1
|
Zhao H, Zhang Y, Sun Y, Zhu Z, Ren J, Qu X. Self-Driven CuAAC Reaction Catalyzed by Photosensitive Biohybrids Energized by Lactate for Boosting Cancer Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202425018. [PMID: 39973575 DOI: 10.1002/anie.202425018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/21/2025]
Abstract
As a typical bioorthogonal reaction, the copper (I) catalyzed azide-alkyne 1,3-cycloaddition (CuAAC) reaction strongly depends on the reducing agents and the rate of the CuAAC reaction is far from sufficient to produce drug agents under physiological conditions. It is necessary and highly demanding to develop an efficient CuAAC reaction without using chemical reducing agents. Herein, inspired by the extracellular electron transfer (EET) mechanisms of the electroactive bacteria within the realm of synthetic biology, a photo-assisted targeting electroactive bacteria equipped bioorthogonal catalyst system for boosting cancer immunotherapy is constructed. The bacteria specifically anaerobically catabolize lactate at the tumor site, accompanied by transferring electrons to the bioorthogonal catalyst, thereby triggering the CuAAC reaction to produce active drugs in situ. Strikingly, under illumination, the photoelectrons generated by attached AuNPs can be transported into bacterial cytoplasm to accelerate the CuAAC reaction by promoting cellular metabolism. The biohybrid enables synergistic immunogenic cell death (ICD), immune checkpoint blockade (ICB) immunotherapy and alleviation of immunosuppressive microenvironment. Ingeniously, ICD and lactate consumption both boost the efficacy of ICB immunotherapy. Overall, the system provides a bridge between the tumor metabolism and CuAAC reaction through bacterial respiration, offering fascinating opportunities for controlled synthesis of active molecules by bioorthogonal catalysis.
Collapse
Affiliation(s)
- Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yue Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zitong Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Shao D, Pei X, Ma Y, Liu S, Li W, Li L, Ma P. Metallized hollow-COF nanobowls with dual-mode ROS generation for cancer sonodynamic therapy. J Mater Chem B 2025; 13:5181-5189. [PMID: 40223533 DOI: 10.1039/d5tb00338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Sonodynamic therapy (SDT) has emerged as an encouraging route in tumor treatment, due to its exceptional tissue penetration depth and favorable safety profile. Nevertheless, the clinical translation of conventional organic sonosensitizers is hindered by intrinsic limitations, including pronounced hydrophobicity, insufficient chemical stability, and low reactive oxygen species (ROS) production. In contrast, hollow covalent organic frameworks (HCOFs) exhibit exceptional cargo-loading capabilities, structural robustness, and biocompatibility, positioning them as ideal nanoplatforms for advanced therapeutic applications. Herein, we engineered a bowl-shaped HCOF architecture designed to amplify ultrasonic cavitation effects. This nanostructure was subsequently functionalized with the sonosensitizer (Hemin) and subjected to strategic metallization via metal ion incorporation, culminating in the development of a high-efficiency antitumor nanosystem (FeHHCA). FeHHCA can achieve dual-mode ROS generation, namely, sonodynamic synergistically generating 1O2 and being specifically activated by a tumor microenvironment (TME) to generate ˙OH through a Fenton-like reaction, achieving an 78.7% tumor inhibition rate in vivo. These findings offer innovative approaches and strategies for the design of hollow COFs and offer great potential for the application of SDT in cancer treatment.
Collapse
Affiliation(s)
- Donghan Shao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Xinyu Pei
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Wenliang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Meng Q, Ding B, Ma P, Lin J. Inorganic Nanobiomaterials Boost Tumor Immunotherapy: Strategies and Applications. Acc Chem Res 2025; 58:1210-1223. [PMID: 40179239 DOI: 10.1021/acs.accounts.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
ConspectusTumor immunotherapy, as a new antitumor method to fight cancer by activating or enhancing the body's own immune system, has been extensively studied and applied in clinical practice. However, as an extremely complex system, tumor heterogeneity and complex immunosuppressive tumor microenvironment (TME) lead to poor immune response rate or secondary drug resistance. The advent of nanotechnology has ushered in a new era for immunotherapy. In particular, inorganic nanomaterials, with their unique physicochemical properties and excellent biocompatibility, are becoming an important tool for enhancing immunotherapy. Inorganic nanomaterials can be used as carriers for immune agents, improving drug delivery efficiency and thereby reducing systemic immunotoxicity and enhancing immune responses. Inorganic nanomaterials also trigger tumor immunogenic cell death (ICD), stimulate antitumor immune responses, and alleviate immunosuppressive TME by increasing oxygen levels, modulating metabolic pathways, and altering the secretion of immunosuppressive cytokines. The synergistic integration of inorganic nanomaterials with immunotherapy adeptly navigates around the constraints of conventional treatments, reducing side effects while concurrently augmenting therapeutic efficacy. In this review, we summarize our recent efforts in the design and synthesis of inorganic nanobiomaterials to enhance the efficacy of tumor immunotherapy. These nanomaterials achieve the desired immune efficacy mainly through four strategies, including inducing ICD, developing tumor nanovaccines, activating pyroptosis, and regulating tumor metabolism, providing beneficial implications for tumor immunotherapy. For one thing, due to the deficiency of ICD effect in single therapy, we mainly developed nanocatalysts that integrate multiple therapeutic functions to play a catalytic role in TME, converting tumor substances or metabolites into therapeutic products in situ, and further enhancing ICD. For another, in order to solve the problems of low antigen loading and therapeutic efficiency of existing adjuvants, several novel multifunctional nanoadjuvants were prepared, which combine high antigen loading and multimode therapeutic function in one, and achieve efficient immune activation. Moreover, to attain strong inflammatory responses and immunogenicity, we engineer pyroptosis adjuvants that selectively induce tumor cell pyroptosis by enhancing intracellular oxidative stress or ion overload. Finally, to reverse the immunosuppressive microenvironment, we developed nanoplatforms that target tumor metabolism, altering the levels of nutrients and metabolites in tumor such as glucose, lactic acid, citric acid, and tryptophan to effectively alter the TME, thereby activating and enhancing the body's immune response. The implementation of these strategies not only improves the therapeutic effect but also reduces the side effects and provides valuable insights and references for the development of novel nanomaterials to assist immunotherapy.
Collapse
Affiliation(s)
- Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Kang Q, Liu F, Tan S, Wu F, Liu Y, Li Z, Yang S, Huang H, Xiong J, Chen G, Wu GL, Tan X, Yang Q. Molecular Engineering of NIR-II Excitable Phototheranostic for Mitochondria-Targeted Cancer Photoimmunotherapy. J Med Chem 2025; 68:7707-7719. [PMID: 40138524 DOI: 10.1021/acs.jmedchem.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The advancement of mitochondria-targeted near-infrared-II (NIR-II) excitable phototheranostics constitutes a promising strategy for improving fluorescence-image-guided cancer phototherapy. However, developing phototheranostic agents that simultaneously combine high-contrast NIR-II fluorescence imaging with effective multimodal therapeutic techniques remains a substantial challenge. Herein, we reported a shielding-donor-acceptor-donor-shielding structured NIR-II phototheranostic (FCD-T) by a molecular engineering strategy, followed by self-assembly with glutathione-responsive copolymer to form FCD-T nanoparticles. The introduction of functional bithiophene endows FCD-T with significant electron-donating properties and reduces intermolecular π-π stacking interactions. The robust π-conjugation of fluorene with good rigidity would enhance the intramolecular charge transfer capability. Therefore, FCD-T NPs exhibited an NIR-II absorption peak at 1075 nm and an emission peak at 1280 nm. Upon NIR-II light excitation, such nanoparticles could generate excellent photothermal and photodynamic performances with good biocompatibility. Moreover, the NIR-II mitochondria-targeted phototherapy further facilitated mitochondrial apoptosis-related pathways, activating antitumor immunity and inhibiting tumor growth with single irradiation at low doses.
