1
|
He HS, Li YB, Luo J, Ge Q, Wu J, Zou D, Xu Y, Yin WJ. Tunable transport mode of polaron in polarized Janus MoSSe few-layer structures: a constrained density functional theory study. Dalton Trans 2025; 54:4276-4285. [PMID: 39918589 DOI: 10.1039/d4dt02909g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The transport properties of polarons in a heterostructure are of great importance, since they can effectively affect the efficiency of photoelectric devices. However, the underlying mechanism of the polaron transfer rate and mode along intralayers or interlayers is still far from conclusive. Here, the stability and transport behaviors of polarons in polarized MoSSe few-layer structures were systematically investigated by constrained density functional theory (CDFT). It shows that the electron polarons in a MoSSe monolayer are more stable but have a smaller transfer rate than that of the hole polarons. Although the stability of the polarons will be slightly decreased by forming a parallel polarization heterostructure, the magnitude of the electron polaron transfer rate can be remarkably increased by 5 times and 71 times in their double- and three-layer case. In particular, it was unexpected to find that the original transfer mode along intralayer (in-plane) in monolayer can be completely overturned to along the interlayer (out-of-plane) by forming different stackings or increasing the MoSSe thickness. This unique behavior is strongly related to the polarization and the synergy effect of electronic coupling Hαβ and reorganization energy λ. Our findings offer a new perspective for the application of Janus MoSSe structures in optoelectronic devices and further advancement in the field of polarized low-dimensional materials.
Collapse
Affiliation(s)
- Hong-Shun He
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yun-Bo Li
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jifeng Luo
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qingxia Ge
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jian Wu
- School of Physics and Materials, Nanchang University, Nanchang 330031, China
| | - Daifeng Zou
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ying Xu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wen-Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Zhang C, Zhong Y, Tao ZG, Qin X, Shang H, Lan Z, Prezhdo OV, Gong XG, Chu W, Xiang H. Advancing nonadiabatic molecular dynamics simulations in solids with E(3) equivariant deep neural hamiltonians. Nat Commun 2025; 16:2033. [PMID: 40016241 PMCID: PMC11868637 DOI: 10.1038/s41467-025-57328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
Non-adiabatic molecular dynamics (NAMD) simulations have become an indispensable tool for investigating excited-state dynamics in solids. In this work, we propose a general framework, N2AMD (Neural-Network Non-Adiabatic Molecular Dynamics), which employs an E(3)-equivariant deep neural Hamiltonian to boost the accuracy and efficiency of NAMD simulations. Distinct from conventional machine learning methods that predict key quantities in NAMD, N2AMD computes these quantities directly with a deep neural Hamiltonian, ensuring excellent accuracy, efficiency, and consistency. N2AMD not only achieves impressive efficiency in performing NAMD simulations at the hybrid functional level within the framework of the classical path approximation (CPA), but also demonstrates great potential in predicting non-adiabatic coupling vectors and suggests a method to go beyond CPA. Furthermore, N2AMD demonstrates excellent generalizability and enables seamless integration with advanced NAMD techniques and infrastructures. Taking several extensively investigated semiconductors as the prototypical system, we successfully simulate carrier recombination in both pristine and defective systems at large scales where conventional NAMD often significantly underestimates or even qualitatively incorrectly predicts lifetimes. This framework offers a reliable and efficient approach for conducting accurate NAMD simulations across various condensed materials.
Collapse
Affiliation(s)
- Changwei Zhang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Yang Zhong
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Zhi-Guo Tao
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Xinming Qin
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Honghui Shang
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Oleg V Prezhdo
- Department of Chemistry and Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xin-Gao Gong
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China.
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Chu H, Zhao J, Yang F, Hu Z. Effects of Intrinsic Defects on the Carrier Lifetime in CdZnTe: Insights from Ab Initio Calculations. J Phys Chem Lett 2025; 16:1191-1198. [PMID: 39849297 DOI: 10.1021/acs.jpclett.4c03355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination. The findings reveal that Te substitution at the Cd site (TeCd) and Te interstitial (Tei) defects expedite recombination by introducing intermediate energy levels. The coupling of new energy levels in Te vacancy (VTe) with the conduction band minimum (CBM) slows down electron release and results in an extended recombination time. Cd substitution at the Te site (CdTe) and Cd interstitial (Cdi) defects enhance nonadiabatic coupling (NAC) to accelerate the recombination. In contrast, Cd vacancy (VCd) diminishes NAC through weakening carrier coupling with high-frequency phonons and leads to a deceleration of the recombination rate. Overall, the intrinsic defects may change electron structures to vary NAC, which is critical for the recombination rate. It is believed that this research may benefit the understanding of defects on the carriers' lifetime in CZT and provide hints for further optimizing the performance of CZT material in nuclear radiation detection.
Collapse
Affiliation(s)
- Hongqin Chu
- School of Physics, Nankai University, Tianjin 300071, China
| | - Jin Zhao
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fan Yang
- School of Physics, Nankai University, Tianjin 300071, China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Feng Y, Gong S, Wang Y, Ban C, Qu X, Ma J, Duan Y, Lin C, Yu D, Xia L, Chen X, Tao X, Gan L, Zhou X. Noble-Metal-Free Cocatalysts Reinforcing Hole Consumption for Photocatalytic Hydrogen Evolution with Ultrahigh Apparent Quantum Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412965. [PMID: 39723725 DOI: 10.1002/adma.202412965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H2 yield rates without relying on expensive noble metals. By integrating femtosecond transient absorption spectroscopy with in situ characterizations and theoretical calculations, the rapid hole consumption is compellingly confirmed, which in turn promotes the effective separation and migration of photo-generated carriers. The optimized catalyst delivers an impressive photocatalytic H2 yield rate of 57.84 mmol gcat -1 h-1, coupled with an ultrahigh apparent quantum efficiency reaching up to 65.8%. Additionally, a flow-type quartz microreactor is assembled using the optimal catalyst thin film, which achieves a notable H2 yield efficiency of 0.102 mL min-1 and maintains high stability over 1260 min of continuous operation. The strategy of reinforcing hole consumption through noble-metal-free cocatalysts establishes a promising pathway for scalable and economically viable solar H2 production.
Collapse
Affiliation(s)
- Yajie Feng
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Shaokuan Gong
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Wang
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Xianlin Qu
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jiangping Ma
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Youyu Duan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Chi Lin
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Danmei Yu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Lu Xia
- Mechanical Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Xihan Chen
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoping Tao
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Liyong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 401331, China
- Chongqing Institute of New Energy Storage Material and Equipment, Chongqing, 401120, China
| | - Xiaoyuan Zhou
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 401331, China
- Chongqing Institute of New Energy Storage Material and Equipment, Chongqing, 401120, China
| |
Collapse
|
5
|
Chen G, Fu C, Zhang W, Gong W, Ma J, Ji X, Qian L, Feng X, Hu C, Long R, Xiong Y. Solar-driven production of renewable chemicals via biomass hydrogenation with green methanol. Nat Commun 2025; 16:665. [PMID: 39809823 PMCID: PMC11733029 DOI: 10.1038/s41467-025-56094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO2 supported Cu single-atom catalyst with a four-coordinated Cu1-O4 structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential. By combining in situ soft X-ray absorption spectroscopy with theoretical calculations, we successfully identify the dynamic evolution of Cu sites along with the biomass hydrogenation and methanol oxidation, where the tandem process is enabled by the photogenerated electrons and holes to complete a chemical cycle. The concept of solar-driven biomass hydrogenation proposed here provides an efficient and sustainable methodology for the sustainable production of renewable chemicals.
