1
|
Zhou Z, Zhang X, Chen W, Liang Z, Zhang Z, Yang L. Porphyrinic metal-organic framework PCN-224 supported Prussian blue enables selective detection of casein and phytic acid. Talanta 2025; 293:128121. [PMID: 40220370 DOI: 10.1016/j.talanta.2025.128121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Monitoring casein and phytic acid content is of great significance for food safety and human health. In this paper, porphyrinic metal-organic framework PCN-224 supported Prussian blue (PCN-224@PB) nanoprobe was constructed by in-situ growth of PB on PCN-224 layer. The supported PCN-224 not only reduces the size and improves the dispersity of PB, but also provides specific affinity for casein and phytic acid. Based on the formation of Zr-OP structure, the peroxidase (POD)-like activity of PCN-224@PB is inhibited when encountering casein. In the presence of phytic acid, the deposited PB is decomposed, thus recovering the fluorescence of PCN-224 quenched by PB. The constructed nanoprobe exhibits high sensitivity with a limit of detection of 0.25 μg/mL for casein and 0.18 μM for phytic acid detection, respectively. In addition, PCN-224@PB shows excellent sensing performance in milk, beverage, corn and cells samples, with casein and phytic acid recoveries ranging from 94.30 % to 103.20 %, further demonstrating its feasibility in real sample analysis.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Xiao Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Wenting Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Zhaowei Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Zihan Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
2
|
Jin Z, Huang G, Song Y, Liu C, Wang X, Zhao K. Catalytic activity nanozymes for microbial detection. Coord Chem Rev 2025; 534:216578. [DOI: 10.1016/j.ccr.2025.216578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
|
3
|
Jiang X, Ren Y, Huang C, Hu S, Gao Z, Gao J, Ma D, Liu G. ZnO Nanoparticle Exposure Disrupted Iron-Sulfur Protein Functions to Increase Macrophage Erythrophagocytosis and Disturb Systemic Iron Recycling. ACS NANO 2025. [PMID: 40333237 DOI: 10.1021/acsnano.5c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Although anemia is a common systemic toxicological manifestation of zinc product overload, the underlying mechanisms remain elusive. Therefore, we explored the mechanisms underlying the anemia caused by exposure to zinc oxide nanoparticles (ZnO NPs), which are a widely utilized Zn product. We observed that ZnO NP-exposed mice developed evident anemia due to disrupted spleen iron metabolism. Since spleen iron metabolism relies on macrophages, we further investigated how ZnO NP exposure affected macrophage function. Results indicated that ZnO NP exposure triggered macrophage metabolic reprogramming to facilitate erythrophagocytosis and blunted the response of iron exporter ferroportin to enhanced erythrophagocytosis, thereby causing iron retention and ultimately impeding macrophage iron recycling. Mechanistically, Zn2+ released from ZnO NPs occupied the cluster-binding cysteines of iron-sulfur proteins, regulating glucose metabolism and ferroportin expression to suppress their activity, thereby inducing metabolic reprogramming and suppressing iron export. Our research unveils a category of nanobio interactions underlying ZnO NPs biotoxicity.