Collapse
Affiliation(s)
- Qiang Kang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | | | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | | | - Zelong Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sha Yang
- Pathology Research Group & Department of Pathology Institute of Basic Disease Sciences & School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Hejin Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | | | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gui-Long Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Zhu J, Jin Y, Wu Y, Mo D, Zhang T, Xiang L, Cai K, Zhang J. Harnessing Nanoreactors with Coupled Optical and Molecular Modalities for Photoenzymatic Modulation of Active Species in Cancer Photo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411336. [PMID: 40059567 DOI: 10.1002/smll.202411336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Indexed: 03/17/2025]
Abstract
The dynamic process in tumor ablation requires both the generation of reactive oxygen species (ROS) to elicit immunogenic cell death (ICD) and the subsequent reduction of ROS levels to maintain the stimulatory activity of signaling proteins and recover T cells' immune function. Inspired by the regulation mechanism of redox homeostasis in myeloid-derived suppressor cells and the high-selectivity in alcohols/aldehydes conversions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and Fe(III) synergistic catalysis, photoenzymatic modulators with contradictory but synergistic functions are developed for adaptive photo-immunotherapy of cancer. In particular, poly(caffeic acid) (PCA) nanospheres are synthesized by highly efficient oxidative polymerization of CA. The obtained π-conjugated structures have an extended absorbance in the near-infrared (NIR) region, narrow band energy (0.86 eV), and low exciton binding energy (43.56 meV) that lead to polymerization-enhanced type I photosensitization and photostability. Meanwhile, abundant semiquinone radicals existing in PCA bestow them with superior antioxidant function. Under NIR irradiation, the elevated superoxide radical yields (3.5-fold compared with CA) and heat stress elicit robust ICD. When irradiation ceases, active species downregulation and the infiltration of T lymphocytes increase by 2.7-fold compared with conventional photosensitizers. As envisaged, this work demonstrates a novel tactic to remodel redox and immune homeostasis for effective inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yunyun Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lunli Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
6
|
Jiang T, Zhang J, Zhao S, Zhang M, Wei Y, Liu X, Zhang S, Fan W, Liu Y, Lv Y, Zhang G. MCT4: a key player influencing gastric cancer metastasis and participating in the regulation of the metastatic immune microenvironment. J Transl Med 2025; 23:276. [PMID: 40045374 PMCID: PMC11884109 DOI: 10.1186/s12967-025-06279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND MCT4 is a lactate transporter associated with glycolysis, which has been found to be associated with various tumorigenesis and development processes. Gastric cancer is a malignant disease with high incidence and mortality. The role of MCT4 in the occurrence and development of gastric cancer has not been clarified. METHODS In this study, we comprehensively utilized single-cell sequencing and external transcriptome sequencing databases to deeply analyze the mechanism of the impact of MCT4 on gastric cancer and its microenvironment. We verified the function of MCT4 in gastric cancer through in vitro cell line experiments and in vivo experiments using gastric cancer liver metastasis and subcutaneous tumor models. Meanwhile, we collected tumor and normal tissue samples from clinical gastric cancer patients and employed immunohistochemistry and multiplex immunofluorescence techniques to detect the expression and localization of relevant indicators, thereby validating the results of computer simulation analysis and providing a basis for revealing the internal relationship between MCT4 and gastric cancer. RESULTS The expression of MCT4 is upregulated in gastric cancer patients, and the upregulation is more significant than that in patients with gastric cancer metastasis. MCT4 can mediate the proliferation and migration of gastric cancer cells in vitro. MCT4 can mediate the metastasis of gastric cancer cells in vivo. Multi-omics analysis showed that the expression of MCT4 was related to the composition of the immune microenvironment, and it could mediate the emergence of the inhibitory immune microenvironment. The results of immunofluorescence and immunohistochemistry proved the robustness of the multi-omics analysis. CONCLUSION Our study found that MCT4 plays an important role in the occurrence and development of gastric cancer, which may mediate the occurrence of gastric cancer metastasis and shape the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Jingcheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Sicheng Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Mingsi Zhang
- School of Sport, Loughborough University, Loughborough, LE, UK
| | - Yunhai Wei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Xiaojuan Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Shuo Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Wei Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Yueying Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Yuanlin Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Dou R, Wang L, Zhang J, Cai X, Tang J, Liu X, Hu Y, Chen J. Reversing Photodynamic Therapy-Induced Tumor Metabolic Symbiosis and Immune Evasion Delivers a Two-Punch Attack on Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409052. [PMID: 39950511 DOI: 10.1002/smll.202409052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Indexed: 03/20/2025]
Abstract
Photodynamic therapy (PDT) is an attractive approach for tumor treatment because of its precision, potent cytotoxic effect, and low risk of resistance compared to conventional cancer treatments. However, PDT consumes oxygen. The oxygen depletion effects in PDT-treated tumor cells can elevate lactic acid production and efflux, promoting the progression of surrounding tumor cells through tumor metabolic symbiosis and promoting macrophages to M2-type polarization for supporting tumor progression. Herein, a multifunctional nanosystem is developed for the intracellular co-delivery of the photosensitizer (ICG), the nanozyme (iron oxide nanoparticles, MNPs), and siMCT4 (siRNA for monocarboxylate transporter 4). In tumor cells undergoing PDT, siMCT4 inhibits lactate efflux, thereby limiting extracellular lactate-associated malignancy and immune evasion. Meanwhile, both the reduction of extracellular lactate levels and the presence of MNPs in the tumor microenvironment promote the M1-type polarization to enhance the antitumor activity of macrophages. Furthermore, the intracellular lactic acid accumulation and M1-type macrophage-secreted H2O2 facilitate the MNPs-mediated chemodynamic therapy (CDT). Therefore, the intelligent nanosystem, IM@iPPAE@siMCT4, can regulate the intra/extracellular lactate levels and the M1-type macrophage polarization to deliver a two-punch attack on tumor cells. This nanosystem circumvents the problems arising from antitumor PDT.
Collapse
Affiliation(s)
- Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Jiaruo Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yi Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| |
Collapse
|
8
|
Liang JL, Huang QX, Chen QW, Jin XK, Han ZY, Ji P, Cheng SX, Chen WH, Zhang XZ. Perturbing Organelle-Level K +/Ca 2+ Homeostasis by Nanotherapeutics for Enhancing Ion-Mediated Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416574. [PMID: 39955648 DOI: 10.1002/adma.202416574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Intracellular ions are involved in numerous pivotal immune processes, but the precise regulation of these signaling ions to achieve innovative immune therapeutic strategies is still a huge challenge. Here, an ion-mediated immunotherapy agent (IMIA) is engineered to achieve precise spatiotemporal control of perturbing K+/Ca2+ homeostasis at the organelle-level, thereby amplifying antitumor immune responses to achieve high-performance cancer therapy. By taking in intracellular K+ and supplying exogenous Ca2+ within tumor cells, K+/Ca2+ homeostasis is perturbed by IMIA. In parallel, perturbing K+ homeostasis induced endoplasmic reticulum (ER) stress triggers the release of Ca2+ from ER and causes a decreased concentration of Ca2+ in ER, which further accelerates ER-mitochondria Ca2+ flux and the influx of extracellular Ca2+ (store-operated Ca2+ entry (SOCE)) via opening Ca2+ release-activated Ca2+ (CRAC) channels, thus creating a self-amplifying ion interference loop to perturb K+/Ca2+ homeostasis. In this process, the elevated immunogenicity of tumor cells would evoke robust antitumor immune responses by driving the excretion of damage-associated molecular patterns (DAMPs). Importantly, this ion-immunotherapy strategy reshapes the immunosuppressive tumor microenvironment (TME), and awakens the systemic immune response and long-term immune memory effect, thus effectively inhibiting the growth of primary/distant tumors, orthotopic tumors as well as metastatic tumors in different mice models.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qian-Xiao Huang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi-Wen Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao-Kang Jin
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ping Ji
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Xue Cheng
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
9
|
Wang JW, Ji P, Zeng JY, Liang JL, Cheng Q, Liu MD, Chen WH, Zhang XZ. Engineered bacterium-metal-organic framework biohybrids for boosting radiotherapy with multiple effects. Biomaterials 2025; 314:122901. [PMID: 39447307 DOI: 10.1016/j.biomaterials.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Hypoxia and lactate-overexpressed tumor microenvironment always lead to poor therapeutic effect of radiotherapy. Here, platinum nanoparticles-embellished hafnium metal-organic framework (Hf-MOF-Pt NPs) were elaborately integrated with Shewanella oneidensis MR-1 (SO) to construct an engineered biohybrid platform (SO@Hf-MOF-Pt) for enhancing radiotherapy. Benefiting from the tumor-targeting and metabolic respiration characteristics of SO, SO@Hf-MOF-Pt could enrich in tumor sites and continuously metabolize the overexpressed lactate, which specifically downregulated the expression of hypoxia-inducible factor (HIF-1α), thereby relieving the radiosuppressive tumor microenvironment to some extent. Moreover, SO@Hf-MOF-Pt would react with tumor-overexpressed hydrogen peroxide (H2O2) to generate oxygen (O2) and further inhibit the expression of HIF-1α, resulting in the downregulation of lactate dehydrogenase (LDHA) and subsequently reducing the lactate production. Under these multiple cascaded effects, the radiosuppressive tumor microenvironment was significantly reshaped, thus potentiating the radiosentization of SO@Hf-MOF-Pt and remarkably amplifying the therapeutic outcomes of radiotherapy. The designed biohybrid SO@Hf-MOF-Pt represented promising prospects in sensitizing radiotherapy via bacterium-based metabolic regulation.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Miao-Deng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Wei-Hai Chen
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| | - Xian-Zheng Zhang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
10
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
11
|
Gong Q, Song X, Tong Y, Huo L, Zhao X, Han Y, Shen W, Ru J, Shen X, Liang C. Recent advances of anti-tumor nano-strategies via overturning pH gradient: alkalization and acidification. J Nanobiotechnology 2025; 23:42. [PMID: 39849540 PMCID: PMC11761731 DOI: 10.1186/s12951-025-03134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025] Open
Abstract
The acidic tumor microenvironment, a hallmark of many solid tumors, is primarily induced by the high glycolytic rate of tumor cells. To avoid acidosis, tumor cells ingeniously maintain an acidic extracellular pH while keeping a relatively alkaline intracellular pH. Overturning the unique pH gradient of tumor cells has exhibited to be a viable approach for cancer therapy. In this review, the formation and regulatory mechanisms of the acidic microenvironment in solid tumors will be firstly outlined. Subsequently, we will comprehensively summarize the latest advancements in anti-tumor therapy via using nanomedicines to manipulate the tumor pH gradient, including acidifying intracellular environment and alkalizing extracellular environment. Following this, we will discuss the future potential of strategies employing nanomedicines to reverse tumor pH gradient. This review aims to foster research on therapeutic approaches targeting the pH regulation of solid tumors and holds an optimistic outlook for the future development of this field.