Collapse
Affiliation(s)
- Guangyu Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Cenfeng Fu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Wenhua Zhang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Wanbing Gong
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Jun Ma
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, PR China
| | - Xiaomin Ji
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lisheng Qian
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xuefei Feng
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Chuansheng Hu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ran Long
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Yujie Xiong
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, PR China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, PR China.
| |
Collapse
|
6
|
Xia S, Wang T, Ren Z, Yang X, Guo Q, Zhou C. Adsorption Structure-Activity Correlation in the Photocatalytic Chemistry of Methanol and Water on TiO 2(110). Acc Chem Res 2024. [PMID: 39538113 DOI: 10.1021/acs.accounts.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ConspectusPhotocatalysis, a process involving light absorption (band gap excitation), charge separation, interfacial charge transfer, and surface redox reactions, has attracted intensive attention because of the potential applications in solar to fuel conversion. Despite the great efforts devoted to the design of materials and optimization of charge separation and overall efficiency, the molecular mechanism of photocatalytic reactions, for example, water oxidation, is still unclear, mainly because of the complexity of powder catalysts and the aqueous environment which prevent the direct experimental detection of adsorption sites, surface species, and charge/energy transfer dynamics. Without direct evidence, the charge transfer and elementary reaction steps remain elusive, and misleading conclusions are sometimes drawn. For instance, the positively charged 5-fold coordinated Ti sites (Ti5cs) on TiO2 surfaces are argued to propel holes and therefore cannot be active sites for oxidative reactions, regardless of the demonstration by scanning tunneling microscopy (STM). Direct site-specific measurements are thus highly demanded. Surface science studies, which rely on well-defined single crystals and ultrahigh vacuum based techniques, can identify the active sites and active species at the catalyst surfaces and measure the interfacial electronic structure and energy of desorbing species for charge transfer analysis, providing direct evidence for investigating the photocatalytic reaction mechanism at the molecular level.In this Account, the elementary photocatalytic chemistry of methanol and water on TiO2, which are investigated by surface science techniques such as atom-resolved STM, ensemble-averaged mass spectrometer based temperature-programmed desorption/time-of-flight spectroscopy, and photoelectron spectroscopy in combination with theoretical calculations, will be described. Both methanol and water can be photocatalytically oxidized at Ti5cs, producing adsorbed formaldehyde and gaseous •OH radicals, respectively, under ultraviolet (UV) light irradiation. The photocatalytic activity shows salient adsorption structure including adsorption site (terminal/bridging), adsorption state (molecular/dissociative) and adsorption configuration (monomer/cluster) dependence, which comes from the ability to generate terminal anions which are capable of capturing photogenerated holes and exhibit superior photocatalytic activity over their parent molecules. These studies reveal the origin of the correlation between photocatalytic activity and adsorption structure of CH3OH and H2O on TiO2 surfaces and suggest that the simple criteria widely used to analyze the feasibility of charge transfer, i.e., the relative position of the band edges and the molecular orbitals of adsorbates, should be replaced by the change of Gibbs free energy of the charge trapping reaction from the thermodynamic point of view. These results contribute to the fundamental understanding of photocatalysis. Based on our research, future state-resolved and time-resolved studies can provide deeper insight into the charge and energy transfer and transient intermediate species, which will benefit the depiction of the overall photocatalytic reactions, for example, the photocatalyzed oxygen evolution reaction from water.
Collapse
Affiliation(s)
- Shucai Xia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Tianjun Wang
- Institute of Advanced Facilities, 268 Zhenyuan Street, Shenzhen, Guangdong 518107, P. R. China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, P. R. China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, P. R. China
| | - Chuanyao Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, 100049 Beijing, P. R. China
| |
Collapse
|
7
|
Zhou M, Chen D, Liu Y, Wang H. Stretching vibration driven adiabatic transfer kinetics for photoexcited hole transfer from semiconductor to adsorbate. Nat Commun 2024; 15:8744. [PMID: 39384738 PMCID: PMC11479618 DOI: 10.1038/s41467-024-52991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
Interfacial hole transfer from a photoexcited semiconductor to surface adsorbates is pivotal for initiating solar-to-chemical energy conversion, yet the atomic-level transfer kinetics remains elusive. Using the methoxy/TiO2(110) system as an archetype, here we elucidate the hole transfer mechanism from hole-trapping lattice oxygen to the methoxy adsorbate at gas/solid and liquid/solid interfaces through molecular dynamics simulations and static minimum energy path calculations. Instead of direct nonadiabatic hopping, we uncover an adiabatic migration pathway adapted to local substrate relaxation, driven by a bond-stretching mechanism supported by stronger Ti-O stretching vibrations. Notably, this mechanism persists at the aqueous methoxy/TiO2(110) interface, albeit hindered by interfacial water and coadsorbates. Surprisingly, the hole transfer barriers across various photoexcited adsorbate/TiO2 interfaces correlate more closely with the vertical excitation energies of the adsorbates rather than their redox potentials, indicating an early-type transition-state nature. These insights deepen our understanding of elementary hole transfer kinetics in surface photochemistry.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China
| | - Dingming Chen
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Zhang G, Zhang T, Xia Q, Chen Q, Wang J. Enhanced Carrier Lifetime and Mobility in Monolayer NbOI 2. J Phys Chem Lett 2024; 15:10032-10038. [PMID: 39321330 DOI: 10.1021/acs.jpclett.4c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The lifetime and mobility of hot carriers are critical parameters for assessing the performance of optoelectronic materials, as they directly impact the response speed and operational efficiency of devices. Combining first-principles calculations with nonadiabatic molecular dynamics (NAMD) simulations, we systematically investigated the electronic properties and carrier dynamics of monolayer NbOI2. Our findings indicate that, at room temperature, this material demonstrates a carrier lifetime of up to ∼13 ns and an electron mobility reaching as high as ∼9 × 103 cm2 V-1 s-1. The low Young's modulus makes it susceptible to deformation under external stress, and we found that the carrier lifetime extends to ∼40 ns under a 4% tensile strain, along with a significant increase in hole mobility. This study elucidates the carrier dynamics in monolayer NbOI2, facilitating its potential application in future flexible optoelectronic devices.
Collapse
Affiliation(s)
- Guitao Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Tingbo Zhang
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Xia
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Suzhou Laboratory, Suzhou 215125, China
| |
Collapse
|
9
|
Sun K, Huang Y, Sun F, Wang Q, Zhou Y, Wang J, Zhang Q, Zheng X, Fan F, Luo Y, Jiang J, Jiang HL. Dynamic structural twist in metal-organic frameworks enhances solar overall water splitting. Nat Chem 2024; 16:1638-1646. [PMID: 39134777 DOI: 10.1038/s41557-024-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Photocatalytic overall water splitting holds great promise for solar-to-hydrogen conversion. Maintaining charge separation is a major challenge but is key to unlocking this potential. Here we discovered a metal-organic framework (MOF) that shows suppressed charge recombination. This MOF features electronically insulated Zn2+ nodes and two chemically equivalent, yet crystallographically independent, linkers. These linkers behave as an electron donor-acceptor pair with non-overlapping band edges. Upon photoexcitation, the MOF undergoes a dynamic excited-state structural twist, inducing orbital rearrangements that forbid radiative relaxation and thereby promote a long-lived charge-separated state. As a result, the MOF achieves visible-light photocatalytic overall water splitting, in the presence of co-catalysts, with an apparent quantum efficiency of 3.09 ± 0.32% at 365 nm and shows little activity loss in 100 h of consecutive runs. Furthermore, the dynamic excited-state structural twist is also successfully extended to other photocatalysts. This strategy for suppressing charge recombination will be applicable to diverse photochemical processes beyond overall water splitting.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, People's Republic of China
| | - Fusai Sun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, People's Republic of China
| | - Qingyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yujie Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jingxue Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, People's Republic of China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, People's Republic of China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, People's Republic of China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
10
|
Lei D, Wang L, Lv Y, Luo N, Wang Z. A Comprehensive Review of Solar Photocatalysis & Photothermal Catalysis for Hydrogen Production from Biomass: from Material Characteristics to Engineering Application. Chemistry 2024; 30:e202401486. [PMID: 38865111 DOI: 10.1002/chem.202401486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Biomass photoreforming is a promising way of producing sustainable hydrogen thanks to the abundant sources of biomass feedstocks. Solar energy provides the heat and driven force to initial biomass oxidation coupled with H2 evolution. Currently, biomass photoreforming is still far from plant-scale applications due to the lower solar energy utilization efficiencies, the low H2 yield, and the lack of appropriate photoreactors. The production of H2 from photoreforming of native biomass and platform molecules was summarized and discussed with particular attention to the prospects of scaling up the catalysis technology for mass hydrogen production. The types of photoreforming, including photocatalysis and photothermal catalysis, were discussed, consequently considering the different requirements for photoreactors. We also reviewed the photoreactors that support biomass photoreforming. Numerical simulation methods were implemented for the solid-liquid two-phase flow and inter-particle radiative transfer involved in the reaction process. Developing concentrated photothermal catalytic flowed reactors is beneficial to scale-up catalytic hydrogen production from biomass.
