1
|
Muscarella LA, Bravetti G, Milić JV. The emergence of metal-free molecular perovskites: challenges and opportunities. MATERIALS HORIZONS 2025. [PMID: 40407017 PMCID: PMC12100606 DOI: 10.1039/d4mh01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/11/2025] [Indexed: 05/26/2025]
Abstract
Perovskite materials are increasingly important in a variety of optoelectronic applications. Some of these functional materials also exhibit ferroelectric properties, making them promising in memory elements, sensors, and energy technologies. While they exhibit extraordinary performances, their instabilities often hinder practical applications and toxic metal components cause environmental concerns. In the last few years, metal-free molecular perovskites (MOPs) have emerged, featuring ferroelectric properties that outperform conventional perovskite ferroelectrics while offering an environmentally friendly and cost-effective alternative relevant to optoelectronics. We review the structural and optoelectronic characteristics of this new class of materials, as well as preparation techniques, with challenges and opportunities for future applications.
Collapse
Affiliation(s)
- Loreta A Muscarella
- Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam, 1081 HV, The Netherlands.
| | - Gianluca Bravetti
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland.
| | - Jovana V Milić
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland.
- University of Turku, Department of Chemistry, Henrikinkatu 2, Aurum, Turku, 20500, Finland.
| |
Collapse
|
2
|
Paul S, Pal A, Ghosh S, Datta A. Low-Power Piezoelectric Energy From Chiral Supramolecular Polymer of a Donor-Acceptor-Donor Conjugated π-System. Chemistry 2025; 31:e202500540. [PMID: 40170440 DOI: 10.1002/chem.202500540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Soft piezoelectric systems have high demands in flexible, shape conformable and biocompatible low-power electronics. This paper explores chiral supramolecular polymerization of an ambipolar donor-acceptor-donor (DAD)-type π-system showing emerging piezoelectric properties for harvesting micro energies. The DAD molecule is designed with two conjugated thiophene donors with a central naphthalene-diimide (NDI) acceptor chromophore to facilitate intra-molecular charge-transfer, evident from a prominent absorption band in the visible region. This chromophore is further appended with two chiral benzamide-wedges for homochiral supramolecular polymerization. The ambipolar character of the chiral DAD chromophore is manifest from the cyclic voltammogram. Extended H-bonding among the amide groups leads to homochiral supramolecular polymerization in methyl-cyclohexane, which is retained in the solid film. The impeccable piezoelectricity in poled DAD film revealed a d33 ∼ 7 pm/V as measured by the piezoforce microscopy. Poled piezo DAD devices under optimized periodic external impact force, frequencies and supplied electric field generate a viable output voltage and current density of 1.3 V, 0.8 µA/cm2, and Poutput ∼ 1.6 µW/cm2, respectively. As a proof-of-concept demonstration, stacked and poled supramolecular π-conjugated DAD devices are shown to viably illuminate a light emitting diode through charging a series of micro capacitors, indicating the potential utility for low power technologies.
Collapse
Affiliation(s)
- Swadesh Paul
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| | - Aritri Pal
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
- Technical Research Centre, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
- Technical Research Centre, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| |
Collapse
|
3
|
Wang L, Gao L, Rao X, Li F, Zu D, Liu Y, Hu BL. High-performance elastic ferroelectrics via low-temperature carbene crosslinking and high-temperature annealing. Chem Sci 2025:d5sc01467k. [PMID: 40375865 PMCID: PMC12076213 DOI: 10.1039/d5sc01467k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
With the increasing demand for wearable electronics, elastic ferroelectrics with high polarization intensity and Curie temperature have become essential. However, balancing high ferroelectric performance with elasticity in polymeric ferroelectrics remains a challenge, as higher crosslinking density to improve elasticity often compromises Curie temperature and remnant polarization. To address this trade-off, we introduce unsaturated bonds into commercial P(VDF-TrFE), forming P(VDF-TrFE-DB) with enhanced crosslinking reactivity while retaining its inherent ferroelectric properties. A novel two-step LT-HT processing strategy is developed to achieve this balance. The low-temperature (LT) step leverages carbene-mediated crosslinking with diazirine-based crosslinkers below the polymer's Curie temperature, preventing premature crystallization and forming amorphous regions essential for mechanical flexibility. The high-temperature (HT) annealing step promotes the formation and alignment of well-ordered ferroelectric crystalline structures, optimizing remnant polarization and Curie temperature while preserving the crosslinked amorphous regions critical for elasticity. This approach enables high elasticity with minimal crosslinker content while maintaining excellent ferroelectric performance. The resulting elastic P(VDF-TrFE-DB) polymer exhibits a significantly elevated Curie temperature (∼140 °C) and high remnant polarization (7.63 μC cm-2), comparable to commercial P(VDF-TrFE). This method offers a versatile pathway for advanced flexible electronics, soft actuators, and wearable devices requiring robust mechanical and ferroelectric properties.
