1
|
Sechi R, Kastlunger G, Bhowmik A, Hansen HA. First-Principles Molecular Dynamics with Potential and Charge Fluctuations Applied to Au(111) in Alkaline Solutions. J Chem Theory Comput 2025; 21:5279-5290. [PMID: 40326182 DOI: 10.1021/acs.jctc.5c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Electrified solid-liquid interfaces play a crucial role in energy conversion, storage, photoconversion, sensors, and corrosion processes. While computational chemistry simulations can provide detailed insights into reaction mechanisms, aligning experimental and simulation results remains a significant challenge. In this work, we introduce the FDT-SJM method for ab initio molecular dynamics simulations under potential control, where the electrode charge fluctuates around an average value following the fluctuation-dissipation theorem (FDT), and electrode charges are screened by the solvated jellium method (SJM). The FDT-SJM is developed in GPAW, a Python-based open-source DFT code. We validate this approach by simulating the Au(111) interface in pure water, KOH, LiOH, Li, and K solutions at several electrode potentials. We analyze water reorientation in response to changes in the electrode surface charge and demonstrate that the method enables the estimation of interface capacitance and the potential of zero charge, yielding values consistent with experimental data.
Collapse
Affiliation(s)
- Renata Sechi
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Arghya Bhowmik
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
2
|
Jiang L, Zhi X, Bai X, Jiao Y. Atomic-Level Insights into Cation-Mediated Mechanism in Electrochemical Nitrogen Reduction. J Am Chem Soc 2025; 147:16935-16947. [PMID: 40323212 DOI: 10.1021/jacs.4c18622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to green ammonia synthesis. However, challenges persist due to limited accessibility of N2 molecules at the electrode interface and competition from abundant protons at catalytic active sites, resulting in low N2 coverage and compromised selectivity. In this work, we investigate the critical role of potassium cations (K+) in modulating the interfacial environment, particularly focusing on how varying K+ concentrations influence N2 adsorption, *NH3 desorption, and hydrogen transfer (HT) mechanisms under operating electrochemical conditions. Our results demonstrate that a highly concentrated K+ electrode interface significantly enhances N2 adsorption and *NH3 desorption, collectively leading to improved NRR selectivity, in alignment with the experimental observations. We further uncover insights into HT kinetics, identifying two key steps: protonation (HT1) and diffusion (HT2). Among these, diffusion (HT2) is the rate-limiting step, driven by hydrogen bond connectivity and proton shuttling strength within the cation-induced microenvironments. Specifically, at a low applied potential, a highly concentrated K+ interface exhibits weak connectivity and sluggish proton shuttling, therefore limiting NRR efficiency. However, microkinetic modeling (MKM) analysis indicates that optimizing electrode potential and electrolyte compositions can overcome these limitations by promoting proton shuttling. Last but not least, we also provide a detailed map of the interplay among K+ molarity, electrode potential, and NH3 selectivity. Our work offers critical insights to guide the improvement of NRR efficiency through electrolyte and microenvironmental modulation.
Collapse
Affiliation(s)
- Lin Jiang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xing Zhi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaowan Bai
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Zhu Z, Ma H, Kong X, Liu J, Qiao H, Wang Y, Zhai L. Neighboring Effect of Adjacent Nitrogen Sites on Vinylene Linkage in Covalent Organic Frameworks for Regulating Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29740-29748. [PMID: 40354461 DOI: 10.1021/acsami.5c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Vinylene-linked covalent organic frameworks (COFs) are attractive electrocatalysts owing to their corresponding high chemical stability and excellent conjugated frameworks. In this study, for the first time, the methyl group of the pyrimidine ring was used to synthesize conjugated COFs (TB-TFT-COF and TB-TFC-COF) with vinylene linkages, which were employed as catalysts for the oxygen reduction reaction (ORR). In addition, local electronic structures of the vinylene linkages could be regulated by the adjacent nitrogen atomic sites of various functional moieties (triazine, pyridine, and pyrimidine), resulting in tunable electrocatalytic activity and selectivity of the COFs. Notably, the TB-TFT-COF attained a half-wave potential of 0.74 V relative to RHE alongside superior electrochemical stability, matching the performance of metal-free COF-based catalysts for ORR. Furthermore, as evidenced by density functional theory (DFT) calculations, the adjacent nitrogen sites of the pyrimidine unit around the vinylene linkage are crucial for enhancing the utilization of electrocatalytic active sites. This work establishes that the precise modulation of electronic coupling between neighboring active sites enables the development of efficient oxygen reduction reaction catalysts.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Huayun Ma
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jing Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yanjie Wang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
4
|
You S, Zhang C, Yu M, Tan X, Sun K, Zheng Y, Zhuang Z, Yan W, Zhang J. Rational Dual-Atom Design to Boost Oxygen Reduction Reaction on Iron-Based Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502102. [PMID: 40388648 DOI: 10.1002/smll.202502102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/01/2025] [Indexed: 05/21/2025]
Abstract
The oxygen reduction reaction (ORR) is critical for energy conversion technologies like fuel cells and metal-air batteries. However, advancing efficient and stable ORR catalysts remains a significant challenge. Iron-based single-atom catalysts (Fe SACs) have emerged as promising alternatives to precious metals. However, their catalytic performance and stability remain constrained. Introducing a second metal (M) to construct Fe─M dual-atom catalysts (Fe─M DACs) is an effective strategy to enhance the performance of Fe SACs. This review provides a comprehensive overview of the recent advancements in Fe-based DACs for ORR. It begins by examining the structural advantages of Fe─M DACs from the perspectives of electronic structure and reaction pathways. Next, the precise synthetic strategies for DACs are discussed, and the structure-performance relationships are explored, highlighting the role of the second metal in improving catalytic activity and stability. The review also covers in situ characterization techniques for real-time observation of catalytic dynamics and reaction intermediates. Finally, future directions for Fe─M DACs are proposed, emphasizing the integration of advanced experimental strategies with theoretical simulations as well as artificial intelligence/machine learning to design highly active and stable ORR catalysts, aiming to expand the application of Fe─M DACs in energy conversion and storage technologies.
Collapse
Affiliation(s)
- Shengping You
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Chao Zhang
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Mingyu Yu
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Xin Tan
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Kaian Sun
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Yun Zheng
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Wei Yan
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| | - Jiujun Zhang
- College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment and Systems, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
5
|
Wang F, Ma X, Su X, Zhang Z, Liu W, Peng J, Gao Z, Zhang J, Liu Y. Efficient Oxygen Reduction Catalysis on Fe 4 Cluster Site Facilitated by Adjacent Single Atom. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501746. [PMID: 40114508 DOI: 10.1002/smll.202501746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The inherent sluggish kinetics of the conventional four-electron transfer pathway fundamentally limits the oxygen reduction reaction (ORR) efficiency. While electronic structure modulation offers potential solutions, developing effective catalytic regulation strategies remains challenging due to elusive structure-activity correlations. In this study, Fe4 cluster sites are engineered with dual parallel electron transfer channels that enable concurrent O─O bond cleavage and dual oxygen atom protonation. This unique configuration facilitates an optimized two-step double electron transfer mechanism, significantly enhancing ORR kinetics. Synergistic Mn single atom sites, strategically positioned as electron reservoirs, substantially elevate the electron density of Fe4 clusters while reinforcing Fe─N coordination bonds through charge redistribution. Remarkably, the spatial configuration of Fe4 clusters at the support periphery minimizes steric confinement effects, allowing simultaneous product desorption and oxygen adsorption - a critical advantage for sustaining continuous catalytic cycles. Through combined experimental and theoretical analyses, it is demonstrated that this dual-channel electron transport system effectively reduces activation barriers for elementary steps while accelerating charge transfer kinetics. This fundamental study establishes a new paradigm for designing high-performance ORR catalysts through multi-site collaborative engineering and reaction pathway optimization.
Collapse
Affiliation(s)
- Furi Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaofang Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiahui Peng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zongyin Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Peng M, Huang K, Hu X, Zitolo A, Liu H, Lian C, Li J. Rearranging spin electrons by axial-ligand-induced hybridization state transition to boost the activity of nickel single-atom-catalysts for electrochemical CO 2 reduction. Chem Sci 2025; 16:7387-7396. [PMID: 40151475 PMCID: PMC11938935 DOI: 10.1039/d4sc08815h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Single-atom catalysts (SACs) with M-N4 active sites show great potential to catalyze the electrochemical CO2 reduction reaction (eCO2RR) toward CO. The activity and selectivity of SACs are determined by the local coordination configuration of central metal atoms in M-N4 sites, which is readily tuned by axial ligands. In this work, we construct axial ligands in situ on two Ni-N4-type model SACs, NiPc and Ni-N-C, by adding Cl- into the electrolyte taking advantage of the strong chemisorption of Cl- over Ni-N4. Cl axial ligand lowers the energy barrier of the potential-determining step for the eCO2RR due to a hybridization state transition of Ni orbitals and the resulting rearrangement of spin electrons. Consequently, both NiPc and Ni-N-C with axial Cl exhibit superior activity for the eCO2RR toward CO. Finally, we propose the magnetic moment of Ni as a universal descriptor for the eCO2RR toward CO on Ni-N4 with various axial ligands.