Collapse
Affiliation(s)
- Dongqiang Lei
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| | - Linhao Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| | - Yue Lv
- School of Energy & Power Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Nengchao Luo
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhifeng Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Pei W, Hou L, Wang Z, Tian J, Liu Y, Tu Y, Zhao J, Zhou S. Unraveling the Photocatalytic Mechanism of N 2 Fixation on Single Ruthenium Sites. J Phys Chem Lett 2024; 15:7708-7715. [PMID: 39041828 DOI: 10.1021/acs.jpclett.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Photocatalytic N2 fixation offers promise for ammonia synthesis, yet traditional photocatalysts encounter challenges such as low efficiency and short carrier lifetimes. Atomically precise ligand-metal nanoclusters emerge as a solution to address these issues, but the photophysical mechanism remains elusive. Inspired by the synthesis of Au4Ru2 NCs, we investigate the mechanism behind N2 activation on Au4Ru2, focusing on photoactivity and carrier dynamics. Our results reveal that vibration of the Ru-N bond in the low-frequency domain suppresses the deactivation process leading to a long lifetime of the excited N2. By the strategy of isoelectronic substitution, we identify the single Ru sites as the active sites for N2 activation. Furthermore, these ligand-protected M4Ru2 (M = Au, Ag, Cu) NCs show robust thermal stability in explicit solvation and decent photochemical activity for N2 activation and NH3 production. These findings have significant implications for the optimization of catalysts for sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Lei Hou
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zi Wang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jiaqi Tian
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yongfeng Liu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Si Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Gao Y, Zhang Q, Hu W, Yang J. First-Principles Computational Screening of Two-Dimensional Polar Materials for Photocatalytic Water Splitting. ACS NANO 2024; 18:19381-19390. [PMID: 38995677 DOI: 10.1021/acsnano.4c06544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The band gap constraint of the photocatalyst for overall water splitting limits the utilization of solar energy. A strategy to broaden the range of light absorption is employing a two-dimensional (2D) polar material as photocatalyst, benefiting from the deflection of the energy level due to their intrinsic internal electric field. Here, by using first-principles computational screening, we search for 2D polar semiconductors for photocatalytic water splitting from both ground- and excited-state perspectives. Applying a unique electronic structure model of polar materials, there are 13 photocatalyst candidates for the hydrogen evolution reaction (HER) and 8 candidates for the oxygen evolution reaction (OER) without barrier energies from the perspective of the ground-state free energy variation calculation. In particular, Cu2As4Cl2S3 and Cu2As4Br2S3 can catalyze HER and OER simultaneously, becoming promising photocatalysts for overall water splitting. Furthermore, by combining ground-state band structure calculations with excited-state charge distribution and transfer calculated by linear-response time-dependent density functional theory (LR-TDDFT) and time-dependent ab initio nonadiabatic molecular dynamics (NAMD), respectively, the rationality of the 2D polar material model has been manifested. The intrinsic built-in electric field promotes the separation of charge carriers while suppressing their recombination. Therefore, our computational work provides a high-throughput method to design high-performance photocatalysts for water splitting.
Collapse
Affiliation(s)
- Yunzhi Gao
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Miyazaki K, Krotz A, Tempelaar R. Mixed Quantum-Classical Dynamics under Arbitrary Unitary Basis Transformations. J Chem Theory Comput 2024. [PMID: 39033401 DOI: 10.1021/acs.jctc.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A common approach to minimizing the cost of quantum computations is by unitarily transforming a quantum system into a basis that can be optimally truncated. Here, we derive classical equations of motion subjected to similar unitary transformations and propose their integration into mixed quantum-classical dynamics, allowing this class of methods to be applied within arbitrary bases for both the quantum and classical coordinates. To this end, canonical positions and momenta of the classical degrees of freedom are combined into a set of complex-valued coordinates amenable to unitary transformations. We demonstrate the potential of the resulting approach by means of surface hopping calculations of an electronic carrier scattering onto a single impurity in the presence of phonons. Appropriate basis transformations, capturing both the localization of the impurity and the delocalization of higher-energy excitations, are shown to faithfully capture the dynamics within a fraction of the classical and quantum basis sets.
Collapse
Affiliation(s)
- Ken Miyazaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alex Krotz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Lai Y, Zeng Y, Li F, Chen X, Wang T, Guo Q. Wavelength-Dependent Activity of Oxygen Species in Propane Conversion on Rutile TiO 2(110). J Phys Chem Lett 2024; 15:6943-6951. [PMID: 38940377 DOI: 10.1021/acs.jpclett.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Photocatalytic oxidative dehydrogenation of propane (C3H8) into propene (C3H6) under mild conditions holds great potential in the chemical industry, but understanding how active species participate in C3H8 conversion remains a significant challenge. Here, the wavelength-dependent activities of bridging oxygen (Ob2-) and the Ti5c-bound oxygen adatom (OTi2-) of model rutile (R) TiO2(110) in C3H8 conversion have been investigated. Under 257 and 343 nm irradiation, hole-trapped OTi- and Ob- can abstract the hydrogen atom of C3H8, forming the CH3CH•CH3 radical and C3H6. However, the rate of C3H8 conversion with hole-trapped Ob- is strongly dependent on the wavelength, primarily producing the C3H7• radical. In the case of hole-trapped OTi-, C3H6 is the main product, which is nearly independent of wavelength. The differences in the wavelength-dependent activity and product selectivity are likely due to dynamic control rather than thermodynamic control. The result provides a deeper understanding of the dynamic processes involved in the conversion of light alkanes in TiO2 photocatalysis.
Collapse
Affiliation(s)
- Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yi Zeng
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, P. R. China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
15
|
Katsiev K, Idriss H. Study of rutile TiO 2(110) single crystal by transient absorption spectroscopy in the presence of Ce 4+cations in aqueous environment. Implication on water splitting. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325002. [PMID: 38701829 DOI: 10.1088/1361-648x/ad4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Ce4+cations are commonly used as electron acceptors during the water oxidation to O2reaction over Ir- and Ru-based catalysts. They can also be reduced to Ce3+cations by excited electrons from the conduction band of an oxide semiconductor with a suitable energy level. In this work, we have studied their interaction with a rutile TiO2(110) single crystal upon band gap excitation by femtosecond transient absorption spectroscopy (TAS) in solution in the 350-900 nm range and up to 3.5 ns. Unlike excitation in the presence of water alone the addition of Ce4+resulted in a clear ground-state bleaching (GSB) signal at the band gap energy of TiO2(ca. 400 nm) with a time constantt= 4-5 ps. This indicated that the Ce4+cations presence has quenched the e-h recombination rate when compared to water alone. In addition to GSB, two positive signals are observed and are attributed to trapped holes (in the visible region, 450-550 nm) and trapped electrons in the IR region (>700 nm). Contrary to expectation, the lifetime of the positive signal between 450 and 550 nm decreased with increasing concentrations of Ce4+. We attribute the decrease in the lifetime of this signal to electrostatic repulsion between Ce4+at the surface of TiO2(110) and positively charged trapped holes. It was also found that at the very short time scale (<2-3 ps) the fast decaying TAS signal of excited electrons in the conduction band is suppressed because of the presence of Ce4+cations. Results point out that the presence of Ce4+cations increases the residence time (mobility) of excited electrons and holes at the conduction band and valence band energy levels (instead of being trapped). This might provide further explanations for the enhanced reaction rate of water oxidation to O2in the presence of Ce4+cations.
