1
|
Padhy A, Gupta M, Das A, Farook I, Dutta T, Datta S, Datta R, Gupta SS. Lysosome-Specific Delivery of β-Glucosidase Enzyme Using Protein-Glycopolypeptide Conjugate via Protein Engineering and Bioconjugation. Bioconjug Chem 2025; 36:383-394. [PMID: 39988831 DOI: 10.1021/acs.bioconjchem.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lysosomal enzyme replacement therapy (ERT) holds potential for treating lysosomal storage disorders, but achieving targeted delivery of deficient therapeutic enzymes remains a significant challenge. This study presents a novel approach for the lysosome-specific delivery of the β-glucosidase (B8CYA8) enzyme by covalently conjugating lysosome-targeting mannose-6-phosphate functionalized glycopolypeptides (M6P-GP). We used a protein-glycopolypeptide conjugate developed through advanced protein engineering and bioconjugation techniques. By conjugating β-glucosidase to M6P-GP that has a high affinity for the cation-independent mannose-6-phosphate receptors (CI-MPR) and lysosomal receptors, we enhance the enzyme's selective intracellular uptake and lysosome-specific localization. To attain maximum activity of the near-native enzyme after delivery, we have designed and synthesized an acetal linkage containing the pH-responsive linker maleimide-acetal-azide (MAA), which will cleave in the lysosomal acidic pH to detach the glycopolypeptide from the protein backbone. We demonstrated the efficient cellular uptake of the protein-glycopolypeptide conjugate and showed targeted lysosome delivery, leading to increased enzymatic activity compared to untreated cells. Our results proved that the approach mainly improves the specificity and efficiency of enzyme delivery, particularly into lysosomes, which may enable new methods for ERT. These findings suggest that protein-glycopolypeptide conjugates could represent a class of bioconjugates to design targeted enzyme therapies, offering a pathway to the effective treatment of Gaucher disease (GD) and potentially other related lysosomal storage disorders.
Collapse
Affiliation(s)
- Abinash Padhy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Mani Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Isha Farook
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tahiti Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Supratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
- Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
2
|
Ishii N, Mascherpa A, Fairbanks AJ. Synthesis of a heptasaccharide N-glycan comprising two mannose-6-phosphate residues. Carbohydr Res 2025; 547:109327. [PMID: 39580870 DOI: 10.1016/j.carres.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
A deprotected biantennary high mannose heptasaccharide N-glycan comprising two mannose-6-phosphate residues was synthesised as a putative ligand for the mannose 6-phosphate receptors, using a convergent [3 + 4] glycosylation strategy.
Collapse
Affiliation(s)
- Nozomi Ishii
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand; Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Andrea Mascherpa
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
3
|
Gimeno A, Ehlers AM, Delgado S, Langenbach JWH, van den Bos LJ, Kruijtzer JAW, Guigas BGA, Boons GJ. Site-Specific Glyco-Tagging of Native Proteins for the Development of Biologicals. J Am Chem Soc 2024; 146:34452-34465. [PMID: 39653378 DOI: 10.1021/jacs.4c11091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Glycosylation is an attractive approach to enhance biological properties of pharmaceutical proteins; however, the precise installation of glycans for structure-function studies remains challenging. Here, we describe a chemoenzymatic methodology for glyco-tagging of proteins by peptidoligase catalyzed modification of the N-terminus of a protein with a synthetic glycopeptide ester having an N-acetyl-glucosamine (GlcNAc) moiety to generate an N-GlcNAc modified protein. The GlcNAc moiety can be elaborated into complex glycans by trans-glycosylation using well-defined sugar oxazolines and mutant forms of endo β-N-acetylglucosaminidases (ENGases). The glyco-tagging methodology makes it possible to modify on-demand therapeutic proteins, including heterologous proteins expressed in E. coli, with diverse glycan structures. As a proof of principle, the N-terminus of interleukin (IL)-18 and interferon (IFN)α-2a was modified by a glycopeptide harboring a complex N-glycan without compromising biological potencies. The glyco-tagging methodology was also used to prepare several glycosylated insulin variants that exhibit reduced oligomerization, aggregation, and fibrillization yet maintained cell signaling properties, which are attractive for the development of insulins with improved shelf-lives. It was found that by employing different peptidoligases, it is possible to modify either the A or both chains of human insulin.