Collapse
Affiliation(s)
- Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| | - Yao Tong
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lixuan Huo
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuefen Zhao
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yingying Han
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Shen
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian Shen
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
12
|
Lu Y, Zhu F, Zhou X, Li Y, Rong G, Liu N, Hong J, Cheng Y. A Supramolecular Deferoxamine-Crisaborole Nanoparticle Targets Ferroptosis, Inflammation, and Oxidative Stress in the Treatment of Retinal Ischemia/Reperfusion Injury. NANO LETTERS 2025; 25:1058-1066. [PMID: 39670541 DOI: 10.1021/acs.nanolett.4c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Retinal ischemia-reperfusion (IR) injury is a major cause of vision loss worldwide, with ferroptosis, oxidative stress, and inflammation playing key roles in its pathogenesis. Currently, treatments targeting multiple aspects of this condition are limited. This study introduces a supramolecular nanoparticle combining the phosphodiesterase 4 (PDE4) inhibitor crisaborole and the ferroptosis inhibitor deferoxamine to address these pathological processes. Crisaborole forms a dynamic bond with deferoxamine via benzoxaborole-catechol chemistry, creating an amphiphilic molecule that assembles into nanoparticles. Treatment with these nanoparticles enhances glutathione peroxidase 4 (GPX4) levels, downregulates ferroptosis-related genes [Acyl-CoA synthetase long chain family member 4 (Acsl4), heme oxygenase 1 (Hmox1)], reduces inflammatory markers (interleukin-1 beta, interleukin-6, tumor necrosis factor alpha), and decreases reactive oxygen species. Electroretinogram and histochemical analysis confirm the nanoparticles' superior protective effects compared to control treatments. This study proposes a novel nanoparticle approach for retinal IR injury by simultaneously targeting multiple pathogenic pathways.
Collapse
Affiliation(s)
- Yiteng Lu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
| | - Fang Zhu
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
| | - Yuhan Li
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangyu Rong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Liu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, 200031, China
- Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, 200032, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, 201102, China
| | - Yiyun Cheng
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
13
|
Tang Y, Yu X, He L, Tang M, Yue W, Chen R, Zhao J, Pan Q, Li W. A high-valence bismuth(V) nanoplatform triggers cancer cell death and anti-tumor immune responses with exogenous excitation-free endogenous H 2O 2- and O 2-independent ROS generation. Nat Commun 2025; 16:860. [PMID: 39833161 PMCID: PMC11747550 DOI: 10.1038/s41467-025-56110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous H2O2 and O2. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiVO3-PEG) can generate reactive oxygen species in an excitation-free and H2O2- and O2-independent manner. Upon exposure to the tumor microenvironment, NaBiVO3-PEG undergoes continuous H+-accelerated hydrolysis with •OH and 1O2 generation through electron transfer-mediated BiV-to-BiIII conversion and lattice oxygen transformation. The simultaneous release of sodium counterions after endocytosis triggers caspase-1-mediated pyroptosis. NaBiVO3-PEG intratumorally administered initiates robust therapeutic efficacies against both primary and distant tumors and activates systemic immune responses to combat tumor metastasis. NaBiVO3-PEG intravenously administered can efficiently accumulate at the tumor site for further real-time computed tomography monitoring, immunotherapy, or alternative synergistic immune-radiotherapy. Overall, this work offers a nanomedicine based on high-valence bismuth(V) nanoplatform and underscores its great potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Yizhang Tang
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China.
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China.
| | - Liangrui He
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Meng Tang
- Department of Comprehensive Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College 17 Panjiayuan South Lane, Beijing, P. R. China
| | - Wenji Yue
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Ruitong Chen
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Jie Zhao
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Qi Pan
- Department of Urology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 85 Wujin Road, Shanghai, P. R. China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China.
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China.
| |
Collapse
|
14
|
Zheng P, Wang G, Liu B, Ding H, Ding B, Lin J. Succinate Nanomaterials Boost Tumor Immunotherapy via Activating Cell Pyroptosis and Enhancing MHC-I Expression. J Am Chem Soc 2025; 147:1508-1517. [PMID: 39743855 PMCID: PMC11744746 DOI: 10.1021/jacs.4c09566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Despite the promising clinical applications of immunotherapy, its effectiveness is often limited by low immune responses and tumor immune escape. In this study, we introduce a simple and drug-free inorganic nanomaterial, sodium succinate (C4H4Na2O4 NPs), prepared using a rapid microemulsion method to enhance cancer immunotherapy. The synthesized C4H4Na2O4 NPs can release high concentrations of Na+ and succinate ions into tumor cells, leading to an increase in intracellular osmolarity. This triggers the pyroptosis pathway, resulting in the release of cellular contents, inflammatory factors, and damage-associated molecular patterns, which ultimately boost immune responses. Furthermore, C4H4Na2O4 NPs inhibit tumor immune escape through upregulating major histocompatibility complex-I (MHC-I) expression. Collectively, C4H4Na2O4 NPs significantly inhibit tumor growth and metastasis by pyroptosis-induced immune activation and MHC-I expression upregulation-remitted tumor immune escape. This research offers a novel approach to tumor treatment that leverages MHC-I expression and pyroptosis, demonstrating the potential for clinical application in cancer immunotherapy.
Collapse
Affiliation(s)
- Pan Zheng
- Key Laboratory
of Superlight Materials & Surface Technology of Ministry of Education,
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- State Key
Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Guanglei Wang
- Key Laboratory
of Superlight Materials & Surface Technology of Ministry of Education,
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Bin Liu
- Key Laboratory
of Superlight Materials & Surface Technology of Ministry of Education,
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - He Ding
- Key Laboratory
of Superlight Materials & Surface Technology of Ministry of Education,
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Binbin Ding
- State Key
Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Jun Lin
- State Key
Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
- School of
Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Kuang X, Chen S, Ye Q. The lactate metabolism and protein lactylation in epilepsy. Front Cell Neurosci 2025; 18:1464169. [PMID: 39876842 PMCID: PMC11772370 DOI: 10.3389/fncel.2024.1464169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue. This accumulation of lactate accumulation may heighten neuronal excitability by upregulating protein lactylation levels, potentially triggering post-stroke epilepsy. Although current clinical treatments for seizures have advanced significantly, approximately 30% of patients with epilepsy remain unresponsive to medication, and the prevalence of epilepsy continues to rise. This study explores the mechanisms of epilepsy-associated neuronal death mediated by lactate metabolism and protein lactylation. This study also examines the potential for histone deacetylase inhibitors to alleviate seizures by modifying lactylation levels, thereby offering fresh perspectives for future research into the pathogenesis and clinical treatment of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College, Haikou, China
| | - Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingmei Ye
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Vijayanathan Y, Ho IAW. The Impact of Metabolic Rewiring in Glioblastoma: The Immune Landscape and Therapeutic Strategies. Int J Mol Sci 2025; 26:669. [PMID: 39859381 PMCID: PMC11765942 DOI: 10.3390/ijms26020669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore;
| | - Ivy A. W. Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore;
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
17
|
Liu Z, Liu S, Liu B, Meng Q, Yuan M, Ma X, Wang J, Wang M, Li K, Ma P, Lin J. Facile Synthesis of Fe-Based Metal-Quinone Networks for Mutually Enhanced Mild Photothermal Therapy and Ferroptosis. Angew Chem Int Ed Engl 2025; 64:e202414879. [PMID: 39325096 DOI: 10.1002/anie.202414879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Mild photothermal therapy (MPTT) has emerged as a promising therapeutic modality for attenuating thermal damage to the normal tissues surrounding tumors, while the heat-induced upregulation of heat shock proteins (HSPs) greatly compromises the curative efficacy of MPTT by increasing cellular thermo-tolerance. Ferroptosis has been identified to suppress the overexpression of HSPs by the accumulation of lipid peroxides and reactive oxygen species (ROS), but is greatly restricted by overexpressed glutathione (GSH) in tumor microenvironment and undesirable ROS generation efficiency. Herein, a synergistic strategy based on the mutual enhancement of MPTT and ferroptosis is proposed for cleaving HSPs to recover tumor cell sensitivity. A facile method for fabricating a series of Fe-based metal-quinone networks (MQNs) by coordinated assembly is proposed and the representative FTP MQNs possess high photothermal conversion efficiency (69.3 %). Upon 808 nm laser irradiation, FTP MQNs not only trigger effective MPTT to induce apoptosis but more significantly, potentiate Fenton reaction and marked GSH consumption to boost ferroptosis, and the reinforced ferroptosis effect in turn can alleviate the thermal resistance by declining the HSP70 defense and reducing ATP levels. This study provides a valuable rationale for constructing a large library of MQNs for achieving mutual enhancement of MPTT and ferroptosis.
Collapse
Affiliation(s)
- Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiwei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Li Z, Ding B, Li J, Chen H, Zhang J, Tan J, Ma X, Han D, Ma P, Lin J. Multi-Enzyme Mimetic MoCu Dual-Atom Nanozyme Triggering Oxidative Stress Cascade Amplification for High-Efficiency Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202413661. [PMID: 39166420 DOI: 10.1002/anie.202413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.
