1
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Wang Y, Dong L, Li S, Feng Y, Ge X, Han X, Liu C, Wei Y, Cheng X, Xie L, Huang W. The Unexploring Optoelectronic Features in Organic Trans-Dimensional Materials of Gridofluorenes at the Nanoscale. J Phys Chem Lett 2025; 16:3888-3903. [PMID: 40208067 DOI: 10.1021/acs.jpclett.4c03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Organic grido-architectures offer not only state-of-the-art models for exploring the complex relationships of multicarrier coherence among excitons, charges, photons, electrons, and phonons but also organic high-dimensional nanomaterials for flexible electronics and organic intelligence. Herein, we initiate the fundamental progress and perspective on gridofluorene-based zero-, one-, two-, and three-dimensional nanomolecules and their optoelectronic features. From the future point of view, the sterically trans-dimensional and hierarchically cross-scale effects of these covalent frameworks and nanostructures are discussed on their photophysical, electrical, mechanical and thermal properties. Organic multiscale systems, with the feature of synergistically molecule-programmable integration of diverse functionalities, open a bright door to flexible electronics, intelligent molecules, devices, systems, and even organobots as well as artificially intelligent and robotic chemists (AiRCs).
Collapse
Affiliation(s)
- Yongxia Wang
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lizhu Dong
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shuangyi Li
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Feng
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xinyao Ge
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xinxin Han
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chao Liu
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Wei
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaogang Cheng
- School of Communications and Information Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Linghai Xie
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Wei Huang
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Hao L, Lin E, Liu J, Qiao X, Wang K, Liu X, Wang Z, Chen Y, Cheng P, Zhang Z. Skeleton Regulation of Covalent-Organic Frameworks From 2D to 3D Networks for High Anhydrous Proton Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411954. [PMID: 40091353 DOI: 10.1002/smll.202411954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Developing new materials for anhydrous proton conduction under high-temperature conditions is very challenging but significant for proton exchange membrane fuel cells. Herein, a series of highly crystalline and robust covalent-organic frameworks (COFs) with different skeletons (2D and 3D) is designed and synthesized using steric hindrance engineering of the monomer. Moreover, a [4 + 2] construction approach is used to construct 3D COFs with entangled networks, which can be further post-modified with phosphite acid groups to improve intrinsic proton conduction. After loading with imidazole, COFs can realize a proton conductivity of 1.06 × 10-2 S cm-1 under anhydrous conditions, among the best proton-conducting COF materials loading imidazole. These materials show high stability at loading and testing conditions and maintain high proton conductivity over a wide temperature range (100-160 °C). This work provides a skeleton regulation approach to design materials for anhydrous proton conduction, showing great potential as high-temperature proton exchange membranes.
Collapse
Affiliation(s)
- Liqin Hao
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - En Lin
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinjin Liu
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xueling Qiao
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kaiyuan Wang
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xize Liu
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhifang Wang
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao Chen
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Lu W, Tait CE, Avci G, Li X, Crumpton AE, Shao P, Aitchison CM, Ceugniet F, Yao Y, Frogley MD, Decarolis D, Yao N, Jelfs KE, McCulloch I. Cobalt-Embedded Metal-Covalent Organic Frameworks for CO 2 Photoreduction. J Am Chem Soc 2025; 147:9056-9061. [PMID: 40053392 PMCID: PMC11926853 DOI: 10.1021/jacs.4c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
With the pressing urgency to reduce carbon footprint, photocatalytic carbon dioxide reduction has attracted growing attention as a sustainable mitigating option. Considering the important role of catalytic active sites (CASs) in the catalytic processes, control and design of the density and environment of CASs could enhance the catalyst performance. Herein, we report a novel metal-covalent organic framework (MCOF), MCOF-Co-315, featuring earth-abundant Co cocatalysts and conjugation through a covalently bonded backbone. MCOF-Co-315 showed a CO production rate of 1616 μmol g-1 h-1 utilizing Ru(bpy)3Cl2 as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor with a 1.5 AM filter, vis mirror module (390-740 nm), and irradiation intensity adjusted to 1 sun and an especially outstanding apparent quantum yield (AQY) of 9.13% at 450 nm. The photocatalytic reaction was studied with electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge structure (XANES), and in situ synchrotron Fourier Transform Infrared (FT-IR) spectroscopy, and an underlying mechanism is proposed.
