suffered from their low-yield synthesis and insufficient catalytic activity. In this study, the large-scale synthesis and electrocatalytic performance of ClAg14 (C≡Ct Bu)12 + NCs, which exhibit remarkable efficiency in catalyzing CO2 -to-CO electroreduction with a CO selectivity of over 99% are reported. The underlying mechanisms behind this extraordinary CO2 RR activity of ClAg14 (C≡Ct Bu)12 + NCs are investigated by a combination of electrokinetic and theoretical studies. These analyses reveal that different active sites, generated through electrochemical activation, have unique adsorption properties for the reaction intermediates, leading to enhanced CO2 RR and suppressed hydrogen production. Furthermore, industrially relevant CO2 -to-CO electroreduction using ClAg14 (C≡Ct Bu)12 + NCs in a zero-gap CO2 electrolyzer, achieving high energy efficiency of 51% and catalyst activity of over 1400 A g-1 at a current density of 400 mA cm-2 is demonstrated.
Collapse
Affiliation(s)
- Hoeun Seong
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Kiyoung Chang
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing401331China
| | - Sojung Lee
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Sang Myeong Han
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Yujin Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Chang Hyuck Choi
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I–CREATE)Yonsei UniversitySeoul03722Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing401331China
| | - Dongil Lee
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
18
|
Zhao R, Zhu Z, Ouyang T, Liu ZQ. Selective CO 2 -to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angew Chem Int Ed Engl 2024; 63:e202313597. [PMID: 37853853 DOI: 10.1002/anie.202313597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Electrocatalytic CO2 -to-syngas (gaseous mixture of CO and H2 ) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2 O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2 -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Zhang B, Xia C, Hu J, Sheng H, Zhu M. Structure control and evolution of atomically precise gold clusters as heterogeneous precatalysts. NANOSCALE 2024; 16:1526-1538. [PMID: 38168796 DOI: 10.1039/d3nr05460h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Metal clusters have distinct features from single atom and nanoparticle (>1 nm) catalysts, making them effective catalysts for various heterogeneous reactions. Nevertheless, the ambiguity and complexity of the catalyst structure preclude in-depth mechanistic studies. The evolution of metal species during synthesis and reaction processes represents another challenge. One effective solution is to precisely control the structure of the metal cluster, thus offering a well-defined pre-catalyst. The well-defined chemical formula and configurations make atomically precise metal nanoclusters optimal choices. To fabricate an atomically precise metal nanocluster-based heterogeneous catalyst with enhanced performance, careful structural design of both the nanocluster and support material, an effective assembling technique, and a pre-treatment method for these hybrids need to be developed. In this review, we summarize recent advances in in the development of heterogeneous catalysts using atomically precise gold and alloy gold nanoclusters as precursors. We will begin with a brief introduction to the structural properties of atomically precise nanoclusters and structure determination of cluster/support hybrids. We will then introduce heterogeneous catalysts prepared from medium size (tens to hundreds of metal atoms) and low nuclearity nanoclusters. We will illustrate how ligand modification, support-cluster interaction, hybrid fabrication, and heteroatom (Pt, Pd Ag, Cu, Cd, Fe) introduction affect the structural properties and pretreatment/reaction-induced structural evolution of gold nanocluster pre-catalysts. Lastly, we will highlight the synthetic method of NCs@MOF hybrids and their effectiveness in circumventing the adverse cluster structural evolution. These findings are expected to shed light on the structure-activity relationship studies and future catalyst design strategies using atomically precise metal nanocluster pre-catalysts.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Chengcheng Xia
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Jinhui Hu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Hongting Sheng
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
20
|
Tan Y, Sun G, Jiang T, Liu D, Li Q, Yang S, Chai J, Gao S, Yu H, Zhu M. Symmetry Breaking Enhancing the Activity of Electrocatalytic CO 2 Reduction on an Icosahedron-Kernel Cluster by Cu Atoms Regulation. Angew Chem Int Ed Engl 2024; 63:e202317471. [PMID: 38072830 DOI: 10.1002/anie.202317471] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Recently, CO2 hydrogenation had a new breakthrough resulting from the design of catalysts to effectively activate linear CO2 with symmetry-breaking sites. However, understanding the relationship between symmetry-breaking sites and catalytic activity at the atomic level is still a great challenge. In this study, a set of gold-copper alloy Au13 Cux (x=0-4) nanoclusters were used as research objects to show the symmetry-controlled breaking structure on the surface of nanoclusters with the help of manipulability of the Cu atoms. Among them, Au13 Cu3 nanocluster displays the highest degree of symmetry-breaking on its crystal structure compared with the other nanoclusters in the family. Where the three copper atoms occupying the surface of the icosahedral kernel unevenly with one copper atom is coordinately unsaturated (CuS2 motif relative to CuS3 motif). As expected, Au13 Cu3 has an excellent hydrogenation activity of CO2 , in which the current density is as high as 70 mA cm-2 (-0.97 V) and the maximum FECO reaches 99 % at -0.58 V. Through the combination of crystal structures and theoretical calculations, the excellent catalytic activity of Au13 Cu3 is revealed to be indeed closely related to its asymmetric structure.