Collapse
Affiliation(s)
- K Katsiev
- Surface Science and Advanced Characterization, SABIC-CRD at KAUST, Thuwal 23955, Saudi Arabia
| | - H Idriss
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Yang K, Kang Y, Meng S, Zhang J, Ma W. Interlayer Carrier Dynamics in Two-Dimensional Perovskites Determined by the Length of Conjugated Organic Cations. NANO LETTERS 2024. [PMID: 38587481 DOI: 10.1021/acs.nanolett.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Unlocking the restricted interlayer carrier transfer in a two-dimensional perovskite is a crucial means to achieve the harmonization of efficiency and stability in perovskite solar cells. In this work, the effects of conjugated organic molecules on the interlayer carrier dynamics of 2D perovskites were investigated through nonadiabatic molecular dynamics simulations. We found that elongated conjugated organic cations contributed significantly to the accelerated interlayer carrier dynamics, originating from lowered transport barrier and boosted π-p coupling between organic and inorganic layers. Utilizing conjugated molecules of moderate length as spacer cations can yield both superior efficiency and exceptional stability simultaneously. However, conjugated chains that are too long lead to structural instability and stronger carrier recombination. The potential of conjugated chain-like molecules as spacer cations in 2D perovskites has been demonstrated in our work, offering valuable insights for the development of high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Kun Yang
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yuchong Kang
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Zhang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences. Beijing 100190, China
| | - Wei Ma
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
17
|
Wang L, Liu X, Wan L, Gao Y, Wang X, Liu J, Tan S, Guo Q, Zhao W, Hu W, Li Q, Yang J. Excitonic Effects of the Excited-State Photocatalytic Reaction at the Molecule/Metal Oxide Interface. J Phys Chem Lett 2024; 15:2096-2104. [PMID: 38358755 DOI: 10.1021/acs.jpclett.3c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Excitonic effects caused by the Coulomb interaction between electrons and holes play a crucial role in photocatalysis at the molecule/metal oxide interface. As an ideal model for investigating the excitonic effect, coadsorption and photodissociation of water and methanol molecules on titanium dioxide involve complex ground-state thermalcatalytic and excited-state photocatalytic reaction processes. Herein, we systemically investigate the excited-state electronic structures of the coadsorption of H2O and CH3OH molecules on a rutile TiO2(110) surface by linear-response time-dependent density functional theory calculations and probe the reaction path for generating HCOOH or CO2, from ground-state and excited-state perspectives. The reaction barriers in excited-state calculations are significantly different from those in ground-state calculations during three processes, with the largest decrease being 0.94 eV for the Ti5c-O-CH2-O-Ti5c formation process.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemical Physics, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaofeng Liu
- School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lingyun Wan
- Hefei National Research Center for Physical Sciences at the Microscale and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunzhi Gao
- Hefei National Research Center for Physical Sciences at the Microscale and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoning Wang
- Department of Chemical Physics, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenhui Zhao
- Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qunxiang Li
- Department of Chemical Physics, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Department of Chemical Physics, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Chen C, Yang Z, Liu R, Xue L, Xu LC. Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective. Phys Chem Chem Phys 2024; 26:5438-5446. [PMID: 38275150 DOI: 10.1039/d3cp05357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Bismuth oxyselenide (Bi2O2Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi2O2Se. Our findings reveal that monolayer Bi2O2Se exhibits parity-forbidden transitions between the band edges at the Γ point, whereas bilayer Bi2O2Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi2O2Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi2O2Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials.
Collapse
Affiliation(s)
- Cuifan Chen
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Zhi Yang
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Ruiping Liu
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Lin Xue
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Li-Chun Xu
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| |
Collapse
|
19
|
Wang A, Jiang X, Zheng Q, Petek H, Zhao J. Ultrafast many-body bright-dark exciton transition in anatase TiO 2. Proc Natl Acad Sci U S A 2023; 120:e2307671120. [PMID: 37956295 PMCID: PMC10666115 DOI: 10.1073/pnas.2307671120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023] Open
Abstract
The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose-Einstein condensation, and light-energy harvesting. Anatase TiO2 with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe-Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron-phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron-hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright-dark exciton transitions sheds insights into applications of anatase TiO2 in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors.
Collapse
Affiliation(s)
- Aolei Wang
- Department of Physics, University of Science and Technology of China, Hefei230026, China
| | - Xiang Jiang
- International Center for Quantum Design of Functional Materials/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei230026, China
| | - Hrvoje Petek
- Department of Physics and Astronomy and the IQ Initiative, University of Pittsburgh, Pittsburgh, PA15260
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei230026, China
- International Center for Quantum Design of Functional Materials/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
- Department of Physics and Astronomy and the IQ Initiative, University of Pittsburgh, Pittsburgh, PA15260
- Hefei National Laboratory, University of Science and Technology of China, Hefei230088, China
| |
Collapse
|
20
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
21
|
Zhou JN, Cheng KQ, Zhang X, Yang S, Liu J, Li W, Li Q, Han J, Xie XY, Cui G. Mechanistic insights into photoinduced energy and charge transfer dynamics between magnesium-centered tetrapyrroles and carbon nanotubes. Phys Chem Chem Phys 2023; 25:30627-30635. [PMID: 37933177 DOI: 10.1039/d3cp04573k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Functionalizing single-walled carbon nanotubes (SWNTs) with light-harvesting molecules is a facile way to construct donor-acceptor nanoarchitectures with intriguing optoelectronic properties. Magnesium-centered bacteriochlorin (MgBC), chlorin (MgC), and porphyrin (MgP) are a series of tetrapyrrole macrocycles comprising a central metal and four coordinated aromatic or antiaromatic five-membered rings linked by methine units, which show excellent visible light absorption. To delineate the effects of the aromaticity of coordinated rings on the optoelectronic properties of the nanocomposites, the photoinduced energy and charge transfer dynamics between Mg-centered tetrapyrroles and SWNTs are explored. The results show that excited energy transfer (EET) can occur within MgP@SWNT ascribed to the stabilization of the highest occupied molecular orbital (HOMO) in MgP with the increase of aromatic coordinated rings, while only electron transfer can take place in MgBC@SWNT and MgC@SWNT. Non-adiabatic dynamics simulations demonstrate that electron and hole transfer from MgP to SWNT is asynchronous. The electron transfer is ultrafast with a timescale of ca. 50 fs. By contrast, the hole transfer is significantly suppressed, although it can be accelerated to some extent when using a lower excitation energy of 2.2 eV as opposed to 3.1 eV. Further analysis reveals that the large energy gaps between charge-donor and charge-acceptor states play a crucial role in regulating photoexcited state relaxation dynamics. Our theoretical insights elucidate the structure-functionality interrelations between Mg-centered tetrapyrroles and SWNTs and provide a comprehensive understanding of the underlying charge transfer mechanism within MgP@SWNT nanocomposites, which paves the way for the forthcoming development of SWNT-based photo-related functional materials with targeted applications.
Collapse
Affiliation(s)
- Jia-Ning Zhou
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ke-Qin Cheng
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Xiaolong Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Shubin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Wenzuo Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Qingzhong Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Xiao-Ying Xie
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
22
|
Alamoudi M, Katsiev K, Idriss H. Monitoring the Lifetime of Photoexcited Electrons in a Fresh and Bulk Reduced Rutile TiO 2 Single Crystal. Possible Anisotropic Propagation. J Phys Chem Lett 2023; 14:9238-9244. [PMID: 37811922 DOI: 10.1021/acs.jpclett.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Defects (oxygen vacancies and interstitial cations) in oxide semiconductors have recently been invoked as a key property behind increased photocatalytic reaction rates. In this work, we have monitored by transient absorption spectroscopy (TAS) excited electrons in the conduction band decaying into the invoked traps to extract their lifetime using a rutile single crystal instead of the more conveniently used powder homologue. This is preferred in order to rule out grain boundary, degree of crystallinity, and size effects among other parameters that would obscure the results. It was found, in the energy region investigated (1.3-1.8 eV), that the lifetime of excited electrons is about four times shorter for the bulk defect crystal when compared to the fresh one. This indicates that the created defects (mostly oxygen defects and interstitial Ti cations) are unlikely to contribute to reaction rate enhancement.
Collapse
Affiliation(s)
- M Alamoudi
- Surface Science and Advanced Characterization, SABIC-CRD at KAUST, Thuwal 23955, Saudi Arabia
| | - K Katsiev
- Surface Science and Advanced Characterization, SABIC-CRD at KAUST, Thuwal 23955, Saudi Arabia
| | - H Idriss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Department of Chemistry, University College London, WC1H 0AH London, U.K
| |
Collapse
|
23
|
Yang Y, Shi Z, Zhang S, Ma X, Bai J, Fan D, Zang H, Sun X, Li D. Nonradiative Dynamics Induced by Vacancies in Wide-Gap III-Nitrides: Ab Initio Time-Domain Analysis. J Phys Chem Lett 2023:6719-6725. [PMID: 37470335 DOI: 10.1021/acs.jpclett.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Insightful understanding of defect properties and prevention of defect damage are among the biggest issues in the development of photoelectronic devices based on wide-gap III-nitride semiconductors. Here, we have investigated the vacancy-induced carrier nonradiative dynamics in wide-gap III-nitrides (GaN, AlN, and AlxGa1-xN) by ab initio molecular dynamics and nonadiabatic (NA) quantum dynamics simulations since the considerable defect density in epitaxy samples. E-h recombination is hardly affected by Vcation, which created shallow states near the VBM. Our findings demonstrate that VN in AlN creates defect-assisted nonradiative recombination centers and shortens the recombination time (τ) as in the Shockley-Read-Hall (SRH) model. In GaN, VN improves the NA coupling between the CBM and the VBM. Additionally, increasing x in the AlxGa1-xN alloys accelerates nonradiative recombination, which may be an important issue in further improving the IQE of high Al-content AlxGa1-xN alloys. These findings have significant implications for the improvement of wide-gap III-nitrides-based photoelectronic devices.