Collapse
Affiliation(s)
- Mingxia Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Kai Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou Zhejiang 318000 P. R. China
| | - Xiuyuan Hu
- No. 2 High School of East China Normal University 555 Chenhui Rd, Pudong Shanghai 201203 P. R. China
| | - Andrea Zitolo
- Synchrotron SOLEIL, L'Orme des Merisiers Départementale 128 91190 Saint-Aubin France
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jingkun Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Lu Y, Li Z, Cheng H, Wang M, Tian Z. d-Band Center Regulation Facilitated by Asymmetrical Ligand in the Atomically Dispersed Iron Site toward Promoting Oxygen Electrocatalysis Activities. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25299-25311. [PMID: 40260677 DOI: 10.1021/acsami.5c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The prosperity of aqueous rechargeable Zn-air batteries is hindered by the discontent performance of the oxygen electrocatalyst in the cathode. An important catalyst for oxygen electrocatalyst is an atomically dispersed iron atom embedded in the nitrogen-doped carbon (Fe-NC) material. However, the unsuitable binding energy between the center Fe atom and the reaction intermediate leads to the sluggish oxygen electrocatalyst reaction rate. The regulation of the electron structure of the Fe atom by adjusting the coordinate structure is one effective solution. Here, we prose the substitution of nitrogen atom by sulfur atom, who has weak electronegativity and can donor electron to Fe atom, so the d-band center of Fe atom is elevated. Thus, the Fe-NS active site facilitates the fast *OOH adsorption and the *OH desorption, compared with counterpart Fe-N active site. As a result, the oxygen electrocatalyst reaction kinetics is accelerated. The Fe-NSC catalyst has good compatibility and performance in aqueous rechargeable Zn-air batteries, affording stable charge/discharge process for 1000 h/3000 cycles with a high voltage tolerance (0.74-0.96 V voltage gap) under 10 mA cm-2. This work brings referential sights to the modification of electron structure of the center atom in the M-N-C-type catalyst.
Collapse
Affiliation(s)
- Yao Lu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zheng Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hao Cheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Mengran Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhongliang Tian
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Qiu YZ, Liu XM, Li W, Li J, Xiao H. Transient Dangling Active Sites of Fe(III)-N-C Single-Atom Catalyst for Efficient Electrochemical CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202424150. [PMID: 39900539 DOI: 10.1002/anie.202424150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
The Fe single-atom catalyst (SAC) with an oxidation state of III anchored on the N-doped carbon substrate (Fe(III)-N-C) delivers superior activity for catalyzing the electrochemical CO2 reduction reaction (eCO2RR) to produce CO, but its mechanism remains contentious and the commonly adopted FeN4-C model is not a conformant model for Fe(III)-N-C but for Fe(II)-N-C. Herein, employing the grand-canonical ensemble modeling with the density functional theory method benchmarked against the high-level wavefunction theory method, we first identify the conformant model for Fe(III)-N-C to be FeN1C3-C, and we then unveil that the Fe(III)N1C3-C SAC generates a novel type of dangling active site transiently under working conditions, in which the Fe single-atom leaves from the anchoring site by breaking all the Fe-C bonds but retains a stable binding to the substrate by the Fe-N bond. Thus, we further elucidate that this flexible dangling active site of Fe(III)-N-C renders a convoluted reaction network with facile CO2 activation, which delivers superior activity for eCO2RR. Our findings provide a novel understanding of the structure-activity relationship for Fe-N-C and concrete insights into the design of highly active SACs.
Collapse
Affiliation(s)
- Yun-Ze Qiu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao-Meng Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenying Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Wang J, Zhang Q, Yang L, Hu C, Bai Z, Chen Z. Interfacial hydrogen bonds induced by porous FeCr bimetallic atomic sites for efficient oxygen reduction reaction. J Colloid Interface Sci 2025; 683:742-751. [PMID: 39708726 DOI: 10.1016/j.jcis.2024.12.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Interfacial hydrogen bonds are pivotal in enhancing proton activity and accelerating the kinetics of proton-coupled electron transfer during electrocatalytic oxygen reduction reaction (ORR). Here we propose a novel FeCr bimetallic atomic sites catalyst supported on a honeycomb-like porous carbon layer, designed to optimize the microenvironment for efficient electrocatalytic ORR through the induction of interfacial hydrogen bonds. Characterizations, including X-ray absorption spectroscopy and in situ infrared spectroscopy, disclose the rearrangement of delocalized electrons due to the formation of FeCr sites, which facilitates the dissociation of interfacial water molecules and the subsequent formation of hydrogen bonds. This process significantly accelerates the proton-coupled electron transfer process and enhances the ORR reaction kinetics. As a result, the catalyst FeCrNC achieves a remarkable half-wave potential of 0.92 V and exhibits superior four-electron selectivity in 0.1 M KOH solution. Moreover, the zinc-air battery assembled by FeCrNC demonstrates a high power density of 207 mW cm-2 and negligible degradation over 240 h at a current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Jingwen Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhongwei Chen
- State Key Laboratory of Catalysis-Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Cai Q, Wuxia W, Li H, Li C, Gong Y, Niu L, Wang T. Tailoring OER/ORR activity in TM 1N 4 catalysts through first-/second-shell nitrogen doping: a density functional theory investigation. Phys Chem Chem Phys 2025; 27:6563-6569. [PMID: 40079151 DOI: 10.1039/d4cp04283b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Proposing an effective modification strategy to optimize catalyst reaction potentials is crucial for enhancing catalytic performance. In this study, we employed a combined approach by adjusting nitrogen dopants in the first- and second-shell environments to tailor the OER/ORR reaction potentials of Fe1N4, Co1N4, and Ni1N4 active centers. Using density functional theory simulations, we systematically compared the effects of first- and second-shell nitrogen dopants on the local atomic/electronic structures and catalytic activities. The results showed that first-shell nitrogen dopants had a dominant influence on the reaction potentials, while second-shell dopants provided fine-tuning adjustments. This combined regulation of nitrogen dopants in both shells significantly lowered the overpotentials for the OER and ORR, enhancing the overall catalytic performance. Specifically, N3-doped Fe1-pyrrole N4 and N2-doped Fe1-pyridine N4 active centers demonstrated the lowest overpotentials of 209 mV for the OER and 196 mV for the ORR, respectively. This strategy offers a promising pathway for designing more efficient catalysts.