Collapse
Affiliation(s)
- Xiumei Jiang
- School of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yujie Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chengquan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shunchang Hu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zitong Gao
- School of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jianmin Gao
- School of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dongxiao Ma
- Department of Clinical Laboratory, the First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Gang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Yang L, Wang S, Deng C, Chen J, Zhao J, Yan B, Yue T. Boosting Cancer Cell Uptake of Gold Nanoparticles by Light-Modulated Protein Corona Reorganization for Tumor Ablation. ACS NANO 2025; 19:14351-14365. [PMID: 40173212 DOI: 10.1021/acsnano.5c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nanoparticles (NPs) administered into the human body are spontaneously modified by forming a protein corona, which is crucial for their biological activity. While NP-based photothermal therapy is an established noninvasive modality for tumor ablation, the impact of light irradiation on protein corona formation and clinical outcomes is unclear. This study unveils the promotive role of light irradiation in cancer cell uptake of gold nanoparticles (GNPs) by modulating the GNP-protein and protein-protein interactions within the corona. Specifically, infrared light irradiation increases the local temperature around GNPs to induce partial unfolding of corona proteins, increasing the availability of binding sites and enhancing adsorption. Additionally, light intensifies competition among different proteins for adsorption, resulting in a 25% increase in the abundance of higher molecular weight proteins, such as human serum albumin (HSA), on the GNP surface after irradiation. Notably, GNPs with positively charged surfaces, compared to GNPs with other modifications, exhibit more significant changes in the protein corona due to stronger electrostatic interactions with proteins (1.32 ± 0.17 × 103 kJ/mol). These variations in the amount, structure, and composition of associated proteins result in a 14.26% increase in GNP uptake by cancer cells, likely due to modifications at the GNP-cell membrane interface. Our findings highlight the critical role of light irradiation in influencing protein corona dynamics and cellular interactions, suggesting its potential as a valuable engineering tool in nanomedicine.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Shenqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Jie Chen
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P.R. China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P.R. China
| |
Collapse
|
5
|
Chiang SY, Peng CH, Lin JW, Kuo JW, Lin YW, Lin CH, Chen CY. Amino-Acid-Engineered Bionanozyme Selectivity for Colorimetric Detection of Human Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20693-20704. [PMID: 40022657 DOI: 10.1021/acsami.4c22270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Nanozymes are emerging nanomaterials owing to their superior stability and enzyme-mimicking catalytic functions. However, unlike natural enzymes with inherent amino-acid-based recognition motifs for target interactions, manipulating nanozyme selectivity toward specific targets remains a major challenge. In this study, we introduce the de novo strategy using the supramolecular assembly of l-tryptophan (l-Trp) as the recognition amino acid with copper (Cu) ions for creating a human serum albumin (HSA)-responsive bionanozyme. This amino-acid-engineered bionanozyme enables selective colorimetric detection of HSA, a critical urinary biomarker for kidney diseases, overcoming the challenge that HSA is neither a typical substrate nor an inhibitor for most nanozymes. Kinetic studies and competitive tests reveal that HSA subdomain IIIA binding to l-Trp sites limits the electron-transfer-induced structural changes of l-Trp-Cu chelate rings, resulting in noncompetitive inhibition. This inhibition effect is significantly stronger than that observed for canonical amino acids, common proteins, and urinary interference species. Colorimetric monitoring of bionanozyme activity enables sensitive HSA detection with a detection limit of 1.3 nM and a quantification range of 2 nM to 10 μM. This approach is exceptionally more sensitive and offers a broader detection range compared to conventional colorimetric and fluorescent methods, suitable for diagnostics across various clinical stages of disease. This innovative rational strategy to designing and manipulating selective nanozyme-target interactions not only addresses the limitations of nanozymes but also expands their precise applications in complex biological systems.
Collapse
Affiliation(s)
- Siang-Yun Chiang
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chun-Hsiang Peng
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jhe-Wei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jia-Wei Kuo
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chong-You Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Wu Y, Li J, Jiang W, Xu W, Zheng L, Wang C, Gu W, Zhu C. Second coordination sphere regulates nanozyme inhibition to assist early drug discovery. Nat Commun 2025; 16:3123. [PMID: 40169567 PMCID: PMC11961690 DOI: 10.1038/s41467-025-58291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Early drug discovery is a time- and cost-consuming task requiring enzymes. Although nanozymes with metal sites akin to metallocofactors display similar activities, the lack of proximal amino acids hinders them from more adequately mimicking enzymes for drug discovery purposes. Hence, the rational design of the nanozyme second coordination sphere is desirable yet remains challenging. Herein, we report a nanozyme featuring atomically dispersed Cu-N4 sites with proximal hydroxyl groups (CuNC-OH). Experimental and theoretical results reveal that Cu-N4 site and hydroxyl respectively behave as cofactor and amino acid of the enzymatic pocket to interact with adsorbates, regulating nanozyme activity and inhibition. This mechanism involving dual sites is similar to that of thyroid peroxidases, which enables specific inhibition of CuNC-OH by antithyroid drugs. Based on these findings, a nanozyme-assisted drug discovery kit is established to analyze inhibition features of thyroid peroxidase inhibitors and screen out promising antithyroid drugs with a significant cost reduction compared with traditional enzyme kits.