Collapse
Affiliation(s)
- Wanpeng Lu
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Gokay Avci
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Xian'e Li
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University Norrköping, Norrköping SE-60174, Sweden
| | - Agamemnon E Crumpton
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Paul Shao
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Catherine M Aitchison
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University Norrköping, Norrköping SE-60174, Sweden
| | - Fabien Ceugniet
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yuyun Yao
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Donato Decarolis
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Iain McCulloch
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Cheng Y, Du H, Wang Y, Xin J, Dong Y, Wang X, Zhou X, Gui B, Sun J, Wang C. A Dynamic Covalent Organic Framework with Entangled 2D Layers. J Am Chem Soc 2025; 147:6355-6360. [PMID: 39950704 DOI: 10.1021/jacs.4c17962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Dynamic covalent organic frameworks (COFs) represent an emerging class of porous materials with an inherent structural flexibility. However, due to the challenges in their synthesis and structural characterization, research on dynamic COFs remains at an early stage and requires further exploration. Herein, we report the designed synthesis of a novel COF with entangled 2D layers that exhibits interesting dynamic behavior in response to organic vapor exposure. By employing the continuous rotation electron diffraction technique, we precisely resolved the crystal structures of the COF before and after vapor adsorption. Structural analysis revealed that the vapor-induced conformational changes, such as anthracene unit rotation, triggered layer adjustments and reduced entanglement angles, leading to significant pore structure alterations. This study not only introduces a new class of dynamic COFs but also provides a foundation for the rational design of entangled frameworks with structural flexibility for diverse applications.
Collapse
Affiliation(s)
- Yuanpeng Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Honglin Du
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yongyong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yulong Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuejiao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xu Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
De Bolòs E, Bera S, Strutyński K, Bardin AA, Lodge RW, M Padial N, Saeki A, Martí-Gastaldo C, Khlobystov AN, Nannenga BL, Melle-Franco M, Mateo-Alonso A. Interlocked 2D Covalent Organic Frameworks from Overcrowded Nodes. J Am Chem Soc 2025; 147:2579-2586. [PMID: 39803845 DOI: 10.1021/jacs.4c14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A challenging aspect in the synthesis of covalent organic frameworks (COFs) that goes beyond the framework's structure and topology is interpenetration, where two or more independent frameworks are mechanically interlocked with each other. Such interpenetrated or interlocked frameworks are commonly found in three-dimensional (3D) COFs with large pores. However, interlocked two-dimensional (2D) COFs are rarely seen in the literature, as 2D COF layers typically crystallize in stacks that maximize stabilization through π-stacking. The few interlocked 2D COFs described to date have been derived from monomers with aryl groups arranged perpendicularly. Herein, we report an interlocked 2D COF derived from a new class of monomers constituted of sterically overcrowded polycyclic aromatic hydrocarbons. The formation of such an interlocked structure is ascribed to the presence and the bulkiness of the substituents that directly interfere with interlayer π-stacking. The microscopy, gas sorption, spectroscopic, and charge transport characterization are consistent with the absence of π-stacking, as imposed by the interlocked architecture. This work evidences how the use of overcrowded aromatic systems as monomers can generate mechanically interlocked 2D COFs, offering new avenues for the design of COFs with unconventional topologies.