Collapse
Affiliation(s)
- Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
19
|
Yuan H, Qiu C, Wang X, Wang P, Yi L, Peng X, Xu X, Huang W, Bai Y, Wei J, Ma J, Wong YK, Fu C, Xiao W, Chen C, Long Y, Li Z, Wang J. Engineering Semiconducting Polymeric Nanoagonists Potentiate cGAS-STING Pathway Activation and Elicit Long Term Memory Against Recurrence in Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406662. [PMID: 39629527 DOI: 10.1002/adma.202406662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/10/2024] [Indexed: 01/30/2025]
Abstract
Triple-negative breast cancer has an immunologically "cold" microenvironment, which leads to resistance to current immunotherapy. The activation of stimulator of interferon genes (STING) pathway has been thought a promising strategy to enhance immunotherapy efficacy. In this study, we adopted a comprehensive strategy that integrates innate immune responses with tumor-targeting photothermal therapy (PTT) to simultaneously tackle multiple immune-suppressive mechanisms in breast cancer. This semiconducting polymeric nanoagonists (DPTT-Mn Lipo NPs) mediated PTT can effectively initiate tumor cell apoptosis and induce ICD, thereby reprogramming the immunosuppressive TME and activating STING. We confirmed the modulation of the TME through the PTT-mediated ICD effect and the transactivation of the cGAS-STING pathway in immune cells of the TME due to the released dsDNA via ICD, such as macrophages and DCs. Indeed, DPTT-Mn Lipo NPs-mediated PTT promoted M1 polarization of tumor-associated macrophages, augmented T-cell infiltration, facilitated dendritic cell (DC) maturation, and regulated type I interferon factor secretion, leading to efficient tumor suppression. Most importantly, the combination of DPTT-Mn Lipo NPs-based PTT with a checkpoint blockade therapy (anti-PD-1) can elicit long-term immune memory besides tumor eradication. Collectively, this nano-system can systemically activate antitumor immunity through STING activation and potentially establish long-term memory against tumor recurrence.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Center for Drug Research and Development Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Chong Qiu
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Xiaoxian Wang
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Peili Wang
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, P. R. China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315010, P. R. China
| | - Xiaolong Xu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, P. R. China
| | - Wei Huang
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Yunmeng Bai
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, P. R. China
| | - Jinxi Wei
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Jingbo Ma
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Chunjin Fu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Wei Xiao
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Center for Drug Research and Development Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Chunbo Chen
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, P. R. China
| | - Ying Long
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Zhijie Li
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Jigang Wang
- Department of Hyperbaric Oxygen Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Center for Drug Research and Development Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
20
|
Zuo Y, Li P, Wang W, Xu C, Xu S, Sung HHY, Sun J, Jin G, Wang W, Kwok RTK, Lam JWY, Tang BZ. Tumor Site-Specific In Vivo Theranostics Enabled by Microenvironment-Dependent Chemical Transformation and Self-Amplifying Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409506. [PMID: 39612249 PMCID: PMC11789590 DOI: 10.1002/advs.202409506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Precise tumor diagnosis and treatment remain complex challenges. While numerous fluorescent probes have been developed for tumor-specific imaging and therapy, few exhibit effective function in vivo. Herein, a probe called TQ-H2 is designed that can realize robust theranostic effects both in vitro and in vivo. In vitro, TQ-H2 specifically targets the lysosome and reacts with hydroxyl radical (·OH) to generate TQ-HA, which lights up the cells. TQ-HA generates reactive oxygen species (ROS) under light irradiation, enabling the simultaneous induction and monitoring of apoptosis and ferroptosis in tumor cells. Remarkably, TQ-HA also acts as a self-amplifier, autocatalytically activating TQ-H2 by generating ·OH under light exposure. This self-amplification aligns with the tumor microenvironment, where TQ-H2 undergoes chemical transformation, distinguishing tumors from healthy tissue via near-infrared (NIR) fluorescence imaging. Furthermore, ROS generated by TQ-HA effectively kills tumor cells and inhibits tumor growth without harming normal cells. This study offers a promising strategy for targeted tumor theranostics using self-amplifying microenvironment-responsive fluorescent probes.
Collapse
Affiliation(s)
- Yunfei Zuo
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Pei Li
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and TechnologyShenzhenGuangdong518112China
| | - Wen‐Jin Wang
- China Clinical Translational Research Center of Aggregation‐Induced EmissionThe Second Affiliated HospitalSchool of MedicineSchool of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| | - Changhuo Xu
- MOE Frontiers Science Center for Precision OncologyFaculty of Health SciencesUniversity of MacauMacao999078China
| | - Shuting Xu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
| | - Herman H. Y. Sung
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Jianwei Sun
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
- China Clinical Translational Research Center of Aggregation‐Induced EmissionThe Second Affiliated HospitalSchool of MedicineSchool of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| |
Collapse
|
21
|
Cai L, Sun T, Han F, Zhang H, Zhao J, Hu Q, Shi T, Zhou X, Cheng F, Peng C, Zhou Y, Long S, Sun W, Fan J, Du J, Peng X. Degradable and Piezoelectric Hollow ZnO Heterostructures for Sonodynamic Therapy and Pro-Death Autophagy. J Am Chem Soc 2024; 146:34188-34198. [PMID: 39582172 DOI: 10.1021/jacs.4c14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Piezoelectric materials can generate charges and reactive oxygen species (ROS) under external force stimulation for ultrasound-induced sonodynamic therapy (SDT). However, their poor piezoelectricity, fast electron-hole pair recombination rate, and biological toxicity of piezoelectric materials limit the therapeutic effects of piezoelectric SDT. In this study, hollow ZnO (HZnO) nanospheres were synthesized by using a one-step method. The hollow structure facilitated the deformation of HZnO under stimulation by ultrasound mechanical force and increased the piezoelectric constant. Subsequently, black phosphorus quantum dots (BPQDs) and arginine-glycine-aspartic acid peptide (RGD)-poly(ethylene glycol) (PEG) were combined with HZnO to further enhance the piezoelectric effect by constructing heterojunctions and enable tumor-targeting ability. During treatment, HZnO-BPQDs-PEG could degrade in an acidic tumor microenvironment and release Zn2+ and PO43- ions to induce pro-death autophagy. The ROS produced by SDT also accelerated autophagy and promoted ferroptosis in cancer cells. This study demonstrates that HZnO-BPQDs-PEG has a strong piezoelectric SDT effect and can effectively induce autophagy in cancer cells, providing a new idea for the design and application of piezoelectric materials for tumor therapy.
Collapse
Affiliation(s)
- Lihan Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Fuping Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Han Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tiancong Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
22
|
Diao S, Zhang Z, Zhao S, Li Q, Zhang X, Yang X, Xu Z, Liu M, Zhou W, Li R, Xie C, Fan Q. Dual-Activatable Nano-Immunomodulator for NIR-II Fluorescence Imaging-Guided Precision Cancer Photodynamic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409833. [PMID: 39401431 PMCID: PMC11615741 DOI: 10.1002/advs.202409833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Indexed: 12/06/2024]
Abstract
Photodynamic immunotherapy which combines photodynamic therapy with immunotherapy has become an important and effective method for the treatment of cancer. However, most cancer photodynamic immunotherapeutic systems are not able to achieve precise release of immunomodulators, resulting in systemic side effects and poor patient outcomes. Herein, a dual-activatable nano-immunomodulator (DIR NP), which both its photodynamic effect and agonist release can be activated under specific stimuli, is reported for precision cancer photodynamic immunotherapy. The DIR NP is self-assembled from an R848-conjugated amphiphilic polymer (mPEG-TK-R848) and a hydrophobic oxidized bovine serum albumin (BSA-SOH)-conjugatable photosensitizer (DIR). DIR NPs may generate a small amount of 1O2 under 808 nm laser irradiation, leading to the cleavage of thioketal (TK) moiety and release of R848 and DIR. The released DIR may conjugate with tumor-overexpressed BSA-SOH, improving its photodynamic efficiency and NIR-II fluorescence signal. Such photodynamic efficiency improvement may further enhance the release of cargoes upon irradiation. The activated photodynamic effect induces immunogenic cell death (ICD) to release immune factors and R848 can enhance the maturation of dendritic cells for inhibiting the growth of both primary and distant tumors and eliminating lung metastasis. Therefore, this study provides a dual-activatable intelligent nano-immunomodulator for precise regulation of tumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Shanchao Diao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Zhifan Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Sijun Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Qiang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Xiaolong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Xiangqi Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Zhiwei Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Mingming Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Wen Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| |
Collapse
|
23
|
Huang L, Zhu J, Wu G, Xiong W, Feng J, Yan C, Yang J, Li Z, Fan Q, Ren B, Li Y, Chen C, Yu X, Shen Z. A strategy of "adding fuel to the flames" enables a self-accelerating cycle of ferroptosis-cuproptosis for potent antitumor therapy. Biomaterials 2024; 311:122701. [PMID: 38981152 DOI: 10.1016/j.biomaterials.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Cuproptosis in antitumor therapy faces challenges from copper homeostasis efflux mechanisms and high glutathione (GSH) levels in tumor cells, hindering copper accumulation and treatment efficacy. Herein, we propose a strategy of "adding fuel to the flames" for potent antitumor therapy through a self-accelerating cycle of ferroptosis-cuproptosis. Disulfiram (DSF) loaded hollow mesoporous copper-iron sulfide (HMCIS) nanoparticle with conjugation of polyethylene glycol (PEG) and folic acid (FA) (i.e., DSF@HMCIS-PEG-FA) was developed to swiftly release DSF, H2S, Cu2+, and Fe2+ in the acidic tumor microenvironment (TME). The hydrogen peroxide (H2O2) levels and acidity within tumor cells enhanced by the released H2S induce acceleration of Fenton (Fe2+) and Fenton-like (Cu2+) reactions, enabling the powerful tumor ferroptosis efficacy. The released DSF acts as a role of "fuel", intensifying catalytic effect ("flame") in tumor cells through the sustainable Fenton chemistry (i.e., "add fuel to the flames"). Robust ferroptosis in tumor cells is characterized by serious mitochondrial damage and GSH depletion, leading to excess intracellular copper that triggers cuproptosis. Cuproptosis disrupts mitochondria, compromises iron-sulfur (Fe-S) proteins, and elevates intracellular oxidative stress by releasing free Fe3+. These interconnected processes form a self-accelerating cycle of ferroptosis-cuproptosis with potent antitumor capabilities, as validated in both cancer cells and tumor-bearing mice.
