1
|
Yuan J, Wu JP, Pan P, Hao YT, Zeng D, Yuan YY, Zhang B, Zhang YX, Shen A, Zhang ZQ. A novel hypochlorous acid-activated NIR fluorescent probe with a large Stokes shift for bioimaging and early diagnosis of arthritis. Talanta 2025; 292:127966. [PMID: 40139013 DOI: 10.1016/j.talanta.2025.127966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
In this work, we synthesized a novel hypochlorous acid-activated near-infrared (NIR) fluorescent probe (RhSBZ) by a strategy of enhancing π-conjugation through modification the 3,6-substituents of xanthene. Specifically designed for HClO bioimaging and arthritis diagnosis, RhSBZ displayed exceptional performance. RhSBZ exhibited a Stokes shift of 148 nm, high sensitivity, excellent selectivity, and a detection limit as low as 4.95 nM for HClO. Especially, upon reaction with HClO, the fluorescence intensity of RhSBZ enhanced dramatically by 61-fold. Notably, RhSBZ not only can detect exogenous and endogenous HClO in MCF-7 cells, but also has impressive imaging depth of up to 140 μm in rat liver tissues. More encouragingly, RhSBZ can be successfully used for the early diagnosis of abdominal inflammation and arthritis in mice. In summary, RhSBZ displayed excellent bioimaging capabilities and will have the potential application in the early diagnosis of inflammation diseases.
Collapse
Affiliation(s)
- Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Jin-Ping Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Pan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ya-Ting Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Dai Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yao-Yao Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Bin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yu-Xin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ao Shen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
2
|
Zou J, Song B, Liu Q, Dong Z, Yuan J. An activatable β-diketonate europium(III) complex-based probe for time-gated luminescence detection and imaging of peroxynitrite in vitro and in vivo. Talanta 2025; 292:127928. [PMID: 40090246 DOI: 10.1016/j.talanta.2025.127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Peroxynitrite (ONOO-), one of representative reactive nitrogen species with strong oxidative and nitrative properties, is known to be associated with various human diseases, such as Alzheimer's disease, drug-induced liver injury (DILI), inflammation, and cancer. Probing its fluctuations throughout diseases holds profound promise for advancing early diagnosis and enabling prompt intervention. In this work, we designed and synthesized a β-diketonate Eu3+ complex-based probe, [Eu(Cy-CDHH)3(terpy)], for the time-gated luminescence (TGL) detection of ONOO-. The probe, composed of a cyanine-dye-conjugated β-diketonate-Eu3+ coordination structure, is non-luminescent due to the intramolecular energy transfer from β-diketonate to cyanine-dye, which inhibits the energy transfer from β-diketonate to central Eu3+ ion. Upon reaction with ONOO-, the unsaturated CC bond of cyanine-dye is cleaved. This process leads to the recovery of the intense long-lived luminescence of the β-diketonate-Eu3+ complex (ϕ = 17.3 %, τ = 436 μs), showcasing characteristics of rapid response (within 10 s), high selectivity, low detection limit (17.4 nM), and low cytotoxicity. These features enable the probe to be used for the quantitative TGL detection of ONOO- in aqueous media as well as for the background-free TGL imaging of ONOO- in living cells under assorted stimuli. Furthermore, the probe was effectively implemented for imaging of ONOO- in livers of drug-induced liver injury mice, revealing the up-regulation of ONOO- levels in this disease and the therapeutic efficacy of glutathione (GSH) via precluding the onset of reactive oxygen/nitrogen species. This research paves a new way for the fabrication of lanthanide complex bioprobes, providing a useful tool for understanding the interconnection between ONOO- and disease-related physiological processes.
Collapse
Affiliation(s)
- Jinhua Zou
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Qi Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|
3
|
Xue H, Wang X, Jiang Q, Ma J, Wong MS. Peroxynitrite and amyloid-β dual-activated near-infrared theranostic probe for oxidative stress monitoring in Alzheimer's disease. Biosens Bioelectron 2025; 275:117201. [PMID: 39922101 DOI: 10.1016/j.bios.2025.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/10/2025]
Abstract
Amyloid-β (Aβ), the hallmark of Alzheimer's disease (AD), is known to induce reactive oxygen species, peroxynitrite (ONOO-) which plays a crucial role in the pathogenesis and progression of this incurable disease. However, the development of tools that can directly detect the presence and monitor the level of Aβ-induced ONOO- remains a great challenge. We report herein the development of an Aβ and ONOO- synergistically activated NIR fluorescent probe for highly selective imaging of Aβ-induced ONOO- level in vivo. Importantly, this responsive probe exhibits not only synergistically strong enhancement of fluorescence at 655 nm upon reacting with ONOO- in the presence of Aβ but also high sensitivity down to 13 nM with minimal interference. The strong Aβ binding and low cytotoxicity enable the probe to successfully apply for detecting and visualizing endogenous ONOO- level induced by Aβ in AD cell model. Remarkably, this ONOO--responsive probe can be applied effectively to detect, monitor, and distinguish varying ONOO- levels induced by Aβ in different age groups of AD mice, in which cerebral ONOO- level rises with increasing age of AD mice along with Aβ plaque accumulation. Furthermore, the potent neuroprotection against Aβ-induced toxicity and anti-Aβ aggregation effect of the ONOO--reaction product of the probe offer an extra therapeutic advantage of this ONOO--responsive probe. In essence, this multifunctional theranostic probe can serve as a highly sensitive and specific imaging tool for visualizing and monitoring of ONOO- level in the presence of Aβ in vivo, thereby facilitating more accurate early diagnosis and therapy of AD.