Collapse
Affiliation(s)
- Qingqing Cai
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Wenmei Wuxia
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - HuanHuan Li
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Can Li
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Yinyan Gong
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Lengyuan Niu
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Tao Wang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Wang K, Xu S, Wang D, Kou Z, Fu Y, Bielejewski M, Montes-García V, Han B, Ciesielski A, Hou Y, Samorì P. Supramolecular Engineering of Vinylene-Linked Covalent Organic Framework - Ruthenium Oxide Hybrids for Highly Active Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417374. [PMID: 39901501 PMCID: PMC11923516 DOI: 10.1002/adma.202417374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/10/2025] [Indexed: 02/05/2025]
Abstract
The controlled formation of a functional adlayer at the catalyst-water interface is a highly challenging yet potentially powerful strategy to accelerate proton transfer and deprotonation for ultimately improving the performance of proton-exchange membrane water electrolysis (PEMWE). In this study, the synthesis of robust vinylene-linked covalent organic frameworks (COFs) possessing high proton conductivities is reported, which are subsequently hybridized with ruthenium dioxide yielding high-performance anodic catalysts for the acidic oxygen evolution reaction (OER). In situ spectroscopic measurements corroborated by theoretical calculations reveal that the assembled hydrogen bonds formed between COFs and adsorbed oxo-intermediates effectively orient interfacial water molecules, stabilizing the transition states for intermediate formation of OER. This determines a decrease in the energy barriers of proton transfer and deprotonation, resulting in exceptional acidic OER performance. When integrated into a PEMWE device, the system achieves a record current density of 1.0 A cm-2 at only 1.54 V cell voltage, with a long-term stability exceeding 180 h at industrial-level 200 mA cm-2. The approach relying on the self-assembly of an oriented hydrogen-bonded adlayer highlights the disruptive potential of COFs with customizable structures and multifunctional sites for advancing PEMWE technologies.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310 027, China
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Shunqi Xu
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
- School of Energy and Environment, Southeast University, Nanjing, 211 189, China
| | - Dashuai Wang
- Institute of Zhejiang University-Quzhou, Quzhou, 324 000, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310 027, China
| | - Yubin Fu
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 0 1069, Dresden, Germany
| | - Michał Bielejewski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznan, 60-179, Poland
| | - Verónica Montes-García
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Bin Han
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Artur Ciesielski
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310 027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324 000, China
- Zhejiang University Hydrogen Energy Institute, Hangzhou, 310 027, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
12
|
Mahapatra BK, Barman P, Panigrahi DR, Kochrekar S, Paul B, Panghal A, Kumar U A, Dhavale VM, Gupta M, Kumar D, Kumar V, Singh SK. Acidic and Alkaline pH Controlled Oxygen Reduction Reaction Pathway over Co-N 4C Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405530. [PMID: 39308440 DOI: 10.1002/smll.202405530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Indexed: 03/20/2025]
Abstract
Enhanced oxygen reduction reaction (ORR) kinetics and selectivity are crucial to advance energy technologies like fuel cells and metal-air batteries. Single-atom catalysts (SACs) with M-N4/C structure have been recognized to be highly effective for ORR. However, the lack of a comprehensive understanding of the mechanistic differences in the activity under acidic and alkaline environments is limiting the full potential of the energy devices. Here, a porous SAC is synthesized where a cobalt atom is coordinated with doped nitrogen in a graphene framework (pCo-N4C). The resulting pCo-N4C catalyst demonstrates a direct 4e- ORR process and exhibits kinetics comparable to the state-of-the-art (Pt/C) catalyst. Its higher activity in an acidic electrolyte is attributed to the tuned porosity-induced hydrophobicity. However, the pCo-N4C catalyst displays a difference in ORR activity in 0.1 m HClO4 and 0.1 m KOH, with onset potentials of 0.82 V and 0.91 V versus RHE, respectively. This notable activity difference in acidic and alkaline media is due to the protonation of coordinated nitrogen, restricted proton coupled electron transfer (PCET) at the electrode/electrolyte interface. The effect of pH over the catalytic activity is further verified by Ab-initio molecular dynamics (AIMD) simulations using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Bikash K Mahapatra
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), NH91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Pranjit Barman
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), NH91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Dipti R Panigrahi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), NH91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Sachin Kochrekar
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), University of Turku, Vatselankatu 2, Turku, FI-20014, Finland
| | - Bappi Paul
- School of Engineering and Technology, National Forensic Sciences University, Sector-09, Gandhinagar, 382007, India
| | - Abhishek Panghal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Greater Noida, Uttar Pradesh, 201314, India
| | - Anil Kumar U
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Taramani, Chennai, Tamil Nadu, 600 113, India
| | - Vishal M Dhavale
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Taramani, Chennai, Tamil Nadu, 600 113, India
| | - Mukul Gupta
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452 001, India
| | - Deepak Kumar
- Department of Chemistry, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Vijay Kumar
- Center for Informatics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), NH91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
- Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon, Haryana, 122001, India
| | - Santosh K Singh
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), NH91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| |
Collapse
|
13
|
Li P, Jiang YL, Men Y, Jiao YZ, Chen S. Kinetic cation effect in alkaline hydrogen electrocatalysis and double layer proton transfer. Nat Commun 2025; 16:1844. [PMID: 39984483 PMCID: PMC11845716 DOI: 10.1038/s41467-025-56966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Unveiling the so far ambiguous mechanism of the significant dependence on the identity of alkali metal cation would prompt opportunities to solve the more than two orders of magnitude slowdown of hydrogen electrocatalytic kinetics in base relative to acid, which has hampered the effort to reduce the precious metal usage in fuel cells by using the hydroxide exchange membrane. Herein, we present atomic-scale evidences from ab-initio molecular dynamics simulation and in-situ surface-enhanced infrared absorption spectroscopy which show that it is the apparent discrepancies in the electric double-layer structures induced by differently sized cations that lead to largely different interfacial proton transfer barriers and therefore hydrogen electrocatalytic kinetics in base. Concretely, severe accumulation of larger cation in electric double-layer causes more discontinuous interfacial water distribution and H-bond network, thus rendering the proton transfer from bulk to interface more obstructed. Such notion is strikingly different from the previously envisioned impact of cation-intermediate interactions on the energetics of surface steps, providing a unique interfacial perspective for understanding the ubiquitous cation specificity in electrocatalysis.
Collapse
Affiliation(s)
- Peng Li
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Ya-Ling Jiang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yana Men
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yu-Zhou Jiao
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Zhang D, She F, Chen J, Wei L, Li H. Why Do Weak-Binding M-N-C Single-Atom Catalysts Possess Anomalously High Oxygen Reduction Activity? J Am Chem Soc 2025; 147:6076-6086. [PMID: 39924878 PMCID: PMC11848820 DOI: 10.1021/jacs.4c16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Single-atom catalysts (SACs) with metal-nitrogen-carbon (M-N-C) structures are widely recognized as promising candidates in oxygen reduction reactions (ORR). According to the classical Sabatier principle, optimal 3d metal catalysts, such as Fe/Co-N-C, achieve superior catalytic performance due to the moderate binding strength. However, the substantial ORR activity demonstrated by weakly binding M-N-C catalysts such as Ni/Cu-N-C challenges current understandings, emphasizing the need to explore new underlying mechanisms. In this work, we integrated a pH-field coupled microkinetic model with detailed experimental electron state analyses to verify a novel key step in the ORR reaction pathway of weak-binding SACs─the oxygen adsorption at the metal-nitrogen bridge site. This step significantly altered the adsorption scaling relations, electric field responses, and solvation effects, further impacting the key kinetic reaction barrier from HOO* to O* and pH-dependent performance. Synchrotron spectra analysis further provides evidence for the new weak-binding M-N-C model, showing an increase in electron density on the antibonding π orbitals of N atoms in weak-binding M-N-C catalysts and confirming the presence of N-O bonds. These findings redefine the understanding of weak-binding M-N-C catalyst behavior, opening up new perspectives for their application in clean energy.
Collapse
Affiliation(s)
- Di Zhang
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- State
Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangxin She
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jiaxiang Chen
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Li Wei
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hao Li
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
15
|
Liu Y, Duan X, Ge F, Wu T, Zheng H. Energetic MOF-derived Fe 3C nanoparticles encased in N,S-codoped mesoporous pod-like carbon nanotubes for efficient oxygen reduction reaction. NANOSCALE 2025; 17:3941-3948. [PMID: 39748755 DOI: 10.1039/d4nr04004j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The rational design of advanced oxygen reduction reaction (ORR) catalysts is essential to improve the performance of energy conversion devices. However, it remains a huge challenge to construct hierarchical micro-/meso-/macroporous nanostructures, especially mesoporous transport channels in catalysts, to enhance catalytic capability. Herein, motivated by the characteristics of energetic metal-organic frameworks (EMOFs) that produce an abundance of gases during high-temperature pyrolysis, we prepared a unique tetrazine-based EMOF-derived electrocatalyst (denoted as Fe3C@NSC-900) consisting of highly dispersed Fe3C nanoparticles and N,S-codoped mesoporous carbon nanotubes. The mesopore-dominated core-shell structure endows Fe3C@NSC-900 with excellent catalytic activity and efficient mass transfer. Thus, optimal Fe3C@NSC-900 demonstrates a high half-wave potential of 0.922 V and great stability in 0.1 M KOH, outperforming commercial Pt/C and most of the reported ORR catalysts. As far as we know, this work is the first application of a tetrazine-based EMOF derivative for the electrocatalytic ORR and is expected to offer some constructive insights into potential of EMOFs for new-generation catalyst design.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Xinde Duan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Tingting Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
16
|
Xu G, Wang T. Practical Applications of Grand-canonical Electronic Structure Calculations in Electrochemical Simulation. J Phys Chem Lett 2025; 16:1470-1477. [PMID: 39895225 DOI: 10.1021/acs.jpclett.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Modeling electrified interfaces has long been a great challenge in electrochemistry. In recent years, the grand-canonical treatment for electrons has gradually been developed, and its combination with density functional theory has been widely used to simulate electrochemical processes on an atomistic scale. In this Perspective, we aim to discuss several practical applications of this powerful technique after a short review of necessary fundamentals. We will begin with capacitor-based parametrization method of grand-canonical calculated results. If considering the electrodes under different applied potentials as different materials, the parametrization can be viewed as a kind of "quadratic scaling relation", which might reduce the overall computational costs by data postanalysis rather than algorithm development. Following an example of the abnormal potential-independent energetic curve within the bandgap area, we turn the topic to the semiconducting electrodes. Meanwhile, the specific behaviors of the bandgap also indicate that besides the reaction thermodynamics and kinetics, the detailed electronic structure of the system can also be well described by the grand-canonical treatment on electrons. Several possibilities for further applications are proposed correspondingly and summarized at the end of paper. We believe that the grand-canonical treatment for electronic structure calculations can greatly enrich our understanding of the fundamental mechanisms under electrochemical environments.