Collapse
Affiliation(s)
- Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Guochao Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Bin Ren
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Yan Li
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Chaomin Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China.
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, 519000, China.
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
24
|
Yan J, Yu J, Bu C, Yang L, Chen J, Ding X, Yuan P. Antibiotic-Augmented Chemodynamic Therapy for Treatment of Helicobacter pylori Infection in the Dynamic Stomach Environment. NANO LETTERS 2024; 24:14983-14992. [PMID: 39541155 DOI: 10.1021/acs.nanolett.4c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of peptic ulcer disease and gastric cancer. The overuse of antibiotics leads to bacterial drug resistance and disruption to the gut microbiome. Herein, a nanoparticle (TA-FeHMSN@Amox) was developed, comprising amoxicillin (Amox)-loaded iron-engineered hollow mesoporous silica as the core and a metal-polyphenol shell formed by tannic acid (TA) and Fe3+. In acidic stomach conditions, TA-FeHMSN@Amox generates bactericidal ·OH through Fenton/Fenton-like reactions of the degraded product Fe2+ and hydrogen peroxide (H2O2) at the infection site, achieving chemodynamic therapy (CDT). Moreover, released amoxicillin enhances therapeutic efficacy by impeding the self-repair of the bacterial cell wall damaged by CDT, overcoming the limitations of ineffective CDT under conditions lacking sufficient acidity and H2O2. The acidity-responsive CDT combined with reduced antibiotic usage ensures superior in vivo therapeutic efficacy and biocompatibility with intestinal flora, providing a highly potent strategy for treating H. pylori infections in the dynamic stomach environment.
Collapse
Affiliation(s)
- Jiachang Yan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayin Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changxin Bu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaoyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Ding
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
25
|
Deng X, Zhu Y, Dai Z, Liu Q, Song Z, Liu T, Huang Y, Chen H. A Bimetallic Nanomodulator to Reverse Immunosuppression via Sonodynamic-Ferroptosis and Lactate Metabolism Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404580. [PMID: 39149915 DOI: 10.1002/smll.202404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Triple-negative breast cancer (TNBC) responds poorly to immunotherapy due to insufficient immunogenicity and highly immunosuppressive tumor microenvironment (TME). Herein, an intelligent calcium/cobalt-based nanomodulator (Ca,Co)CO3-LND-TCPP@F127-TA (abbreviated as CCLT@FT) is developed to act as a sonodynamic-ferroptosis inducer and metabolic immunoadjuvant to enhance anti-tumor immunotherapy. More details, simultaneous reactive oxygen species (ROS) generation and glutathione (GSH) depletion can be achieved due to the existence of Co2+/Co3+ redox couple in CCLT@FT. Meanwhile, mitochondrial Ca2+ overload and tetrakis(4-carboxyphenyl) porphyrin (TCPP)-mediated sonodynamic therapy (SDT) further amplify the oxidative stress and promote ferroptosis in tumor cells. More impressively, CCLT@FT can modulate lactate metabolism by doping with cobalt and loading with lonidamine (LND, an inhibitor of MCT4), thereby reversing the high-lactate immunosuppressive TME. Furthermore, the combination with immune checkpoint blockade (ICB) therapy is found to achieve superior anti-tumor immunity, which in turn promotes ferroptosis of tumor cells by downregulating SLC7A11 protein, ultimately creating a "cycle" therapy. Overall, this work demonstrates a novel strategy for enhancing anti-tumor immunotherapy based on a closed-loop enhancement therapeutic route between CCLT@FT inducing ferroptosis/lactate metabolism modulation and ICB therapy, providing an alternative and important reference for effective immunotherapy of TNBC.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yutong Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zideng Dai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Qing Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ze Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuefeng Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| |
Collapse
|
26
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
27
|
Chen C, Shen X, Shi S, Xu Y, Song H, Qu L, Du S, Gao Y, Han X. Biomimetic Fe3+ metal-phenolic networks enable DNAzyme and Cas9 RNP delivery for synergistic tumor ferroptosis-immunotherapy. CHEMICAL ENGINEERING JOURNAL 2024; 499:156050. [DOI: 10.1016/j.cej.2024.156050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Bai J, Zhang X, Zhao Z, Sun S, Cheng W, Yu H, Chang X, Wang B. CuO Nanozymes Catalyze Cysteine and Glutathione Depletion Induced Ferroptosis and Cuproptosis for Synergistic Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400326. [PMID: 38813723 DOI: 10.1002/smll.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
The latest research identifies that cysteine (Cys) is one of the key factors in tumor proliferation, metastasis, and recurrence. The direct depletion of intracellular Cys shows a profound antitumor effect. However, using nanozymes to efficiently deplete Cys for tumor therapy has not yet attracted widespread attention. Here, a (3-carboxypropyl) triphenylphosphonium bromide-derived hyaluronic acid-modified copper oxide nanorods (denoted as MitCuOHA) are designed with cysteine oxidase-like, glutathione oxidase-like and peroxidase-like activities to realize Cys depletion and further induce cellular ferroptosis and cuproptosis for synergistic tumor therapy. MitCuOHA nanozymes can efficiently catalyze the depletion of Cys and glutathione (GSH), accompanied by the generation of H2O2 and the subsequent conversion into highly active hydroxyl radicals, thereby successfully inducing ferroptosis in cancer cells. Meanwhile, copper ions released by MitCuOHA under tumor microenvironment stimulation directly bind to lipoylated proteins of the tricarboxylic acid cycle, leading to the abnormal aggregation of lipoylated proteins and subsequent loss of iron-sulfur cluster proteins, which ultimately triggers proteotoxic stress and cell cuproptosis. Both in vitro and in vivo results show the drastically enhanced anticancer efficacy of Cys oxidation catalyzed by the MitCuOHA nanozymes, demonstrating the high feasibility of such catalytic Cys depletion-induced synergistic ferroptosis and cuproptosis therapeutic concept.
Collapse
Affiliation(s)
- Jinwei Bai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhiwen Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongxiang Yu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xinyue Chang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
29
|
Li R, Fu D, Yuan X, Niu G, Fan Y, Shi J, Yang Y, Ye J, Han J, Kang Y, Ji X. Oral Heterojunction Coupling Interventional Optical Fiber Mediates Synergistic Therapy for Orthotopic Rectal Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404741. [PMID: 39031679 DOI: 10.1002/smll.202404741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 07/22/2024]
Abstract
Catalytic therapy has shown great potential for clinical application. However, conventional catalytic therapies rely on reactive oxygen species (ROS) as "therapeutic drugs," which have limitations in effectively inhibiting tumor recurrence and metastasis. Here, a biomimetic heterojunction catalyst is developed that can actively target orthotopic rectal cancer after oral administration. The heterojunction catalyst is composed of quatrefoil star-shaped BiVO4 (BVO) and ZnIn2S4 (ZIS) nanosheets through an in situ direct growth technique. Poly-norepinephrine and macrophage membrane coatings afford the biomimetic heterojunction catalyst (BVO/ZIS@M), which has high rectal cancer targeting and retention abilities. The coupled optical fiber intervention technology activates the multicenter coordination of five catalytic reactions of heterojunction catalysts, including two reduction reactions (O2→·O2 - and CO2→CO) and three oxidation reactions (H2O→·OH, GSH→GSSG, and LA→PA). These catalytic reactions not only induce immunogenic death in tumor cells through the efficient generation of ROS/CO and the consumption of GSH but also specifically lead to the use of lactic acid (LA) as an electron donor to improve catalytic activity and disrupt the LA-mediated immunosuppressive microenvironment, mediating synergistic catalysis and immunotherapy for orthotopic rectal cancer. Therefore, this optical fiber intervention triggered the combination of heterojunction catalytic therapy and immunotherapy, which exhibits prominent antitumor effects.