Collapse
Affiliation(s)
- Elisabet De Bolòs
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Saibal Bera
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Karol Strutyński
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andrei A Bardin
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Rhys W Lodge
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- The Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- The Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Manuel Melle-Franco
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
7
|
Zhang X, Hu J, Liu H, Sun T, Wang Z, Zhao Y, Zhang YB, Huai P, Ma Y, Jiang S. Determining Covalent Organic Framework Structures Using Electron Crystallography and Computational Intelligence. J Am Chem Soc 2025; 147:1709-1720. [PMID: 39621315 PMCID: PMC11744758 DOI: 10.1021/jacs.4c12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
The structural characterization of new materials often poses immense challenges, especially when obtaining single-crystal structures is difficult, which is a common difficulty with covalent organic frameworks (COFs). Despite this, understanding the atomic structure is crucial as it provides insights into the arrangement and connectivity of organic building blocks, offering the opportunity to establish the correlation of structure-function relationships and unravel material properties. In this study, we present an approach for determining the structures of COFs, an integration of electron crystallography and computational intelligence (COF+). By applying established chemistry knowledge and employing particle swarm optimization (PSO) for trial structure generation, we overcome existing limitations, thus paving the way for advancements in COF structural determination. We have successfully implemented this technique on four representative COFs, each with unique characteristics. These examples underline the accuracy and efficacy of our approach in addressing the challenges tied to COF structural determination. Furthermore, our approach has revealed new structure candidates with different topologies or interpenetrations that are chemically feasible. This discovery demonstrates the capability of our algorithm in constructing trial COF structures without being influenced by topological factors. Our new approach to COF structure determination represents a significant advancement in the field and opens new avenues for exploring the properties and applications of COF materials.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Junyi Hu
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Huiyu Liu
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Tu Sun
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Zidi Wang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Yingbo Zhao
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Ping Huai
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 201210, China
| | - Yanhang Ma
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Shan Jiang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|
8
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
9
|
Yu B, Tao Y, Yao X, Jin Y, Liu S, Xu T, Wang H, Wu H, Zhou W, Zhou X, Ding X, Wang X, Xiao X, Zhang YB, Jiang J. Single-Crystalline 3D Covalent Organic Frameworks with Exceptionally High Specific Surface Areas and Gas Storage Capacities. J Am Chem Soc 2024; 146:28932-28940. [PMID: 39392614 DOI: 10.1021/jacs.4c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Single-crystalline covalent organic frameworks (COFs) are highly desirable toward understanding their pore chemistry and functions. Herein, two 50-100 μm single-crystalline three-dimensional (3D) COFs, TAM-TFPB-COF and TAPB-TFS-COF, were prepared from the condensation of 4,4',4″,4‴-methanetetrayltetraaniline (TAM) with 3,3',5,5'-tetrakis(4-formylphenyl)bimesityl (TFPB) and 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) with 4,4',4″,4‴-silanetetrayltetrabenzaldehyde (TFS), respectively, in 1,4-dioxane under the catalysis of acetic acid. Single-crystal 3D electron diffraction reveals the triply interpenetrated dia-b networks of TAM-TFPB-COF with atom resolution, while the isostructure of TAPB-TFS-COF was disclosed by synchrotron single-crystal X-ray diffraction and synchrotron powder X-ray diffraction with Le Bail refinements. The nitrogen sorption measurements at 77 K disclose the microporosity nature of both activated COFs with their exceptionally high Brunauer-Emmett-Teller surface areas of 3533 and 4107 m2 g-1, representing the thus far record high specific surface area among imine-bonded COFs. This enables the activated COFs to exhibit also the record high methane uptake capacities up to 28.9 wt % (570 cm3 g-1) at 25 °C and 200 bar among all COFs reported thus far. This work not only presents the structures of two single-crystalline COFs with exceptional microporosity but also provides an example of atom engineering to adjust permanent microporous structures for methane storage.
Collapse
Affiliation(s)
- Baoqiu Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Tao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shan Liu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tongtong Xu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Xin Zhou
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Jianzhuang Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Zheng K, Gou Z, Zhang C, Zhang Y, Dou Y, Liu S, Zhang Y, Zhang Y. Three-dimensional covalent organic framework-based artificial interphase layer endows lithium metal anodes with high stability. Chem Sci 2024:d4sc05297h. [PMID: 39502505 PMCID: PMC11533048 DOI: 10.1039/d4sc05297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
To gain a deeper understanding and address the scientific challenges of lithium dendrite growth, a robust solid-state electrolyte interface (SEI) with good mechanical properties and rapid ion conduction is crucial for the advancement of lithium metal batteries. Artificial SEI layers based on organic polymers, such as covalent organic frameworks (COF), have garnered widespread attention due to their flexible structural design and tunable functionality. In this work, a COF with 3D spatial geometric symmetry and a fully covalent dia topology was synthesized and used as artificial SEI layers. A combination of comprehensive DFT calculations and ex situ/in situ characterizations have unraveled the impact of interpenetrated chain segments and anchoring lithiophilic groups on the microscopic dynamics related to Li ion desolvation, charge transfer, migration pathways, and deposition morphology. The ultralow polarization voltage of 46 mV for 9400 hours with a symmetric Li|Li cell at a harsh current density of 10 mA cm-2, as well as the high Li+ utilization, low polarization voltage, and prolonged lifespan for 3D-COF-modified Li|S and Li|LFP full cells, unambiguously corroborate the interphase reliability. This work also aims to shed new light on the use of multi-dimensional porous polymer SEI layers to revive highly stable Li metal batteries.