Collapse
Affiliation(s)
- Ana Gimeno
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Anna M Ehlers
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Sandra Delgado
- CIC bioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia Spain
| | - Jan-Willem H Langenbach
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | | | - John A W Kruijtzer
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Bruno G A Guigas
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, ZA 2333, The Netherlands
| | - Geert-Jan Boons
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
van Kuilenburg ABP, Hollak CEM, Travella A, Jacobs M, Gentilini LD, Leen R, der Vlugt KMMGV, Stet FSB, Goorden SMI, van der Veen S, Criscuolo M, Papouchado M. Development of a Biosimilar of Agalsidase Beta for the Treatment of Fabry Disease: Preclinical Evaluation. Drugs R D 2023:10.1007/s40268-023-00421-x. [PMID: 37083901 DOI: 10.1007/s40268-023-00421-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Fabry disease (FD) is a rare lysosomal storage disorder caused by a deficiency of the enzyme α-galactosidase A (aGal A). Since 2001, two different enzyme replacement therapies have been authorized, with agalsidase beta being used in most parts of the Western world. Currently, biosimilars of several expensive enzyme therapies are under development to improve their accessibility for patients. We present the preclinical results of the development of a biosimilar to agalsidase beta. METHODS Produced in a Chinese hamster ovary (CHO)-cell system, the biosimilar aGal A Biosidus (AGABIO), was compared with agalsidase beta with respect to amino acid sequence, glycosylation, specific α-galactosidase activity, stability in plasma, and effects on cultured human Fabry fibroblasts and Fabry mice. RESULTS AGABIO had the same amino acid composition and similar glycosylation, enzymatic activity, and stability as compared with agalsidase beta. After uptake in fibroblasts, α-galactosidase A activity increased in a dose-dependent manner, with maximum uptake observed after 24 h, which remained stable until at least 48 h. Both enzymes were localized to lysosomes. Reduction of accumulated globotriaosylceramide (Gb3) and lysoGb3 in cultured Fabry fibroblasts by AGABIO and agalsidase beta showed comparable dose-response curves. In Fabry knockout mice, after a single injection, both enzymes were rapidly cleared from the plasma and showed equal reductions in tissue and plasma sphingolipids. Repeated dose studies in rats did not raise any safety concerns. Anti-drug antibodies from patients with FD treated with agalsidase beta showed equal neutralization activity toward AGABIO. CONCLUSION These findings support the biosimilarity of AGABIO in comparison with agalsidase beta. The clinical study phase is currently under development.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| | - Carla E M Hollak
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam, UMC-University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - René Leen
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Karen M M Ghauharali-van der Vlugt
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Femke S Beers Stet
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Sanne van der Veen
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam, UMC-University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
5
|
Mascherpa A, Ishii N, Tayagui A, Liu J, Sollogoub M, Fairbanks AJ. Lysosomal Targeting of β-Cyclodextrin. Chemistry 2023; 29:e202203252. [PMID: 36265126 PMCID: PMC10100462 DOI: 10.1002/chem.202203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/06/2022]
Abstract
β-Cyclodextrin (β-CD) and derivatives are approved therapeutics in >30 clinical settings. β-CDs have also shown promise as therapeutics for treatment of some lysosomal storage disorders, such as Niemann-Pick disease type C, and other disease states which involve metabolite accumulation in the lysosome. In these cases, β-CD activity relies on transport to the lysosome, wherein it can bind hydrophobic substrate and effect extraction. The post-translational attachment of N-glycans terminated in mannose-6-phosphate (M6P) residues is the predominant method by which lysosomal enzymes are targeted to the lysosome. In this work we covalently attach a synthetic biantennary bis-M6P-terminated N-glycan to β-CD and study the effect of the added glycans in a mammalian cell line. The formation of a host guest complex with a Cy5 fluorophore allows study of both cellular internalisation and transport to the lysosome by fluorescence microscopy. Results indicate that the rates of both internalisation and lysosomal transport are increased by the attachment of M6P-glycans to β-CD, indicating that M6P-glycan conjugation may improve the therapeutic effectiveness of β-CD for the treatment of disorders involving hydrophobic metabolite accumulation in the lysosome.
Collapse
Affiliation(s)
- Andrea Mascherpa
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Nozomii Ishii
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Ayelen Tayagui
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Jiang Liu
- Sorbonne UniversityCNRSInstitut Parisien de Chimie Moléculaire (IPCM), UMR 82324, place Jussieu75005ParisFrance
| | - Matthieu Sollogoub
- Sorbonne UniversityCNRSInstitut Parisien de Chimie Moléculaire (IPCM), UMR 82324, place Jussieu75005ParisFrance
| | - Antony J. Fairbanks
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| |
Collapse
|
6
|