Collapse
Affiliation(s)
- Gaomou Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Zhejiang Baima Lake Laboratory, Division of Solar Energy Conversion and Catalysis, Westlake University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
17
|
Tan Y, Fu J, Luo T, Liu K, Liu M. Theoretical Insights into the Selectivity of Single-Atom Fe-N-C Catalysts for Electrochemical NO x Reduction. J Am Chem Soc 2025; 147:4937-4944. [PMID: 39895058 DOI: 10.1021/jacs.4c14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Single-atom Fe-N-C catalysts have attracted significant attention in the NOx reduction reaction (NOxRR). However, the origin of their selectivity in the NOxRR remains unclear, impeding further advancements in application. Herein, we investigate the potential-driven competitive mechanism for NH3 and NH2OH production in the NOxRR over single-atom pyridinic-FeN4 and pyrrolic-FeN4 sites using constant-potential density functional theory calculations. The origin of selectivity in the NOxRR is linked to the switching of Fe 3d orbitals as they interact with intermediates. The selectivity between NH3 and NH2OH is determined by the applied potentials. The pyridinic-FeN4 predominantly generates NH3 at higher reduction potentials (-0.6 to -1.2 V, vs SHE), while NH2OH is favored at lower reduction potentials (0.6 to -0.6 V). The pyrrolic-FeN4 shows a similar potential-dependent product distribution, with a crossover potential of -1.0 V. The selectivity-determining intermediates (SDIs) in the NOxRR are *NH2OH and *NH2 + *OH. The potential-dependent selectivity is governed by the switching of Fe 3d orbitals interacting with SDIs, from dumbbell-shaped Fe 3dz2 to four-leaf clover-like Fe 3dxz, 3dyz, and 3dx2-y2, which plays a crucial role in controlling product distribution based on applied potentials. These findings offer new insights into the product selectivity of single-atom catalysts for the NOxRR.
Collapse
Affiliation(s)
- Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, Hunan, P. R. China
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
18
|
Long Z, Meng J, Weddle LR, Videla PE, Menzel JP, Cabral DGA, Liu J, Qiu T, Palasz JM, Bhattacharyya D, Kubiak CP, Batista VS, Lian T. The Impact of Electric Fields on Processes at Electrode Interfaces. Chem Rev 2025; 125:1604-1628. [PMID: 39818737 PMCID: PMC11826898 DOI: 10.1021/acs.chemrev.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates. In this review, we examine recent advances in experimental, computational, and theoretical studies of the interfacial electric field, the origin of the vibrational Stark effect of adsorbates on electrode surfaces, and the effects of electric fields on reactions at electrode/electrolyte interfaces. We also discuss recent advances in control of charge transfer and chemical reactions using magnetic fields. Finally, we outline perspectives on key areas for future studies.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lydia R. Weddle
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Pablo E. Videla
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jan Paul Menzel
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G. A. Cabral
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinchan Liu
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyin Qiu
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph M. Palasz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | | | - Clifford P. Kubiak
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Sharkas K, Wong BM. Defluorination Mechanisms and Real-Time Dynamics of Per- and Polyfluoroalkyl Substances on Electrified Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:230-236. [PMID: 39957785 PMCID: PMC11823447 DOI: 10.1021/acs.estlett.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants found in groundwater sources and a wide variety of consumer products. In recent years, electrochemical approaches for the degradation of these harmful contaminants have garnered a significant amount of attention due to their efficiency and chemical-free modular nature. However, these electrochemical processes occur in open, highly non-equilibrium systems, and a detailed understanding of PFAS degradation mechanisms in these promising technologies is still in its infancy. To shed mechanistic insight into these complex processes, we present the first constant-electrode potential (CEP) quantum calculations of PFAS degradation on electrified surfaces. These advanced CEP calculations provide new mechanistic details about the intricate electronic processes that occur during PFAS degradation in the presence of an electrochemical bias, which cannot be gleaned from conventional density functional theory calculations. We complement our CEP calculations with large-scale ab initio molecular dynamics simulations in the presence of an electrochemical bias to provide time scales for PFAS degradation on electrified surfaces. Taken together, our CEP-based quantum calculations provide critical reaction mechanisms for PFAS degradation in open electrochemical systems, which can be used to prescreen candidate material surfaces and optimal electrochemical conditions for remediating PFAS and other environmental contaminants.
Collapse
Affiliation(s)
- Kamal Sharkas
- Department of Chemistry,
Department of Physics & Astronomy, and Materials Science &
Engineering Program, University of California—Riverside, Riverside, California 92521, United States
| | - Bryan M. Wong
- Department of Chemistry,
Department of Physics & Astronomy, and Materials Science &
Engineering Program, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
20
|
Luo Y, Wang Q, Chen T, Xiao Y, Li K, Hu Y, Feng J, Feng J, Hu J. TiN Boosting the Oxygen Reduction Performance of Fe-N-C through the Relay-Catalyzing Mechanism for Metal-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7728-7738. [PMID: 39841917 DOI: 10.1021/acsami.4c18592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction. The half-wave potential of TiN/Fe-N-C is 0.915 V vs reverse hydrogen electrode with 15 mV lost after 30,000 cycles accelerated durability test, higher than 0.893 V and 26 mV of Pt/C. The solid zinc-air battery of TiN/Fe-N-C achieves a peak power density of 238 mW/cm2, 2100 cycle stability at 30 °C, and long-term durability of 1100 h under -20 °C, superior to 150 mW/cm2 and 500 h (-20 °C) of Pt/C. Both calculations and experiments indicate that TiN has dual functions which not only relay abundant oxygen for the reaction but also strengthen the adsorption force for intermediates of carbon corrosion reaction, thus, enhancing the activity and durability of Fe-N-C. Therefore, the proposed relay catalytic strategy by TiN offers an efficient Fe-N-C catalyst for energy conversion devices.
Collapse
Affiliation(s)
- Yi Luo
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China
| | - Qichen Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 Friendship West Road, Beilin District, Xian 710072, China
| | - Teng Chen
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China
| | - Yunpeng Xiao
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China
| | - Ke Li
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 300720, China
| | - Yijie Hu
- College of Aerospace Science and Engineering, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073, China
| | - Jian Feng
- College of Aerospace Science and Engineering, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073, China
| | - Junzong Feng
- College of Aerospace Science and Engineering, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073, China
| | - Jianqiang Hu
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
21
|
Yan HM, Wang G, Lv XM, Cao H, Qin GQ, Wang YG. Revealing the Potential-Dependent Rate-Determining Step of Oxygen Reduction Reaction on Single-Atom Catalysts. J Am Chem Soc 2025; 147:3724-3730. [PMID: 39808617 DOI: 10.1021/jacs.4c16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N4/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range. Specifically, under the charge-neutral condition, the RDS is calculated to be water desorption with the highest barrier, while as the potential increases, it gradually transitions to the protonation of *OH species, O2* species, and O* species, regardless of the protonation of *OH species as the potential-determining step. Moreover, we reveal the critical role of the dynamic adsorption of axially adsorbed water in facilitating the release of the single-atom site, thus enhancing the ORR rate. Our work has resolved the long-standing controversies over the RDS of ORR on SACs and implies that the step with the lowest exothermicity is not always synonymous with the RDS, highlighting the importance of examining the kinetic barriers under realistic potential conditions for understanding the electrocatalytic performance.
Collapse
Affiliation(s)
- Hui-Min Yan
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xin-Mao Lv
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Hao Cao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Gang-Qiang Qin
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
22
|
Chen W, Bao M, Meng F, Ma B, Feng L, Zhang X, Qiu Z, Gao S, Zhong R, Xi S, Hai X, Lu J, Zou R. Designer topological-single-atom catalysts with site-specific selectivity. Nat Commun 2025; 16:574. [PMID: 39794333 PMCID: PMC11724105 DOI: 10.1038/s41467-025-55838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Designing catalysts with well-defined, identical sites that achieve site-specific selectivity, and activity remains a significant challenge. In this work, we introduce a design principle of topological-single-atom catalysts (T-SACs) guided by density functional theory (DFT) and Ab initio molecular dynamics (AIMD) calculations, where metal single atoms are arranged in asymmetric configurations that electronic shield topologically misorients d orbitals, minimizing unwanted interactions between reactants and the support surface. Mn1/CeO2 catalysts, synthesized via a charge-transfer-driven approach, demonstrate superior catalytic activity and selectivity for NOx removal. A life-cycle assessment (LCA) reveals that Mn1/CeO2 significantly reduces environmental impact compared to traditional V-W-Ti catalysts. Through in-situ spectroscopic characterizations combined with DFT calculations, we elucidate detailed reaction mechanisms. This study establishes T-SACs as a promising class of catalysts, offering a systematic framework to address catalytic challenges by defining site characteristics. The concept highlights their potential for advancing selective catalytic processes and promoting sustainable technologies.
Collapse
Affiliation(s)
- Weibin Chen
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Menghui Bao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, P.R. China
| | - Fanqi Meng
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China
| | - Bingbing Ma
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China
| | - Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, P.R. China
| | - Xuan Zhang
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China
| | - Zanlin Qiu
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China
| | - Song Gao
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, P.R. China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao Hai
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing, P.R. China.