Collapse
Affiliation(s)
- Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Gaoli Niu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yiwen Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jingwen Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- Medical College, Linyi University, Linyi, 276000, China
| |
Collapse
|
30
|
Mohapatra A, Mohanty A, Park IK. Inorganic Nanomedicine-Mediated Ferroptosis: A Synergistic Approach to Combined Cancer Therapies and Immunotherapy. Cancers (Basel) 2024; 16:3210. [PMID: 39335181 PMCID: PMC11430644 DOI: 10.3390/cancers16183210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, has generated substantial interest in cancer therapy. Various methods have been developed to induce ferroptosis in tumor cells, including approved drugs, experimental compounds, and nanomedicine formulations. Unlike apoptosis, ferroptosis presents unique molecular and cellular features, representing a promising approach for cancers resistant to conventional treatments. Recent research indicates a strong link between ferroptosis and the tumor immune microenvironment, suggesting the potential of ferroptosis to trigger robust antitumor immune responses. Multiple cellular metabolic pathways control ferroptosis, including iron, lipid, and redox metabolism. Thus, understanding the interaction between tumor metabolism and ferroptosis is crucial for developing effective anticancer therapies. This review provides an in-depth discussion on combining inorganic nanoparticles with cancer therapies such as phototherapy, chemotherapy, radiotherapy, and immunotherapy, and the role of ferroptosis in these combination treatments. Furthermore, this paper explores the future of tumor treatment using nanomedicine, focusing on how inorganic nanoparticles can enhance ferroptosis in tumor cells and boost antitumor immunity. The goal is to advance ferroptosis-based nanomedicine from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| |
Collapse
|
31
|
Wang W, Zhong Z, Peng S, Fu J, Chen M, Lang T, Yue X, Fu Y, He J, Jin Y, Huang Y, Wu C, Huang Z, Pan X. "All-in-one" metal polyphenol network nanocapsules integrated microneedle patches for lipophagy fueled ferroptosis-mediated multimodal therapy. J Control Release 2024; 373:599-616. [PMID: 39074587 DOI: 10.1016/j.jconrel.2024.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Ferroptosis-mediated multimodal therapy has emerged as a promising strategy for tumor elimination, with lipid peroxide (LPO) playing a pivotal role. However, the therapeutic efficiency is limited due to insufficient intracellular levels of free fatty acids (FFA), which severely hinder the production of LPO. To address this limitation, we proposed a lipophagy strategy aimed at degrading lipid droplets (LDs) to release FFA, serving as the essential "fuel" for LPO production. In this study, the lipophagy inducer epigallocatechin gallate (EGCG) was self-assembled with reactive oxygen species (ROS)-producer phenethyl isothiocyanate (PEITC) mediated by Fe2+ to form EFP nanocapsules, which were further integrated into microneedle patches to form a "all-in-one" EFP@MNs. The metal-polyphenol network structure of EFP endow it with photothermal therapy capacity. Upon insertion into tumors, the released EFP nanocapsules were demonstrated to induce lipophagy through metabolic disturbance, thereby promoting LPO production and facilitating ferroptosis. When combined with photothermal therapy, this approach significantly remolded the tumor immune microenvironment by driving tumor-associated macrophages toward M1 phenotype and enhancing dendritic cell maturation. Encouragingly, in conjunction with αPD-L1 treatment, the proposed EFP@MNs exhibited remarkable efficacy in tumor ablation. Our study presents a versatile framework for utilizing microneedle patches to power ferroptosis-mediated multimodal therapy.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Siyuan Peng
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jintao Fu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Minglong Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | | | - Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Yanping Fu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Jingyu He
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Yuzhen Jin
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Xin Pan
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Yang L, Zhao Z, Tian B, Yang M, Dong Y, Zhou B, Gai S, Xie Y, Lin J. A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy. Nat Commun 2024; 15:7499. [PMID: 39209877 PMCID: PMC11362521 DOI: 10.1038/s41467-024-51772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Thermoelectric technology has recently emerged as a distinct therapeutic modality. However, its therapeutic effectiveness is significantly limited by the restricted temperature gradient within living organisms. In this study, we introduce a high-performance plasmonic-thermoelectric catalytic therapy utilizing urchin-like Cu2-xSe hollow nanospheres (HNSs) with a cascade of plasmonic photothermal and thermoelectric conversion processes. Under irradiation by a 1064 nm laser, the plasmonic absorption of Cu2-xSe HNSs, featuring rich copper vacancies (VCu), leads to a rapid localized temperature gradient due to their exceptionally high photothermal conversion efficiency (67.0%). This temperature gradient activates thermoelectric catalysis, generating toxic reactive oxygen species (ROS) targeted at cancer cells. Density functional theory calculations reveal that this vacancy-enhanced thermoelectric catalytic effect arises from a much more carrier concentration and higher electrical conductivity. Furthermore, the exceptional photothermal performance of Cu2-xSe HNSs enhances their peroxidase-like and catalase-like activities, resulting in increased ROS production and apoptosis induction in cancer cells. Here we show that the accumulation of copper ions within cancer cells triggers cuproptosis through toxic mitochondrial protein aggregation, creating a synergistic therapeutic effect. Tumor-bearing female BALB/c mice are used to evaluate the high anti-cancer efficiency. This innovative approach represents the promising instance of plasmonic-thermoelectric catalytic therapy, employing dual pathways (membrane potential reduction and thioctylated protein aggregation) of mitochondrial dysfunction, all achieved within a singular nanostructure. These findings hold significant promise for inspiring the development of energy-converting nanomedicines.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhiyu Zhao
- Department of Ultrasound, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Meiqi Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Bingchen Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, P. R. China.
| | - Jun Lin
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.
| |
Collapse
|
33
|
Ling P, Song D, Yang P, Tang C, Xu W, Wang F. NIR-II-Responsive Versatile Nanozyme Based on H 2O 2 Cycling and Disrupting Cellular Redox Homeostasis for Enhanced Synergistic Cancer Therapy. ACS Biomater Sci Eng 2024; 10:5290-5299. [PMID: 39011938 DOI: 10.1021/acsbiomaterials.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Disturbing cellular redox homeostasis within malignant cells, particularly improving reactive oxygen species (ROS), is one of the effective strategies for cancer therapy. The ROS generation based on nanozymes presents a promising strategy for cancer treatment. However, the therapeutic efficacy is limited due to the insufficient catalytic activity of nanozymes or their high dependence on hydrogen peroxide (H2O2) or oxygen. Herein, we reported a nanozyme (CSA) based on well-defined CuSe hollow nanocubes (CS) uniformly covered with Ag nanoparticles (AgNPs) to disturb cellular redox homeostasis and catalyze a cascade of intracellular biochemical reactions to produce ROS for the synergistic therapy of breast cancer. In this system, CSA could interact with the thioredoxin reductase (TrxR) and deplete the tumor microenvironment-activated glutathione (GSH), disrupting the cellular antioxidant defense system and augmenting ROS generation. Besides, CSA possessed high peroxidase-mimicking activity toward H2O2, leading to the generation of various ROS including hydroxyl radical (•OH), superoxide radicals (•O2-), and singlet oxygen (1O2), facilitated by the Cu(II)/Cu(I) redox and H2O2 cycling, and plentiful catalytically active metal sites. Additionally, due to the absorption and charge separation performance of AgNPs, the CSA exhibited excellent photothermal performance in the second near-infrared (NIR-II, 1064 nm) region and enhanced the photocatalytic ROS level in cancer cells. Owing to the inhibition of TrxR activity, GSH depletion, high peroxidase-mimicking activity of CSA, and abundant ROS generation, CSA displays remarkable and specific inhibition of tumor growth.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Danjie Song
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chuanye Tang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenwen Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fang Wang
- Institute of Clinical Pharmacy, Jining No. 1 People's Hospital, Shandong First Medical University, Jining 272000, Shandong, China
| |
Collapse
|
34
|
Zhao P, Li H, Sun B, Wang C, Lv G, Chen C, Ying L, He X, Jin D, Bu W. Carbon Free Radical (R⋅) Inactivates NF-κB for Radical Capping Therapy. Angew Chem Int Ed Engl 2024; 63:e202405913. [PMID: 38683647 DOI: 10.1002/anie.202405913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
Inactivating hyperactivated transcription factors can overcome tumor therapy resistance, but their undruggable features limit the development of conventional inhibitors. Here, we report that carbon-centered free radicals (R⋅) can inactivate NF-κB transcription by capping the active sites in both NF-κB and DNA. We construct a type of thermosensitive R⋅ initiator loaded amphiphilic nano-micelles to facilitate intracellular delivery of R⋅. At a temperature of 43 °C, the generated R⋅ engage in electrophilic radical addition towards double bonds in nucleotide bases, and simultaneously cap the sulfhydryl residues in NF-κB through radical chain reaction. As a result, both NF-κB nuclear translocation and NF-κB-DNA binding are suppressed, leading to a remarkable NF-κB inhibition of up to 94.1 %. We have further applied R⋅ micelles in a clinical radiofrequency ablation tumor therapy model, showing remarkable NF-κB inactivation and consequently tumor metastasis inhibition. Radical capping strategy not only provides a method to solve the heat-sink effect in clinic tumor hyperthermia, but also suggests a new perspective for controllable modification of biomacromolecules in cancer therapy.
Collapse
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Bingxia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Chaochao Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Chao Chen
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center and department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Leilei Ying
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center and department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinhong He
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center and department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
35
|
Du Y, Zhao X, He F, Gong H, Yang J, Wu L, Cui X, Gai S, Yang P, Lin J. A Vacancy-Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co-Activated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403253. [PMID: 38703184 DOI: 10.1002/adma.202403253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO-VCu) are rationally designed and engineered for ferroelectricity-enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron-hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as "a smart switch" to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor-induced apoptosis and cuproptosis.
Collapse
Affiliation(s)
- Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Haijiang Gong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xianchang Cui
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
36
|
Ren Q, Wang H, Li D, Dao A, Luo J, Wang D, Zhang P, Huang H. An Electron Donor-Acceptor Structured Rhenium(I) Complex Photo-Sensitizer Evokes Mutually Reinforcing "Closed-Loop" Ferroptosis and Immunotherapy. Adv Healthc Mater 2024; 13:e2304067. [PMID: 38597369 DOI: 10.1002/adhm.202304067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
The hypoxic microenvironment of solid tumors severely lowers the efficacy of oxygen-dependent photodynamic therapy (PDT). The development of hypoxia-tolerant photosensitizers for PDT is an urgent requirement. In this study, a novel rhenium complex (Re-TTPY) to develop a "closed-loop" therapy based on PDT-induced ferroptosis and immune therapy is reported. Due to its electron donor-acceptor (D-A) structure, Re-TTPY undergoes energy transfer and electron transfer processes under 550 nm light irradiation and displays hypoxia-tolerant type I/II combined PDT capability, which can generate 1O2, O2 -, and ·OH simultaneously. Further, the reactive oxygen species (ROSs) leads to the depletion of 1,4-dihydronicotinamide adenine dinucleotide (NADH), glutathione peroxidase 4 (GPX4), and glutathione (GSH). As a result, ferroptosis occurs in cells, simultaneously triggers immunogenic cell death (ICD), and promotes the maturation of dendritic cells (DCs) and infiltration of T cells. The release of interferon-γ (IFN-γ) by CD8+ T cells downregulates the expression of GPX4, further enhancing the occurrence of ferroptosis, and thereby, forming a mutually reinforcing "closed-loop" therapeutic approach.