Collapse
Affiliation(s)
- Linping Wang
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
| | - Liang Gao
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences No. 1 Yanqihu East Rd, Huairou District Beijing 101408 P. R. China
| | - Xiaocui Rao
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- Ordered Matter Science Research Center, Nanchang University 339 Beijing East Road, Qingshanhu District Nanchang Jiangxi Province 330029 P. R. China
| | - Fangzhou Li
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences No. 1 Yanqihu East Rd, Huairou District Beijing 101408 P. R. China
| | - Da Zu
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, School of Materials Science and Engineering, Xiangtan University Yuhu District Xiangtan Hunan 411105 P. R. China
| | - Yunya Liu
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, School of Materials Science and Engineering, Xiangtan University Yuhu District Xiangtan Hunan 411105 P. R. China
| | - Ben-Lin Hu
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences No. 1 Yanqihu East Rd, Huairou District Beijing 101408 P. R. China
| |
Collapse
|
4
|
Abuduheni A, Zhou L, Yao Y, Liu Y, Hu H, Liu Z. Rotation of Hexamethylenetetramine Molecules Induces Reversible Electromagnetic Coupling Properties in Isothiocyanato-Nickel Complexes. Int J Mol Sci 2025; 26:4050. [PMID: 40362290 PMCID: PMC12071420 DOI: 10.3390/ijms26094050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Multifunctional coupled hybrid materials have extremely high potential for application in a variety of complex scenarios owing to advantages such as versatility and controllable properties. In this study, a novel functional material with electromagnetic coupling properties [Ni(NCS)4(C6H13N4)2] (1) was obtained by naturally evaporating an aqueous solution of nickel chloride hexahydrate, hexamethylenetetramine (HMTA), and potassium thiocyanate as raw materials. Structure-property characterization revealed that 1 crystallized in the P21/n space group with a two-dimensional (2D) network structure formed by hydrogen-bonding interactions between neighboring nickel complexes. Calculations using the Gaussian program indicated that HMTA exhibited pronounced spatial molecular rotation. This induced obvious reversible dielectric cycling near 240 K, giving rise to semiconducting properties and an optical band gap of 3.35 eV. Molecular rotation caused changes in the 2D network structure, inducing short-range magnetic ordering in the temperature range of 2-50 K. This resulted in the formation of a potential ferromagnet and the presence of a distinct reversible redox peak in the -0.2-0.8 V potential range. Structure-property analyses showed that 1 is a supramolecular rotation-induced semiconducting multifunctional crystalline material with reversible electromagnetic coupling properties.
Collapse
Affiliation(s)
- Adila Abuduheni
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (A.A.); (L.Z.); (H.H.)
| | - Leilei Zhou
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (A.A.); (L.Z.); (H.H.)