Zhang X, Liu H, He J, Ou C, Donahue TC, Muthana MM, Su L, Wang LX. Site-Specific Chemoenzymatic Conjugation of High-Affinity M6P Glycan Ligands to Antibodies for Targeted Protein Degradation. ACS Chem Biol 2022; 17:3013-3023. [PMID: 35316032 PMCID: PMC9492806 DOI: 10.1021/acschembio.1c00751] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lysosome-targeting chimeras (LYTACs) offer an opportunity for the degradation of extracellular and membrane-associated proteins of interest. Here, we report an efficient chemoenzymatic method that enables a single-step and site-specific conjugation of high-affinity mannose-6-phosphate (M6P) glycan ligands to antibodies without the need of protein engineering and conventional click reactions that would introduce "unnatural" moieties, yielding homogeneous antibody-M6P glycan conjugates for targeted degradation of membrane-associated proteins. Using trastuzumab and cetuximab as model antibodies, we showed that the wild-type endoglycosidase S (Endo-S) could efficiently perform the antibody deglycosylation and simultaneous transfer of an M6P-glycan from a synthetic M6P-glycan oxazoline to the deglycosylated antibody in a one-pot manner, giving structurally well-defined antibody-M6P glycan conjugates. A two-step procedure, using wild-type Endo-S2 for deglycosylation followed by transglycosylation with an Endo-S2 mutant (D184M), was also efficient to provide M6P glycan-antibody conjugates. The chemoenzymatic approach was highly specific for Fc glycan remodeling when both Fc and Fab domains were glycosylated, as exemplified by the selective Fc-glycan remodeling of cetuximab. SPR binding analysis indicated that the M6P conjugates possessed a nanomolar range of binding affinities for the cation-independent mannose-6-phosphate receptor (CI-MPR). Preliminary cell-based assays showed that the M6P-trastuzumab and M6P-cetuximab conjugates were able to selectively degrade the membrane-associated HER2 and EGFR, respectively. This modular glycan-remodeling strategy is expected to find wide applications for antibody-based lysosome-targeted degradation of extracellular and membrane proteins.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Huiying Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jia He
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Musleh M Muthana
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Doelman W, van Kasteren SI. Synthesis of glycopeptides and glycopeptide conjugates. Org Biomol Chem 2022; 20:6487-6507. [PMID: 35903971 PMCID: PMC9400947 DOI: 10.1039/d2ob00829g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
8
|
Zhang X, Ou C, Liu H, Wang LX. Synthesis and Evaluation of Three Azide-Modified Disaccharide Oxazolines as Enzyme Substrates for Single-Step Fc Glycan-Mediated Antibody-Drug Conjugation. Bioconjug Chem 2022; 33:1179-1191. [PMID: 35543724 DOI: 10.1021/acs.bioconjchem.2c00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody-drug conjugates (ADCs) hold great promise for targeted cancer cell killing. Site-specific antibody-drug conjugation is highly desirable for synthesizing homogeneous ADCs with optimal safety profiles and high efficacy. We have recently reported that azide-functionalized disaccharide oxazolines of the Manβ1,4GlcNAc core were an efficient substrate of wild-type endoglycosidase Endo-S2 for Fc glycan remodeling and conjugation. In this paper, we report the synthesis and evaluation of new disaccharide oxazolines as enzyme substrates for examining the scope of the site-specific conjugation. Thus, azide-functionalized disaccharide oxazolines derived from Manβ1,4GlcNAc, Glcβ1,4GlcNAc, and Galβ1,4GlcNAc (LacNAc) were synthesized. Enzymatic evaluation revealed that wild-type Endo-S2 demonstrated highly relaxed substrate specificity and could accommodate all the three types of disaccharide derivatives for transglycosylation to provide site-specific azide-tagged antibodies, which were readily clicked with a payload to generate homogeneous ADCs. Moreover, we also found that Endo-S2 was able to accommodate drug-preloaded minimal disaccharide oxazolines as donor substrates for efficient glycan transfer, enabling a single-step and site-specific antibody-drug conjugation without the need of an antibody click reaction. The ability of Endo-S2 to accommodate simpler and more easily synthesized disaccharide oxazoline derivatives for Fc glycan remodeling further expanded the scope of this bioconjugation method for constructing homogeneous antibody-drug conjugates in a single-step manner. Finally, cell-based assays indicated that the synthetic homogeneous ADCs demonstrated potent targeted cancer cell killing.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Huiying Liu
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Zetzsche LE, Chakrabarty S, Narayan ARH. The Transformative Power of Biocatalysis in Convergent Synthesis. J Am Chem Soc 2022; 144:5214-5225. [PMID: 35290055 PMCID: PMC10082969 DOI: 10.1021/jacs.2c00224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
10
|
Sletten ET, Danglad-Flores J, Leichnitz S, Abragam Joseph A, Seeberger PH. Expedited synthesis of mannose-6-phosphate containing oligosaccharides. Carbohydr Res 2021; 511:108489. [PMID: 34922155 DOI: 10.1016/j.carres.2021.108489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023]
Abstract
Currently, the reaction toolbox for the functionalization of glycans assembled on solid-phase is quite limited. Automated (1 h) and manual (overnight) phosphorylation protocols that enable the solid-phase synthesis of oligosaccharides containing up to two mannose-6-phosphates are presented. Automated glycan assembly expedited access to substrates and facilitated the screening of experimental conditions.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sabrina Leichnitz
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - A Abragam Joseph
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
11
|
Hyun JY, Kim S, Lee CH, Lee HS, Shin I. Efficient Preparation and Bioactivity Evaluation of Glycan-Defined Glycoproteins. ACS Chem Biol 2021; 16:1930-1940. [PMID: 33232137 DOI: 10.1021/acschembio.0c00629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Owing to the generation of heterogeneous glycoproteins in cells, it is highly difficult to study glycoprotein-mediated biological events and to develop biomedical agents. Thus, general and efficient methods to prepare homogeneous glycoproteins are in high demand. Herein, we report a general method for the efficient preparation of homogeneous glycoproteins that utilizes a combination of genetic code expansion and chemoselective ligation techniques. In the protocol to produce glycan-defined glycoproteins, an alkyne tag-containing protein, generated by genetic encoding of an alkynylated unnatural amino acid, was quantitatively coupled via click chemistry to versatile azide-appended glycans. The glycoproteins produced by the present strategy were found to recognize mammalian cell-surface lectins and enter the cells through lectin-mediated internalization. Also, cell studies exhibited that the glycoprotein containing multiple mannose-6-phosphate residues enters diseased cells lacking specific lysosomal glycosidases by binding to the cell-surface M6P receptor, and subsequently migrates to lysosomes for efficient degradation of stored glycosphingolipids.