Collapse
Affiliation(s)
- Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Jiajun Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
37
|
Zhang T, Zeng X, Zeng E, Wang H. Ferroptosis in antitumor therapy: Unraveling regulatory mechanisms and immunogenic potential. Int Immunopharmacol 2024; 134:112203. [PMID: 38705030 DOI: 10.1016/j.intimp.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis, a recently discovered form of non-apoptotic cell death, has the potential to revolutionize anti-tumor therapy. This review highlights the regulatory mechanisms and immunogenic properties of ferroptosis, and how it can enhance the effectiveness of radio and immunotherapies in overcoming tumor resistance. However, tumor metabolism and the impact of ferroptosis on the tumor microenvironment present challenges in completely realizing its therapeutic potential. A deeper understanding of the effects of ferroptosis on tumor cells and their associated immune cells is essential for developing more effective tumor treatment strategies. This review offers a comprehensive overview of the relationship between ferroptosis and tumor immunity, and sheds new light on its application in tumor immunotherapy.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaoping Zeng
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang Province, China; School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| | - Hongmei Wang
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang Province, China; School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
38
|
Sun H, Bai Y, Zhao D, Wang J, Qiu L. Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2896. [PMID: 38930266 PMCID: PMC11205014 DOI: 10.3390/ma17122896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Transition metal oxide (TMO)-based nanozymes have appeared as hopeful tools for antitumor applications due to their unique catalytic properties and ability to modulate the tumor microenvironment (TME). The purpose of this review is to provide an overview of the latest progress made in the field of TMO-based nanozymes, focusing on their enzymatic activities and participating metal ions. These nanozymes exhibit catalase (CAT)-, peroxidase (POD)-, superoxide dismutase (SOD)-, oxidase (OXD)-, and glutathione oxidase (GSH-OXD)-like activities, enabling them to regulate reactive oxygen species (ROS) levels and glutathione (GSH) concentrations within the TME. Widely studied transition metals in TMO-based nanozymes include Fe, Mn, Cu, Ce, and the hybrid multimetallic oxides, which are also summarized. The review highlights several innovative nanozyme designs and their multifunctional capabilities. Despite the significant progress in TMO-based nanozymes, challenges such as long-term biosafety, targeting precision, catalytic mechanisms, and theoretical supports remain to be addressed, and these are also discussed. This review contributes to the summary and understanding of the rapid development of TMO-based nanozymes, which holds great promise for advancing nanomedicine and improving cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
39
|
Yuan Y, Zhao H, Yin X, Wang D, Mei X, Zhang P. Alloy nanozyme-reinforced hyaluronic acid-based hydrogel with wound environment-responsive properties for synergistically accelerating infectious wound healing. Int J Biol Macromol 2024; 269:131896. [PMID: 38677681 DOI: 10.1016/j.ijbiomac.2024.131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The recovery of infectious wound tissues presents a significant global health challenge due to the impediments posed by the harsh healing microenvironment, which includes ongoing bacterial invasion, high oxidative stress, inflammatory response, and impaired angiogenesis. To overcome the above issues, we propose a composite hydrogel based on the multiple-crosslinked mechanism involving the covalent network of CC bonds within catechol and maleic-modified HA (CMHA), the self-assembly network of glycyrrhizic acid (GA), and the metal-polyphenol coordination induced by ZHMCe for accelerating infectious wound healing. The resulting CMHA/GA/ZHMCe hydrogels demonstrate enhanced mechanical, adhesive, antioxidative, and antibacterial properties. Importantly, the hydrogel system possesses wound environment-responsive properties that allow it to adapt to the specific therapeutic requirements of different stages by regulating various enzyme activities in the healing of infected wounds. Furthermore, the biocompatible CMHA/GA/ZHMCe shows the ability to promote cell migration and angiogenesis in vitro while reprogramming macrophages toward an anti-inflammatory phenotype due to the effective release of active ingredients. In vivo experiments confirm that the CMHA/GA/ZHMCe hydrogel significantly enhances infectious wound healing by accelerating re-epithelialization, promoting collagen deposition, regulating inflammation, and contributing to vascularization. These findings underscore the therapeutic potential of our hydrogel dressings for the treatment of bacterially infected cutaneous wound healing.
Collapse
Affiliation(s)
- Yajiang Yuan
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Haosen Zhao
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xuechen Yin
- Department of Laboratory Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Dahao Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121002, China
| | - Xifan Mei
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Peng Zhang
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
40
|
Fu S, Li Y, Shen L, Chen Y, Lu J, Ran Y, Zhao Y, Tang H, Tan L, Lin Q, Hao Y. Cu 2WS 4-PEG Nanozyme as Multifunctional Sensitizers for Enhancing Immuno-Radiotherapy by Inducing Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309537. [PMID: 38323716 DOI: 10.1002/smll.202309537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Unavoidable damage to normal tissues and tumor microenvironment (TME) resistance make it challenging to eradicate breast carcinoma through radiotherapy. Therefore, it is urgent to develop radiotherapy sensitizers that can effectively reduce radiation doses and reverse the suppressive TME. Here, a novel biomimetic PEGylated Cu2WS4 nanozyme (CWP) with multiple enzymatic activities is synthesized by the sacrificing template method to have physical radiosensitization and biocatalyzer-responsive effects on the TME. Experiment results show that CWP can improve the damage efficiency of radiotherapy on breast cancer cell 4T1 through its large X-ray attenuation coefficient of tungsten and nucleus-penetrating capacity. CWP also exhibit strong Fenton-like reactions that produced abundant ROS and GSH oxidase-like activity decreasing GSH. This destruction of redox balance further promotes the effectiveness of radiotherapy. Transcriptome sequencing reveals that CWP induced ferroptosis by regulating the KEAP1/NRF2/HMOX1/GPX4 molecules. Therefore, owing to its multiple enzymatic activities, high-atomic W elements, nucleus-penetrating, and ferroptosis-inducing capacities, CWP effectively improves the efficiency of radiotherapy for breast carcinoma in vitro and in vivo. Furthermore, CWP-mediated radiosensitization can trigger immunogenic cell death (ICD) to improve the anti-PD-L1 treatments to inhibit the growth of primary and distant tumors effectively. These results indicate that CWP is a multifunctional nano-sensitizers for radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Shiyan Fu
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yong Li
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Li Shen
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yonglai Chen
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Jingxuan Lu
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yonghong Ran
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yazhen Zhao
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Hong Tang
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Qinyang Lin
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
41
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
42
|
Zhang L, Qiu M, Wang R, Li S, Liu X, Xu Q, Xiao L, Jiang ZX, Zhou X, Chen S. Monitoring ROS Responsive Fe 3O 4-based Nanoparticle Mediated Ferroptosis and Immunotherapy via 129Xe MRI. Angew Chem Int Ed Engl 2024; 63:e202403771. [PMID: 38551448 DOI: 10.1002/anie.202403771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 04/24/2024]
Abstract
The immune checkpoint blockade strategy has improved the survival rate of late-stage lung cancer patients. However, the low immune response rate limits the immunotherapy efficiency. Here, we report a ROS-responsive Fe3O4-based nanoparticle that undergoes charge reversal and disassembly in the tumor microenvironment, enhancing the uptake of Fe3O4 by tumor cells and triggering a more severe ferroptosis. In the tumor microenvironment, the nanoparticle rapidly disassembles and releases the loaded GOx and the immune-activating peptide Tuftsin under overexpressed H2O2. GOx can consume the glucose of tumor cells and generate more H2O2, promoting the disassembly of the nanoparticle and drug release, thereby enhancing the therapeutic effect of ferroptosis. Combined with Tuftsin, it can more effectively reverse the immune-suppressive microenvironment and promote the recruitment of effector T cells in tumor tissues. Ultimately, in combination with α-PD-L1, there is significant inhibition of the growth of lung metastases. Additionally, the hyperpolarized 129Xe method has been used to evaluate the Fe3O4 nanoparticle-mediated immunotherapy, where the ventilation defects in lung metastases have been significantly improved with complete lung structure and function recovered. The ferroptosis-enhanced immunotherapy combined with non-radiation evaluation methodology paves a new way for designing novel theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Qiu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruifang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoxun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiuyi Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Long Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| |
Collapse
|
43
|
Fan Y, Ye J, Kang Y, Niu G, Shi J, Yuan X, Li R, Han J, Ji X. Biomimetic piezoelectric nanomaterial-modified oral microrobots for targeted catalytic and immunotherapy of colorectal cancer. SCIENCE ADVANCES 2024; 10:eadm9561. [PMID: 38718119 PMCID: PMC11078194 DOI: 10.1126/sciadv.adm9561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.