| | - Yubing Yao
- School of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (A.A.); (L.Z.); (H.H.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (A.A.); (L.Z.); (H.H.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (A.A.); (L.Z.); (H.H.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| |
Collapse
|
5
|
Peng G, Li Z, Xu Y, Lei Y, Wang H, Jin Z. Evidence of Cation Symmetry Reduction Induced Bulk Photovoltaic Effect in Metal-Free Perovskite for Efficient Self-Powered X-Ray Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502335. [PMID: 40207739 DOI: 10.1002/adma.202502335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Metal-free perovskite (MFP) X-ray detectors have attracted attention due to biocompatibility and synthesizability. However, the necessity of high voltages for MFP X-ray detectors affects stability and safety. Although, the bulk photovoltaic effect (BPVE) with spontaneous electric field is a potential alternative for X-ray detection without high voltage, the constitutive relationship of BPVE in MFP remains unclear. Herein, the relationship between BPVE and cation symmetry is explored, and a self-powered X-ray detector is realized by BPVE in MFP for the first time. Theoretical studies show that cation symmetry reduction can distort the halide octahedron in one direction, which increases the dipole moment and crystal polarity to induce BPVE. The electric field from crystal polarity can drive the defect passivation by the equilibrium carrier and enhance the nonequilibrium carrier performance for BPVE. Then, polar MFP (mPAZE-NH4Br3 H2O) with excellent BPVE is designed. Due to the nonlinear response, the detector obtains a numerically recorded equivalent sensitivity (≈103 µC Gyair -1 cm-2) at 0 V. Moreover, the imaging performance is demonstrated and two image convolution kernels for it are constructed. Finally, it features continuous operation (20000 s) and temperature stability (-55-250 °C). It is believed that the method will further drive the application of MFP for X-ray detectors.
Collapse
Affiliation(s)
- Guoqiang Peng
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou, 730000, China
| | - Youkui Xu
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou, 730000, China
| | - Yutian Lei
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou, 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
Huang PZ, Liu Z, Ye LK, Ni HF, Luo JQ, Teri G, Jia QQ, Zhuang B, Wang CF, Zhang ZX, Zhang Y, Fu DW. Mechanically deformable organic ferroelectric crystal with plasticity optimized by fluorination. Nat Commun 2025; 16:3071. [PMID: 40157921 PMCID: PMC11954978 DOI: 10.1038/s41467-025-58416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
The ability of plastic deformation exerts in bulk crystals would offer great promise for ferroelectrics to achieve emerging and exciting applications. However, conventional ferroelectric crystals generally suffer from inherent brittleness and are easy to fracture. Here, by implementing fluorination on anion, we successfully design a flexible organic ferroelectric phenylethylammonium trifluoromethanesulfonate (PEA-TFMS) with interesting plasticity in its bulk crystals. To our knowledge, it is the first observation since the discovery of organic ferroelectric crystal triglycine sulfate in 1956. Compared to parent PEA-MS (phenylethylammonium mesylate), fluorination subtly alters ionic orientation and interactions to reorganize dipole arrangement, which not only brings switchable spontaneous polarization but also endows PEA-TFMS crystal with macroscopical bending and spiral deformability, making it a competitive candidate for flexible and wearable devices. Our work will bring inspiration for obtaining mechanically deformable organic ferroelectric crystals toward flexible electronics.
Collapse
Affiliation(s)
- Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Bo Zhuang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and applications of Molecular Ferroelectrics, Southeast University, Nanjing, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China.
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China.
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, People's Republic of China.
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi, People's Republic of China.
| |
Collapse
|
7
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 PMCID: PMC11543516 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
8
|
Cai Z, Zhang Y, He X, Chen J, Hua XN, Shi PP, Sun B. Enhancing Short-Range Interactions to Broaden the Temperature Range for Coexistence of Antiferroelectricity and Ferroelasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403390. [PMID: 39105400 DOI: 10.1002/smll.202403390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Antiferroelectric (AFE) materials, characterized by double electric hysteresis loops, can be transformed to the ferroelectric (FE) phase under an external electric field, making them promising candidates for electronic energy storage and solid-state refrigeration. Additionally, the field-induced strain in AFE materials is contingent upon the direction of the electric field, rendering it with a switching characteristic. Although AFE materials have made progress in the field of energy storage and negative electrocaloric effect, the coexistence of AFE and ferroelasticity is still rarely reported. Here, two isomorphic organic-inorganic hybrid perovskites, HDAEPbCl4 and HDAEPbBr4 (HDAE is [2-(hydroxydimethylammonio)ethan-1-aminium]), exhibiting FE-AFE-PE (PE is paraelectric) phase transitions, are presented. Remarkably, the temperature range where AFE and ferroelasticity coexist is significantly broadened from 59.9 K to 115.1 K by strengthening short-range forces via halogen substitution. This discovery extends the family of FE, AFE, and ferroelastic materials, contributing to the development of multifunctional materials and advancing multifunctional material development.