Collapse
Affiliation(s)
- Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jian Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Chinese Academy of Science, Beijing, PR China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, PR China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
7
|
Huang S, Yu L, Zhang K, Lv J, Xiang H, Zhu D, Li H, Zhang S, Liu X, Wang Y, Guo Y, Xu L. Tailored protein corona behavior in titanium dioxide nanosheet fluorescence biosensor for protein quantification assays. J Colloid Interface Sci 2025; 683:106-115. [PMID: 39724832 DOI: 10.1016/j.jcis.2024.12.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The spontaneous adsorption of proteins onto nanoparticles, known as the protein corona, provides a unique perspective for designing protein-sensing biosensors. This study proposes a tailored protein corona method mediated by Tween-20 and develops a reverse-capture approach for protein quantification assays. The protein-coated microplate captures titanium dioxide nanosheets (TiO2-NS) in a phosphate buffer containing Tween-20 and generates fluorescence signals via the photocatalytic reduction of resazurin to resorufin, thereby indicating the amount of protein. The linear range of the current assay was 0.5-5 ng/mL, and the limit of detection (LOD) was 0.28 ng/mL, which is 100-1000 times more sensitive than the classical colorimetric methods. This method is suitable for the determination of proteins in artificial urine and has broad potential for practical applications.
Collapse
Affiliation(s)
- Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Liqiang Yu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Kun Zhang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Jiachen Lv
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Henglong Xiang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Dongwei Zhu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Huan Li
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Shuning Zhang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xinyu Liu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| |
Collapse
|
8
|
Liu C, Liang L, Yu Y, Hou Y, Yuan M, Zhuang Y, Wang J, Zhang Y. Multiple recognition-powered abiotic bimetallic oxide nanozyme-based colorimetric platform for the selective detection of allergen β-lactoglobulin. Food Chem 2025; 468:142400. [PMID: 39674012 DOI: 10.1016/j.foodchem.2024.142400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
β-lactoglobulin (β-lg) is the major allergen in dairy products, and poses a significant threat to special people including infants and young children. Therefore, a convenient, cost-efficient, and aptamer-free colorimetric sensing platform is developed for β-lg assay based on a germanium/zinc bimetallic oxide nanozyme (GeO2/ZnO). The CTAB-assisted intercalation growth of ZnO nanoparticles between GeO2 layers endows GeO2/ZnO with enhanced peroxidase-mimicking activity and β-lg affinity. By virtue of multiple recognition-meditated specific protein corona formation, the catalytic activity of GeO2/ZnO is greatly deteriorated in the presence of β-lg. The selective discrimination and accurate detection of β-lg in dairy samples is achieved with a detection limit of 14.1 nM, and a portable kit is further established for point-of-care testing and visual colorimetric analysis. This study not only provides a promising strategy for allergen assay, but paves an avenue for engineering the abiotic protein affinity sensors for food safety analysis.
Collapse
Affiliation(s)
- Chunda Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Longai Liang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Hou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maosen Yuan
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Wang Y, Sun J, Yi J, Fu R, Liu B, Xianyu Y. "Three-in-one" Analysis of Proteinuria for Disease Diagnosis through Multifunctional Nanoparticles and Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410751. [PMID: 39812129 PMCID: PMC11884592 DOI: 10.1002/advs.202410751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Indexed: 01/16/2025]
Abstract
Urinalysis is one of the predominant tools for clinical testing owing to the abundant composition, sufficient volume, and non-invasive acquisition of urine. As a critical component of routine urinalysis, urine protein testing measures the levels and types of proteins, enabling the early diagnosis of diseases. Traditional methods require three separate steps including strip testing, protein/creatinine ratio measurement, and electrophoresis respectively to achieve qualitative, quantitative, and classification analyses of proteins in urine with long time and cumbersome operations. Herein, this work demonstrates a "three-in-one" protocol to analyze the urine composition by combining multifunctional nanoparticles with machine learning. This work constructs a sensor array to analyze proteinuria by employing nanoparticles with unique optical properties, outstanding catalytic activity, diverse composition, and tunable structure as probes. Different proteins interacted with nanoprobes differently and are classified by this sensor array based on their physicochemical heterogeneities. With the aid of machine learning, the urine composition is precisely detected for the diagnosis of bladder cancer. This protocol enables quantification and classification of 5 proteinuria in 10 min without any tedious pretreatment, showing proimise for the comprehensive analysis of body fluid for early disease diagnosis.