Collapse
Affiliation(s)
- Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Gaoli Niu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jingwen Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Medical College, Linyi University, Linyi 276000, China
| |
Collapse
|
44
|
Chen M, Wang H, Zhang Y, Jiang H, Li T, Liu L, Zhao Y. Label-Free Multiplex Profiling of Exosomal Proteins with a Deep Learning-Driven 3D Surround-Enhancing SERS Platform for Early Cancer Diagnosis. Anal Chem 2024; 96:6794-6801. [PMID: 38624007 DOI: 10.1021/acs.analchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Identification of protein profiling on plasma exosomes by SERS can be a promising strategy for early cancer diagnosis. However, it is still challenging to detect multiple exosomal proteins simultaneously by SERS since the Raman signals of exosomes detected by conventional colloidal nanocrystals or two-dimensional SERS substrates are incomplete and complex. Herein, we develop a novel three-dimensional (3D) surround-enhancing SERS platform, named 3D se-SERS, for the multiplex detection of exosomal proteins. In this 3D se-SERS, proteins and exosomes are covered with "hotspots" generated by the gold nanoparticles, which surround the analytes densely and three-dimensionally, providing sensitive and comprehensive SERS signals. Combining this 3D se-SERS with a deep learning model, we successfully quantitatively profiled seven proteins including CD63, CD81, CD9, CD151, CD171, TSPAN8, and PD-L1 on the surface of plasma exosomes from patients, which can predict the occurrence and advancement of lung cancer. This 3D se-SERS integrating deep learning technique benefits from high sensitivity and significant multiplexing ability for comprehensive analysis of proteins and exosomes, demonstrating the potential of deep learning-driven 3D se-SERS technology for plasma exosome-based early cancer diagnosis.
Collapse
Affiliation(s)
- Miao Chen
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Haoyang Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanyu Jiang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Tan Li
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Lixin Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yuetao Zhao
- School of Life Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
45
|
Gou S, Geng W, Zou Y, Chen F, He T, Duan Q, Qin Z, Li L, Xia J, Yu Y, Feng Q, Cai K. Glutathione-Responsive and Hydrogen Sulfide Self-Generating Nanocages Based on Self-Weaving Technology To Optimize Cancer Immunotherapy. ACS NANO 2024; 18:9871-9885. [PMID: 38545939 DOI: 10.1021/acsnano.3c08939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
As an ideal drug carrier, it should possess high drug loading and encapsulation efficiency and precise drug targeting release. Herein, we utilized a template-guided self-weaving technology of phase-separated silk fibroin (SF) in reverse microemulsion (RME) to fabricate a kind of hyaluronic acid (HA) coated SF nanocage (HA-gNCs) for drug delivery of cancer immunotherapy. Due to the hollow structure, HA-gNCs were capable of simultaneous encapsulation of the anti-inflammatory drug betamethasone phosphate (BetP) and the immune checkpoint blockade (ICB) agent PD-L1 antibody (αPD-L1) efficiently. Another point worth noting was that the thiocarbonate cross-linkers used to strengthen the SF shell of HA-gNCs could be quickly broken by overexpressed glutathione (GSH) to reach responsive drug release inside tumor tissues accompanied by hydrogen sulfide (H2S) production in one step. The synergistic effect of released BetP and generated H2S guaranteed chronological modulation of the immunosuppressive tumor microenvironment (ITME) to amplify the therapeutic effect of αPD-L1 for the growth, metastasis, and recurrence of tumors. This study highlighted the exceptional prospect of HA-gNCs as a self-assistance platform for cancer drug delivery.
Collapse
Affiliation(s)
- Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Yanan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Fangye Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Qiaojian Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Zizhen Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Liangsheng Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yongsheng Yu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| |
Collapse
|
46
|
Xu S, Li X, Hu Q, Zhang J, Li R, Meng L, Zhu X. Focused Ultrasound-Responsive Nanocomposite with Near-Infrared II Mechanoluminescence for Spatiotemporally Selective Immune Activation in Lymph Nodes. Chemistry 2024; 30:e202304066. [PMID: 38289154 DOI: 10.1002/chem.202304066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 02/15/2024]
Abstract
The immune regulation of the lymphatic system, especially the lymph node (LN), is of great significance for the treatment of diseases and the inhibition of pathogenic organisms spreading in the body. However, achieving precise spatiotemporal control of immune cell activation in LN in vivo remains a challenge due to tissue depth and off-target effects. Furthermore, minimally invasive and real-time feedback methods to monitor the regulation of the immune system in LN are lacking. Here, focused ultrasound responsive immunomodulator loaded nanoplatform (FURIN) with near-infrared II (NIR-II) luminescence is designed to achieve spatiotemporally controllable immune activation in LN in vivo. The NIR-II persistent luminescence of FURIN can track its delivery in LN through bioimaging. Under focused ultrasound (FUS) stimulation, the immunomodulator encapsulated in FURIN can be released locally in the LN to activate immune cells such as dendritic cells and the NIR-II mechanoluminescence of FURIN provides real-time optical feedback signals for immune activation. This work points to a FUS mediated, spatiotemporal selective immune activation strategy in vivo with the feedback control of luminescence signals via ultrasound responsive nanocomposite, which is of great significance in improving the efficacy and reducing the side effect of immune regulation for the development of potential immunotherapeutic methods in the future.
Collapse
Affiliation(s)
- Sixin Xu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Xiaohe Li
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Qian Hu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Jieying Zhang
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Ruotong Li
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Lingkai Meng
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Xingjun Zhu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
- State Key Laboratory of Advanced Medical Materials and Devices., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| |
Collapse
|
47
|
Wu B, Liang J, Yang X, Fang Y, Kong N, Chen D, Wang H. A Programmable Peptidic Hydrogel Adjuvant for Personalized Immunotherapy in Resected Stage Tumors. J Am Chem Soc 2024; 146:8585-8597. [PMID: 38478659 DOI: 10.1021/jacs.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Adjuvant treatment after surgical resection usually plays an important role in delaying disease recurrence. Immunotherapy displays encouraging results in increasing patients' chances of staying cancer-free after surgery, as reported by recent clinical trials. However, the clinical outcomes of current immunotherapy need to be improved due to the limited responses, patient heterogeneity, nontargeted distribution, and immune-related adverse effects. This work describes a programmable hydrogel adjuvant for personalized immunotherapy after surgical resection. By filling the hydrogel in the cavity, this system aims to address the limited secretion of granzyme B (GrB) during immunotherapy and improve the low immunotherapy responses typically observed, while minimizing immune-related side effects. The TLR7/8 agonist imidazoquinoline (IMDQ) is linked to the self-assembling peptide backbone through a GrB-responsive linkage. Its release could enhance the activation and function of immune cells, which will lead to increased secretion of GrB and enhance the effectiveness of immunotherapy together. The hydrogel adjuvant recruits immune cells, initiates dendritic cell maturation, and induces M1 polarized macrophages to reverse the immunosuppressive tumor microenvironment in situ. In multiple murine tumor models, the hydrogel adjuvant suppresses tumor growth, increases animal survival and long-term immunological memory, and protects mice against tumor rechallenge, leading to effective prophylactic and therapeutic responses. This work provides a potential chemical strategy to overcome the limitations associated with immunotherapy.
Collapse
Affiliation(s)
- Bihan Wu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang 310024, China
| | - Juan Liang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang 310024, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang 310024, China
| | - Yu Fang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang 310024, China
| | - Nan Kong
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang 310024, China
| | - Dinghao Chen
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang 310024, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
48
|
Xu J, Guan G, Ye Z, Zhang C, Guo Y, Ma Y, Lu C, Lei L, Zhang XB, Song G. Enhancing lipid peroxidation via radical chain transfer reaction for MRI guided and effective cancer therapy in mice. Sci Bull (Beijing) 2024; 69:636-647. [PMID: 38158292 DOI: 10.1016/j.scib.2023.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Lipid peroxidation (LPO), the process of membrane lipid oxidation, is a potential new form of cell death for cancer treatment. However, the radical chain reaction involved in LPO is comprised of the initiation, propagation (the slowest step), and termination stages, limiting its effectiveness in vivo. To address this limitation, we introduce the radical chain transfer reaction into the LPO process to target the propagation step and overcome the sluggish rate of lipid peroxidation, thereby promoting endogenous lipid peroxidation and enhancing therapeutic outcomes. Firstly, radical chain transfer agent (CTA-1)/Fe nanoparticles (CTA-Fe NPs-1) was synthesized. Notably, CTA-1 convert low activity peroxyl radicals (ROO·) into high activity alkoxyl radicals (RO·), creating the cycle of free radical oxidation and increasing the propagation of lipid peroxidation. Additionally, CTA-1/Fe ions enhance reactive oxygen species (ROS) generation, consume glutathione (GSH), and thereby inactivate GPX-4, promoting the initiation stage and reducing termination of free radical reaction. CTA-Fe NPs-1 induce a higher level of peroxidation of polyunsaturated fatty acids in lipid membranes, leading to highly effective treatment in cancer cells. In addition, CTA-Fe NPs-1 could be enriched in tumors inducing potent tumor inhibition and exhibit activatable T1-MRI contrast of magnetic resonance imaging (MRI). In summary, CTA-Fe NPs-1 can enhance intracellular lipid peroxidation by accelerating initiation, propagation, and inhibiting termination step, promoting the cycle of free radical reaction, resulting in effective anticancer outcomes in tumor-bearing mice.
Collapse
Affiliation(s)
- Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guoqiang Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yibo Guo
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
49
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
50
|
Yang C, Zhang J, Chang M, Tan J, Yuan M, Bian Y, Liu B, Liu Z, Wang M, Ding B, Ma P, Lin J. NIR-Activatable Heterostructured Nanoadjuvant CoP/NiCoP Executing Lactate Metabolism Interventions for Boosted Photocatalytic Hydrogen Therapy and Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308774. [PMID: 37917791 DOI: 10.1002/adma.202308774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic noninvasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 inhibitor fluvastatin sodium (Flu) is constructed to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein synthesis, in turn realizing mild photothermal therapy. Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy.
Collapse
Affiliation(s)
- Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyu Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|