Collapse
Affiliation(s)
- Yuxin Yang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiming Shi
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Shoufeng Zhang
- Department of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xiaobao Ma
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangxiao Bai
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashuo Fan
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Zang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Zhang W, Wu H, Zeng F, Wang Y, Tang X, Niu X, Fan J. Highly Thermally Sensitive Cascaded Wannier-Mott Exciton Ionization/Carrier Localization in Manganese-Doped Perovskite Nanocrystals. J Phys Chem Lett 2023; 14:1684-1692. [PMID: 36757171 DOI: 10.1021/acs.jpclett.2c03794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal doping in perovskite nanocrystals strongly alters the photophysical properties of these nanocrystals. However, the details of the underlying thermal and optical processes within such an intriguing symmetry-breaking nanosystem are far from clear. Herein, we study the sensitively temperature-dependent and highly competent delocalized exciton and transition-metal ion-captured carrier recombination processes in manganese-doped CsPbBr0.6Cl2.4 nanocrystals. The combined experimental and theoretical studies reveal that both the exciton ionization and capture of the band-edge carriers by the manganese ions play the dominant roles in determining the proportion of the manganese ions-dominated recombination process. A density functional theory calculation of the temporal fluctuation of the manganese ions-accommodated localized orbitals further confirms that the thermally enhanced nonadiabatic electron-phonon coupling promotes the probability of the carrier localization. These findings reveal the respective crucial roles of the exciton ionization and carrier capture in the localized recombination process in the transition-metal-doped semiconductor nanocrystals.
Collapse
Affiliation(s)
- Wenxia Zhang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Huaxin Wu
- School of Physics, Southeast University, Nanjing 211189, P. R. China
| | - Fujia Zeng
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Yuchan Wang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Xiaosheng Tang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Jiyang Fan
- School of Physics, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
25
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Ren Y, Wang Y, Zhao M, Zhou Z, Zhang Q, Zhu Q, Wu K. Dynamics of Phonon-Assisted Holes Trapping and Transport over Chemical Defects in Polyethylene. J Phys Chem B 2023; 127:1039-1049. [PMID: 36662499 DOI: 10.1021/acs.jpcb.2c07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Charge trapping and transport over chemical defects in polyethylene have significant impacts on its electrical and dielectric properties. However, the dynamics of this phenomenon and its underlying mechanisms remain unclear. To understand this fundamental aspect, we conducted a time-domain ab initio nonadiabatic molecular dynamics study of phonon-assisted holes dynamics in polyethylene over C═O and C-OH defect states. Our results suggest that the hole transfer and energy fluctuations substantially depend on temperature and local morphology. When the temperature decreases from 300 to 100 K, the hole transfer efficiency and the energy fluctuations are severely suppressed due to the weakened interactions between holes and phonons. Furthermore, amorphous polyethylene exhibits a severe suppression of the hole transfer process compared to crystalline polyethylene. An explanation for the influence of morphology on the hole transfer process can be found in the differences in the hole-phonon coupling and the electronic coupling between two chemical defect states in crystalline and amorphous polyethylene. Advancing the fundamental understanding of the dynamics of hole transfer over chemical effects in polymers is a key to improving their insulating properties for the next-generation high-voltage cables.
Collapse
Affiliation(s)
- Yuanyang Ren
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, China
| | - Yang Wang
- School of Electronics and Information, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an 710048, China
| | - Manqing Zhao
- School of Electronics and Information, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an 710048, China
| | - Zilin Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, China
| | - Qiankai Zhang
- School of Electronics and Information, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an 710048, China
| | - Qingdong Zhu
- State Grid Shandong Electric Power Company Electric Power Research Institute, 2000 Wangyue Road, Jinan 250001, China
| | - Kai Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, China
| |
Collapse
|
27
|
Xu J, Li Q, Sui D, Jiang W, Liu F, Gu X, Zhao Y, Ying P, Mao L, Cai X, Zhang J. In Situ Photodeposition of Cobalt Phosphate (CoH xPO y) on CdIn 2S 4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:420. [PMID: 36770380 PMCID: PMC9921930 DOI: 10.3390/nano13030420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The ternary metal sulfide CdIn2S4 (CIS) has great application potential in solar-to-hydrogen conversion due to its suitable band gap, good stability and low cost. However, the photocatalytic hydrogen (H2) evolution performance of CIS is severely limited by the rapid electron-hole recombination originating from the slow photogenerated hole transfer kinetics. Herein, by simply depositing cobalt phosphate (CoHxPOy, noted as Co-Pi), a non-precious co-catalyst, an efficient pathway for accelerating the hole transfer process and subsequently promoting the H2 evolution reaction (HER) activity of CIS nanosheets is developed. X-ray photoelectron spectroscopy (XPS) reveals that the Co atoms of Co-Pi preferentially combine with the unsaturated S atoms of CIS to form Co-S bonds, which act as channels for fast hole extraction from CIS to Co-Pi. Electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) showed that the introduction of Co-Pi on ultrathin CIS surface not only increases the probability of photogenerated holes arriving the catalyst surface, but also prolongs the charge carrier's lifetime by reducing the recombination of electrons and holes. Therefore, Co-Pi/CIS exhibits a satisfactory photocatalytic H2 evolution rate of 7.28 mmol g-1 h-1 under visible light, which is superior to the pristine CIS (2.62 mmol g-1 h-1) and Pt modified CIS (3.73 mmol g-1 h-1).
Collapse
Affiliation(s)
- Jiachen Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qinran Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Dejian Sui
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wei Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Fengqi Liu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiuquan Gu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yulong Zhao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Pengzhan Ying
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
28
|
Ma H, Wang Z, Zhao W, Ren H, Zhu H, Chi Y, Guo W. Enhancing the Photoinduced Interlayer Charge Transfer and Spatial Separation in Type-II Heterostructure of WS 2 and Asymmetric Janus-MoSSe with Intrinsic Self-Build Electric Field. J Phys Chem Lett 2022; 13:8484-8494. [PMID: 36054827 DOI: 10.1021/acs.jpclett.2c02189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional heterostructure manipulation is promising to overcome the high recombination rates and limited redox abilities of photogenerated electron-hole pairs in a single photocatalyst. The built-in electric field (Ehetero) in the type-II heterojunction is normally unfavorable for the desired charge transfer, which is an important but easily neglected issue that needs to be solved. Here, on the basis of the density functional theory (DFT) and the nonadiabatic molecular dynamics (NAMD) calculations, we obtain a type-II band alignment in Janus-MoSSe/WS2 heterostructure, which meets the band-edge position requirement for water splitting. Importantly, the intrinsic self-build electric field (Eself) of Janus-MoSSe can effectively weaken the hindrance effect of Ehetero for charge transfer by constructing a suitable Se-S stacking configuration, improving charge separation efficiency in the Janus-MoSSe/WS2 heterostructure. Our work provides a materials-by-design paradigm and interlayer charge-transfer dynamics understanding of heterostructure engineering against asymmetric structures lacking reflection symmetry.
Collapse
Affiliation(s)
- Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Zhengjie Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Yuhua Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| |
Collapse
|
29
|
Wang X, Wan L, Wang Z, Liu X, Gao Y, Wang L, Liu J, Guo Q, Hu W, Yang J. Identifying Photocatalytic Active Sites of C 2H 6 C-H Bond Activation on TiO 2 via Combining First-Principles Ground-State and Excited-State Electronic Structure Calculations. J Phys Chem Lett 2022; 13:6532-6540. [PMID: 35829739 DOI: 10.1021/acs.jpclett.2c01100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The activation of C-H bonds at low temperatures has attracted widespread interest in heterogeneous catalysis, which involves complex thermocatalytic and photocatalytic reaction processes. Herein, we systematically investigate the photothermal catalytic process of C-H bond activation in C2H6 dehydrogenation on rutile TiO2(110). We demonstrate that the photochemical activity of the C2H6 molecule adsorbed on TiO2(110) is site-sensitive and that C2H6 is more easily adsorbed at the Ti5c site with a lower dehydrogenation energy barrier. The first C-H bond activation of the C2H6 adsorbed at the Ti5c site tends to occur in the ground state, whereas Obr-adsorbed C2H6 is more photoactive during the initial adsorption. During the dehydrogenation of C2H6, the photogenerated electrons are always located at the Ti4+ sites of the TiO2 substrate while the photogenerated holes can be captured by C2H6 to activate the C-H bond.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingyun Wan
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zijian Wang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaofeng Liu
- School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunzhi Gao
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Wang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Wei Hu
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Tu Y, Chu W, Shi Y, Zhu W, Zheng Q, Zhao J. High Photoreactivity on a Reconstructed Anatase TiO 2(001) Surface Predicted by Ab Initio Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2022; 13:5766-5775. [PMID: 35723976 DOI: 10.1021/acs.jpclett.2c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anatase TiO2(001) surface with (4 × 1) reconstruction is proposed to be a highly active catalytic surface. In this work, using time-domain ab initio nonadiabatic molecular dynamics, we reveal that the ridge structure formed by anatase(001) surface reconstruction is the photoreactive site for hole migration and trapping. Moreover, the ridge structure is destroyed by low-coverage CH3OH adsorption, leading to the suppression of its high photoreactivity. However, when the CH3OH coverage is increased and intermolecular hydrogen bonds (H-bonds) form, the ridge structure and its high photoreactivity are restored. Furthermore, the hole trapping dynamics is strongly coherent with intermolecular proton transfer in structures with intermolecular H-bonds. Our study proves that anatase TiO2(001)-(4 × 1) is a highly photoreactive surface where the ridge is the photoreactive site for hole trapping, which is coherent with the proton transfer process.
