1
|
Zhang H, Chen M, Qian W, Zhang J, Chen X, Fang J, Wang C, Zhang C. Photo-assisted thermal catalytic CO 2 reduction over Ru-TiO 2 catalysts. J Environ Sci (China) 2025; 155:501-509. [PMID: 40246485 DOI: 10.1016/j.jes.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 04/19/2025]
Abstract
Photothermal catalysis is a promising technology to convert CO2 into high value-added products. Here, we show that loading Ru NPs on TiO2 achieved a remarkable photothermal synergistic effect and the Ru-TiO2 demonstrated a high efficiency for the photothermal conversion of low CO2 concentration to CH4 at the gas-solid interface. The photothermal activity of the Ru-TiO2 (217.9 µmol/(g·h)) was nearly 6 times higher than pure thermal activity (38.08 µmol/(g·h)), and nearly 20 times than the photocatalytic activity (10.9 µmol/(g·h)). We revealed that the light excitation could drive the generated electrons from TiO2 to Ru particles, beneficial to CO2 reduction, while external heating showed no influence on the charge separation of the Ru-TiO2. Hence, the photothermal synergy is not a heat-assisted photocatalytic process, but a photo-assisted thermal catalytic process. We finally demonstrated that the CO2 was firstly converted to CO, and the CO was further hydrogenated to CH4. The introduction of light could promote the activation of intermediate CO species at the Ru-Ti interface sites, thus greatly accelerating CO hydrogenation to CH4. This work contributes to further understanding of the mechanism of photothermal catalytic CO2 reduction.
Collapse
Affiliation(s)
- Haodong Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Weiming Qian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinhou Fang
- Weifang Research Institute of Materials and Technology for Eco-environmental Protection, Weifang 261300, China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Weifang Research Institute of Materials and Technology for Eco-environmental Protection, Weifang 261300, China.
| |
Collapse
|
2
|
Duan X, Mi J, Li Q, Wang J, Liao J, Wu M. Dendritic fibrous nanosilica supported Zn-based sorbents towards enhanced hot-coal-gas desulfurization: Structural design and metal modification. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137864. [PMID: 40086242 DOI: 10.1016/j.jhazmat.2025.137864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Designing suitable carriers of sorbents for hot-coal-gas desulfurization is still a challenging task so far. In this study, dendritic fibrous nanosilica (DFNS) carriers with central radial pore structures were synthesized via microemulsion method, and the formation mechanism was proposed. The mean particle diameter (MPD) and mean surface wrinkle spacing (MSWS) of DFNS could be directionally controlled by regulating the emulsion phase behavior during DFNS synthesis. A series of mesoporous Zn-based desulfurizers were then constructed based on these DFNS carriers. The results indicate that the proposed parameter, pore slope, could be well positively correlated with the breakthrough sulfur capacity of desulfurizers. The activation energy (20.5 kJ/mol) of sorbent with the optimized carrier is significantly lower than that of previously reported desulfurizers. Additionally, the desulfurization performance of DFNS-supported sorbents could be further improved by 1.27 %-34.6 % by metal (Sm/Mo/Ni) modification. Sorbents with Ni/Zn molar ratio of 1/5 exhibit the highest breakthrough sulfur capacity of 15.85 g S/100 g sorbents. Moreover, the optimized sorbent demonstrated good stability over multiple sulfidation/regeneration cycles, highlighting its potential for hot-coal-gas desulfurization applications.
Collapse
Affiliation(s)
- Xinwei Duan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Mi
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiaochun Li
- Shanxi Intellectual Property Protection Center, Taiyuan 030006, China
| | - Jiancheng Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China; College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Junjie Liao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Mengmeng Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Coal Science and Technology of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
3
|
Belgamwar R, Singhvi C, Sharma G, Paidi VK, Glatzel P, Yamazoe S, Sarawade P, Polshettiwar V. Synthesis of synergistic catalysts: integrating defects, SMSI, and plasmonic effects for enhanced photocatalytic CO 2 reduction. Chem Sci 2025:d5sc01166c. [PMID: 40321177 PMCID: PMC12045291 DOI: 10.1039/d5sc01166c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
This study explores how the strategic material design introduced synergetic coupling of strong metal-support interaction (SMSI) between copper (Cu) nanoparticles and titanium dioxide (TiO2) loaded on dendritic fibrous nanosilica (DFNS), defects within TiO2, and localized surface plasmon resonance (LSPR) of Cu. Mechanistic insights were gained using in situ high-energy radiation fluorescence detection X-ray absorption near edge structure (HERFD-XANES) spectroscopy, electron microscopy, and finite-difference time-domain (FDTD) simulations. The introduction of copper nanoparticles onto the TiO2 surface induces a change in the electronic structure and surface chemistry of TiO2, due to the electronic interactions between Cu sites and TiO2 at the interface, inducing SMSI. This resulted in enhancing light absorption, efficient charge transfer, reducing electron-hole recombination and enhancing the overall catalytic efficiency. The activation energy for CO2 reduction was significantly reduced in light as compared to dark. Control experiments revealed a dominant role of photoexcited hot carriers, alongside photothermal effects, in driving CO2 reduction, supported by super-linear light intensity dependence and reduced activation energies. The unique interplay of O-vacancy defects, electron-hole separation in TiO2 and LSPR effects in Cu led to the excellent performance of the DFNS/TiO2-Cu10 catalyst. The catalyst outperformed the reported photocatalytic systems with a CO production rate of ∼3600 mmol gCu -1 h-1 (360 mmol gcat -1 h-1) with nearly 100% selectivity. A reaction mechanism was proposed based on the intermediates observed using the in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and co-related to the electron transfer pathways to different reactants using HERFD-XANES. The study concluded that the synergistic coupling of Cu LSPR, charge carrier separation via SMSI at the Cu-TiO2 interface, and O-vacancy defects stabilized by SMSI enhance the photocatalytic CO2 reduction performance of this hybrid system.