Collapse
Affiliation(s)
- Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xiu-Ni Hua
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, P. R. China
| | - Ping-Ping Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
9
|
Zhang ZX, Ni HF, Tang JS, Huang PZ, Luo JQ, Zhang FW, Lin JH, Jia QQ, Teri G, Wang CF, Fu DW, Zhang Y. Metal-Free Perovskite Ferroelectrics with the Most Equivalent Polarization Axes. J Am Chem Soc 2024; 146:27443-27450. [PMID: 39141483 DOI: 10.1021/jacs.4c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroelectricity in metal-free perovskites (MFPs) has emerged as an academic hotspot for their lightweight, eco-friendly processability, flexibility, and degradability, with considerable progress including large spontaneous polarization, high Curie temperature, large piezoelectric response, and tailoring coercive field. However, their equivalent polarization axes as a key indicator are far from enough, although multiaxial ferroelectrics are highly preferred for performance output and application flexibility that profit from as many equivalent polarization directions as possible with easier reorientation. Here, by implementing the synergistic overlap of regulating anionic geometries (from spherical I- to octahedral [PF6]- and to tetrahedral [ClO4]- or [BF4]-) and cationic asymmetric modification, we successfully designed multiaxial MFP ferroelectrics CMDABCO-NH4-X3 (CMDABCO = N-chloromethyl-N'-diazabicyclo[2.2.2]octonium; X = [ClO4]- or [BF4]-) with the lowest P1 symmetry. More impressively, systemic characterizations indicate that they possess 24 equivalent polarization axes (Aizu notations of 432F1 and m3̅mF1, respectively)─the maximum number achievable for ferroelectrics. Benefiting from the multiaxial feature, CMDABCO-NH4-[ClO4]3 has been demonstrated to have excellent piezoelectric sensing performance in its polycrystalline sample and prepared composite device. Our study provides a feasible strategy for designing multiaxial MFP ferroelectrics and highlights their great promise for use in microelectromechanical, sensing, and body-compatible devices.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jing-Song Tang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-He Lin
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
10
|
Zhang G, Chen Z, Wen J, Hou J, Chen S, Fang Y, Ren Y. Bulk Photovoltaic Effect in High-Temperature Lead-Halide Molecular Ferroelectric [C 4N 2H 14][PbI 4]. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53873-53880. [PMID: 39324336 DOI: 10.1021/acsami.4c11534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hybrid organic-inorganic molecular ferroelectrics (HOIMFs) have garnered significant attention owing to their potential applications in optoelectronic and spintronic devices. However, HOIMFs with high Curie temperature (Tc), narrow bandgap (Eg), excellent stability, and high breakdown voltage are still very rare. Herein, we present a novel lead-halide molecular ferroelectric, (1,4-butanediammonium)PbI4 (1), synthesized hydrothermally. 1 exhibits a ferroelectric-to-paraelectric phase transition with a high Curie temperature of 485 K, a room temperature ferroelectric hysteresis loop with a robust saturation polarization of 3.9 μC/cm2 and strong coercivity of 33 kV/cm, and a typical semiconductor behavior with a direct bandgap of 2.28 eV. Switchable photovoltaic effect was observed in 1-based device with a fast response time of ∼2 ms and high breakdown electric field of 80 kV/cm. Dramatically enhanced photovoltaic performance has been achieved by manipulating the ferroelectric polarization, resulting in a maximum photovoltage of Voc ∼ 0.84 V and a photocurrent of Jsc ∼ 33.31 nA/cm2 under standard AM 1.5 G illumination. This study offers a bright avenue for advancing high-Tc lead-halide molecular ferroelectrics with promising potentials in photodetectors, data storage, and logical switching devices.