Collapse
Affiliation(s)
- Youyou Tu
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongliang Shi
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Wenguang Zhu
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qijing Zheng
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Zhao
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
31
|
Wu Y, Huang H, Zhou W, You C, Ye H, Chen J, Zang S, Yun J, Chen X, Wang L, Yuan Z. High-Porosity Lamellar Films Prepared by a Multistage Assembly Strategy for Efficient Photothermal Water Evaporation and Power Generation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29099-29110. [PMID: 35713882 DOI: 10.1021/acsami.2c05125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The frame structure combined with water- and heat-transfer capabilities fully satisfies the requirements of photothermal conversion materials in seawater evaporation applications. Meanwhile, it must integrate the characteristics of a high photothermal conversion rate, thermal management, and water transportation. Herein, lamellar porous films were successfully designed and synthesized by a simple ultrasonic-assisted vacuum filtration method. In this process, polystyrene sulfonate@carbon nanotubes/reduced graphene oxide (PSS@CNT/rGO) lamellar films were constructed by the one-dimensional synthesis of PSS@CNT self-assembled at the molecular scale and the two-dimensional matrix material rGO. It is worth noting that the lamellar film exhibits a high specific surface area (285.5 m2·g-1), which is reflected in its abundant nanopores. Among them, the porous network system composed of nanochannels can provide efficient water supply and steam-transfer ability and strengthen the heat insulation performance of thermal localization, which is beneficial to photothermal evaporation. The obtained PSS@CNT/rGO lamellar films achieved a condensed water yield of 1.825 kg·m-2·h-1 under 1 sun illumination (1 kW·m-2), and their solar-vapor conversion efficiency was 97.1%. Simultaneously, the interaction between the water flow and the carbon material interface was also used to generate additional electric energy output. The maximum open-circuit voltage of 0.46 V was generated at both termini of the PSS@CNT/rGO lamellar film, which successfully realized the multieffect utilization of energy. These results show that the multistage assembly strategy is a facile and effective means for the development of an efficient evaporation photothermal film, which offers significant value in the field of photothermal seawater evaporation and power generation.
Collapse
Affiliation(s)
- Yiting Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongqiang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiming Zhou
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuanting You
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huilan Ye
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Zang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhua Yun
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinqi Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwei Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
32
|
Chu W, Tan S, Zheng Q, Fang W, Feng Y, Prezhdo OV, Wang B, Li XZ, Zhao J. Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface. SCIENCE ADVANCES 2022; 8:eabo2675. [PMID: 35714193 PMCID: PMC11581126 DOI: 10.1126/sciadv.abo2675] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Understanding how the nuclear quantum effects (NQEs) in the hydrogen bond (H-bond) network influence the photoexcited charge transfer at semiconductor/molecule interface is a challenging problem. By combining two kinds of emerging molecular dynamics methods at the ab initio level, the path integral-based molecular dynamics and time-dependent nonadiabatic molecular dynamics, and choosing CH3OH/TiO2 as a prototypical system to study, we find that the quantum proton motion in the H-bond network is strongly coupled with the ultrafast photoexcited charge dynamics at the interface. The hole trapping ability of the adsorbed methanol molecule is notably enhanced by the NQEs, and thus, it behaves as a hole scavenger on titanium dioxide. The critical role of the H-bond network is confirmed by in situ scanning tunneling microscope measurements with ultraviolet light illumination. It is concluded the quantum proton motion in the H-bond network plays a critical role in influencing the energy conversion efficiency based on photoexcitation.
Collapse
Affiliation(s)
- Weibin Chu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
| | - Shijing Tan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Wei Fang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Department of Chemistry, Fudan University, Shanghai 200438, People’s Republic of China
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Yexin Feng
- School of Physics and Electronics, Hunan University, Changsha 410082, People’s Republic of China
| | - Oleg V. Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Bing Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Xin-Zheng Li
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People’s Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, People’s Republic of China
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Hefei National Laboratory, Hefei 230088, People’s Republic of China
| |
Collapse
|
33
|
Zhang W, Fu C, Low J, Duan D, Ma J, Jiang W, Chen Y, Liu H, Qi Z, Long R, Yao Y, Li X, Zhang H, Liu Z, Yang J, Zou Z, Xiong Y. High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO 2. Nat Commun 2022; 13:2806. [PMID: 35589743 PMCID: PMC9119979 DOI: 10.1038/s41467-022-30532-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Nonoxidative coupling of methane (NOCM) is a highly important process to simultaneously produce multicarbons and hydrogen. Although oxide-based photocatalysis opens opportunities for NOCM at mild condition, it suffers from unsatisfying selectivity and durability, due to overoxidation of CH4 with lattice oxygen. Here, we propose a heteroatom engineering strategy for highly active, selective and durable photocatalytic NOCM. Demonstrated by commonly used TiO2 photocatalyst, construction of Pd-O4 in surface reduces contribution of O sites to valence band, overcoming the limitations. In contrast to state of the art, 94.3% selectivity is achieved for C2H6 production at 0.91 mmol g-1 h-1 along with stoichiometric H2 production, approaching the level of thermocatalysis at relatively mild condition. As a benchmark, apparent quantum efficiency reaches 3.05% at 350 nm. Further elemental doping can elevate durability over 24 h by stabilizing lattice oxygen. This work provides new insights for high-performance photocatalytic NOCM by atomic engineering.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd, 230031, Hefei, Anhui, China
| | - Cenfeng Fu
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Delong Duan
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jun Ma
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Wenbin Jiang
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yihong Chen
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Hengjie Liu
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zeming Qi
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Ran Long
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Yingfang Yao
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, Jiangsu, China.
| | - Xiaobao Li
- School of Physical Science and Technology, ShanghaiTech University, 201203, Shanghai, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Hui Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201203, Shanghai, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201203, Shanghai, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Jinlong Yang
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd, 230031, Hefei, Anhui, China.
| |
Collapse
|
34
|
Gao P, Zhang L, Fu C, Tian Y, Li X, Li X, Yang J. Promoting Water Activation by Photogenerated Holes in Monolayer C 2N. J Phys Chem Lett 2022; 13:3332-3337. [PMID: 35394781 DOI: 10.1021/acs.jpclett.2c00765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In photocatalytic reactions, the activation of H2O is very important for achieving high energy conversion efficiency. However, its activation mechanism under photoirradiation is still not fully understood. Here, on the basis of first-principles calculations, the role of photogenerated holes on the activation of H2O is investigated in a typical photocatalytic material C2N. The H2O molecule adsorbs at the six-membered N pore of C2N with a dual H-bonding configuration. Due to the electrostatic repulsion between the O atom of H2O and six N atoms of C2N, the energy level of the H2O molecule's highest occupied molecular orbital is raised significantly to exceed the valence band maximum of C2N, so that the photogenerated holes in C2N can be quickly captured by the H2O molecule. The captured photogenerated holes boost the activation of H2O and reduce the dissociation energy barrier from 1.61 to 0.69 eV. Besides, p-type defects of C2N have similar effects as photogenerated holes.