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, P.R. China.
| |
Collapse
|
23
|
Levell Z, Yu S, Wang R, Liu Y. What Is the "Other" Site in M-N-C? J Am Chem Soc 2025; 147:603-609. [PMID: 39707967 DOI: 10.1021/jacs.4c12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Single metal atoms embedded in nitrogen-doped graphene (M-N-C) have emerged as a promising catalyst for a wide variety of reactions. In addition to the pyridinic site, there is another site responsible for the catalytic activity, but its structure is under debate. Here, we resolve its structure using first-principles calculations. Using Fe-N-C as a representative example, we systematically explore numerous possible structures and discover a new moiety with comparable energy to the pyridinic. This moiety features a hybrid coordination environment between pyridinic and porphyrinic and is located at the edge of graphene sheets or pores. We further calculate its X-ray absorption spectrum, catalytic thermodynamics for oxygen reduction reaction (ORR), and stability under ORR conditions, all of which support its existence. Lastly, we show that this site also exists in other M-N-C with different M elements. This study uncovers a new and important structure in M-N-C and paves a critical step toward site engineering for improved catalytic performance.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| |
Collapse
|
24
|
Razzaq S, Faridi S, Kenmoe S, Usama M, Singh D, Meng L, Vines F, Illas F, Exner KS. MXenes Spontaneously Form Active and Selective Single-Atom Centers under Anodic Polarization Conditions. J Am Chem Soc 2025; 147:161-168. [PMID: 39680582 PMCID: PMC11726547 DOI: 10.1021/jacs.4c08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Single-atom catalysts (SACs) have emerged as a new class of materials for the development of active and selective catalysts. These materials are commonly based on anchoring a noble transition metal to some kind of carrier. In the present work, we demonstrate that MXenes─two-dimensional materials with application in energy storage and conversion─spontaneously form SAC-like sites under anodic polarization conditions, using the applied electrode potential as a probe to form catalytically active surface sites reminiscent of a SAC-like structure. Combining ab initio molecular dynamics simulations and electronic structure calculations in the density functional theory framework, we demonstrate that only the SAC-like sites rather than the basal planes of MXenes are highly active and selective for the oxygen evolution or chlorine evolution reactions, respectively. Our findings may simplify synthetic routes toward the formation of active and selective SAC-like sites and could pave the way for the development of smart materials by incorporating fundamental principles from nature into material discovery: while the pristine form of the material is inactive, the application of an electrode potential activates the material by the formation of active and selective single-atom centers.
Collapse
Affiliation(s)
- Samad Razzaq
- Faculty of
Chemistry, Theoretical Catalysis and Electrochemistry, University Duisburg-Essen, Universitätsstraße 5, Essen 45141, Germany
| | - Shohreh Faridi
- Faculty of
Chemistry, Theoretical Catalysis and Electrochemistry, University Duisburg-Essen, Universitätsstraße 5, Essen 45141, Germany
| | - Stephane Kenmoe
- Faculty of
Chemistry, Department of Theoretical Chemistry, University Duisburg-Essen, Universitätsstraße 5, Essen 45141, Germany
| | - Muhammad Usama
- Faculty of
Chemistry, Theoretical Catalysis and Electrochemistry, University Duisburg-Essen, Universitätsstraße 5, Essen 45141, Germany
| | - Diwakar Singh
- Faculty of
Chemistry, Theoretical Catalysis and Electrochemistry, University Duisburg-Essen, Universitätsstraße 5, Essen 45141, Germany
| | - Ling Meng
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1−11, Barcelona 08028, Spain
| | - Francesc Vines
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1−11, Barcelona 08028, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1−11, Barcelona 08028, Spain
| | - Kai S. Exner
- Faculty of
Chemistry, Theoretical Catalysis and Electrochemistry, University Duisburg-Essen, Universitätsstraße 5, Essen 45141, Germany
- Cluster
of Excellence RESOLV, Bochum 44801, Germany
- Center
for
Nanointegration (CENIDE) Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
25
|
Zhang Z, Gee W, Lavroff RH, Alexandrova AN. GOCIA: a grand canonical global optimizer for clusters, interfaces, and adsorbates. Phys Chem Chem Phys 2025; 27:696-706. [PMID: 39687986 DOI: 10.1039/d4cp03801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Restructuring of surfaces and interfaces plays a key role in the activation and/or deactivation of a wide spectrum of heterogeneous catalysts and functional materials. The statistical ensemble representation can provide unique atomistic insights into this fluxional and metastable realm, but constructing the ensemble is very challenging, especially for the systems with off-stoichiometric reconstruction and varying coverage of mixed adsorbates. Here, we report GOCIA, a versatile global optimizer for exploring the chemical space of these systems. It features the grand canonical genetic algorithm (GCGA), which bases the target function on the grand potential and evolves across the compositional space, as well as many useful functionalities, with implementation details explained. GOCIA has been applied to various systems in catalysis, from clusters to surfaces and from thermal to electrocatalysis.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA.
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Winston Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA.
| | - Robert H Lavroff
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA.
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA.
| |
Collapse
|
26
|
Zhang M, Hou Y, Jiang Y, Ni X, Wang Y, Zou X. Rational design of water splitting electrocatalysts through computational insights. Chem Commun (Camb) 2024; 60:14521-14536. [PMID: 39576026 DOI: 10.1039/d4cc05117c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Electrocatalytic water splitting is vital for the sustainable production of green hydrogen. Electrocatalysts, including those for the hydrogen evolution reaction at the cathode and the oxygen evolution reaction at the anode, are crucial in determining the overall performance of water splitting. Traditional methods for electrocatalyst development often rely on trial-and-error, which can be time-consuming and inefficient. Recent advancements in computational techniques provide more systematic and predictive strategies for catalyst design. This review article explores the role of computational insights in the development of water-splitting electrocatalysts. We start by giving an introduction of electrocatalytic water splitting mechanisms. Then, fundamental theories such as the Sabatier principle and scaling relationships are reviewed, which provide a theoretical basis for catalytic activity. We also discuss thermodynamic, electronic, and geometric descriptors used to guide catalyst design and provide an in-depth discussion of their applications and limitations. Advanced computational approaches, including high-throughput screening, machine learning, solvation models and Ab initio molecular dynamics, are also highlighted for their ability to accelerate catalyst discovery and simulate realistic reaction conditions. Finally, we propose future research directions aimed at searching universal descriptors, expanding data sets, and integrating developing interpretable models with catalyst design.
Collapse
Affiliation(s)
- Mingcheng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yuchang Hou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Yuzhu Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Xinyue Ni
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanfei Wang
- Petrochina Petrochemical Research Institute, Beijing 102206, China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
27
|
Li M, Han G, Tian F, Tao L, Fu L, Li L, Zhou C, He L, Lin F, Zhang S, Yang W, Ke X, Luo M, Yu Y, Xu B, Guo S. Spin-Polarized PdCu-Fe 3O 4 In-Plane Heterostructures with Tandem Catalytic Mechanism for Oxygen Reduction Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412004. [PMID: 39444073 DOI: 10.1002/adma.202412004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Alloying has significantly upgraded the oxygen reduction reaction (ORR) of Pd-based catalysts through regulating the thermodynamics of oxygenated intermediates. However, the unsatisfactory activation ability of Pd-based alloys toward O2 molecules limits further improvement of ORR kinetics. Herein, the precise synthesis of nanosheet assemblies of spin-polarized PdCu-Fe3O4 in-plane heterostructures for drastically activating O2 molecules and boosting ORR kinetics is reported. It is demonstrated that the deliberate-engineered in-plane heterostructures not only tailor the d-band center of Pd sites with weakened adsorption of oxygenated intermediates but also endow electrophilic Fe sites with strong ability to activate O2 molecules, which make PdCu-Fe3O4 in-plane heterostructures exhibit the highest ORR specific activity among the state-of-art Pd-based catalysts so far. In situ electrochemical spectroscopy and theoretical investigations reveal a tandem catalytic mechanism on PdCu-Fe3O4─Fe sites that initially activate molecular O2 and generate oxygenated intermediates being transferred to Pd sites to finish the subsequent proton-coupled electron transfer steps.
Collapse
Affiliation(s)
- Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Guanghui Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fenyang Tian
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Linke Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Chenhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lin He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Weiwei Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yongsheng Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
28
|
Tian Y, Hou P, Zhang H, Xie Y, Chen G, Li Q, Du F, Vojvodic A, Wu J, Meng X. Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes. Nat Commun 2024; 15:10099. [PMID: 39572580 PMCID: PMC11582733 DOI: 10.1038/s41467-024-54455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Significant efforts have been devoted to investigating the oxidation of MXenes in various environments. However, the underlying mechanism of MXene oxidation and its dependence on the electrode potential remain poorly understood. Here we show the oxidation behavior of MXenes under the working conditions of electrochemical processes in terms of kinetics and thermodynamics by using constant-potential ab initio simulations. The theoretical results indicate that the potential effects can be attributed to the nucleophilic attack of water molecules on metal atoms, similar to that taking place in the Oxygen Evolution Reaction. Building upon these findings, we deduced the oxidation potential of the common MXenes, and proposed antioxidant strategies for MXene. Finally, we demonstrated that MBenes, the boron analogs of MXenes, may undergo a similar nucleophilic attack in water and inferred that molecule-induced Walden inversion is widely present in material reconstructions. This work contributes to a fundamental understanding MXene stability at the atomic level, and promotes the transition in materials discovery from trial-and-error synthesis to rational design.