Collapse
Affiliation(s)
- Rajesh Belgamwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 40005 India
| | - Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 40005 India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 40005 India
| | - Vinod K Paidi
- ID26, European Synchrotron Radiation Facility Grenoble France
| | - Pieter Glatzel
- ID26, European Synchrotron Radiation Facility Grenoble France
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University Tokyo 192-0397 Japan
| | - Pradip Sarawade
- National Centre for Nanoscience and Nanotechnology, Department of Physics, University of Mumbai Mumbai 400098 India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 40005 India
| |
Collapse
|
4
|
Ren Q, He Y, Sun Y, Zhang S, Dong F. Visualizing the dynamic evolution of light-sensitive Cu 1+/Cu 2+ sites during photocatalytic CO 2 reduction with an advanced in situ EPR spectroscopy. Sci Bull (Beijing) 2025; 70:1097-1106. [PMID: 39956671 DOI: 10.1016/j.scib.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Elucidation of the dynamic evolution of active sites is still a challenge in investigating the catalytic mechanism mainly due to the difficulty in accurately detecting the transient structural changes of active sites under operating conditions. Here, we develop an advanced in situ electron paramagnetic resonance (EPR) spectroscopy, which could sensitively monitor and visualize the dynamic evolution of paramagnetic active sites during photoreduction CO2. In situ results reveal that the photoactivated Cu1+ sites from CuO nanoclusters/TiO2 serve as the authentic active sites in the reaction and exhibit self-regenerative capability. The CO2 molecules can acquire electrons and get activated by the photoactivated Cu1+, leading to the transition of Cu1+ sites into Cu2+ sites. Subsequently, the Cu2+ sites expedite the generation of hydrogen protons through antiferromagnetic coupling with hydroxyl radicals, thereby promoting the production of the final product CH4 via a multi proton-coupled electron transfer (PCET) process. This work reveals and visualizes the dynamic evolution of Cu-based active sites during photocatalytic reactions by combined in situ characterizations, providing new perspectives on the mechanistic understanding of paramagnetic active sites under operation.
Collapse
Affiliation(s)
- Qin Ren
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ye He
- School of Resources and Environmental, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environmental, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shihan Zhang
- Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
5
|
Xie S, Tian S, Yang J, Wang N, Wan Q, Wang M, Liu J, Zhou J, Qi P, Sui K, Li X, Ma D, Zhao XS. Synergizing Mg Single Atoms and Ru Nanoclusters for Boosting the Ammonia Borane Hydrolysis to Produce Hydrogen. Angew Chem Int Ed Engl 2025; 64:e202424316. [PMID: 39890922 DOI: 10.1002/anie.202424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/03/2025]
Abstract
Development of efficient catalysts with high H2O molecule activation ability holds great importance for H2 production. Herein, enzyme-mimic Mg single atoms catalysts (SACs) coordinated by B/N-doped carbon nanotube (BNC), was constructed as a high-performance support for ruthenium (Ru) nano-clusters. Dual functions of Mg SACs were discovered, where the Mg atoms beneath Ru catalysts built an interfacial electron polarization, inducing electron transfer from Ru to the Mg-BNC support. In addition, the oxyphilic Mg SACs adjacent to the Ru catalysts could actively participate in H2O adsorption. The combination of experimental characterization, reaction kinetics study and density functional theory (DFT) calculations validated a stronger intrinsic H2O activation capability at the positive Ru sites. Meanwhile, the synergistic Mg SACs jointly contribute to the acceleration of the sluggish H2O dissociation process in ammonia borane (AB) hydrolysis reaction, resulting in exceptional hydrogen production activity and catalytic stability, outperforming most state-of-the-art Ru-based catalysts. This work provides a new strategy for utilizing alkaline earth metals as both the electronic promoter and the reactant activator, offering inspiration for the development of advanced heterogeneous catalysts.