Collapse
Affiliation(s)
- Pengfei Gao
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu 214443, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Cenfeng Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunzhe Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Xie BB, Jia PK, Wang KX, Chen WK, Liu XY, Cui G. Generalized Ab Initio Nonadiabatic Dynamics Simulation Methods from Molecular to Extended Systems. J Phys Chem A 2022; 126:1789-1804. [PMID: 35266391 DOI: 10.1021/acs.jpca.1c10195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonadiabatic dynamics simulation has become a powerful tool to describe nonadiabatic effects involved in photophysical processes and photochemical reactions. In the past decade, our group has developed generalized trajectory-based ab initio surface-hopping (GTSH) dynamics simulation methods, which can be used to describe a series of nonadiabatic processes, such as internal conversion, intersystem crossing, excitation energy transfer and charge transfer of molecular systems, and photoinduced nonadiabatic carrier dynamics of extended systems with and without spin-orbit couplings. In this contribution, we will first give a brief introduction to our recently developed methods and related numerical implementations at different computational levels. Later, we will present some of our latest applications in realistic systems, which cover organic molecules, biological proteins, organometallic compounds, periodic organic and inorganic materials, etc. Final discussion is given to challenges and outlooks of ab initio nonadiabatic dynamics simulations.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ke-Xin Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, Sichuan, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
36
|
Zhang L, Chu W, Zheng Q, Zhao J. Effects of oxygen vacancies on the photoexcited carrier lifetime in rutile TiO 2. Phys Chem Chem Phys 2022; 24:4743-4750. [PMID: 35142307 DOI: 10.1039/d1cp04248c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoexcited carrier lifetime in semiconductors plays a crucial role in solar energy conversion processes. The defects or impurities in semiconductors are usually proposed to introduce electron-hole (e-h) recombination centers and consequently reduce the photoexcited carrier lifetime. In this report, we investigate the effects of oxygen vacancies (OV) on the carrier lifetime in rutile TiO2, which has important applications in photocatalysis and photovoltaics. It is found that an OV introduces two excess electrons which form two defect states in the band gap. The lower state is localized on one Ti atom and behaves as a small polaron, and the higher one is a hybrid state contributed by three Ti atoms around the OV. Both the polaron and hybrid states exhibit strong electron-phonon (e-ph) coupling and their charge distributions become more and more delocalized when the temperature increases from 100 to 700 K. Such strong e-ph coupling and charge delocalization enhance the nonadibatic coupling between the electronic states along the hole relaxation path, where the defect states behave as intermediate states, leading to a distinct acceleration of e-h recombination. Our study provides valuable insights to understand the role of defects on photoexcited carrier lifetime in semiconductors.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Weibin Chu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
37
|
Rohmann C, Idriss H. A computational study of the interaction of oxygenates with the surface of rutile TiO 2(110). Structural and electronic trends. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:154002. [PMID: 35051917 DOI: 10.1088/1361-648x/ac4d5b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A variety of OH containing molecules in their different modes of adsorption onto the rutile TiO2(110) are studied by means of density functional theory. A special focus is given to ethanol, ethylene glycol and glycerol. The different species were analyzed with respect to the adsorption energy, work function, and atomic Bader charges. Our results show that dissociated adsorption is favored in all cases. Within these modes, the strongest binding is observed in the case of bidentate fully dissociated adsorption, followed by bidentate partially dissociated then the monodentate dissociated modes. The dependence is also noted upon charge transfer analysis. Species adsorbing with two dissociated OH groups show a negative charge which is roughly twice as large compared to those exhibiting only one dissociated group. In the case of molecular adsorption, we find a small positive charge on the adsorbate. The change in work functions obtained is found to be negative in all studied cases. We observe a trend of the work function change being more negative for glycerol (3 OH groups) followed by ethylene glycol (2 OH groups) and the remaining alcohols (1 OH group), thus indicating that the number of OH groups present is an important factor in regards to work function changes. For the complete series of adsorbates studied (methanol, ethanol, isopropanol, ethylene glycol, glycerol, hydrogen peroxide and formic acid) there is a linear relationship between the change in the work function and the adsorption energy for the molecular adsorption mode. The relationship is less pronounced for the dissociated adsorption mode for the same series.
Collapse
Affiliation(s)
- C Rohmann
- Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States of America
| | - H Idriss
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Chemistry, University College London, WC1H 0AH, London, United Kingdom
| |
Collapse
|
38
|
Abstract
In photochemical production of hydrogen from water, the hole-mediated oxidation reaction is the rate-determining step. A poor solar-to-hydrogen efficiency is usually related to a mismatch between the internal quantum efficiency of photon-induced hole generation and the apparent quantum yield of hydrogen. This waste of photogenerated holes is unwanted yet unavoidable. Although great progress has been made, we are still far away from the required level of dexterity to deal with the associated challenges of wasted holes and its consequential chemical effects that have placed one of the greatest bottlenecks in attaining high solar-to-hydrogen efficiency. A critical assessment of the hole and its related phenomena in solar hydrogen production would, therefore, pave the way moving forward. In this regard, we focus on the contextual and conceptual understanding of the dynamics and kinetics of photogenerated holes and its critical role in driving redox reactions, with the objective of guiding future research. The main reasons behind and consequences of unused holes are examined and different approaches to improve overall efficiency are outlined. We also highlight yet unsolved research questions related to holes in solar fuel production.
Collapse
|
39
|
Cheng C, Zhu Y, Fang WH, Long R, Prezhdo OV. CO Adsorbate Promotes Polaron Photoactivity on the Reduced Rutile TiO 2(110) Surface. JACS AU 2022; 2:234-245. [PMID: 35098240 PMCID: PMC8790733 DOI: 10.1021/jacsau.1c00508] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Polarons play a major role in determining the chemical properties of transition-metal oxides. Recent experiments show that adsorbates can attract inner polarons to surface sites. These findings require an atomistic understanding of the adsorbate influence on polaron dynamics and lifetime. We consider reduced rutile TiO2(110) with an oxygen vacancy as a prototypical surface and a CO molecule as a classic probe and perform ab initio adiabatic molecular dynamics, time-domain density functional theory, and nonadiabatic molecular dynamics simulations. The simulations show that subsurface polarons have little influence on CO adsorption and CO can desorb easily. On the contrary, surface polarons strongly enhance CO adsorption. At the same time, the adsorbed CO attracts polarons to the surface, allowing them to participate in catalytic processes with CO. The CO interaction with polarons changes their orbital origin, suppresses polaron hopping, and stabilizes them at surface sites. Partial delocalization of polarons onto CO decouples them from free holes, decreasing the nonadiabatic coupling and shortening the quantum coherence time, thereby reducing charge recombination. The calculations demonstrate that CO prefers to adsorb at the next-nearest-neighbor five-coordinated Ti3+ surface electron polaron sites. The reported results provide a fundamental understanding of the influence of electron polarons on the initial stage of reactant adsorption and the effect of the adsorbate-polaron interaction on the polaron dynamics and lifetime. The study demonstrates how charge and polaron properties can be controlled by adsorbed species, allowing one to design high-performance transition-metal oxide catalysts.
Collapse
Affiliation(s)
- Cheng Cheng
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Yonghao Zhu
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Run Long
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
40
|
Gao Y, Fu C, Hu W, Yang J. Designing Direct Z-Scheme Heterojunctions Enabled by Edge-Modified Phosphorene Nanoribbons for Photocatalytic Overall Water Splitting. J Phys Chem Lett 2022; 13:1-11. [PMID: 34941268 DOI: 10.1021/acs.jpclett.1c03527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct Z-scheme photocatalyst possess promising potential to utilize solar radiation for photocatalytic overall water splitting; however, the design and characterization remain challenging. Here, we construct and verify a direct Z-scheme heterojunction using edge-modified phosphorene-nanoribbons (X-PNRs, where X = OH and OCN) with first-principles ground-state and excited-state density functional theory (DFT) calculations. The ground-state calculations provide fundamental properties such as geometric structure and band alignment. The linear-response time-dependent DFT (LR-TDDFT) calculations exhibit the photogenerated charge distribution and demonstrate the generation of interlayer excitons in heterojunctions, which are advantageous to the electron-hole recombination in Z-scheme heterojunctions. The ultrafast charge transfer at the interface studied by time-dependent ab initio nonadiabatic molecular dynamics (NAMD) simulations indicates that interlayer electron-hole recombination is prior to intralayer recombination for the OH/OCN-PNRs heterojunction, showing the characteristics of a Z-scheme heterojunction. Therefore, our computational work provides a universal strategy to design direct Z-scheme heterojunction photocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Yunzhi Gao
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230 026, China
| | - Cenfeng Fu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230 026, China
| | - Wei Hu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230 026, China
| | - Jinlong Yang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230 026, China
| |
Collapse
|
41
|
Liu XY, Zeng H, Wang G, Cheng X, Yang S, Zhang H. Out-of-plane dipole-modulated photogenerated carrier separation and recombination at Janus-MoSSe/MoS2 van der Waals heterostructure interfaces: Ab initio time-domain study. Phys Chem Chem Phys 2022; 24:11743-11757. [DOI: 10.1039/d2cp00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Out-of-plane mirror symmetry-breaking provides a powerful tool for engineering the electronic property and the exciton behavior of two-dimensional materials. Here, combined the time-domain density functional theory with nonadiabatic dynamics, we...