Collapse
Affiliation(s)
- Yumiao Tian
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China
| | - Pengfei Hou
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China
| | - Huiwen Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
| | - Yu Xie
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
| | - Quan Li
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China.
- International Center of Future Science, Jilin University, Changchun, China.
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China.
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, United States of America.
| | - Xing Meng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China.
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
29
|
Mei Y, Che F, Deskins NA. Modeling interfacial electric fields and the ethanol oxidation reaction at electrode surfaces. Phys Chem Chem Phys 2024; 26:27544-27560. [PMID: 39463334 DOI: 10.1039/d4cp02765e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The electrochemical environment present at surfaces can have a large effect on intended applications. Such environments may occur, for instance, at battery or electrocatalyst surfaces. Solvent, co-adsorbates, and electrical field effects may strongly influence surface chemistry. Understanding these phenomena is an on-going area of research, especially in the realm of electrocatalysis. Herein, we modeled key steps in the ethanol oxidation reaction (EOR) over a common EOR catalyst, Rh(111), using density functional theory. We assessed how the presence of electrical fields may influence important C-C and C-H bond scission and C-O bond formation reactions with and without co-adsorbed water. We found that electric fields combined with the presence of water can significantly affect surface chemistry, including adsorption and reaction energies. Our results show that C-C scission (necessary for the complete oxidation of ethanol) is most likely through CHxCO adsorbates. With no electric field or solvent present C-C scission of CHCO has the lowest reaction energy and dominates the oxidation of ethanol. But when applying strong negative fields (with or without solvent), the C-C scission of CH2CO and CHCO becomes competitive. The current work provides insights into how electric fields and water solvent affect EOR, especially when simulated using density functional theory.
Collapse
Affiliation(s)
- Yuhan Mei
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | - Fanglin Che
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | - N Aaron Deskins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| |
Collapse
|
30
|
Wang Z, Xiao H. Fleeting-Active-Site-Thrust Oxygen Evolution Reaction by Iron Cations from the Electrolyte. J Am Chem Soc 2024; 146:29540-29550. [PMID: 39411826 DOI: 10.1021/jacs.4c09585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Oxygen evolution reaction (OER) is key to sustainable energy and environmental engineering, thus necessitating rational design of high-performing electrocatalysts that requires understanding the structure-performance relationship with a possible dynamic nature under working conditions. Herein, we uncover a novel type of OER mechanisms thrust by the fleeting active sites (FASs) dynamically formed on Ni-based layered double hydroxides (Ni-LDHs) by Fe cations from the electrolyte under OER potentials. We employ grand-canonical ensemble methods and microkinetic modeling to elucidate the potential-dependent structures of FASs on Ni-LDHs and demonstrate that the fleeting-active-site-thrust (FAST) mechanism delivers superior OER activity via the FAST intramolecular oxygen coupling pathway, which also suppresses the lattice oxygen mechanism, leading to improved operando stability of Ni-LDHs. We further reveal that introducing only trace-level loadings (10-100 ppm) of FASs on Ni-LDHs can significantly boost and govern the catalytic performance for OER. This underscores the crucial importance of considering the novel FAST mechanism in OER and also suggests the electrolyte as a key part of the structure-performance relationship as well as an effective design strategy via engineering the electrolyte.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Cui Y, Ren C, Wu M, Chen Y, Li Q, Ling C, Wang J. Structure-Stability Relation of Single-Atom Catalysts under Operating Conditions of CO 2 Reduction. J Am Chem Soc 2024; 146:29169-29176. [PMID: 39387638 DOI: 10.1021/jacs.4c11516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Single-atom catalysts (SACs) have exhibited exceptional atomic efficiency and catalytic performance in various reactions but suffer poor stability. Understanding the structure-stability relation is the prerequisite for stability optimization but has been rarely explored due to complexity of the degradation process and reaction environments. Herein, we successfully established the structure-stability relation of N-doped carbon-supports SACs (MN4 SACs) under working conditions of CO2 reduction, by using advanced constant-potential density functional theory calculations. Systematic mechanism investigation that considered different factors identifies the key role of initial hydrogen adsorption on the coordination N atom in catalytic stability, where the feasibility of the adsorption eventually determines the leaching of the metal atom. On this basis, a simple descriptor consisting of electron number and electronegativity is constructed, realizing accurate and rapid prediction of the stability of SACs. Furthermore, strategies via modifying the local geometric structure to improve the stability without changing the active centers are proposed accordingly, which are supported by related experiments. These findings fill the current void in understanding SAC stability under practical working conditions, potentially advancing the widespread application of SACs in sustainable energy conversion systems.
Collapse
Affiliation(s)
- Yu Cui
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chunjin Ren
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Mingliang Wu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Yu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
32
|
Hu X, Li X, Su NQ. Exploring Nitrogen Reduction Reaction Mechanisms with Graphyne-Confined Single-Atom Catalysts: A Computational Study Incorporating Electrode Potential and pH. J Phys Chem Lett 2024; 15:9692-9705. [PMID: 39284129 DOI: 10.1021/acs.jpclett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study reconciles discrepancies between practical electrochemical conditions and theoretical density functional theory (DFT) frameworks, evaluating three graphyne-confined single-atom catalysts (Mo-TEB, Mo@GY, and Mo@GDY). Using both constant charge models in vacuum and constant potential models with continuum implicit solvation, we closely mimic real-world electrochemical environments. Our findings highlight the crucial role of explicitly incorporating electrode potential and pH in the constant potential model, providing enhanced insights into the nitrogen reduction reaction (NRR) mechanisms. Notably, the superior NRR performance of Mo-TEB is attributed to the d-band center's proximity to the Fermi level and enhanced magnetic moments at the atomic center. This research advances our understanding of graphyne-confined single-atom catalysts as effective NRR platforms and underscores the significance of the constant potential model for accurate DFT studies of electrochemical reactions.
Collapse
Affiliation(s)
- Xiuli Hu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Sokolov M, Doblhoff-Dier K, Exner KS. Best practices of modeling complex materials in electrocatalysis, exemplified by oxygen evolution reaction on pentlandites. Phys Chem Chem Phys 2024; 26:22359-22370. [PMID: 39158931 DOI: 10.1039/d4cp01792g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Pentlandites are natural ores with structural properties comparable to that of [FeNi] hydrogenases. While this class of transition-metal sulfide materials - (Fe,Ni)9S8 - with a variable Fe : Ni ratio has been proven to be an active electrode material for the hydrogen evolution reaction, it is also discussed as electrocatalyst for the alkaline oxygen evolution reaction (OER), corresponding to the bottleneck of anion exchange membrane electrolyzers for green hydrogen production. Despite the experimental evidence for the use of (Fe,Ni)9S8 as an OER catalyst, a detailed investigation of the elementary reaction steps, including consideration of adsorbate coverages and limiting steps under anodic polarizing conditions, is still missing. We address this gap in the present manuscript by gaining atomistic insights into the OER on an Fe4.5Ni4.5S8(111) surface through density functional theory calculations combined with a descriptor-based analysis. We use this system to introduce best practices for modeling this rather complex material by pointing out hidden pitfalls that can arise when using the popular computational hydrogen electrode approach to describe electrocatalytic processes at the electrified solid/liquid interface for energy conversion and storage.
Collapse
Affiliation(s)
- Maksim Sokolov
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
| | - Katharina Doblhoff-Dier
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300, RA, The Netherlands
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
34
|
Guo PP, Xu C, Yang KZ, Lu C, Chi HM, Xu Y, Su YZ, Liu X, Wei PJ, Liu JG. Bioinspired molecular catalysts with a unique tricopper architecture for highly efficient oxygen reduction reaction. Chem Commun (Camb) 2024; 60:9050-9053. [PMID: 39099533 DOI: 10.1039/d4cc02949f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
In situ growth of intertwined trinuclear copper complexes (nCu3) on a cellulose-derived carbon support (CMC) produced a high-performance electrocatalyst (CMC-nCu3) for the oxygen reduction reaction (ORR), which demonstrated superior performance in zinc-air batteries compared to a commercial Pt/C catalyst. This work highlights the importance of copper-based molecular catalysts with rich and intertwined tricopper structures for boosting both ORR activity and stability.