Collapse
Affiliation(s)
- Shumin Xie
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Shuheng Tian
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jialei Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Ning Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Qixin Wan
- Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jinxun Liu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Jing Zhou
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, 321004, China
| | - Pengfei Qi
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Kunyan Sui
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xingyun Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiu Song Zhao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
6
|
Liu S, Zhao H, Li H, Zong Y, Xiao W, Xiao Z, Xu G, Chen D, Fu G, Wu Z, Wang L. Nonequilibrium-corrosive engineering synthesis of Pt anchored on Fe 3O 4 with oxygen vacancy for efficient electrocatalytic hydrogen evolution reaction. J Colloid Interface Sci 2025; 683:870-878. [PMID: 39709761 DOI: 10.1016/j.jcis.2024.12.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The development of suitable support to maximize the atomic utilization efficiency of platinum is of great significance for the hydrogen evolution reaction (HER). Herein, we report a simple and fast nonequilibrium-corrosive approach to prepare oxygen defect-enriched Fe3O4 decorated with trace Pt onto nickel-iron foam (Pt/Fe3O4-Ov/NIF). The Pt/Fe3O4-Ov/NIF electrode is superhydrophilic with intimate contact with the electrolyte. In addition, the strong electronic interactions between Fe3O4 and Pt and the oxygen-rich vacancies contribute to the catalytic process and improve the electrochemical interfacial properties. Thus, the Pt/Fe3O4-Ov/NIF electrocatalyst only requires an overpotential of 29 and 39 mV at 10 mA cm-2 in alkaline freshwater/alkaline seawater, respectively, exhibiting superior HER activity. Furthermore, the anion exchange membrane water electrolyzer (AEMWE) owns low cell voltage of 1.86 V at 1000 mA cm-2 and long-term electrocatalysis durability. This work provides an effective approach for designing efficient AEMWE electrocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Silu Liu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Huilin Zhao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Hongdong Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Yingxia Zong
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhenyu Xiao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Guangrui Xu
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Dehong Chen
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Guangying Fu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, CN-266101 Qingdao, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| |
Collapse
|
7
|
Zhang HC, Xu HM, Huang CJ, Zhu HR, Li GR. Recent Progress in the Design and Application of Strong Metal-Support Interactions in Electrocatalysis. Inorg Chem 2025; 64:4713-4748. [PMID: 40036527 DOI: 10.1021/acs.inorgchem.4c05056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The strong metal-support interaction (SMSI) in supported metal catalysts represents a crucial factor in the design of highly efficient heterogeneous catalysts. This interaction can modify the surface adsorption state, electronic structure, and coordination environment of the supported metal, altering the interface structure of the catalyst. These changes serve to enhance the catalyst's activity, stability, and reaction selectivity. In recent years, a multitude of researchers have uncovered a range of novel SMSI types and induction methods including oxidized SMSI (O-SMSI), adsorbent-mediated SMSI (A-SMSI), and wet chemically induced SMSI (Wc-SMSI). Consequently, a systematic and critical review is highly desirable to illuminate the latest advancements in SMSI and to deliberate its application within heterogeneous catalysts. This article provides a review of the characteristics of various SMSI types and the most recent induction methods. It is concluded that SMSI significantly contributes to enhancing catalyst stability, altering reaction selectivity, and increasing catalytic activity. Furthermore, this paper offers a comprehensive review of the extensive application of SMSI in the electrocatalysis of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). Finally, the opportunities and challenges that SMSI faces in the future are discussed.
Collapse
Affiliation(s)
- Hong-Cheng Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Zhang Y, Chen F, Yang X, Guo Y, Zhang X, Dong H, Wang W, Lu F, Lu Z, Liu H, Liu H, Xiao Y, Cheng Y. Electronic metal-support interaction modulates Cu electronic structures for CO 2 electroreduction to desired products. Nat Commun 2025; 16:1956. [PMID: 40000632 PMCID: PMC11861622 DOI: 10.1038/s41467-025-57307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
In this work, the Cu single-atom catalysts (SACs) supported by metal-oxides (Al2O3-CuSAC, CeO2-CuSAC, and TiO2-CuSAC) are used as theoretical models to explore the correlations between electronic structures and CO2RR performances. For these catalysts, the electronic metal-support interaction (EMSI) induced by charge transfer between Cu sites and supports subtly modulates the Cu electronic structure to form different highest occupied-orbital. The highest occupied 3dyz orbital of Al2O3-CuSAC enhances the adsorption strength of CO and weakens C-O bonds through 3dyz-π* electron back-donation. This reduces the energy barrier for C-C coupling, thereby promoting multicarbon formation on Al2O3-CuSAC. The highest occupied 3dz2 orbital of TiO2-CuSAC accelerates the H2O activation, and lowers the reaction energy for forming CH4. This over activated H2O, in turn, intensifies competing hydrogen evolution reaction (HER), which hinders the high-selectivity production of CH4 on TiO2-CuSAC. CeO2-CuSAC with highest occupied 3dx2-y2 orbital promotes CO2 activation and its localized electronic state inhibits C-C coupling. The moderate water activity of CeO2-CuSAC facilitates *CO deep hydrogenation without excessively activating HER. Hence, CeO2-CuSAC exhibits the highest CH4 Faradaic efficiency of 70.3% at 400 mA cm-2.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China
| | - Feifei Chen
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China
| | - Xinyi Yang
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China
| | - Yiran Guo
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China
| | - Xinghua Zhang
- School of Material Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Hong Dong
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China
| | - Weihua Wang
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China
| | - Feng Lu
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China
| | - Zunming Lu
- School of Material Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Hui Liu
- Institute of New-Energy Materials, Tianjin University, Tianjin, China.
| | - Hui Liu
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China.
| | - Yao Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.
| | - Yahui Cheng
- Department of Electronic Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Singhvi C, Sharma G, Verma R, Paidi VK, Glatzel P, Paciok P, Patel VB, Mohan O, Polshettiwar V. Tuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO 2 reduction reaction. Proc Natl Acad Sci U S A 2025; 122:e2411406122. [PMID: 39813253 PMCID: PMC11759900 DOI: 10.1073/pnas.2411406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO2) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO2)-based electronically tuned trimetallic catalyst for CO2 to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them. The catalyst showed CO productivity of 49,279 mmol g-1 h-1 at 650 °C. CO selectivity up to 99% and excellent stability (rate remained unchanged even after 100 h) stemmed from the synergistic interactions among Ni-Cu-Zn sites and their SMSI with the defective ceria support. High-energy-resolution fluorescence-detection X-ray absorption spectroscopy (HERFD-XAS) confirmed this SMSI, further corroborated by in situ electron energy loss spectroscopy (EELS) and density functional theory (DFT) simulations. The in situ studies (HERFD-XAS & EELS) indicated the key role of oxygen vacancies of defective CeO2 during catalysis. The in situ transmission electron microscopy (TEM) imaging under catalytic conditions visualized the movement and growth of active trimetallic sites, which completely stopped once SMSI was established. In situ FTIR (supported by DFT) provided a molecular-level understanding of the formation of various reaction intermediates and their conversion into products, which followed a complex coupling of direct dissociation and redox pathway assisted by hydrogen, simultaneously on different active sites. Thus, sophisticated manipulation of electronic properties of trimetallic sites and defect dynamics significantly enhanced catalytic performance during CO2 to CO conversion.