Collapse
Affiliation(s)
- Yidan Wang
- Department of Clinical Laboratory of Sir Run Run Shaw HospitalCollege of Biosystems Engineering and Food ScienceZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceSir Run Run Shaw HospitalHangzhou310016P. R. China
| | - Jiazhu Sun
- Department of UrologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
| | - Jiuhong Yi
- Department of Clinical Laboratory of Sir Run Run Shaw HospitalCollege of Biosystems Engineering and Food ScienceZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceSir Run Run Shaw HospitalHangzhou310016P. R. China
| | - Ruijie Fu
- Department of Clinical Laboratory of Sir Run Run Shaw HospitalCollege of Biosystems Engineering and Food ScienceZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceSir Run Run Shaw HospitalHangzhou310016P. R. China
| | - Ben Liu
- Department of UrologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
| | - Yunlei Xianyu
- Department of Clinical Laboratory of Sir Run Run Shaw HospitalCollege of Biosystems Engineering and Food ScienceZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceSir Run Run Shaw HospitalHangzhou310016P. R. China
| |
Collapse
|
10
|
Zhang H, Zhang M, Zhu K, Feng Y, Yang L, Ding W. Unraveling the mechanism: How does β-phosphoglucomutase from the haloacid dehalogenase superfamily catalyze the interconversion of β-d-glucose 1-phosphate and β-d-glucose 6-phosphate? A chemical perspective. J Inorg Biochem 2025; 264:112794. [PMID: 39667067 DOI: 10.1016/j.jinorgbio.2024.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
The catalytic mechanisms of enzymes can be phylogenetically mapped corresponding to their catalytic structures. This mapping effectively elucidates the diversity of enzyme catalytic mechanisms and the emergence of new enzymatic activities within enzyme superfamilies. The haloacid dehalogenase (HAD) superfamily serves as an exemplary model system for comprehending the co-evolution of catalytic structures and mechanisms. This study delves into the mechanism underlying the functional divergence of β-phosphoglucomutase (β-PGM) from the phosphatase branch of the HAD superfamily, employing a chemical perspective. Through the construction and calculation of three models of varying scales using the Density Functional Theory method with B3LYP function, we aim to investigate the chemical mechanism driving this functional divergence of β-PGM from the HAD family. The computational results indicate that residues His20 and Lys76 in the second shell stabilize substrates and enhance the acid-base catalytic ability of Asp10. Additionally, residues Arg49, Ser116 and Asn118 facilitate substrate binding by engaging in close hydrogen bonding interactions with the substrates. Through cooperative action, these residues enable β-PGM to function as an efficient phosphoglucomutase. Through computational modeling and a chemical perspective, we unravel the mechanisms enabling β-PGM to convert β-d-glucose 1-phosphate to β-d-glucose 6-phosphate. Finally, based on the analysis of the evolutionary tree, we discussed and summarized the evolutionary relationships among different forms of metal cores of hydrolases.
Collapse
Affiliation(s)
- Hao Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mingming Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Kangning Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China
| | - Yulan Feng
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou 450000, PR China.