Collapse
Affiliation(s)
- Peng-Peng Guo
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chao Xu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Kun-Zu Yang
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chen Lu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hua-Min Chi
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ying Xu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yong-Zhi Su
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Xin Liu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ping-Jie Wei
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jin-Gang Liu
- Key Lab for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
35
|
Levell Z, Le J, Yu S, Wang R, Ethirajan S, Rana R, Kulkarni A, Resasco J, Lu D, Cheng J, Liu Y. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Chem Rev 2024; 124:8620-8656. [PMID: 38990563 DOI: 10.1021/acs.chemrev.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudheesh Ethirajan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
36
|
Mao X, Bai X, Wu G, Qin Q, O'Mullane AP, Jiao Y, Du A. Electrochemical Reduction of N 2 to Ammonia Promoted by Hydrated Cation Ions: Mechanistic Insights from a Combined Computational and Experimental Study. J Am Chem Soc 2024; 146:18743-18752. [PMID: 38916520 DOI: 10.1021/jacs.4c06629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Alkali ions, major components at the electrode-electrolyte interface, are crucial to modulating reaction activity and selectivity of catalyst materials. However, the underlying mechanism of how the alkali ions catalyze the N2 reduction reaction (NRR) into ammonia remains elusive, posing challenges for experimentalists to select appropriate electrolyte solutions. In this work, by employing a combined experimental and computational approach, we proposed four essential roles of cation ions at Fe electrodes for N2 fixation: (i) promoting NN bond cleavage; (ii) stabilizing NRR intermediates; (iii) suppressing the competing hydrogen evolution reaction (HER); and (iv) modulating the interfacial charge distribution at the electrode-electrolyte interface. For N2 adsorption on an Fe electrode with cation ions, our constrained ab initio molecular dynamic (c-AIMD) results demonstrate a barrierless process, while an extra 0.52 eV barrier requires to be overcome to adsorb N2 for the pure Fe-water interface. For the formation of *NNH species within the N2 reduction process, the calculated free energy barrier is 0.50 eV at the Li+-Fe-water interface. However, the calculated barrier reaches 0.81 eV in pure Fe-water interface. Furthermore, experiments demonstrate a high Faradaic efficiency for ammonia synthesis on a Li+-Fe-water interface, reaching 27.93% at a working potential of -0.3 V vs RHE and pH = 6.8. These results emphasize how alkali metal cations and local reaction environments on the electrode surface play crucial roles in influencing the kinetics of interfacial reactions.
Collapse
Affiliation(s)
- Xin Mao
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4001, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaowan Bai
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Guanzheng Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002 China
| | - Qing Qin
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002 China
| | - Anthony P O'Mullane
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4001, Australia
| |
Collapse
|
37
|
Xu T, Liu T, Jing Y. Bifunctional oxygen reduction/evolution reaction electrocatalysts achieved by axial ligand modulation on two-dimensional porphyrin frameworks. Phys Chem Chem Phys 2024; 26:18707-18714. [PMID: 38932574 DOI: 10.1039/d4cp01235f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Exploring efficient and low-cost oxygen reduction and oxygen evolution reaction (ORR/OER) bifunctional catalysts is essential for the development of energy storage and conversion devices. Herein, enlightened by the experimentally synthesized cobalt(II) meso-tetraethynylporphyrins (Co-TEP) molecule, we designed a novel 2D covalent organic framework (COF), namely a 2D Co-TEP monolayer, by dimensional expansion. The 2D Co-TEP monolayer, with Co atoms distributed separately and stabilized by uniform pyrrolic-N coordination, features metal-nitrogen-carbon single-atom catalyst activity and shows tunable catalytic activity for the electrochemical ORR/OER by axial ligand (O, OH, Cl, CN, CH3, NO, F) modulation. By means of the state-of-the-art constant-potential first-principles computations and microkinetic simulations, we demonstrated that 2D Co-TEP-CN exhibits good ORR/OER performance in both acidic and alkaline conditions. The difference between the onset-potential for the OER and the half-wave potential for the ORR is only 0.85 V at pH = 1, smaller than that of Pt/IrO2 electrocatalysts. The good electrocatalytic performance is maintained by replacing the center metal atoms with Mn, Fe and/or Ni. Our investigation highlights the role of the pyrrolic-N coordination and the ligands in improving the catalytic activity of 2D COFs and provides new insights into the rational design of efficient bifunctional ORR/OER catalysts.
Collapse
Affiliation(s)
- Tianze Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Tianyang Liu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
38
|
Yang S, Meng F, Li X, Fu Y, Xu Q, Zhang F. Tuning the Pyridine Units in Vinylene-Linked Covalent Organic Frameworks Boosting 2e - Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308801. [PMID: 38295007 DOI: 10.1002/smll.202308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Indexed: 02/02/2024]
Abstract
The N-doped carbon materials are supposed to be the efficient oxygen reduction reaction (ORR) catalysts with the undefined N-doped carbon ring groups. It is essential to well define the role of the nitrogen atoms of these carbon structures in active behavior. Even though, the covalent organic frameworks (COFs) with precise structures are well developed, but unable to exclude the polar linkages influence. This study presents a series of pyridine-containing COFs linked via nonpolar carbon-carbon double bonds (C = C). Their catalytic activity and selectivity for 2e- ORR are successfully modulated by locating the embedded pyridine nitrogen in the backbones through the linking modes of pyridine moieties within the frameworks. Such phenomena can be attributed to their different binding abilities toward O2, leading to the different binding strength of the intermediate OH* to the catalytic sites, also verified by the theoretical calculation. This work provides us a new insight to design high-efficiency ORR catalysts through the exact location of pyridine nitrogen.
Collapse
Affiliation(s)
- Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry, Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
39
|
Tao R, Liu C, Ning W, Li Y. Strain-induced catalytic enhancement in Co-BTA and Rh-BTA for efficient 2e - oxygen reduction: a DFT study. Phys Chem Chem Phys 2024; 26:17660-17665. [PMID: 38867663 DOI: 10.1039/d4cp01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Here we design TM-BTA catalysts for the electrochemical synthesis of hydrogen peroxide (H2O2), focusing on the efficient two-electron (2e-) oxygen reduction pathway. Employing density functional theory (DFT), we screened 17 transition metals, identifying Co-BTA and Rh-BTA as outstanding candidates based on their low overpotentials and superior catalytic activity. A key innovation is the application of mechanical strain to these catalysts, significantly optimizing their performance by modulating the d-band center. This approach enhances the adsorption of oxygen-containing intermediates, crucial for the 2e- ORR process. Our findings demonstrate that a tensile strain of 1.95% optimally enhances catalytic efficiency in both Co-BTA and Rh-BTA, substantially reducing overpotential. This research not only highlights the potential of TM-BTA catalysts in H2O2 production but also underscores the importance of strain modulation as a cost-effective and efficient method to improve the selectivity and activity of electrocatalysts, offering a novel perspective in the field of sustainable chemical synthesis.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Weihua Ning
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
40
|
Han X, Mou T, Islam A, Kang S, Chang Q, Xie Z, Zhao X, Sasaki K, Rodriguez JA, Liu P, Chen JG. Theoretical Prediction and Experimental Verification of IrO x Supported on Titanium Nitride for Acidic Oxygen Evolution Reaction. J Am Chem Soc 2024. [PMID: 38859684 DOI: 10.1021/jacs.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Reducing iridium (Ir) catalyst loading for acidic oxygen evolution reaction (OER) is a critical strategy for large-scale hydrogen production via proton exchange membrane (PEM) water electrolysis. However, simultaneously achieving high activity, long-term stability, and reduced material cost remains challenging. To address this challenge, we develop a framework by combining density functional theory (DFT) prediction using model surfaces and proof-of-concept experimental verification using thin films and nanoparticles. DFT results predict that oxidized Ir monolayers over titanium nitride (IrOx/TiN) should display higher OER activity than IrOx while reducing Ir loading. This prediction is verified by depositing Ir monolayers over TiN thin films via physical vapor deposition. The promising thin film results are then extended to commercially viable powder IrOx/TiN catalysts, which demonstrate a lower overpotential and higher mass activity than commercial IrO2 and long-term stability of 250 h to maintain a current density of 10 mA cm-2. The superior OER performance of IrOx/TiN is further confirmed using a proton exchange membrane water electrolyzer (PEMWE), which shows a lower cell voltage than commercial IrO2 to achieve a current density of 1 A cm-2. Both DFT and in situ X-ray absorption spectroscopy reveal that the high OER performance of IrOx/TiN strongly depends on the IrOx-TiN interaction via direct Ir-Ti bonding. This study highlights the importance of close interaction between theoretical prediction based on mechanistic understanding and experimental verification based on thin film model catalysts to facilitate the development of more practical powder IrOx/TiN catalysts with high activity and stability for acidic OER.
Collapse
Affiliation(s)
- Xue Han
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tianyou Mou
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Arephin Islam
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qiaowan Chang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
41
|
Fang SY, Chen YJ, Chen WX, Zhuang GL. Magnetic Order Transition of a Two-Dimensional Square-Lattice Electrocatalyst Assembled by Fe-N 4 Units: Crucial Role on Oxygen Reduction. J Phys Chem Lett 2024; 15:5887-5895. [PMID: 38804881 DOI: 10.1021/acs.jpclett.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Herein, we theoretically investigate the effect of magnetic orders on electrocatalytic oxygen reduction reaction (ORR) properties on the Fe-N4 site-embedded two-dimensional (2D) covalent organic framework (Fe-N4@COF-C3N2) under realistic environments. The Fe-N4@COF-C3N2 shows a 2D square-lattice (sql) topology with three magnetic order states: one ferromagnetic state (FM) and two antiferromagnetic states (AFM1 and AFM2). Specially, the electrocatalyst in the AFM2 state shows a remarkable onset potential of 0.80 V/reversible hydrogen electrode (RHE) at pH 1, superior to the existing most excellent noble-metal catalysts. Thermodynamically, the onset potential for the 4e- ORR is 0.64 V/RHE at pH 1, with a magnetic state transition process of FM → AFM1 → FM → FM → FM, while at pH 13, the onset potential for the 4e- ORR is 0.54 V/RHE, with the magnetic transition process of FM → FM → AFM1 → FM → FM. Generally, this finding will provide new avenues to rationally design the Fe-N4 electrocatalyst.