Collapse
Affiliation(s)
- Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Vinod K. Paidi
- Experiments Division, European Synchrotron Radiation Facility, Grenoble38043, Cedex 9, France
| | - Pieter Glatzel
- Experiments Division, European Synchrotron Radiation Facility, Grenoble38043, Cedex 9, France
| | - Paul Paciok
- Ernst-Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich52425, Germany
| | - Vashishtha B. Patel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Ojus Mohan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| |
Collapse
|
10
|
Zhan S, Song H, Wu Z, Jiang DE. Electronic and geometric effects in an Au@NiO core-shell nanocatalyst on the oxidative esterification of aldehydes. NANOSCALE 2025; 17:1317-1325. [PMID: 39623955 DOI: 10.1039/d4nr03302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Strong metal-support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core-shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties via their interaction with the support shell. The Au@NiOx core-shell system, for example, is the first commercial nanogold catalyst to produce bulk chemicals via the oxidative esterification of aldehydes. However, how the SMSI effect in Au@NiOx manifests on its oxidative esterification activity is unclear. Here we use a model of an Au13@(NiO)48 core-shell nanocatalyst to examine the Au-NiO interaction and the associated electronic and geometric factors in enabling the oxidation of a hemiacetal (an intermediate from a ready reaction between an aldehyde and an alcohol) to an ester. We found 1.27 (e-) electrons flowing from the NiO shell to the Au core, leading to a higher oxide state of Ni atoms and the stabilization of key intermediates on the NiO shell. More importantly, lower activation energy was found on the Au13@(NiO)48 catalyst than on the Au(111) and NiO(100) surfaces for the rate-limiting step. Microkinetic modeling confirmed the high activity of the Au13@(NiO)48 catalyst in ester production in the experimental temperature range. Our work demonstrates the unique geometric and electronic effects of the Au@NiOx core-shell nanostructure on the catalytic oxidative esterification of aldehydes.
Collapse
Affiliation(s)
- Shaoqi Zhan
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
| | - Haohong Song
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee, 37235, USA
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
11
|
Du X, Li R, Xin H, Fan Y, Liu C, Feng X, Wang J, Dong C, Wang C, Li D, Fu Q, Bao X. In-Situ Dynamic Carburization of Mo Oxide with Unprecedented High CO Formation Rate in Reverse Water-Gas Shift Reaction. Angew Chem Int Ed Engl 2024; 63:e202411761. [PMID: 39143835 DOI: 10.1002/anie.202411761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
In situ construction of active structure under reaction conditions is highly desired but still remains challenging in many important catalytic processes. Herein, we observe structural evolution of molybdenum oxide (MoOx) into highly active molybdenum carbide (MoCx) during reverse water-gas shift (RWGS) reaction. Surface oxygen atoms in various Mo-based catalysts are removed in H2-containing atmospheres and then carbon atoms can accumulate on surface to form MoCx phase with the RWGS reaction going on, both of which are enhanced by the presence of intercalated H species or Pt-dopants in MoOx. The structural evolution from MoOx to MoCx is accompanied by enhanced CO2 conversion, which is positively correlated with the surface C/Mo ratio but negatively with the surface O/Mo ratio. As a result, an unprecedented CO formation rate of 7544.6 mmol ⋅ gcatal -1 ⋅ h-1 at 600 °C has been achieved over in situ carbonized H-intercalated MoO3 catalyst, which is even higher than those from noble metal catalysts. During 100 h stability test only a minimal deactivation rate of 2.3 % is observed.
Collapse
Affiliation(s)
- Xiangze Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Xin
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chengxiang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaohui Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
12
|
Zi B, Zheng H, Zhou T, Zhang Y, Lu Q, Chen M, Sun H, Xiao B, Qiu Z, Zhao J, He T, Zhang J, Liu Q. Pr doping promotes the formation of Pt single atoms by regulating metal-support interaction for remarkable photocatalytic hydrogen production. J Colloid Interface Sci 2024; 680:298-306. [PMID: 39509778 DOI: 10.1016/j.jcis.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Since the metal-support interaction (MSI) has a great influence on the structure and properties of single atom catalysts (SACs), the activity and stability of SACs can be effectively regulated by adjusting the structure of the matrix. Herein, the morphology of surface supported Pt species can be controlled by doping to adjust the properties of TiO2 support. Specifically, under the same conditions, the Pt species on the Pr doped TiO2 surface are Pt SAs (PtSA/TiO2(Pr)), while on the pure TiO2 surface are particles (PtNP/TiO2). Experimental and theoretical studies demonstrate that Pr doping weakens the interaction of Ti-O bond, stabilizes the O-Pt unit site and Pt SAs. Impressively, PtSA/TiO2(Pr) shows superior photocatalytic hydrogen production performance (196.43 mmol g-1 h-1), far exceeding PtNP/TiO2 (91.96 mmol g-1 h-1). Additionally, Pr dopant modulates the electronic interaction between TiO2 support and Pt SAs, thus the adsorption/desorption behavior of H intermediates (H*) is balanced. Besides, the electron delocalization of O adjacent to Pt SAs can be adjusted by Pr doping, prompting the establishment of efficient Pt-O electron transfer channels and further enhances the utilization of photogenerated carriers. This study presents a promising strategy to prepare SACs with high activity for photocatalyst hydrogen production.