Collapse
Affiliation(s)
- Kaiyang Zheng
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Zhengyang Gou
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Cen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yuqiang Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yaying Dou
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 China
| | - Shaojie Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yongheng Zhang
- Risun New Energy Technology Co., Ltd. Beijing 100070 China
| | - Yantao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| |
Collapse
|
11
|
Wayment LJ, Huang S, Chen H, Lei Z, Ley A, Lee SH, Zhang W. Ionic Covalent Organic Frameworks Consisting of Tetraborate Nodes and Flexible Linkers. Angew Chem Int Ed Engl 2024; 63:e202410816. [PMID: 38990712 DOI: 10.1002/anie.202410816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as versatile materials with many applications, such as carbon capture, molecular separation, catalysis, and energy storage. Traditionally, flexible building blocks have been avoided due to their potential to disrupt ordered structures. Recent studies have demonstrated the intriguing properties and enhanced structural diversity achievable with flexible components by judicious selection of building blocks. This study presents a novel series of ionic COFs (ICOFs) consisting of tetraborate nodes and flexible linkers. These ICOFs use borohydrides to irreversibly deprotonate the alcohol monomers to achieve a high degree of polymerization. Structural analysis confirms the dia topologies. Reticulation is explored using various monomers and metal counterions. Also, these frameworks exhibit excellent stability in alcohols and coordinating solvents. The materials have been tested as single-ion conductive solid-state electrolytes. ICOF-203-Li displays one of the lowest activation energies reported for ion conduction. This tetraborate chemistry is anticipated to facilitate further structural diversity and functionality in crystalline polymers.
Collapse
Affiliation(s)
- Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ashley Ley
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Se-Hee Lee
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
12
|
Liang Y, Zhou Y. Low-dose electron microscopy imaging for beam-sensitive metal-organic frameworks. J Appl Crystallogr 2024; 57:1270-1281. [PMID: 39387073 PMCID: PMC11460399 DOI: 10.1107/s1600576724007192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024] Open
Abstract
Metal-organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field.
Collapse
Affiliation(s)
- Yuhang Liang
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron MicroscopyShanghaiTech UniversityShanghai201210People’s Republic of China
| | - Yi Zhou
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron MicroscopyShanghaiTech UniversityShanghai201210People’s Republic of China
| |
Collapse
|
13
|
Guo L, Yu Z, Xie X, Zhang Q, Luo F. Linkage-Mixed Covalent Organic Frameworks Synthesized by a Liquid-Solid Two-Phase Strategy for Photoenhanced Uranium Extraction. NANO LETTERS 2024; 24:9854-9860. [PMID: 39082842 DOI: 10.1021/acs.nanolett.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Synthesizing COFs with hybrid linkage coupling with both reversible and irreversible natures remains a challenging issue. Herein, we report the synthesis of two rare COFs constructed by both reversible and irreversible linkages through a liquid-solid two-phase strategy. A systematic study reveals a one-pot, two-step reaction mechanism for the two COFs, the first step being a reversible Schiff base reaction and the second step being an irreversible Knoevenagel reaction. Interestingly, this hybrid linkage COF is found to show an outstanding photoenhanced uranium extraction performance. The results not only provide a general and green approach to develop the linkage chemistry of COFs but also enrich the synthesis toolboxes and application of COFs.
Collapse
Affiliation(s)
- Liecheng Guo
- School of Chemistry and Materials Science, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Zhiwu Yu
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230031, Anhui, People's Republic of China
| | - Xianqing Xie
- National Engineering Research Center for Carbonhydrate Synthesis, Jiangxi Normal University, Nanchang, 330027, People's Republic of China
| | - Qingyun Zhang
- School of Chemistry and Materials Science, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Feng Luo
- School of Chemistry and Materials Science, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, People's Republic of China
| |
Collapse
|
14
|
Bourda L, Bhandary S, Ito S, Göb CR, Van Der Voort P, Van Hecke K. Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure. IUCRJ 2024; 11:510-518. [PMID: 38727171 PMCID: PMC11220877 DOI: 10.1107/s2052252524003713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024]
Abstract
Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials.