Collapse
Affiliation(s)
- Huanxin Xue
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Xueli Wang
- College of Pharmaceutical Sciences, College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Qiuyan Jiang
- College of Pharmaceutical Sciences, College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jiale Ma
- College of Pharmaceutical Sciences, College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Liu C, Yan T, Cai X, Zhu H, Zhang P, Liu X, Rong X, Wang K, Wang Y, Shu W, Zhu B. A sequence-activatable dual-locked fluorescent probe for simultaneous detection of hypochlorous acid and peroxynitrite during drug-induced liver injury. Talanta 2025; 285:127408. [PMID: 39721134 DOI: 10.1016/j.talanta.2024.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Drug-induced liver injury (DILI) is a crucial factor that poses a significant threat to human health. DILI process leads to the changes of reactive oxygen species and reactive nitrogen species content in cells, which leads to oxidative and nitrosative stress in cells. However, the high reactivity of hypochlorous acid (HOCl) and peroxynitrite (ONOO⁻), combined with a lack of in situ imaging techniques, has hindered a detailed understanding of their roles in DILI. Therefore, this paper reports a novel sequence-activatable dual-locked molecular probe HA-P3 for the identification and imaging of two DILI-related biomarkers. First, HA-P3 selectively reacts with reactive oxygen species HOCl to leave the recognition receptor diethyl thiocarbamate to form HA-P2. Subsequently, HA-P2 reacts with ONOO⁻, liberating the fluorophore 4-hydroxy-1,8-naphthalimide, which emits a strong fluorescence signal. The two-step reaction effectively reduces the probability of false positive in predicting DILI. HA-P3 achieved the sensitive detection of HOCl and ONOO- in different cells and zebrafish. Furthermore, HA-P3 can distinguish between normal liver cells and hepatoma cells and monitored the elevated levels of HOCl and ONOO⁻ during acetaminophen (APAP)-induced cellular damage. It is worth noting that in the APAP-induced mouse model, the positive correlation between HOCl and ONOO- and DILI was revealed, providing strong direct evidence for the relationship between oxidative/nitrosative stress and DILI.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Tingyi Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xinyu Cai
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xueting Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
5
|
Wang X, Chi W, Wu J, Zou J, Yoo J, Hong S, Zhang F, Mao Z, Kim JS. A NIR-II emissive sonosensitized biotuner for pyroptosis-enhanced sonodynamic therapy of hypoxic tumors. Biomaterials 2025; 315:122969. [PMID: 39550985 DOI: 10.1016/j.biomaterials.2024.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Pyroptosis is considered as a new way to effectively boost the immune response of tumors and inhibit tumor growth. Effective strategies to induce pyroptosis mainly rely on chemotherapeutic drugs and phototherapy, but their potential biotoxicity and phototoxicity limit their application in biomedicine. Herein, we designed a NIR-II emitting pyroptosis biotuner, Rd-TTPA, which induced pyroptosis under ultrasound irradiation to achieve pyroptosis-enhanced sonodynamic therapy (SDT) and immunogenic cell death (ICD) for tumors. Benefiting from its A-π-D1-D2 structure enhanced donor-acceptor interaction, Rd-TTPA can induce cell pyroptosis under both normoxia (21 % O2) and hypoxia (2 % O2) conditions by rapidly generating superoxide radicals (O2-•) upon ultrasound irradiation. The sonodynamic biotuner of pyroptosis overcomes the longstanding weakness of chemical drug and photosensitizer-based pyroptosis, such as drug resistance and limited penetration depth. In-depth studies demonstrated that Rd-TTPA can selectively target tumor cell mitochondria and possess excellent in vivo NIR-II fluorescence imaging capabilities. Administrating a tumor-bearing mouse model with Rd-TPPA, satisfying antitumor efficacy via pyroptosis-augmented SDT was achieved upon the guidance of NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Jiao Wu
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jingwen Zou
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jiyoung Yoo
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Seokjin Hong
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Fan Zhang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Zhiqiang Mao
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
6
|
Guo J, Chen Y, Weng X, Wang Y, Qu J, Song J, Liu L. Novel nitrogen-doped carbon dots with triple targetability as a fluorescent probe for bioimaging of living cells. Anal Chim Acta 2025; 1342:343625. [PMID: 39919855 DOI: 10.1016/j.aca.2025.343625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Investigating the interactions between various organelles can effectively reveal the corresponding biological problems. Currently, studies of organelle interactions typically employ multiple fluorescent probes that can concurrently target different organelles. However, the simultaneous use of multiple probes is complicated to operate, and the probes can interact with each other, affecting the imaging results. Therefore, targeting multiple organelles using a single probe can enhance the process of studying organelle interactions. Carbon dots (CDs), with their abundant surface groups, are expected to solve the abovementioned problems. Herein, we successfully used m-aminophenol and ethylenediamine to prepare high anti-interference capability and triple targetability CDs (n-CDs) with hydrothermal method. The co-localization experiments with commercial probes confirmed that it can target nucleolus, mitochondria and Lysosome at the same time. The preparation of n-CDs provides a new and convenient strategy to study the interaction between various organelles for solving corresponding biological problems, thus revealing the mysteries of life.