Collapse
Affiliation(s)
- Baoye Zi
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Hongshun Zheng
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China; Southwest United Graduate School, 650091 Kunming, China
| | - Tong Zhou
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Yumin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Qingjie Lu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Mingpeng Chen
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Huachuan Sun
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Bin Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Zhishi Qiu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Jianhong Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Tianwei He
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Jin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China
| | - Qingju Liu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, 650091 Kunming, China; Southwest United Graduate School, 650091 Kunming, China.
| |
Collapse
|
13
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
14
|
Lim SY, Younis SA, Kim KH, Lee J. The potential utility of dendritic fibrous nanosilica as an adsorbent and a catalyst in carbon capture, utilization, and storage. Chem Soc Rev 2024; 53:9976-10011. [PMID: 39282873 DOI: 10.1039/d4cs00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Anthropogenic emissions of greenhouse gases (GHG; e.g., CO2) are regarded as the most critical cause of the current global climate crisis. To combat this issue, a plethora of CO2 capture, utilization, and storage (CCUS) technologies have been proposed and developed based on a number of technical principles (e.g., post-combustion capture, chemical looping, and catalytic conversion). In this light, the potential utility of dendritic fibrous nanosilica (DFNS) materials is recognized for specific CCUS applications (such as adsorptive capture of CO2 and its catalytic conversion into a list of value-added products (e.g., methane, carbon monoxide, and cyclic carbonates)) with the highly tunable properties (e.g., high surface area, pore volume, multifunctional surface, and open pore structure). This review has been organized to offer a comprehensive evaluation of the approaches required for tuning the textural/morphological/surface properties of DFNS (based on multiple synthesis and modification scenarios) toward CCUS applications. It further discusses the effects of such approaches on the properties of DFNS materials in relation to their CCUS performance. This review is thus expected to help develop and implement advanced strategies for DFNS-based CCUS technologies.
Collapse
Affiliation(s)
- Sam Yeol Lim
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
- School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
15
|
Kim W, Kim K, Kim J, Lee Z. In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy. Appl Microsc 2024; 54:7. [PMID: 39284998 PMCID: PMC11405595 DOI: 10.1186/s42649-024-00100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Oxide-supported metal catalysts are essential components in industrial processes for catalytic conversion. However, the performance of these catalysts is often compromised in high temperature reaction environments due to sintering effects. Currently, a number of studies are underway with the objective of improving the metal support interaction (MSI) effect in order to enhance sintering resistance by surface modification of the oxide support, including the formation of inhomogeneous defects on the oxide support, the addition of a rare earth element, the use of different facets, encapsulation, and other techniques. The recent developments in in situ gas phase transmission electron microscopy (TEM) have enabled direct observation of the sintering process of NPs in real time. This capability further allows to verify the efficacy of the methods used to tailor the support surface and contributes effectively to improving sintering resistance. Here, we review a few selected studies on how in situ gas phase TEM has been used to prevent the sintering of catalyst NPs on oxide supports.
Collapse
Affiliation(s)
- Wonjun Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kangsik Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jaejin Kim
- Shell International Exploration & Production, Inc, Shell Technology Center Houston, 3333 Hwy 6 S, Houston, TX, 77082-3101, USA
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
16
|
Qu W, Xu Z, Gruber CG, Li H, Hu X, Zhou L, Duan H, Zhang J, Liu M, Cortés E, Zhang D. Accelerating Toluene Oxidation over Boron-Titanium-Oxygen Interface: Steric Hindrance of the Methyl Group Induced by the Plane-Adsorption Configuration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16215-16224. [PMID: 39190430 DOI: 10.1021/acs.est.4c06079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Elimination of dilute gaseous toluene is one of the critical concerns within the field of indoor air remediation. The typical degradation route on titanium-based catalysts, "toluene-benzaldehyde-carbon dioxide", necessitates the oxidation of the methyl group as a prerequisite for photocatalytic toluene oxidation. However, the inherent planar adsorption configuration of toluene molecules, dominated by the benzene rings, leads to significant steric hindrance for the methyl group. This steric hindrance prevents the methyl group from contacting the active species on the catalyst surface, thereby limiting the removal of toluene under indoor conditions. To date, no effective strategy to control the steric hindrance of the methyl group has been identified. Herein, we showed a B-Ti-O interface that exhibits significantly enhanced toluene removal efficiency under indoor conditions. In-depth investigations revealed that, compared to typical Ti-based photocatalysts, the steric hindrance between the methyl group and the catalyst surface decreased from 3.42 to 3.03 Å on the designed interface. This reduction originates from the matching of orbital energy levels between Ti 3dz2 and C 2pz of the benzene ring. The decreased steric hindrance improved the efficiency of toluene being attacked by surface active species, allowing for rapid conversion into benzaldehyde and benzoic acid species for subsequent reactions. Our work provides novel insights into the steric hindrance effect in the elimination of aromatic volatile organic compounds.