| | - Wanjian Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
11
|
Cao T, Yuan W, Gao Y, Zou X, Tian B, Shi M, Feng W, Li F. Stealth Nanoparticles with a "Self-Consuming" Shell for Long-Term Blood Vessel Imaging. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11811-11819. [PMID: 39957207 DOI: 10.1021/acsami.4c20986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The development of lanthanide-doped upconversion nanoparticle (UCNP)-based imaging with minimal autofluorescence and improved penetration depth is important in medical applications. Exogenous nanocarriers readily adsorb plasma proteins following intravenous administration (<0.5 min), resulting in the formation of a protein corona on the fixed surface. The protein corona facilitates UCNP interception by the immune system, preventing targeted delivery to disease sites. In this study, we report a novel surface-camouflaging strategy using lanthanide hydroxyl carbonate that is slowly dissolved by physiological phosphate in serum. The "self-consuming" inorganic-shell-modified UCNPs (denoted as UCSP-PEG) effectively reduce protein corona adhesion by more than 90% through a dissociation effect associated with the amphiphilic poly(ethylene glycol) (PEG)-modified UCNPs as determined in an ex vivo assay. The UCSP-PEG exhibits a prolonged blood circulation time (t1/2 = 73.9 ± 9.5 min), 185 times that of camouflage materials without the "stealth" feature, and can employ upconverted luminescence (UCL) imaging to monitor tumor-related blood vessels for at least 120 min. Based on the superior optical properties of UCSP-PEG, the application of a UCL dual-channel stereoscope magnification imaging system has enabled the observation of capillaries with high resolution, offering a powerful tool for monitoring biological activities at the fine tissue level. This work provides a novel "stealth" nanovehicle, resisting blood protein adhesion based on a "self-consuming" effect that can significantly advance tissue imaging and target-specific cancer diagnosis.
Collapse
Affiliation(s)
- Tianye Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Wei Yuan
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yilin Gao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Xianmei Zou
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Bo Tian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Mei Shi
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Wei Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
12
|
Shu R, Wang M, Liu S, Wang Z, Wang B, Zhang J, Wang J, Zhao L, Zhang D. Bidirectional Drive Reverse-Phase Enhanced Fluorescence Lateral Flow Immunoassay with Spectral Overlap and Quantitative Balance for the Analysis of Deoxynivalenol. Anal Chem 2025; 97:3427-3437. [PMID: 39924744 DOI: 10.1021/acs.analchem.4c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The capacity of the reverse-phase enhanced fluorescence (turn-on mode) to sensitively alter fluorescence intensity from "zero" to "one" has drawn increasing interest and investigation in competitive lateral flow immunoassay (LFIA). During this process, three important considerations must be made: designing an effective quenching agent, choosing a suitable fluorescence donor, and building a suitable quenching mode. In this work, we employed Au@MnO2 nanoparticles as highly effective quenchers and AuNCs as fluorescence donors to achieve the overlap of absorption and emission spectra. Furthermore, we have effectively created an immunological network-based competitive LFIA to balance the quantitative relationship for the quick and accurate detection of the deoxynivalenol (DON) toxin (Au@MnO2-GAB-CFLFIA). Notably, our proposed fluorescent turn-on mode demonstrated 11.65-fold sensitivity enhancement (0.0509 ng/mL) compared to the colorimetric mode (0.593 ng/mL). Furthermore, the immunological network mode shows 5.08-fold sensitivity enhancement compared to the non-network mode (0.259 ng/mL). Moreover, satisfactory recoveries of 93.33-109.02% are obtained in real samples (maize, wheat, and oat). In this DON detection, spectral overlap and quantitative balance offer more novel and efficient strategies for reverse-phase enhanced fluorescence LFIA.