Collapse
Affiliation(s)
- Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Guilin Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Tingting Jiang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Dong Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| |
Collapse
|
21
|
Yoo S, Yoo S, Deng G, Sun F, Lee K, Jang H, Lee CW, Liu X, Jang J, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Nanocluster Surface Microenvironment Modulates Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2313032. [PMID: 38113897 DOI: 10.1002/adma.202313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/21/2023]
Abstract
The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2 RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2 RR activity (CO Faradaic efficiency, FECO : 90.3%) with higher CO partial current density (jCO ) in an H-cell compared to Ag25 cluster (FECO : 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2 . Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2 RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2 RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsung Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Megalamane Siddaramappa Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
22
|
Wang M, Li S, Tang X, Zuo D, Jia Y, Guo S, Guan ZJ, Shen H. One-step preparation of Pt/Ag nanoclusters for CO 2 transformation. Phys Chem Chem Phys 2023; 25:30373-30380. [PMID: 37909301 DOI: 10.1039/d3cp02736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
23
|
Zheng W, Yang X, Li Z, Yang B, Zhang Q, Lei L, Hou Y. Designs of Tandem Catalysts and Cascade Catalytic Systems for CO 2 Upgrading. Angew Chem Int Ed Engl 2023; 62:e202307283. [PMID: 37338736 DOI: 10.1002/anie.202307283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Upgrading CO2 into multi-carbon (C2+) compounds through the CO2 reduction reaction (CO2 RR) offers a practical approach to mitigate atmospheric CO2 while simultaneously producing high value chemicals. The reaction pathways for C2+ production involve multi-step proton-coupled electron transfer (PCET) and C-C coupling processes. By increasing the surface coverage of adsorbed protons (*Had ) and *CO intermediates, the reaction kinetics of PCET and C-C coupling can be accelerated, thereby promoting C2+ production. However, *Had and *CO are competitively adsorbed intermediates on monocomponent catalysts, making it difficult to break the linear scaling relationship between the adsorption energies of the *Had /*CO intermediate. Recently, tandem catalysts consisting of multicomponents have been developed to improve the surface coverage of *Had or *CO by enhancing water dissociation or CO2 -to-CO production on auxiliary sites. In this context, we provide a comprehensive overview of the design principles of tandem catalysts based on reaction pathways for C2+ products. Moreover, the development of cascade CO2 RR catalytic systems that integrate CO2 RR with downstream catalysis has expanded the range of potential CO2 upgrading products. Therefore, we also discuss recent advancements in cascade CO2 RR catalytic systems, highlighting the challenges and perspectives in these systems.
Collapse
Affiliation(s)
- Wanzhen Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoxuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qinghua Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Zhejiang University, Quzhou, Quzhou, Zhejiang, 324000, China
| |
Collapse
|
24
|
Sun X, Wang P, Yan X, Guo H, Wang L, Xu Q, Yan B, Li S, He J, Chen G, Shen H, Zheng N. Hydride-doped Ag 17Cu 10 nanoclusters as high-performance electrocatalysts for CO 2 reduction. iScience 2023; 26:107850. [PMID: 37752951 PMCID: PMC10518712 DOI: 10.1016/j.isci.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
The atomically precise metal electrocatalysts for driving CO2 reduction reactions are eagerly pursued as they are model systems to identify the active sites, understand the reaction mechanism, and further guide the exploration of efficient and practical metal nanocatalysts. Reported herein is a nanocluster-based electrocatalyst for CO2 reduction, which features a clear geometric and electronic structure, and more importantly excellent performance. The nanocatalysts with the molecular formula of [Ag17Cu10(dppm)4(PhC≡C)20H4]3+ have been obtained in a facile way. The unique metal framework of the cluster, with silver, copper, and hydride included, and dedicated surface structure, with strong (dppm) and labile (alkynyl) ligands coordinated, endow the cluster with excellent performance in electrochemical CO2 reduction reaction to CO. With the atomically precise electrocatalysts in hand, not only high reactivity and selectivity (Faradaic efficiency for CO up to 91.6%) but also long-term stability (24 h), are achieved.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Guo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
25
|
Sun F, Qin L, Tang Z, Deng G, Bootharaju MS, Wei Z, Tang Q, Hyeon T. -SR removal or -R removal? A mechanistic revisit on the puzzle of ligand etching of Au 25(SR) 18 nanoclusters during electrocatalysis. Chem Sci 2023; 14:10532-10546. [PMID: 37800008 PMCID: PMC10548520 DOI: 10.1039/d3sc03018k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/07/2023] Open