Collapse
Affiliation(s)
- Wenqiang Qu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zixiang Xu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Christoph G Gruber
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Xiaonan Hu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Haiyan Duan
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Dengsong Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Sun X, Yu J, Zada H, Han Y, Zhang L, Chen H, Yin W, Sun J. Reaction-induced unsaturated Mo oxycarbides afford highly active CO 2 conversion catalysts. Nat Chem 2024:10.1038/s41557-024-01628-4. [PMID: 39251842 DOI: 10.1038/s41557-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Sustainable CO2 conversion is crucial in curbing excess emissions. Molybdenum carbide catalysts have demonstrated excellent performances for catalytic CO2 conversion, but harsh carburization syntheses and poor stabilities make studies challenging. Here an unsaturated Mo oxide (Mo17O47) shows a high activity for the reverse water-gas shift reaction, without carburization pretreatments, and remains stable for 2,000 h at 600 °C. Flame spray pyrolysis synthesis and Ir promoter facilitate the formation of Mo17O47 and its in situ carburization during reaction. The reaction-induced cubic α-MoC with unsaturated Mo oxycarbide (MoOxCy) on the surface serves as the active sites that are crucial for catalysis. Mechanistic studies indicate that the C atom in CO2 inserts itself in the vacancy between two Mo atoms, and releases CO by taking another C atom from the oxycarbide to regenerate the vacancy, following a carbon cycle pathway. The design of Mo catalysts with unsaturated oxycarbide active sites affords new territory for high-temperature applications and provides alternative pathways for CO2 conversion.
Collapse
Affiliation(s)
- Xingtao Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Habib Zada
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Han
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaican Chen
- Spallation Neutron Source Science Center, Dalang, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Wen Yin
- University of Chinese Academy of Sciences, Beijing, China
- Spallation Neutron Source Science Center, Dalang, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jian Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
18
|
Shen X, Craven M, Xu J, Wang Y, Li Z, Wang W, Yao S, Wu Z, Jiang N, Zhou X, Sun K, Du X, Tu X. Unveiling the Mechanism of Plasma-Catalytic Low-Temperature Water-Gas Shift Reaction over Cu/γ-Al 2O 3 Catalysts. JACS AU 2024; 4:3228-3237. [PMID: 39211585 PMCID: PMC11350726 DOI: 10.1021/jacsau.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The water-gas shift (WGS) reaction is a crucial process for hydrogen production. Unfortunately, achieving high reaction rates and yields for the WGS reaction at low temperatures remains a challenge due to kinetic limitations. Here, nonthermal plasma coupled to Cu/γ-Al2O3 catalysts was employed to enable the WGS reaction at considerably lower temperatures (up to 140 °C). For comparison, thermal-catalytic WGS reactions using the same catalysts were conducted at 140-300 °C. The best performance (72.1% CO conversion and 67.4% H2 yield) was achieved using an 8 wt % Cu/γ-Al2O3 catalyst in plasma catalysis at ∼140 °C, with 8.74 MJ mol-1 energy consumption and 8.5% H2 fuel production efficiency. Notably, conventional thermal catalysis proved to be ineffective at such low temperatures. Density functional theory calculations, coupled with in situ diffuse reflectance infrared Fourier transform spectroscopy, revealed that the plasma-generated OH radicals significantly enhanced the WGS reaction by influencing both the redox and carboxyl reaction pathways.
Collapse
Affiliation(s)
- Xiaoqiang Shen
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400044, China
- School
of Energy and Power Engineering, Chongqing
University, Chongqing 400044, China
| | - Michael Craven
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jiacheng Xu
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Yaolin Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Zhi Li
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400044, China
- School
of Energy and Power Engineering, Chongqing
University, Chongqing 400044, China
| | - Weitao Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shuiliang Yao
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Zuliang Wu
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Nan Jiang
- School
of Electrical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Xuanbo Zhou
- Department
of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, U.K.
| | - Kuan Sun
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400044, China
- School
of Energy and Power Engineering, Chongqing
University, Chongqing 400044, China
| | - Xuesen Du
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400044, China
- School
of Energy and Power Engineering, Chongqing
University, Chongqing 400044, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| |
Collapse
|
19
|
Verma R, Singhvi C, Venkatesh A, Polshettiwar V. Defects tune the acidic strength of amorphous aluminosilicates. Nat Commun 2024; 15:6899. [PMID: 39134554 PMCID: PMC11319355 DOI: 10.1038/s41467-024-51233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Crystalline zeolites have high acidity but limited utility due to microporosity, whereas mesoporous amorphous aluminosilicates offer better porosity but lack sufficient acidity. In this work, we investigated defect engineering to fine-tune the acidity of amorphous acidic aluminosilicates (AAS). Here we introduced oxygen vacancies in AAS to synthesize defective acidic aluminosilicates (D-AAS). 1H, 27Al, and 17O solid-state nuclear magnetic resonance (NMR) studies indicated that defects induced localized structural changes around the acidic sites, thereby modifying their acidity. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy studies substantiated that oxygen vacancies alter the chemical environment of Brønsted acidic sites of AAS. The effect of defect creation in AAS on its acidity and catalytic behavior was demonstrated using four different acid-catalyzed reactions namely, styrene oxide ring opening, vesidryl synthesis, Friedel-Crafts alkylation, and jasminaldehyde synthesis. The defects played a role in activating reactants during AAS-catalyzed reactions, enhancing the overall catalytic process. This was supported by in-situ FTIR, which provided insights into the molecular-level reaction mechanism and the role of defects in reactant activation. This study demonstrates defect engineering as a promising approach to fine-tune acidity in amorphous aluminosilicates, bridging the porosity and acidity gaps between mesoporous amorphous aluminosilicates and crystalline zeolites.