Collapse
Affiliation(s)
- Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meilin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuorui Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Biao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhao
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
13
|
Kuroi K, Kanazawa Y, Shinaridome A, Yasuda Y, Jung M, Pack CG, Fujii F. Protein corona formation on different-shaped CdSe/CdS semiconductor nanocrystals. NANOSCALE ADVANCES 2025; 7:560-571. [PMID: 39650619 PMCID: PMC11621831 DOI: 10.1039/d4na00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Nanoparticles (NPs) have been widely studied and applied in medical and pharmaceutical fields. When NPs enter the in vivo environment, they are covered with protein molecules to form the so-called "protein corona". Because NPs and proteins are comparable in size, the shape of NPs has a significant impact on NP-protein interactions. Although NPs of various shapes have been synthesized, how the shape of NPs affects the protein corona is poorly understood, and little is known about the underlying molecular mechanism. In the present study, we synthesized spherical, football-shaped, and rod-shaped semiconductor nanocrystals (SNCs) as model NPs and compared their interaction with human serum albumin (HSA) using fluorescence correlation spectroscopy, fluorescence quenching, Fourier-transform infrared spectroscopy, and thermodynamic analysis. Based on the binding enthalpy and entropy and secondary structural changes of HSA, with the help of hydrodynamic diameter changes of SNCs, we concluded that HSA adopts a conformation or orientation that is appropriate for the local curvature of SNCs. This study demonstrates the effect of NP shape on their interaction with proteins and provides a mechanistic perspective.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Yuta Kanazawa
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Akane Shinaridome
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Yuna Yasuda
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute Daegu 41062 Korea
| | - Chan-Gi Pack
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center Seoul 05505 Korea
- Department of Biomedical Engineering, University of Ulsan College of Medicine Seoul 05505 Korea
| | - Fumihiko Fujii
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| |
Collapse
|
14
|
Zheng D, Tao J, Jiang L, Zhang X, He H, Shen X, Sang Y, Liu Y, Yang Z, Nie Z. Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy. J Am Chem Soc 2025; 147:998-1007. [PMID: 39780388 DOI: 10.1021/jacs.4c14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo. Protein-like size of the SCNP scaffold promotes passive diffusion, whereas positive surface charge allows its active transcytosis for deep tumor penetration and hence accumulation in the tumor site. The submolecular compartments of the SCNP scaffold effectively protect the active sites from protein bindings, thereby providing a "cleaner" microenvironment for catalysis within a living system. The folded structure of SCNP-Cu facilitates their cytosolic delivery of and free diffusion within cytosol, ensuring efficient contact with endogenous H2O2, in situ generation of toxic hydroxyl radicals (·OH), and effective damage of intracellular targets (i.e., lipids, nucleic acids). This work establishes versatile SCNP-based nanoplatforms for developing artificial enzymes for in vivo catalysis.
Collapse
Affiliation(s)
- Di Zheng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Jing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Liping Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Xinyue Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Huibin He
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Xiaoxue Shen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Yutao Sang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang 110034, P. R. China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhihong Nie
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| |
Collapse
|
15
|
Tagaras N, Song H, Sahar S, Tong W, Mao Z, Buerki‐Thurnherr T. Safety Landscape of Therapeutic Nanozymes and Future Research Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407816. [PMID: 39445544 PMCID: PMC11633477 DOI: 10.1002/advs.202407816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress and inflammation are at the root of a multitude of diseases. Treatment of these conditions is often necessary but current standard therapies to fight excessive reactive oxygen species (ROS) and inflammation are often ineffective or complicated by substantial safety concerns. Nanozymes are emerging nanomaterials with intrinsic enzyme-like properties that hold great promise for effective cancer treatment, bacterial elimination, and anti-inflammatory/anti-oxidant therapy. While there is rapid progress in tailoring their catalytic activities as evidenced by the recent integration of single-atom catalysts (SACs) to create next-generation nanozymes with superior activity, selectivity, and stability, a better understanding and tuning of their safety profile is imperative for successful clinical translation. This review outlines the current applied safety assessment approaches and provides a comprehensive summary of the safety knowledge of therapeutic nanozymes. Overall, nanozymes so far show good in vitro and in vivo biocompatibility despite considerable differences in their composition and enzymatic activities. However, current safety investigations mostly cover a limited set of basic toxicological endpoints, which do not allow for a thorough and deep assessment. Ultimately, remaining research gaps that should be carefully addressed in future studies are highlighted, to optimize the safety profile of therapeutic nanozymes early in their pre-clinical development.