Collapse
Affiliation(s)
- Laurens Bourda
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
- COMOC – Center for Ordered Materials, Organometallics and Catalysis – Department of ChemistryGhent UniversityKrijgslaan 281–S39000GhentBelgium
| | - Subhrajyoti Bhandary
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
| | - Sho Ito
- Rigaku Corporation, Haijima, Tokyo, Japan
| | | | - Pascal Van Der Voort
- COMOC – Center for Ordered Materials, Organometallics and Catalysis – Department of ChemistryGhent UniversityKrijgslaan 281–S39000GhentBelgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281–S3, 9000Ghent, Belgium
| |
Collapse
|
15
|
O'Shaughnessy M, Glover J, Hafizi R, Barhi M, Clowes R, Chong SY, Argent SP, Day GM, Cooper AI. Porous isoreticular non-metal organic frameworks. Nature 2024; 630:102-108. [PMID: 38778105 PMCID: PMC11153147 DOI: 10.1038/s41586-024-07353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024]
Abstract
Metal-organic frameworks (MOFs) are useful synthetic materials that are built by the programmed assembly of metal nodes and organic linkers1. The success of MOFs results from the isoreticular principle2, which allows families of structurally analogous frameworks to be built in a predictable way. This relies on directional coordinate covalent bonding to define the framework geometry. However, isoreticular strategies do not translate to other common crystalline solids, such as organic salts3-5, in which the intermolecular ionic bonding is less directional. Here we show that chemical knowledge can be combined with computational crystal-structure prediction6 (CSP) to design porous organic ammonium halide salts that contain no metals. The nodes in these salt frameworks are tightly packed ionic clusters that direct the materials to crystallize in specific ways, as demonstrated by the presence of well-defined spikes of low-energy, low-density isoreticular structures on the predicted lattice energy landscapes7,8. These energy landscapes allow us to select combinations of cations and anions that will form thermodynamically stable, porous salt frameworks with channel sizes, functionalities and geometries that can be predicted a priori. Some of these porous salts adsorb molecular guests such as iodine in quantities that exceed those of most MOFs, and this could be useful for applications such as radio-iodine capture9-12. More generally, the synthesis of these salts is scalable, involving simple acid-base neutralization, and the strategy makes it possible to create a family of non-metal organic frameworks that combine high ionic charge density with permanent porosity.
Collapse
Affiliation(s)
- Megan O'Shaughnessy
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Joseph Glover
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK
| | - Roohollah Hafizi
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK
| | - Mounib Barhi
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, UK
| | - Rob Clowes
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Samantha Y Chong
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK
| | | | - Graeme M Day
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK.
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK.
| |
Collapse
|
16
|
Wayment LJ, Teat SJ, Huang S, Chen H, Zhang W. Dynamic Entwined Topology in Helical Covalent Polymers Dictated by Competing Supramolecular Interactions. Angew Chem Int Ed Engl 2024; 63:e202403599. [PMID: 38444217 DOI: 10.1002/anie.202403599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Naturally occurring polymeric structures often consist of 1D polymer chains intricately folded and entwined through non-covalent bonds, adopting precise topologies crucial for their functionality. The exploration of crystalline 1D polymers through dynamic covalent chemistry (DCvC) and supramolecular interactions represents a novel approach for developing crystalline polymers. This study shows that sub-angstrom differences in the counter-ion size can lead to various helical covalent polymer (HCP) topologies, including a novel metal-coordination HCP (m-HCP) motif. Single-crystal X-ray diffraction (SCXRD) analysis of HCP-Na revealed that double helical pairs are formed by sodium ions coordinating to spiroborate linkages to form rectangular pores. The double helices are interpenetrated by the unreacted diols coordinating sodium ions. The reticulation of the m-HCP structure was demonstrated by the successful synthesis of HCP-K. Finally, ion-exchange studies were conducted to show the interconversion between HCP structures. This research illustrates how seemingly simple modifications, such as changes in counter-ion size, can significantly influence the polymer topology and determine which supramolecular interactions dominate the crystal lattice.
Collapse
Affiliation(s)
- Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| |
Collapse
|
17
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
19
|
Wei L, Hai X, Xu T, Wang Z, Jiang W, Jiang S, Wang Q, Zhang YB, Zhao Y. Encoding ordered structural complexity to covalent organic frameworks. Nat Commun 2024; 15:2411. [PMID: 38499604 PMCID: PMC10948875 DOI: 10.1038/s41467-024-46849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Installing different chemical entities onto crystalline frameworks with well-defined spatial distributions represents a viable approach to achieve ordered and complex synthetic materials. Herein, a covalent organic framework (COF-305) is constructed from tetrakis(4-aminophenyl)methane and 2,3-dimethoxyterephthalaldehyde, which has the largest unit cell and asymmetric unit among known COFs. The ordered complexity of COF-305 is embodied by nine different stereoisomers of its constituents showing specific sequences on topologically equivalent sites, which can be attributed to its building blocks deviating from their intrinsically preferred simple packing geometries in their molecular crystals to adapt to the framework formation. The insight provided by COF-305 supplements the principle of covalent reticular design from the perspective of non-covalent interactions and opens opportunities for pursuing complex chemical sequences in molecular frameworks.