Collapse
Affiliation(s)
- Ji Young Hyun
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Zhang X, Liu H, Meena N, Li C, Zong G, Raben N, Puertollano R, Wang LX. Chemoenzymatic glycan-selective remodeling of a therapeutic lysosomal enzyme with high-affinity M6P-glycan ligands. Enzyme substrate specificity is the name of the game. Chem Sci 2021; 12:12451-12462. [PMID: 34603676 PMCID: PMC8480326 DOI: 10.1039/d1sc03188k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Functionalization of therapeutic lysosomal enzymes with mannose-6-phosphate (M6P) glycan ligands represents a major strategy for enhancing the cation-independent M6P receptor (CI-MPR)-mediated cellular uptake, thus improving the overall therapeutic efficacy of the enzymes. However, the minimal high-affinity M6P-containing N-glycan ligands remain to be identified and their efficient and site-selective conjugation to therapeutic lysosomal enzymes is a challenging task. We report here the chemical synthesis of truncated M6P-glycan oxazolines and their use for enzymatic glycan remodeling of recombinant human acid α-glucosidase (rhGAA), an enzyme used for treatment of Pompe disease which is a disorder caused by a deficiency of the glycogen-degrading lysosomal enzyme. Structure-activity relationship studies identified M6P tetrasaccharide oxazoline as the minimal substrate for enzymatic transglycosylation yielding high-affinity M6P glycan ligands for the CI-MPR. Taking advantage of the substrate specificity of endoglycosidases Endo-A and Endo-F3, we found that Endo-A and Endo-F3 could efficiently deglycosylate the respective high-mannose and complex type N-glycans in rhGAA and site-selectively transfer the synthetic M6P N-glycan to the deglycosylated rhGAA without product hydrolysis. This discovery enabled a highly efficient one-pot deglycosylation/transglycosylation strategy for site-selective M6P-glycan remodeling of rhGAA to obtain a more homogeneous product. The Endo-A and Endo-F3 remodeled rhGAAs maintained full enzyme activity and demonstrated 6- and 20-fold enhanced binding affinities for CI-MPR receptor, respectively. Using an in vitro cell model system for Pompe disease, we demonstrated that the M6P-glycan remodeled rhGAA greatly outperformed the commercial rhGAA (Lumizyme) and resulted in the reversal of cellular pathology. This study provides a general and efficient method for site-selective M6P-glycan remodeling of recombinant lysosomal enzymes to achieve enhanced M6P receptor binding and cellular uptake, which could lead to improved overall therapeutic efficacy of enzyme replacement therapy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Huiying Liu
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Naresh Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| |
Collapse
|
13
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
14
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
15
|
Fairbanks AJ. Applications of Shoda's reagent (DMC) and analogues for activation of the anomeric centre of unprotected carbohydrates. Carbohydr Res 2020; 499:108197. [PMID: 33256953 DOI: 10.1016/j.carres.2020.108197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
2-Chloro-1,3-dimethylimidazolinium chloride (DMC, herein also referred to as Shoda's reagent) and its derivatives are useful for numerous synthetic transformations in which the anomeric centre of unprotected reducing sugars is selectively activated in aqueous solution. As such unprotected sugars can undergo anomeric substitution with a range of added nucleophiles, providing highly efficient routes to a range of glycosides and glycoconjugates without the need for traditional protecting group manipulations. This mini-review summarizes the development of DMC and some of its derivatives/analogues, and highlights recent applications for protecting group-free synthesis.
Collapse
Affiliation(s)
- Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
16
|
Olson LJ, Misra SK, Ishihara M, Battaile KP, Grant OC, Sood A, Woods RJ, Kim JJP, Tiemeyer M, Ren G, Sharp JS, Dahms NM. Allosteric regulation of lysosomal enzyme recognition by the cation-independent mannose 6-phosphate receptor. Commun Biol 2020; 3:498. [PMID: 32908216 PMCID: PMC7481795 DOI: 10.1038/s42003-020-01211-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
The cation-independent mannose 6-phosphate receptor (CI-MPR, IGF2 receptor or CD222), is a multifunctional glycoprotein required for normal development. Through the receptor's ability to bind unrelated extracellular and intracellular ligands, it participates in numerous functions including protein trafficking, lysosomal biogenesis, and regulation of cell growth. Clinically, endogenous CI-MPR delivers infused recombinant enzymes to lysosomes in the treatment of lysosomal storage diseases. Although four of the 15 domains comprising CI-MPR's extracellular region bind phosphorylated glycans on lysosomal enzymes, knowledge of how CI-MPR interacts with ~60 different lysosomal enzymes is limited. Here, we show by electron microscopy and hydroxyl radical protein footprinting that the N-terminal region of CI-MPR undergoes dynamic conformational changes as a consequence of ligand binding and different pH conditions. These data, coupled with X-ray crystallography, surface plasmon resonance and molecular modeling, allow us to propose a model explaining how high-affinity carbohydrate binding is achieved through allosteric domain cooperativity.