Collapse
Affiliation(s)
- Ganghua Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Zhibo Chen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jinrong Wen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Shu Chen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
11
|
Guo W, Yang Z, Shu L, Cai H, Wei Z. The First Discovery of Spherical Carborane Molecular Ferroelectric Crystals. Angew Chem Int Ed Engl 2024; 63:e202407934. [PMID: 38877767 DOI: 10.1002/anie.202407934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Carborane compounds, known for their exceptional thermal stability and non-toxic attributes, have garnered widespread utility in medicine, supramolecular design, coordination/organometallic chemistry, and others. Although there is considerable interest among chemists, the integration of suitable carborane molecules into ferroelectric materials remains a formidable challenge. In this study, we employ the quasi-spherical design strategy to introduce functional groups at the boron vertices of the o-carborane cage, aiming to reduce molecular symmetry. This approach led to the successful synthesis of the pioneering ferroelectric crystals composed of cage-like carboranes: 9-OH-o-carborane (1) and 9-SH-o-carborane (2), which undergo above-room ferroelectric phase transitions (Tc) at approximately 367 K and 347 K. Interestingly, 1 and 2 represent uniaxial and multiaxial ferroelectrics respectively, with 2 exhibiting six polar axes and as many as twelve equivalent polarization directions. As the pioneering instance of carborane ferroelectric crystals, this study introduces a novel structural archetype for molecular ferroelectrics, thereby providing fresh insights into the exploration of molecular ferroelectric crystals with promising applications.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Zhao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Longlong Shu
- School of Physics and Materials Science, Nanchang University, Nanchang City, 330031, P.R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| |
Collapse
|
12
|
Qi JC, Peng H, Xu ZK, Wang ZX, Tang YY, Liao WQ, Zou G, You YM, Xiong RG. Discovery of molecular ferroelectric catalytic annulation for quinolines. Nat Commun 2024; 15:6738. [PMID: 39112514 PMCID: PMC11306768 DOI: 10.1038/s41467-024-51106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ferroelectrics as emerging and attractive catalysts have shown tremendous potential for applications including wastewater treatment, hydrogen production, nitrogen fixation, and organic synthesis, etc. In this study, we demonstrate that molecular ferroelectric crystal TMCM-CdCl3 (TMCM = trimethylchloromethylammonium) with multiaxial ferroelectricity and superior piezoelectricity has an effective catalytic activity on the direct construction of the pharmacologically important substituted quinoline derivatives via one-pot [3 + 2 + 1] annulation of anilines and terminal alkynes by using N,N-dimethylformamide (DMF) as the carbon source. The recrystallized TMCM-CdCl3 crystals from DMF remain well ferroelectricity and piezoelectricity. Upon ultrasonic condition, periodic changes in polarization contribute to the release of free charges from the surface of the ferroelectric domains in nano size, which then quickly interacts with the substrates in the solution to trigger the pivotal redox process. Our work advances the molecular ferroelectric crystal as a catalytic route to organic synthesis, not only providing valuable direction for molecular ferroelectrics but also further enriching the executable range of ferroelectric catalysis.
Collapse
Affiliation(s)
- Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China.