Collapse
Affiliation(s)
- Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xinyue Hai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Tongtong Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Zidi Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wentao Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
20
|
Ariga K. 2D Materials Nanoarchitectonics for 3D Structures/Functions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:936. [PMID: 38399187 PMCID: PMC10890396 DOI: 10.3390/ma17040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
21
|
Zhou Z, Xiong XH, Zhang L, Li Y, Yang Y, Dong X, Lou D, Wei Z, Liu W, Su CY, Sun J, Zheng Z. Linker-Guided Growth of Single-Crystal Covalent Organic Frameworks. J Am Chem Soc 2024; 146:3449-3457. [PMID: 38268407 DOI: 10.1021/jacs.3c13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The core features of covalent organic frameworks (COFs) are crystallinity and porosity. However, the synthesis of single-crystal COFs with monomers of diverse reactivity and adjustment of their pore structures remain challenging. Here, we show that linkers that can react with a node to form single-crystal COFs can guide other linkers that form either COFs or amorphous polymers with the node to gain single-crystal COFs with mixed components, which are homogeneous on the unit cell scale with controlled ratios. With the linker-guided crystal growth method, we created nine types of single-crystal COFs with up to nine different components, which are more complex than any known crystal. The structure of the crystal adapted approximately to that of the main component, and its pore volume could be expanded up to 8.8%. Different components lead to complex and diverse pore structures and offer the possibilities to gain positive synergies, as exemplified by a bicomponent COF with 2200 and 733% SO2 uptake capacity of that of the two pure-component counterparts at 298 K and 0.002 bar. The selectivity for separation of SO2/CO2 ranges from 1230 to 4247 for flue gas based on ideal adsorbed solution theory, recording porous crystals. The bicomponent COF also exhibits a 1300% retention time of its pure-component counterparts for SO2 in a dynamic column breakthrough experiment for deep desulfurization.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences Peking University, Beijing 100000, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, China
| | - Lei Zhang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yuyao Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Yonghang Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Xin Dong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Dongyang Lou
- Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhangwen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, China
| | - Wei Liu
- Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences Peking University, Beijing 100000, China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510000, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 522000, China
| |
Collapse
|
22
|
Jain C, Kushwaha R, Rase D, Shekhar P, Shelke A, Sonwani D, Ajithkumar TG, Vinod CP, Vaidhyanathan R. Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. J Am Chem Soc 2024; 146:487-499. [PMID: 38157305 DOI: 10.1021/jacs.3c09937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Improving the electronic conductivity and the structural robustness of covalent organic frameworks (COFs) is paramount. Here, we covalently cross-link a 2D COF with polypyrrole (Ppy) chains to form a quasi-3D COF. The 3D COF shows well-defined reflections in the SAED patterns distinctly indexed to its modeled crystal structure. This knitting of 2D COF layers with conjugated polypyrrole units improves electronic conductivity from 10-9 to 10-2 S m-1. This conductivity boost is affirmed by the presence of density of states near the Fermi level in the 3D COF, and this elevates the COF's valence band maximum by 0.52 eV with respect to the parent 2D pyrrole-functionalized COF, which agrees well with the opto-electro band gaps. The extent of HOMO elevation suggests the predominant existence of a polaron state (radical cation), giving rise to a strong EPR signal, most likely sourced from the cross-linking polypyrrole chains. A supercapacitor devised with COF20-Ppy records a high areal capacitance of 377.6 mF cm-2, higher than that of the COF loaded with noncovalently linked polypyrrole chains. Thus, the polypyrrole acts as a "conjugation bridge" across the layers, lowering the band gap and providing polarons and additional conduction pathways. This marks a far-reaching approach to converting many 2D COFs into highly ordered and conducting 3D ones.
Collapse
Affiliation(s)
| | | | | | | | - Ankita Shelke
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | | - Thalasseril G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | | | |
Collapse
|