Collapse
Affiliation(s)
- Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India.
| |
Collapse
|
20
|
Singh G, Panda S, Sapan S, Singh J, Chandewar PR, Biradar AV, Shee D, Bordoloi A. Polyoxometalate-HKUST-1 composite derived nanostructured Na-Cu-Mo 2C catalyst for efficient reverse water gas shift reaction. NANOSCALE 2024; 16:14066-14080. [PMID: 38995159 DOI: 10.1039/d4nr01185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Transforming CO2 to CO via reverse water-gas shift (RWGS) reaction is widely regarded as a promising technique for improving the efficiency and economics of CO2 utilization processes. Moreover, it is also considered as a pathway towards e-fuels. Cu-oxide catalysts are widely explored for low-temperature RWGS reactions; nevertheless, they tend to deactivate significantly under applied reaction conditions due to the agglomeration of copper particles at elevated temperatures. Herein, we have synthesized homogeneously distributed Cu metallic nanoparticles supported on Mo2C for the RWGS reaction by a unique approach of in situ carburization of metal-organic frameworks (MOFs) using a Cu-based MOF i.e. HKUST-1 encapsulating molybdenum-based polyoxometalates. The newly derived Na-Cu-Mo2C nanocomposite catalyst system exhibits excellent catalytic performance with a CO production rate of 3230.0 mmol gcat-1 h-1 with 100% CO selectivity. Even after 250 h of a stability test, the catalyst remained active with more than 80% of its initial activity.
Collapse
Affiliation(s)
- Gaje Singh
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Satyajit Panda
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Siddharth Sapan
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | - Jogender Singh
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | | | - Ankush V Biradar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Debaprasad Shee
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502284, India
| | - Ankur Bordoloi
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
21
|
Qian H, Yuan B, Liu Y, Zhu R, Luan W, Zhang C. Oxygen vacancy enhanced photocatalytic activity of Cu 2O/TiO 2 heterojunction. iScience 2024; 27:109578. [PMID: 38638573 PMCID: PMC11024930 DOI: 10.1016/j.isci.2024.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, a method was developed to create oxygen vacancies in Cu2O/TiO2 heterojunctions. By varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate, Cu2O/TiO2 with different Cu ratios were synthesized. Tests on CO2 photocatalytic reduction revealed that Cu2O/TiO2's performance is influenced by Cu content. The ideal Cu mass fraction in Cu2O/TiO2, determined by inductively coupled plasma (ICP), is between 0.075% and 0.55%, with the highest CO yield being 10.22 μmol g-1 h-1, significantly surpassing pure TiO2. High-resolution transmission electron microscopy and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective heterojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for ∗CO2 to ∗COOH conversion in Cu2O/TiO2 with oxygen vacancy compared to TiO2, suggesting that oxygen vacancies enhance photocatalytic activity.
Collapse
Affiliation(s)
- Hong Qian
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Binxia Yuan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhao Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Rui Zhu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Weiling Luan
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengxi Zhang
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
22
|
Ahmadi Khoshooei M, Wang X, Vitale G, Formalik F, Kirlikovali KO, Snurr RQ, Pereira-Almao P, Farha OK. An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction. Science 2024; 384:540-546. [PMID: 38696554 DOI: 10.1126/science.adl1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/28/2024] [Indexed: 05/04/2024]
Abstract
Although technologically promising, the reduction of carbon dioxide (CO2) to produce carbon monoxide (CO) remains economically challenging owing to the lack of an inexpensive, active, highly selective, and stable catalyst. We show that nanocrystalline cubic molybdenum carbide (α-Mo2C), prepared through a facile and scalable route, offers 100% selectivity for CO2 reduction to CO while maintaining its initial equilibrium conversion at high space velocity after more than 500 hours of exposure to harsh reaction conditions at 600°C. The combination of operando and postreaction characterization of the catalyst revealed that its high activity, selectivity, and stability are attributable to crystallographic phase purity, weak CO-Mo2C interactions, and interstitial oxygen atoms, respectively. Mechanistic studies and density functional theory (DFT) calculations provided evidence that the reaction proceeds through an H2-aided redox mechanism.
Collapse
Affiliation(s)
- Milad Ahmadi Khoshooei
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Xijun Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Gerardo Vitale
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Filip Formalik
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Pedro Pereira-Almao
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
23
|
Chen Y, He J, Lei H, Tu Q, Huang C, Cheng X, Yang X, Liu H, Huo C. Regulating oxygen vacancies by Zn atom doping to anchor and disperse promoter Ba on MgO support to improve Ru-based catalysts activity for ammonia synthesis. RSC Adv 2024; 14:13157-13167. [PMID: 38655461 PMCID: PMC11037240 DOI: 10.1039/d4ra01517g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
In heterogeneous catalysis, surface defects are widely regarded as an effective means to enhance the catalytic performance of catalysts. In this study, the oxygen vacancy-rich Mg(1-X)ZnXO solid solution support was successfully prepared by doping a small amount of Zn into MgO nanocrystals. Based on this support, Ru/Ba-Mg(1-X)ZnXO catalyst for ammonia synthesis was prepared. Characterization using TEM, EPR, XPS, and DFT calculations confirmed the successful substitution of Zn atoms for Mg atoms leading to the formation of more oxygen vacancies (OVs). N2-TPD, SEM and TEM analyses revealed that a small amount of Zn had minimal influence on the surface morphology and the size of Ru nanoparticles. The abundance of OVs in the support was identified as the primary factor enhancing the catalytic activity. XPS, H2-TPD and kinetics experiment studies further elucidated the mechanism by which OVs promote the reaction, with OVs serving as an anchor point for the promoter Ba on the MgO support and promoted the dispersion of Ba. This anchoring effect not only enhanced the electron density on Ru, favoring the dissociation of the N[triple bond, length as m-dash]N bond, but also mitigated hydrogen poisoning. As a result,the ammonia synthesis rate reached 1.73 mmol g-1 h-1. Furthermore, the CO2-TPD and H2-TPR analyses indicated that Zn doping effectively promotes the metal-support interaction (MSI) and surface alkalinity. The findings of this study offers valuable insights for the design of defective modified catalyst supports.