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, People's Republic of China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
13
|
Li Z, Pang Y, Peng G, Wang H, Li Q, Zhou X, Li Z, Wang Q, Jin Z. Aminoazanium of A-site Cations in Metal-Free Halide Perovskite Single Crystals to Reduce Thermal Expansion for Efficient X-ray Detection. J Phys Chem Lett 2024; 15:4375-4383. [PMID: 38620049 DOI: 10.1021/acs.jpclett.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Metal-free perovskites (MFPs) have recently become a newcomer in X-ray detection due to their flexibility and low toxicity characteristics. However, their photoelectronic properties and stability should be further improved mainly through materials design. Here, the aminoazanium of DABCO2+ was developed for the preparation of NDABCO-NH4Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) single crystals (SCs), and its physical properties, intermolecular interactions, and device performance were systematically explored. Notably, NDABCO-NH4Br3 can achieve improved stability by enlarging defect formation energy and inducing abundant intermolecular forces. Moreover, the slight lattice distortion could ensure the weakening electron-phonon coupling for improving carrier transport. In particular, the slight lattice distortion after the long-chain NDABCO2+ introduction could retard thermal expansion for the preparation of high-quality crystals. Finally, the corresponding X-ray detector delivered a moderate sensitivity of 623.3 μC Gyair-1 cm-2. This work provides a novel strategy through rationally designed organic cations to balance the material stability and device performance.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Yunqing Pang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Qijun Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xufeng Zhou
- School of Material Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Han S, Bie J, Fa W, Chen S, Tang L, Guo W, Xu H, Ma Y, Liu Y, Liu X, Sun Z, Luo J. Field-Induced Antiferroelectric-Ferroelectric Transformation in Organometallic Perovskite Displaying Giant Negative Electrocaloric Effect. J Am Chem Soc 2024; 146:8298-8307. [PMID: 38498306 DOI: 10.1021/jacs.3c13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Antiferroelectric materials with an electrocaloric effect (ECE) have been developed as promising candidates for solid-state refrigeration. Despite the great advances in positive ECE, reports on negative ECE remain quite scarce because of its elusive physical mechanism. Here, a giant negative ECE (maximum ΔS ∼ -33.3 J kg-1 K-1 with ΔT ∼ -11.7 K) is demonstrated near room temperature in organometallic perovskite, iBA2EA2Pb3I10 (1, where iBA = isobutylammonium and EA = ethylammonium), which is comparable to the greatest ECE effects reported so far. Moreover, the ECE efficiency ΔS/ΔE (∼1.85 J cm kg-1 K-1 kV-1) and ΔT/ΔE (∼0.65 K cm kV-1) are almost 2 orders of magnitude higher than those of classical inorganic ceramic ferroelectrics and organic polymers, such as BaTiO3, SrBi2Ta2O9, Hf1/2Zr1/2O2, and P(VDF-TrFE). As far as we know, this is the first report on negative ECE in organometallic hybrid perovskite ferroelectric. Our experimental measurement combined with the first-principles calculations reveals that electric field-induced antipolar to polar structural transformation results in a large change in dipolar ordering (from 6.5 to 45 μC/cm2 under the ΔE of 18 kV/cm) that is closely related to the entropy change, which plays a key role in generating such giant negative ECE. This discovery of field-induced negative ECE is unprecedented in organometallic perovskite, which sheds light on the exploration of next-generation refrigeration devices with high cooling efficiency.
Collapse
Affiliation(s)
- Shiguo Han
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Jie Bie
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Wei Fa
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Shuang Chen
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Liwei Tang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Wuqian Guo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Yu Ma
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Yi Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, P. R. China
| |
Collapse
|
15
|
Wang L, Gao L, Li B, Hu B, Xu T, Lin H, Zhu R, Hu BL, Li RW. High-Curie-Temperature Elastic Polymer Ferroelectric by Carbene Cross-Linking. J Am Chem Soc 2024; 146:5614-5621. [PMID: 38354217 DOI: 10.1021/jacs.3c14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
With the emergence of wearable electronics, ferroelectrics are poised to serve as key components for numerous potential applications. Currently, intrinsically elastic ferroelectrics featuring a network structure through a precise "slight cross-linking" approach have been realized. The resulting elastic ferroelectrics demonstrate a combination of stable ferroelectric properties and remarkable resilience under various strains. However, challenges arose as the cross-linking temperature was too high when integrating ferroelectrics with other functional materials, and the Curie temperature of this elastic ferroelectric was comparatively low. Addressing these challenges, we strategically chose a poly(vinylidene fluoride)-based copolymer with high vinylidene fluoride content to obtain a high Curie temperature while synthesizing a cross-linker with carbene intermediate for high reactivity to reduce the cross-linking temperature. At a relatively low temperature, we successfully fabricated elastic ferroelectrics through carbene cross-linking. The resulting elastic polymer ferroelectrics exhibit a higher Curie temperature and show a stable ferroelectric response under strains up to 50%. These materials hold significant potential for integration into wearable electronics.