Collapse
|
42
|
Computational Characterization of Nanosystems. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
43
|
Zhang S, Zeng YP, Wan XJ, Xu DH, Liu XY, Cui G, Li L. Ultrafast Exciton Delocalization and Localization Dynamics of a Perylene Bisimide Quadruple π-Stack: A Nonadiabatic Dynamics Simulation. Phys Chem Chem Phys 2022; 24:7293-7302. [DOI: 10.1039/d2cp00018k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the photogenerated exciton dynamics of πstacked molecular aggregates is of great importance for both fundamental studies and industrial applications. Among various πstacked molecular aggregates, perylene tetracarboxylic acid bisimides (PBI)...
Collapse
|
44
|
Zhang D, Li B, Mao X, Fan Z, Yang Z, Wei M, Zhang A, Feng J, Bi S. The mechanism of alkali promoting water splitting on g-C 3N 4. NEW J CHEM 2022. [DOI: 10.1039/d2nj03322d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkali promotes H+ to obtain electrons and turn into H2.
Collapse
Affiliation(s)
- Dapeng Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Baofeng Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Xinlong Mao
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Zitong Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Zhe Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Min Wei
- Department of Physics and Electronic Engineering, Jinzhong University, China
| | - Ailing Zhang
- College of Chemistry and Chemical Engineering, Weifang University, China
| | - Jin Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| |
Collapse
|
45
|
Niu X, Shi A, Sun D, Xiao S, Zhang T, Zhou Z, Li X, Wang J. Photocatalytic Ammonia Synthesis: Mechanistic Insights into N 2 Activation at Oxygen Vacancies under Visible Light Excitation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Anqi Shi
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dazhong Sun
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shanshan Xiao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Tingbo Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zhaobo Zhou
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xing’ao Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
- Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
46
|
Zhang X, Wu T, Yu C, Lu R. Ultrafast Interlayer Charge Separation, Enhanced Visible-Light Absorption, and Tunable Overpotential in Twisted Graphitic Carbon Nitride Bilayers for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104695. [PMID: 34515388 DOI: 10.1002/adma.202104695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Moiré pattern superlattice formed by 2D van der Waals layered structures have attracted great attention for diverse applications. In experiments, the enhancement of catalytic performance in twisted bilayer systems is reported while its mechanism remains unclear. From high-accuracy first-principles and time-dependent ab initio nonadiabatic molecular dynamics calculations, ultrafast interlayer charge transfer within 120 fs, excellent charge separation, improved visible-light absorption, and satisfactory overpotentials for the hydrogen evolution and oxygen evolution reactions in twisted graphitic carbon nitride (g-C3 N4 ) bilayers are found, which are beneficial to photocatalytic, photo-electrocatalytic, or electrocatalytic water splitting. This work provides insightful guidance to advanced nanocatalysis based on twisted layered materials.
Collapse
Affiliation(s)
- Xirui Zhang
- Institute of Ultrafast Optical Physics, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tong Wu
- Institute of Ultrafast Optical Physics, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chao Yu
- Institute of Ultrafast Optical Physics, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
47
|
Xie XY, Yang JJ, Liu XY, Fang Q, Fang WH, Cui G. Interfacial photoinduced carrier dynamics tuned by polymerization of coronene molecules encapsulated in carbon nanotubes: bridging type-I and type-II heterojunctions. Phys Chem Chem Phys 2021; 23:13503-13511. [PMID: 34120157 DOI: 10.1039/d1cp01008e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanomaterials play important roles in modern scientific research. Integrating different carbon-based building blocks into nano-hybrid architectures not only takes full advantage of each component, but also brings in novel interfacial properties. Herein, we have employed density functional theory (DFT) calculations to investigate the effects of polymerization degree of coronene molecules encapsulated in single-walled carbon nanotubes (SWNTs) (19,0) on their interfacial properties. The present results reveal that the interfacial properties of the formed heterojunctions are remarkably regulated by the polymerization degree. For example, monomer- and dimer-encapsulated SWNTs are type-I heterojunctions in which interfacial excitation energy transfer is preferred, whereas interfacial charge carrier transfer is favorable in trimer- and polymer-encapsulated SWNTs because they are type-II heterojunctions. On the other hand, we have employed the time-domain nonadiabatic dynamics simulation approach to explore the interfacial carrier dynamics in type-II polymer-encapsulated SWNT heterojunctions. It is found that the electron and hole transfer processes are asymmetric and occur in opposite directions and at different rates. The former takes place from polymers to SWNTs in an ultrafast way (ca. 370 fs), whereas the latter occurs slowly from SWNTs to polymers (ca. 24 ps). A closer analysis uncovers the fact that the different carrier transfer rates mainly originate from the different densities of the acceptor states, energy differences and inter-state couplings between the donor and acceptor states. Finally, the present work demonstrates that the polymerization degree could act as a new regulating strategy to tune the interfacial properties of molecule-encapsulated SWNT heterojunctions.
Collapse
Affiliation(s)
- Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jia-Jia Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
48
|
Yu X, Su Y, Xu WW, Zhao J. Efficient Photoexcited Charge Separation at the Interface of a Novel 0D/2D Heterojunction: A Time-Dependent Ultrafast Dynamic Study. J Phys Chem Lett 2021; 12:2312-2319. [PMID: 33651620 DOI: 10.1021/acs.jpclett.1c00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To achieve efficient conversion and avoid loss of solar energy, ultrafast charge separation and slow electron-hole recombination are desired. Combining time-dependent density functional theory (TD-DFT) with nonadiabatic molecular dynamics, Au9(PH3)8/MoS2, as a prototype for zero-dimensional/two-dimensional (0D/2D) heterojunction, has been demonstrated to present excellent light absorption capacity and effective charge separation characteristics. In the heterojunction, photoexcitation of the Au9(PH3)8 nanocluster drives an ultrafast electron transfer from Au9(PH3)8 to MoS2 within 20 fs, whereas photoexcitation of the MoS2 nanosheet leads to hole transfer from MoS2 to Au9(PH3)8 within 680 fs. The strong nonadiabatic coupling and prominent density overlap are responsible for the faster electron separation relative to hole separation. In competition with the charge separation, electron-hole recombination requires 205 ns, ensuring an effective carrier separation. Our atomistic TD-DFT simulation provides valuable insights into the photocarrier dynamics at the Au9(PH3)8/MoS2 interface, which would stimulate the exploration of 0D/2D hybrid materials for photovoltaic and optoelectronic devices.
Collapse
Affiliation(s)
- Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Wen-Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
49
|
Zhang L, Chu W, Zhao C, Zheng Q, Prezhdo OV, Zhao J. Dynamics of Photoexcited Small Polarons in Transition-Metal Oxides. J Phys Chem Lett 2021; 12:2191-2198. [PMID: 33630612 DOI: 10.1021/acs.jpclett.1c00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of photoexcited polarons in transition-metal oxides (TMOs), including their formation, migration, and quenching, plays an important role in photocatalysis and photovoltaics. Taking rutile TiO2 as a prototypical system, we use ab initio nonadiabatic molecular dynamics simulation to investigate the dynamics of small polarons induced by photoexcitation at different temperatures. The photoexcited electron is trapped by the distortion of the surrounding lattice and forms a small polaron within tens of femtoseconds. Polaron migration among Ti atoms is strongly correlated with quenching through an electron-hole (e-h) recombination process. At low temperature, the polaron is localized on a single Ti atom and polaron quenching occurs within several nanoseconds. At increased temperature, as under solar cell operating conditions, thermal phonon excitation stimulates the hopping and delocalization of polarons, which induces fast polaron quenching through the e-h recombination within 200 ps. Our study proves that e-h recombination centers can be formed by photoexcited polarons, which provides new insights to understand the efficiency bottleneck of photocatalysis and photovoltaics in TMOs.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Weibin Chu
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | | | | | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jin Zhao
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
| |
Collapse
|
50
|
Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Tang J, Fan F, Zhang Q, Gong XQ, Huang W. Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO 2 Nanocrystals. Angew Chem Int Ed Engl 2021; 60:6160-6169. [PMID: 33289198 DOI: 10.1002/anie.202014037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 11/10/2022]
Abstract
Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time-resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk-to-surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold-coordinated Ti sites (Ti4c ) at which CH3 OH molecules dissociate to form the CH3 O adsorbate (CH3 O(a)Ti4c ). CH3 O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3 O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk-to-surface hole migration. CH3 O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.
Collapse
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|