Collapse
Affiliation(s)
- Yuanjie Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| | - Junqiao He
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| | - Haiyan Lei
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| | - Qunyao Tu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| | - Chen Huang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| | - Xiangwei Cheng
- Modern Educational Technology Experimental Center, Zhejiang Police College Hangzhou 310053 China
| | - Xiazhen Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| | - Huazhang Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| | - Chao Huo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology and Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
24
|
Gao M, Ma J, Li Y, Lin X, Wu L, Zou Y, Deng Y. Bottom-Up Construction of Mesoporous Cerium-Doped Titania with Stably Dispersed Pt Nanocluster for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17563-17573. [PMID: 38551503 DOI: 10.1021/acsami.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Hydrogen generation is one of the crucial technologies to realize sustainable energy development, and the design of advanced catalysts with efficient interfacial sites and fast mass transfer is significant for hydrogen evolution. Herein, an in situ coassembly strategy was proposed to engineer a cerium-doped ordered mesoporous titanium oxide (mpCe/TiO2), of which the abundant oxygen vacancies (Ov) and highly exposed active pore walls contribute to good stability of ultrasmall Pt nanoclusters (NCs, ∼ 1.0 nm in diameter) anchored in the uniform mesopores (ca. 20 nm). Consequently, the tailored mpCe/TiO2 with 0.5 mol % Ce-doping-supported Pt NCs (Pt-mpCe/TiO2-0.5) exhibits superior H2 evolution performance toward the water-gas shift reaction with a 0.73 molH2·s-1·molPt-1 H2 evolution rate at 200 °C, which is almost 6-fold higher than the Pt-mpTiO2 (0.13 molH2·s-1·molPt-1 H2). Density functional theory calculations confirm that the structure of Ce-doped TiO2 with Ce coordinated to six O atoms by substituting Ti atoms is thermodynamically favorable without the deformation of Ti-O bonds. The Ov generated by the six O atom-coordinated Ce doping is highly active for H2O dissociation with an energy barrier of 2.18 eV, which is obviously lower than the 2.37 eV for the control TiO2. In comparison with TiO2, the resultant Ce/TiO2 support acts as a superior electron acceptor for Pt NCs and causes electron deficiency at the Pt/support interface with a 0.17 eV downshift of the Pt d-band center, showing extremely obvious electronic metal-support interaction (EMSI). As a result, abundant and hyperactive Ti3+-Ov(-Ce3+)-Ptδ+ interfacial sites are formed to significantly promote the generation of CO2 and H2 evolution. In addition, the stronger EMSI between Pt NCs and mpCe/TiO2-0.5 than that between Pt and mpTiO2 contributes to the superior self-enhanced catalytic performance during the cyclic test, where the CO conversion at 200 °C increases from 72% for the fresh catalyst to 99% for the used one. These findings reveal the subtle relationship between the mesoporous metal oxide-metal composite catalysts with unique chemical microenvironments and their catalytic performance, which is expected to inspire the design of efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Meiqi Gao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Ximao Lin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Yidong Zou
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
25
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
26
|
Wang J, Li R, Zhang G, Dong C, Fan Y, Yang S, Chen M, Guo X, Mu R, Ning Y, Li M, Fu Q, Bao X. Confinement-Induced Indium Oxide Nanolayers Formed on Oxide Support for Enhanced CO 2 Hydrogenation Reaction. J Am Chem Soc 2024; 146:5523-5531. [PMID: 38367215 DOI: 10.1021/jacs.3c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.
Collapse
Affiliation(s)
- Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuangli Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
27
|
Li F, Zhou Y, Wang D, Ding Z, Chen L, Feng X. Oxygen Vacancy Engineering of FeO x toward Oxygen-Tolerant Hydrogen Peroxide Reduction for Reliable Bioassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3241-3247. [PMID: 38289291 DOI: 10.1021/acs.langmuir.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The accurate determination of hydrogen peroxide (H2O2), an important clinical disease relevant biomarker, is of great importance for the diagnosis and management of illnesses. By using the cathodic monitoring approach, H2O2 can be accurately detected because interfering signals from easily oxidizable endogenous and exogenous species in biofluids can be avoided. However, the simultaneous occurrence of the oxygen reduction reaction (ORR) restricts the practical use of this cathodic method. In this study, via oxygen vacancy modulation, we synthesized FeOx catalysts that can selectively reduce H2O2 over O2. The H2O2 detection system based on this catalyst exhibits an outstanding ORR inhibition ability. Furthermore, by integrating this catalyst with glucose oxidase, a model enzyme, a reliable bioassay system was developed that can selectively detect glucose over a wide variety of interferents in artificially simulated tissue fluids. The bioassay system employing this catalyst in conjunction with oxidases is generally applicable to accurate detect a wide range of biomarkers.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|