Collapse
Affiliation(s)
- Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Bowen Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bing Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Tianhua Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huang Lin
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Ren Zhu
- Oxford Instruments Asylum Research, Shanghai 200233, China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Li QL, Zhao M, Hao RJ, Wei J, Wang XX, Yang C, Zhao M, Tan YH, Tang YZ. High-Temperature Phase Transition with Switchable Dielectric Behavior and Significant Photoluminescence Changes in a Zero-Dimensional Hybrid SbBr 6 Perovskite. Inorg Chem 2024; 63:3411-3417. [PMID: 38311915 DOI: 10.1021/acs.inorgchem.3c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In the past decade, metal halide materials have been favored by many researchers because of their excellent physical and chemical properties under thermal, electrical, and light stimuli, such as ferroelectricity, dielectric, nonlinearity, fluorescence, and semiconductors, greatly promoting their application in optoelectronic devices. In this study, we successfully constructed an unleaded organic-inorganic hybrid perovskite crystal: [Cl-C6H4-(CH2)2NH3]3SbBr6 (1), which underwent a high-temperature reversible phase transition near Tp = 368 K. The phase transition behavior of 1 was characterized by differential scanning calorimetry, accompanied by a thermal hysteresis of 6 K. In addition, variable-temperature Raman spectroscopy analysis and PXRD further verified the sensitivity of 1 to temperature and the phase transition from low symmetry to high symmetry. Temperature-dependent dielectric testing shows that 1 can be a sensitive switching dielectric constant switching material. Remarkably, 1 exhibits strong photoluminescence emission with a wavelength of 478 nm and a narrow band gap of 2.7 eV in semiconductors. As the temperature increases and decreases, fluorescence undergoes significant changes, especially near Tc, which further confirms the reversible phase transition of 1. All of these findings provide new avenues for designing and assembling new phase change materials with high Tp and photoluminescence properties.
Collapse
Affiliation(s)
- Qiao-Lin Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Meng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Rong-Jie Hao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Xi-Xi Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Chun Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yu-Hui Tan
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yun-Zhi Tang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| |
Collapse
|
17
|
Fan CC, Liu CD, Liang BD, Wang W, Jin ML, Chai CY, Jing CQ, Ju TY, Han XB, Zhang W. Tuning ferroelectric phase transition temperature by enantiomer fraction. Nat Commun 2024; 15:1464. [PMID: 38368439 PMCID: PMC10874439 DOI: 10.1038/s41467-024-45986-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Tuning phase transition temperature is one of the central issues in phase transition materials. Herein, we report a case study of using enantiomer fraction engineering as a promising strategy to tune the Curie temperature (TC) and related properties of ferroelectrics. A series of metal-halide perovskite ferroelectrics (S-3AMP)x(R-3AMP)1-xPbBr4 was synthesized where 3AMP is the 3-(aminomethyl)piperidine divalent cation and enantiomer fraction x varies between 0 and 1 (0 and 1 = enantiomers; 0.5 = racemate). With the change of the enantiomer fraction, the TC, second-harmonic generation intensity, degree of circular polarization of photoluminescence, and photoluminescence intensity of the materials have been tuned. Particularly, when x = 0.70 - 1, a continuously linear tuning of the TC is achieved, showing a tunable temperature range of about 73 K. This strategy provides an effective means and insights for regulating the phase transition temperature and chiroptical properties of functional materials.
Collapse
Affiliation(s)
- Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Chang-Qing Jing
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Tong-Yu Ju
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
| |
Collapse
|
18
|
Wan MY, Liu WF, Luo JL, Liao J, Wang FX, Wang LJ, Tang YZ, Tan YH. Silver/Antimony-Base Multifunctional Double Perovskite with H/F Substitution Enhance Properties. Inorg Chem 2024; 63:3083-3090. [PMID: 38278552 DOI: 10.1021/acs.inorgchem.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Two-dimensional double perovskites have experienced rapid development due to their outstanding optoelectronic properties and diverse structural characteristics. However, the synthesis of high-performance multifunctional compounds and the regulation of their properties still lack relevant examples. Herein, we synthesized two multifunctional compounds, (C6H14N)4AgSbBr8 (1) and (F2-C6H12N)4AgSbBr8 (2), which exhibit high solid-state phase transition temperature, bistable dielectric constant switching, second harmonic generation (SHG), and bright emission. Through H/F substitution, the transition temperature increases and achieves a smaller band gap attributed to reduced interlayer spacing. Furthermore, we investigated the broad emission mechanism of the compounds through first-principles calculation and variable-temperature fluorescence, confirming the presence of the STE1 emission. Our work provides insight into the further development of multifunctional compounds and chemical modification that enhances compound properties.