Collapse
Affiliation(s)
- Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, IL, USA
- New York Structural Biology Center, New York City, NY, 10027, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Amika Sood
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
17
|
Kanzaki M, Tsukimura T, Chiba Y, Sakuraba H, Togawa T. Surface plasmon resonance analysis of complex formation of therapeutic recombinant lysosomal enzymes with domain 9 of human cation-independent mannose 6-phosphate receptor. Mol Genet Metab Rep 2020; 25:100639. [PMID: 32884906 PMCID: PMC7451420 DOI: 10.1016/j.ymgmr.2020.100639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
The efficacy of enzyme replacement therapy (ERT) for lysosomal storage diseases (LSDs) possibly depends on the cellular uptake of recombinant lysosomal enzymes (LEs), and it is known that cation-independent mannose 6-phosphate receptor (CI-M6PR) on the cell membrane is predominantly involved in the endocytosis of many LEs. To examine the biomolecular interaction between therapeutic LEs and CI-M6PR, we biophysically analyzed the complex formation of four LEs available with domain 9 of human CI-M6PR, a binding site of the receptor, by means of surface plasmon resonance (SPR) biosensor assays. The results revealed that the affinity of the LEs for domain 9 of the receptor increased in the following order: laronidase, agalsidase beta, idursulfase, and alglucosidase alfa; and the high affinity of laronidase for domain 9 of CI-M6PR was due to fast complex formation rather than slow dissociation of the complex. The affinity of the enzymes for domain 9 of CI-M6PR almost coincided with their cellular uptake. The SPR biosensor assay is sensitive and provides important information for the development of effective therapeutic LEs for LSDs. The biomolecular interaction between LEs and domain 9 of human CI-M6PR was examined by means of SPR biosensor assays. The binding of LEs with the receptor increased in the order: laronidase, agalsidase beta, idursulfase, and agalsidase alfa. The strong binding of laronidase with the receptor was due to fast complex formation rather than slow dissociation of the complex. The affinity of the LEs for domain 9 of CI-M6PR almost coincided with the cellular uptake of the enzymes.
Collapse
Affiliation(s)
- Minori Kanzaki
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasunori Chiba
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Center 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
18
|
Chao Q, Ding Y, Chen ZH, Xiang MH, Wang N, Gao XD. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front Chem 2020; 8:513. [PMID: 32612979 PMCID: PMC7309569 DOI: 10.3389/fchem.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Asparagine (N)-linked glycosylation is one of the most common co- and post-translational modifications of both intra- and extracellularly distributing proteins, which directly affects their biological functions, such as protein folding, stability and intercellular traffic. Production of the structural well-defined homogeneous N-glycans contributes to comprehensive investigation of their biological roles and molecular basis. Among the various methods, chemo-enzymatic approach serves as an alternative to chemical synthesis, providing high stereoselectivity and economic efficiency. This review summarizes some recent advances in the chemo-enzymatic methods for the production of N-glycans, including the preparation of substrates and sugar donors, and the progress in the glycosyltransferases characterization which leads to the diversity of N-glycan synthesis. We discuss the bottle-neck and new opportunities in exploiting the chemo-enzymatic synthesis of N-glycans based on our research experiences. In addition, downstream applications of the constructed N-glycans, such as automation devices and homogeneous glycoproteins synthesis are also described.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins and can exert profound effects on the inherent properties and biological functions of a given protein. Structurally well-defined homogeneous glycopeptides are highly demanded for functional studies and biomedical applications. Various chemical and chemoenzymatic methods have been reported so far for synthesizing different N- and O-glycopeptides. Among them, the chemoenzymatic method based on an endoglycosidase-catalyzed ligation of free N-glycans and GlcNAc-tagged peptides is emerging as a highly efficient method for constructing large complex N-glycopeptides. This chemoenzymatic approach consists of two key steps. The first step is to prepare the GlcNAc peptide through automated solid-phase peptide synthesis (SPPS) by incorporating an Asn-linked GlcNAc moiety at a predetermined glycosylation site; and the second step is to transfer an N-glycan from the corresponding N-glycan oxazoline en bloc to the GlcNAc peptide by an endoglycosidase or its efficient glycosynthase mutant. In this chapter, we provide detailed procedures of this chemoenzymatic method by demonstrating the synthesis of two HIV-1 V3 glycopeptide antigens carrying a high-mannose-type and a complex-type N-glycan, respectively. The described procedures should be generally applicable for the synthesis of other biologically important N-glycopeptides.