Abstract
Accurate identification of active sites is highly desirable for elucidation of the reaction mechanism and development of efficient catalysts. Despite the promising catalytic performance of thiolated metal nanoclusters (NCs), their actual catalytic sites remain elusive. Traditional first-principles calculations and experimental observations suggested dealkylated S and dethiolated metal, respectively, to be the active centers. However, the real kinetic origin of thiolate etching during the electrocatalysis of NCs is still puzzling. Herein, we conducted advanced first-principles calculations and electrochemical/spectroscopic experiments to unravel the electrochemical etching kinetics of thiolate ligands in prototype Au25(SCH3)18 NC. The electrochemical processes are revealed to be spontaneously facilitated by dethiolation (i.e., desorption of -SCH3), forming the free HSCH3 molecule after explicitly including the solvent effect and electrode potential. Thus, exposed under-coordinated Au atoms, rather than the S atoms, serve as the real catalytic sites. The thermodynamically preferred Au-S bond cleavage arises from the selective attack of H from proton/H2O on the S atom under suitable electrochemical bias due to the spatial accessibility and the presence of S lone pair electrons. Decrease of reduction potential promotes the proton attack on S and significantly accelerates the kinetics of Au-S bond breakage irrespective of the pH of the medium. Our theoretical results are further verified by the experimental electrochemical and spectroscopic data. At more negative electrode potentials, the number of -SR ligands decreased with concomitant increase of the vibrational intensity of S-H bonds. These findings together clarify the atomic-level activation mechanism on the surface of Au25(SR)18 NCs.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
26
|
Shen H, Zhu Q, Xu J, Ni K, Wei X, Du Y, Gao S, Kang X, Zhu M. Stepwise construction of Ag 29 nanocluster-based hydrogen evolution electrocatalysts. NANOSCALE 2023; 15:14941-14948. [PMID: 37655628 DOI: 10.1039/d3nr03537a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although several silver-based nanoclusters have been controllably prepared and structurally determined, their electrochemical catalytic performances have been relatively unexplored (or showed relatively weak ability towards electro-catalysis). In this work, we accomplished the step-by-step enhancement of the electrocatalytic hydrogen evolution reaction (HER) efficiency based on an Ag29 cluster template. A combination of atomically precise operations, including the kernel alloying, ligand engineering, and surface activation, was exploited to produce a highly efficient Pt1Ag28-BTT-Mn(10) nano-catalyst towards HER, derived from both experimental characterization and theoretical modelling. The precision characteristic of the Ag29-based cluster system enables us to understanding the correlations between nanocluster structures and HER performances at the atomic level. Overall, the findings of this work will hopefully provide more opportunities for the customization of new cluster-based nano-catalysts with enhanced electrocatalytic capacities.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Qingtao Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Kun Ni
- CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering & iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Yuanxin Du
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
27
|
Xin J, Xu J, Zhu C, Tian Y, Zhang Q, Kang X, Zhu M. Restriction of intramolecular rotation for functionalizing metal nanoclusters. Chem Sci 2023; 14:8474-8482. [PMID: 37592984 PMCID: PMC10430645 DOI: 10.1039/d3sc01698f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The restriction of intramolecular rotation has been extensively exploited to trigger the property enhancement of nanocluster-based materials. However, such a restriction is induced mainly by intermolecular aggregation. The direct restriction of intramolecular rotation of metal nanoclusters, which could boost their properties at the single molecular level, remains rarely explored. Here, ligand engineering was applied to activate intramolecular interactions at the interface between peripheral ligands and metallic kernels of metal nanoclusters. For the newly reported Au4Ag13(SPhCl2)9(DPPM)3 nanocluster, the molecule-level interactions between the Cl terminals on thiol ligands and the Ag atoms on the cluster kernel remarkably restricted the intramolecular rotation, endowing this robust nanocluster with superior thermal stability, emission intensity, and non-linear optical properties over its cluster analogue. This work presents a novel case of the restriction of intramolecular rotation (i.e., intramolecular interaction-induced property enhancement) for functionalizing metal clusters at the single molecular level.
Collapse
Affiliation(s)
- Junsheng Xin
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Jing Xu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Chen Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Yupeng Tian
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Qiong Zhang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| |
Collapse
|