Collapse
Affiliation(s)
- Shui-Yang Fang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yi-Jie Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Wen-Xian Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Gui-Lin Zhuang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
42
|
Cui Y, Ren C, Li Q, Ling C, Wang J. Hybridization State Transition under Working Conditions: Activity Origin of Single-Atom Catalysts. J Am Chem Soc 2024; 146:15640-15647. [PMID: 38771765 DOI: 10.1021/jacs.4c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Single-atom catalysts (SACs) have been widely investigated and have emerged as a transformative approach in electrocatalysis. Despite their clear structure, the origin of their exceptional activity remains elusive. Herein, we elucidate a common phenomenon of the hybridization state transition of metal centers, which is responsible for the activity origin across various SACs for different reactions. Focusing on N-doped carbon-supported Ni SAC (NiN4 SAC) for CO2 reduction reaction (CO2RR), our comprehensive computations successfully clarify the hybridization state transition under working conditions and its relation with the activity. This transition, triggered by the reaction intermediates and applied potential, converts the Ni center from the inert dsp2 hybridization state to the active d2sp3 hybridization state. Importantly, the calculated activity and selectivity of the CO2RR over the d2sp3-hybridized Ni center are consistent with the experimental results, offering strong support for the proposed hypothesis. This work suggests a universal principle of electronic structure evolution in SACs that could revolutionize catalyst design, which also introduces a new paradigm for manipulating electronic states to enhance catalytic performance, with implications for various reactions and catalyst platforms.
Collapse
Affiliation(s)
- Yu Cui
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chunjin Ren
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
43
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
44
|
Exner KS. Four Generations of Volcano Plots for the Oxygen Evolution Reaction: Beyond Proton-Coupled Electron Transfer Steps? Acc Chem Res 2024; 57:1336-1345. [PMID: 38621676 PMCID: PMC11080045 DOI: 10.1021/acs.accounts.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
ConspectusDue to its importance for electrolyzers or metal-air batteries for energy conversion or storage, there is huge interest in the development of high-performance materials for the oxygen evolution reaction (OER). Theoretical investigations have aided the search for active material motifs through the construction of volcano plots for the kinetically sluggish OER, which involves the transfer of four proton-electron pairs to form a single oxygen molecule. The theory-driven volcano approach has gained unprecedented popularity in the catalysis and energy communities, largely due to its simplicity, as adsorption free energies can be used to approximate the electrocatalytic activity by heuristic descriptors.In the last two decades, the binding-energy-based volcano method has witnessed a renaissance with special concepts being developed to incorporate missing factors into the analysis. To this end, this Account summarizes and discusses the different generations of volcano plots for the example of the OER. While first-generation methods relied on the assessment of the thermodynamic information for the OER reaction intermediates by means of scaling relations, the second and third generations developed strategies to include overpotential and kinetic effects into the analysis of activity trends. Finally, the fourth generation of volcano approaches allowed the incorporation of various mechanistic pathways into the volcano methodology, thus paving the path toward data- and mechanistic-driven volcano plots in electrocatalysis.Although the concept of volcano plots has been significantly expanded in recent years, further research activities are discussed by challenging one of the main paradigms of the volcano concept. To date, the evaluation of activity trends relies on the assumption of proton-coupled electron transfer steps (CPET), even though there is experimental evidence of sequential proton-electron transfer (SPET) steps. While the computational assessment of SPET for solid-state electrodes is ambitious, it is strongly suggested to comprehend their importance in energy conversion and storage processes, including the OER. This can be achieved by knowledge transfer from homogeneous to heterogeneous electrocatalysis and by focusing on the material class of single-atom catalysts in which the active center is well defined. The derived concept of how to analyze the importance of SPET for mechanistic pathways in the OER over solid-state electrodes could further shape our understanding of the proton-electron transfer steps at electrified solid/liquid interfaces, which is crucial for further progress toward sustainable energy and climate neutrality.
Collapse
Affiliation(s)
- Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
45
|
Yang X, Ding H, Li S, Zheng S, Li JF, Pan F. Cation-Induced Interfacial Hydrophobic Microenvironment Promotes the C-C Coupling in Electrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:5532-5542. [PMID: 38362877 DOI: 10.1021/jacs.3c13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) toward C2 products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K+ vs Li+), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C1 pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CO2RR.
Collapse
Affiliation(s)
- Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
- College of Energy, Xiamen University, Xiamen 361000, China
| | - Jian-Feng Li
- College of Energy, Xiamen University, Xiamen 361000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| |
Collapse
|
46
|
Wu P, Ma Z, Xia X, Song B, Zhong J, Yu Y, Huang Y. Precise Engineering of the Electrocatalytic Activity of FeN 4-Embedded Graphene on Oxygen Electrode Reactions by Attaching Electrides. J Phys Chem Lett 2024; 15:1121-1129. [PMID: 38263631 DOI: 10.1021/acs.jpclett.3c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Using first-principles calculations combined with a constant-potential implicit solvent model, we comprehensively studied the activity of oxygen electrode reactions catalyzed by electride-supported FeN4-embedded graphene (FeN4Cx). The physical quantities in FeN4Cx/electrides, i.e., work function of electrides, interlayer spacing, stability of heterostructures, charge transferred to Fe, d-band center of Fe, and adsorption free energy of O, are highly intercorrelated, resulting in activity being fully expressed by the nature of the electrides themselves, thereby achieving a precise modulation in activity by selecting different electrides. Strikingly, the FeN4PDCx/Ca2N and FeN4PDCx/Y2C systems maintain a high oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) activity with the overpotential less than 0.46 and 0.62 V in a wide pH range. This work provides an effective strategy for the rational design of efficient bifunctional catalysts as well as a model system with a simple activity-descriptor, helping to realize significant advances in energy devices.
Collapse
Affiliation(s)
- Peng Wu
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Zengying Ma
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Bowen Song
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Junwen Zhong
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| | - Yanghong Yu
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241000, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
47
|
Zhang Z, Li J, Wang YG. Modeling Interfacial Dynamics on Single Atom Electrocatalysts: Explicit Solvation and Potential Dependence. Acc Chem Res 2024; 57:198-207. [PMID: 38166366 DOI: 10.1021/acs.accounts.3c00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
ConspectusSingle atom electrocatalysts, with noble metal-free composition, maximal atom efficiency, and exceptional reactivity toward various energy and environmental applications, have become a research hot spot in the recent decade. Their simplicity and the isolated nature of the atomic structure of their active site have also made them an ideal model catalyst system for studying reaction mechanisms and activity trends. However, the state of the single atom active sites during electrochemical reactions may not be as simple as is usually assumed. To the contrary, the single atom electrocatalysts have been reported to be under greater influence from interfacial dynamics, with solvent and electrolyte ions perpetually interacting with the electrified active center under an applied electrode potential. These complexities render the activity trends and reaction mechanisms derived from simplistic models dubious.In this Account, with a few popular single atom electrocatalysis systems, we show how the change in electrochemical potential induces nontrivial variation in the free energy profile of elemental electrochemical reaction steps, demonstrate how the active centers with different electronic structure features can induce different solvation structures at the interface even for the same reaction intermediate of the simplest electrochemical reaction, and discuss the implication of the complexities on the kinetics and thermodynamics of the reaction system to better address the activity and selectivity trends. We also venture into more intriguing interfacial phenomena, such as alternative reaction pathways and intermediates that are favored and stabilized by solvation and polarization effects, long-range interfacial dynamics across the region far beyond the contact layer, and the dynamic activation or deactivation of single atom sites under operation conditions. We show the necessity of including realistic aspects (explicit solvent, electrolyte, and electrode potential) into the model to correctly capture the physics and chemistry at the electrochemical interface and to understand the reaction mechanisms and reactivity trends. We also demonstrate how the popular simplistic design principles fail and how they can be revised by including the kinetics and interfacial factors in the model. All of these rich dynamics and chemistry would remain hidden or overlooked otherwise. We believe that the complexity at an electrochemical interface is not a curse but a blessing in that it enables deeper understanding and finer control of the potential-dependent free energy landscape of electrochemical reactions, which opens up new dimensions for further design and optimization of single atom electrocatalysts and beyond. Limitations of current methods and challenges faced by the theoretical and experimental communities are discussed, along with the possible solutions awaiting development in the future.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|