Collapse
Affiliation(s)
- Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
| |
Collapse
|
20
|
Fairbanks AJ. Chemoenzymatic synthesis of glycoproteins. Curr Opin Chem Biol 2019; 53:9-15. [DOI: 10.1016/j.cbpa.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
|
21
|
Van Landuyt L, Lonigro C, Meuris L, Callewaert N. Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 2019; 60:17-28. [DOI: 10.1016/j.copbio.2018.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
|
22
|
Marqvorsen MHS, Paramasivam S, Doelman W, Fairbanks AJ, van Kasteren SI. Efficient synthesis and enzymatic extension of an N-GlcNAz asparagine building block. Chem Commun (Camb) 2019; 55:5287-5290. [PMID: 30994122 DOI: 10.1039/c9cc02051a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Azidoacetyl-d-glucosamine (GlcNAz) is a particularly useful tool in chemical biology as the azide is a metabolically stable yet accessible handle within biological systems. Herein, we report a practical synthesis of FmocAsn(N-Ac3GlcNAz)OH, a building block for solid phase peptide synthesis (SPPS). Protecting group manipulations are minimised by taking advantage of the inherent chemoselectivity of phosphine-mediated azide reduction, and the resulting glycosyl amine is employed directly in the opening of Fmoc protected aspartic anhydride. We show potential application of the building block by establishing it as a substrate for enzymatic glycan extension using sugar oxazolines of varying size and biological significance with several endo-β-N-acetylglucosaminidases (ENGases). The added steric bulk resulting from incorporation of the azide is shown to have no or a minor impact on the yield of enzymatic glycan extension.
Collapse
Affiliation(s)
| | - Sivasinthujah Paramasivam
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Ward Doelman
- Leiden Institute of Chemistry (LIC), Division of Bio-Organic Chemistry, Einsteinweg 55, Leiden, The Netherlands.
| | - Antony John Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Sander Izaäk van Kasteren
- Leiden Institute of Chemistry (LIC), Division of Bio-Organic Chemistry, Einsteinweg 55, Leiden, The Netherlands.
| |
Collapse
|
23
|
Hyun JY, Kim S, Lee HS, Shin I. A Glycoengineered Enzyme with Multiple Mannose-6-Phosphates Is Internalized into Diseased Cells to Restore Its Activity in Lysosomes. Cell Chem Biol 2018; 25:1255-1267.e8. [DOI: 10.1016/j.chembiol.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/20/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
|
24
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Meng B, Wang J, Wang Q, Serianni AS, Pan Q. Synthesis of high-mannose oligosaccharides containing mannose-6-phosphate residues using regioselective glycosylation. Carbohydr Res 2018; 467:23-32. [PMID: 30075362 PMCID: PMC6121786 DOI: 10.1016/j.carres.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/23/2022]
Abstract
Molecular recognition of mannose-6-phosphate (M6P)-modified oligosaccharides by transmembrane M6P receptors is a key signaling event in lysosomal protein trafficking in vivo. Access to M6P-containing high-mannose N-glycans is essential to achieving a thorough understanding of the M6P ligand-receptor recognition process. Herein we report the application of a versatile and reliable chemical strategy to prepare asymmetric di-antennary M6P-tagged high-mannose oligosaccharides in >20% overall yield and in high purity (>98%). Regioselective chemical glycosylation coupled with effective phosphorylation and product purification protocols were applied to rapidly assemble these oligosaccharides. The development of this synthetic strategy simplifies the preparation of M6P-tagged high-mannose oligosaccharides, which will improve access to these compounds to study their structures and biological functions.
Collapse
Affiliation(s)
- Bo Meng
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Jun Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Quanli Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Anthony S Serianni
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, USA
| | - Qingfeng Pan
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA.
| |
Collapse
|
26
|
Carlo U, Yasuhiro K. Recent advances in the chemical synthesis of N-linked glycoproteins. Curr Opin Chem Biol 2018; 46:130-137. [PMID: 30144649 DOI: 10.1016/j.cbpa.2018.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/15/2022]
Abstract
Glycoproteins have many biological roles. Due to the heterogeneity of natural glycoproteins in the sugar part resulting in glycoforms the evaluation of the biochemical roles of individual glycans remains difficult to investigate. Since pure glycoforms are still not accessible via recombinant or chromatographic methods, the synthesis of proteins with uniform posttranslational modifications using ligation methods or glycan remodeling are currently the best options for accessing these targets. Recent developments in chemical protein synthesis, the assembly of N-glycans and the use of enzymatic procedures have provided access to many glycoproteins with modifications as well as their analogs.
Collapse
Affiliation(s)
- Unverzagt Carlo
- Bioorganic Chemistry, Gebäude NWI, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Kajihara Yasuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
27
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
28
|
Lysosomal Targeting Enhancement by Conjugation of Glycopeptides Containing Mannose-6-phosphate Glycans Derived from Glyco-engineered Yeast. Sci Rep 2018; 8:8730. [PMID: 29880804 PMCID: PMC5992200 DOI: 10.1038/s41598-018-26913-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 05/21/2018] [Indexed: 11/08/2022] Open
Abstract
Many therapeutic enzymes for lysosomal storage diseases require a high content of mannose-6-phosphate (M6P) glycan, which is important for cellular uptake and lysosomal targeting. We constructed glyco-engineered yeast harboring a high content of mannosylphosphorylated glycans, which can be converted to M6P glycans by uncapping of the outer mannose residue. In this study, the cell wall of this yeast was employed as a natural M6P glycan source for conjugation to therapeutic enzymes. The extracted cell wall mannoproteins were digested by pronase to generate short glycopeptides, which were further elaborated by uncapping and α(1,2)-mannosidase digestion steps. The resulting glycopeptides containing M6P glycans (M6PgPs) showed proper cellular uptake and lysosome targeting. The purified M6PgPs were successfully conjugated to a recombinant acid α-glucosidase (rGAA), used for the treatment of Pompe disease, by two-step reactions using two hetero-bifunctional crosslinkers. First, rGAA and M6PgPs were modified with crosslinkers containing azide and dibenzocyclooctyne, respectively. In the second reaction using copper-free click chemistry, the azide-functionalized rGAA was conjugated with dibenzocyclooctyne-functionalized M6PgPs without the loss of enzyme activity. The M6PgP-conjugated rGAA had a 16-fold higher content of M6P glycan than rGAA, which resulted in greatly increased cellular uptake and efficient digestion of glycogen accumulated in Pompe disease patient fibroblasts.