Collapse
Affiliation(s)
- Ming-Yang Wan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei-Fei Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Jin Lin Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Juan Liao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Fang Xin Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Li-Juan Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| |
Collapse
|
19
|
Sun XT, Zhang YY, Han Y, Wang XP, Li J, Li JY, Ni HF, Fu DW, Zhang ZX. The halogen substitution strategy of inorganic skeletons triggers dielectric and band gap regulation of hybrid perovskites. Dalton Trans 2023; 52:16406-16412. [PMID: 37870776 DOI: 10.1039/d3dt02924g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Organic-inorganic hybrid perovskites (OIHPs) with dielectric switching functions have aroused comprehensive scientific interest, benefitting from their promising applications in sensors and information storage. However, to date, most of these materials discovered thus far possess a single function and are limited in their applicability, failing to meet the requirements of diverse applications. Moreover, the discovery of these materials has been largely serendipitous. Building multifunctional OIHPs with dielectric switching and semiconductors remains a daunting task. In this context, by introducing [C7H16N]+ as cations and in combination with lead halide with semiconducting properties, two OIHPs [C7H16N]PbI3 (1) and [C7H16N]PbBr3 (2) ([C7H16N]+ = (cyclopropylmethyl) trimethylammonium) have been successfully designed. They have dielectric switching properties close to 253 and 279 K and semiconducting behavior with band gaps of 2.67 and 3.22 eV. The phase transition temperature increased by 26 K through halogen substitution. In summary, our findings in this study provide insights into the application of the halogen substitution regulation strategy and open up new possibilities for designing perovskite semiconductors with dielectric switching functionality.
Collapse
Affiliation(s)
- Xiao-Tong Sun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Ying-Yu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Yan Han
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Xiao-Ping Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Jie Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Jun-Yi Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
20
|
Ai Y, Li P, Chen X, Lv H, Weng Y, Shi Y, Zhou F, Xiong R, Liao W. The First Ring Enlargement Induced Large Piezoelectric Response in a Polycrystalline Molecular Ferroelectric. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302426. [PMID: 37328441 PMCID: PMC10460893 DOI: 10.1002/advs.202302426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Inorganic ferroelectrics have long dominated research and applications, taking advantage of high piezoelectric performance in bulk polycrystalline ceramic forms. Molecular ferroelectrics have attracted growing interest because of their environmental friendliness, easy processing, lightweight, and good biocompatibility, while realizing the considerable piezoelectricity in their bulk polycrystalline forms remains a great challenge. Herein, for the first time, through ring enlargement, a molecular ferroelectric 1-azabicyclo[3.2.1]octonium perrhenate ([3.2.1-abco]ReO4 ) with a large piezoelectric coefficient d33 up to 118 pC/N in the polycrystalline pellet form is designed, which is higher than that of the parent 1-azabicyclo[2.2.1]heptanium perrhenate ([2.2.1-abch]ReO4 , 90 pC/N) and those of most molecular ferroelectrics in polycrystalline or even single crystal forms. The ring enlargement reduces the molecular strain for easier molecular deformation, which contributes to the higher piezoelectric response in [3.2.1-abco]ReO4 . This work opens up a new avenue for exploring high piezoelectric polycrystalline molecular ferroelectrics with great potential in piezoelectric applications.
Collapse
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Peng‐Fei Li
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Xiao‐Gang Chen
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Hui‐Peng Lv
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Yan‐Ran Weng
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Yu Shi
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Feng Zhou
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Wei‐Qiang Liao
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| |
Collapse
|