Collapse
Affiliation(s)
- Nikolaos Tagaras
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Haihan Song
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Shafaq Sahar
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Zhengwei Mao
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
16
|
Duan H, Li D, Wang J, Shen Y, Zheng L, Huang X. A cocatalytic nanozyme based on metal-organic framework-embedded iron porphyrin for the sensitive detection of Salmonella typhimurium in milk. Talanta 2024; 280:126765. [PMID: 39216421 DOI: 10.1016/j.talanta.2024.126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The nanozyme, acting as the signal labeling reporter, is widely employed in colorimetric immunoassays due to its exceptional catalytic activity and reliable performance. Nonetheless, when immobilized on the nanozyme's surface, there is a decline in catalytic activity, which hinders its ability to meet the escalating demand for advanced colorimetric immunoassays. Herein, we introduce a novel MILL-88@TcP nanozyme, formed by encapsulating iron porphyrins (TcP) within metal-organic frameworks (MILL-88), where the catalytic activity of TcP is fully preserved through ethanol-induced release. Leveraging the superior encapsulation capacity and enzyme-mimicking characteristics of MILL-88, the MILL-88@TcP nanozyme demonstrates a remarkable colorimetric performance, 1430-fold higher than that of MILL-88 alone. Furthermore, we developed the MILL-88@TcP nanozyme-based Enzyme-Linked Immunosorbent Assay (N-ELISA) for enhanced sensitivity in detecting Salmonella typhimurium, achieving a detection limit of 1.68 × 102 CFU/mL, approximately 500-fold enhancement compared to the traditional HRP-based ELISA (8.35 × 104 CFU/mL). Notably, the average recoveries ranged from 91.50 % to 108.50 % with a variation of 3.53 %-10.41 %, indicating high accuracy and precision. Collectively, this study highlights that the MILL-88@TcP nanozyme, with its superior catalytic performance and anti-interference capabilities, holds promise as a colorimetric labeling reporter to enhance the detection efficacy of colorimetric immunoassays and has the potential to establish a more stable and sensitive colorimetric assay platform.
Collapse
Affiliation(s)
- Hong Duan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Dongmei Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Jiali Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Yumin Shen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Lingyan Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
17
|
Lee SY, Choi JW, Lee TG, Heo MB, Son JG. Influence of albumin concentration on surface characteristics and cellular responses in the pre-incubation of multi-walled carbon nanotubes. NANOSCALE ADVANCES 2024:d4na00743c. [PMID: 39398624 PMCID: PMC11465410 DOI: 10.1039/d4na00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Reliable characterization of protein coronas (PCs) that form when nanomaterials are introduced into biological fluids is a critical step in the development of safe and efficient nanomedicine. We observed that bovine serum albumin (BSA)-coated multi-walled carbon nanotubes (MWCNTs) do not induce cytotoxicity, but have different cellular uptake rates depending on the BSA pretreatment concentration. To determine how these slight differences affect A549 cell responses and intracellular changes, we conducted spectroscopic (circular dichroism and Fourier-transform infrared) and spectrometric (nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses. The various characterization techniques conducted in this study reveal the following. (i) The composition ratio of PCs on MWCNTs differs depending on the BSA concentration. (ii) Analysis of the secondary structure of the proteins revealed that the α-helix structure increased with increasing BSA concentration. (iii) Proteomic analysis showed that different biological pathways were activated at levels higher and lower than 5 mg mL-1. Such combined spectroscopic and spectrometric approaches provide an integrated understanding of PC composition as well as how nano/bio-interface states are linked to cellular-level responses. Our results can support reliable and practical applications of nanomedicine development.
Collapse
Affiliation(s)
- Sun Young Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jae Won Choi
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Min Beom Heo
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jin Gyeong Son
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
18
|
Liu Y, Xu D, Xing X, Shen A, Jin X, Li S, Liu Z, Wang L, Huang Y. Lung-Targeting Perylenediimide Nanocomposites for Efficient Therapy of Idiopathic Pulmonary Fibrosis. NANO LETTERS 2024; 24:12701-12708. [PMID: 39331492 DOI: 10.1021/acs.nanolett.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuting Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Damin Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Anqi Shen
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Xinpeng Jin
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
19
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
20
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
21
|
Cai R, Baimanov D, Yuan H, Xie H, Yu S, Zhang Z, Yang J, Zhao F, You Y, Guan Y, Zheng P, Xu M, Qi M, Zhang Z, Zhong S, Li YF, Wang L. Protein Corona-Directed Cellular Recognition and Uptake of Polyethylene Nanoplastics by Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14158-14168. [PMID: 39088650 DOI: 10.1021/acs.est.4c05215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.
Collapse
Affiliation(s)
- Rui Cai
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Yuan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxin Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Shengtao Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiacheng Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yue You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Pingping Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Mengying Qi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Zhiyong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|