Collapse
|
29
|
Fairbanks AJ. The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem Soc Rev 2018; 46:5128-5146. [PMID: 28681051 DOI: 10.1039/c6cs00897f] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endo-β-N-acetylglucosaminidases (ENGases) are an enzyme class (EC 3.2.1.96) produced by a range of organisms, ranging from bacteria, through fungi, to higher order species, including humans, comprising two-sub families of glycosidases which all cleave the chitobiose core of N-linked glycans. Synthetic applications of these enzymes, i.e. to catalyse the reverse of their natural hydrolytic mode of action, allow the attachment of N-glycans to a wide variety of substrates which contain an N-acetylglucosamine (GlcNAc) residue to act as an 'acceptor' handle. The use of N-glycan oxazolines, high energy intermediates on the hydrolytic pathway, as activated donors allows their high yielding attachment to almost any amino acid, peptide or protein that contains a GlcNAc residue as an acceptor. The synthetic effectiveness of these biocatalysts has been significantly increased by the production of mutant glycosynthases; enzymes which can still catalyse synthetic processes using oxazolines as donors, but which do not hydrolyse the reaction products. ENGase biocatalysts are now finding burgeoning application for the production of biologically active glycopeptides and glycoproteins, including therapeutic monoclonal antibodies (mAbs) for which the oligosaccharides have been remodelled to optimise effector functions.
Collapse
Affiliation(s)
- Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
30
|
Fairbanks AJ. Synthetic and semi-synthetic approaches to unprotected N-glycan oxazolines. Beilstein J Org Chem 2018; 14:416-429. [PMID: 29520306 PMCID: PMC5827820 DOI: 10.3762/bjoc.14.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
N-Glycan oxazolines have found widespread use as activated donor substrates for endo-β-N-acetylglucosaminidase (ENGase) enzymes, an important application that has correspondingly stimulated interest in their production, both by total synthesis and by semi-synthesis using oligosaccharides isolated from natural sources. Amongst the many synthetic approaches reported, the majority rely on the fabrication (either by total synthesis, or semi-synthesis from locust bean gum) of a key Manβ(1-4)GlcNAc disaccharide, which can then be elaborated at the 3- and 6-positions of the mannose unit using standard glycosylation chemistry. Early approaches subsequently relied on the Lewis acid catalysed conversion of peracetylated N-glycan oligosaccharides produced in this manner into their corresponding oxazolines, followed by global deprotection. However, a key breakthrough in the field has been the development by Shoda of 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and related reagents, which can direct convert an oligosaccharide with a 2-acetamido sugar at the reducing terminus directly into the corresponding oxazoline in water. Therefore, oxazoline formation can now be achieved in water as the final step of any synthetic sequence, obviating the need for any further protecting group manipulations, and simplifying synthetic strategies. As an alternative to total synthesis, significant quantities of several structurally complicated N-glycans can be isolated from natural sources, such as egg yolks and soy bean flour. Enzymatic transformations of these materials, in concert with DMC-mediated oxazoline formation as a final step, allow access to a selection of N-glycan oxazoline structures both in larger quantities and in a more expedient fashion than is achievable by total synthesis.
Collapse
Affiliation(s)
- Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
31
|
Bennett LD, Yang Q, Berquist BR, Giddens JP, Ren Z, Kommineni V, Murray RP, White EL, Holtz BR, Wang LX, Marcel S. Implementation of Glycan Remodeling to Plant-Made Therapeutic Antibodies. Int J Mol Sci 2018; 19:E421. [PMID: 29385073 PMCID: PMC5855643 DOI: 10.3390/ijms19020421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/27/2018] [Indexed: 11/16/2022] Open
Abstract
N-glycosylation profoundly affects the biological stability and function of therapeutic proteins, which explains the recent interest in glycoengineering technologies as methods to develop biobetter therapeutics. In current manufacturing processes, N-glycosylation is host-specific and remains difficult to control in a production environment that changes with scale and production batches leading to glycosylation heterogeneity and inconsistency. On the other hand, in vitro chemoenzymatic glycan remodeling has been successful in producing homogeneous pre-defined protein glycoforms, but needs to be combined with a cost-effective and scalable production method. An efficient chemoenzymatic glycan remodeling technology using a plant expression system that combines in vivo deglycosylation with an in vitro chemoenzymatic glycosylation is described. Using the monoclonal antibody rituximab as a model therapeutic protein, a uniform Gal2GlcNAc2Man3GlcNAc2 (A2G2) glycoform without α-1,6-fucose, plant-specific α-1,3-fucose or β-1,2-xylose residues was produced. When compared with the innovator product Rituxan®, the plant-made remodeled afucosylated antibody showed similar binding affinity to the CD20 antigen but significantly enhanced cell cytotoxicity in vitro. Using a scalable plant expression system and reducing the in vitro deglycosylation burden creates the potential to eliminate glycan heterogeneity and provide affordable customization of therapeutics' glycosylation for maximal and targeted biological activity. This feature can reduce cost and provide an affordable platform to manufacture biobetter antibodies.
Collapse
Affiliation(s)
- Lindsay D Bennett
- Metropolitan Nashville Police Department Crime Lab, 400 Myatt Drive, Madison, TN 37115, USA.
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Brian R Berquist
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Zhongjie Ren
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Vally Kommineni
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Ryan P Murray
- Lonza Houston, Inc., 8066 El Rio St., Houston, TX 77054, USA.
| | - Earl L White
- MDx BioAnalytical Laboratory, Inc., 5890 Imperial loop, Suite 12, College Station, TX 77845, USA.
| | - Barry R Holtz
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Sylvain Marcel
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| |
Collapse
|
32
|
Abstract
The many advances in glycoscience have more and more brought to light the crucial role of glycosides and glycoconjugates in biological processes. Their major influence on the functionality and stability of peptides, cell recognition, health and immunity and many other processes throughout biology has increased the demand for simple synthetic methods allowing the defined syntheses of target glycosides. Additional interest in glycoside synthesis has arisen with the prospect of producing sustainable materials from these abundant polymers. Enzymatic synthesis has proven itself to be a promising alternative to the laborious chemical synthesis of glycosides by avoiding the necessity of numerous protecting group strategies. Among the biocatalytic strategies, glycosynthases, genetically engineered glycosidases void of hydrolytic activity, have gained much interest in recent years, enabling not only the selective synthesis of small glycosides and glycoconjugates, but also the production of highly functionalized polysaccharides. This review provides a detailed overview over the glycosylation possibilities of the variety of glycosynthases produced until now, focusing on the transfer of the most common glucosyl-, galactosyl-, xylosyl-, mannosyl-, fucosyl-residues and of whole glycan blocks by the different glycosynthase enzyme variants.
Collapse
Affiliation(s)
- Marc R Hayes
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426 Jülich, Germany.
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426 Jülich, Germany.
- Forschungszentrum Jülich, IBG-1: Biotechnology, 52426 Jülich, Germany.
| |
Collapse
|
33
|
Fei X, Zavorka ME, Malik G, Connelly CM, MacDonald RG, Berkowitz DB. General Linker Diversification Approach to Bivalent Ligand Assembly: Generation of an Array of Ligands for the Cation-Independent Mannose 6-Phosphate Receptor. Org Lett 2017; 19:4267-4270. [PMID: 28753028 PMCID: PMC6208139 DOI: 10.1021/acs.orglett.7b01914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.
Collapse
Affiliation(s)
- Xiang Fei
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Megan E. Zavorka
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Guillaume Malik
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Christopher M. Connelly
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Richard G. MacDonald
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
34
|
Orwenyo J, Cai H, Giddens J, Amin MN, Toonstra C, Wang LX. Systematic Synthesis and Binding Study of HIV V3 Glycopeptides Reveal the Fine Epitopes of Several Broadly Neutralizing Antibodies. ACS Chem Biol 2017; 12:1566-1575. [PMID: 28414420 DOI: 10.1021/acschembio.7b00319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A class of new glycan-reactive broadly neutralizing antibodies represented by PGT121, 10-1074, and PGT128 has recently been discovered that targets specific N-glycans and the peptide region around the V3 domain. However, the glycan specificity and fine epitopes of these bNAbs remain to be further defined. We report here a systematic chemoenzymatic synthesis of homogeneous V3 glycopeptides derived from the HIV-1 JR-FL strain carrying defined N-glycans at N332, N301, and N295 sites. Antibody binding studies revealed that both the nature and site of glycosylation in the context of the V3 domain were critical for high-affinity binding. It was found that antibody PGT128 exhibited specificity for high-mannose N-glycan with glycosylation site promiscuity, PGT121 showed binding specificity for glycopeptide carrying a sialylated N-glycan at N301 site, and 10-1074 was specific for glycopeptide carrying a high-mannose N-glycan at N332 site. The synthesis and binding studies permit a detailed assessment of the glycan specificity and the requirement of peptide in the context of antibody-antigen recognition. The identified glycopeptides can be used as potential templates for HIV vaccine design.
Collapse
Affiliation(s)
- Jared Orwenyo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States
| | - John Giddens
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States
| | - Mohammed N. Amin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States
| | - Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
35
|
Zhou J, Lv S, Zhang D, Xia F, Hu W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J Org Chem 2017; 82:2599-2621. [DOI: 10.1021/acs.joc.6b03017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Siying Lv
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Zhang
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|