Collapse
Affiliation(s)
- Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
7
|
Lv C, Li Z, Liu W, Yang M, Zhang H, Fan J, Peng X. An Activatable Chemiluminescent Self-Reporting Sulfur Dioxide Donor for Inflammatory Response and Regulation of Gaseous Vasodilation. ACS Sens 2025; 10:1147-1154. [PMID: 39835723 DOI: 10.1021/acssensors.4c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Sulfur dioxide (SO2), being a novel gaseous signaling molecule, exhibits significant potential for application in the field of cardiovascular diseases. SO2 donors serve as crucial tools for the transportation and regulation of SO2 in vivo, facilitating the investigation of physiological roles associated with this molecule. However, the current therapeutic SO2 donors lack the capability to monitor the real-time release of SO2, thereby hindering accurate assessment of their therapeutic efficacy and target localization. Herein, we present an activatable chemiluminescent self-reporting SO2 donor (CL-SO2D) that can be selectively activated by peroxynitrite (ONOO-) to release SO2 and enable real-time visualization of the extent of release through chemiluminescent imaging. In vitro and cellular experiments demonstrate that CL-SO2D exhibits high selectivity and signal-to-noise ratio toward ONOO- and effectively facilitates the SO2 release process. Finally, CL-SO2D successfully achieved the response to the mouse inflammatory model and relieved vasoconstriction in zebrafish by releasing SO2 stimulated by ONOO-. The findings suggest that CL-SO2D exhibits impressive attributes in the diagnosis and treatment of SO2-related diseases, opening the gateway for developing low-background and high-sensitivity self-reporting SO2 donors.
Collapse
Affiliation(s)
- Chengyuan Lv
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zipeng Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Mingwang Yang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Zhao Z, Xiang W, Guo W, Wang B. A Dual-Channel Fluorescence Probe for Early Diagnosis and Treatment Monitoring of Acute Kidney Injury by Detecting HOCl and Cys with Different Fluorescence Signals. Anal Chem 2025; 97:2127-2135. [PMID: 39823368 DOI: 10.1021/acs.analchem.4c04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The pathogenesis of acute kidney injury (AKI) is a multifaceted process involving various mechanisms, with oxidative stress playing a crucial role in its development. Hypochlorite (HOCl) and cysteine (Cys) are indicators of oxidative stress in AKI pathophysiology, directly reflecting the degree of oxidative stress and disease severity. However, their exact mechanism of action in AKI pathophysiology remains unknown. Herein, we developed a dual-channel fluorescent probe, MB-NAP, which allowed for the simultaneous detection of HOCl and Cys. The probe exhibited distinct fluorescence responses in the green channel (λex = 450 nm, λem = 560 nm) and red channel (λex = 610 nm, λem = 690 nm), without any spectral crosstalk, allowing for accurate measurement of both analytes. We successfully applied MB-NAP to monitor the levels of HOCl and Cys in cellular and in vivo models of AKI, revealing a significant increase in their concentrations compared to normal models. Furthermore, MB-NAP was demonstrated to exhibit outstanding capabilities for drug screening by effectively real-time monitoring HOCl and Cys. This study not only provides a more sensitive and reliable method/tool for tracking AKI-related pathological processes but also offers a potential breakthrough in the early diagnosis and identification of therapeutic agents aimed at mitigating oxidative stress-induced damage in AKI.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| | - Wei Xiang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| |
Collapse
|
9
|
Huang L, Ma L, Zhu Q, Wang H, She G, Shi W, Mu L. Visualizing Endoplasmic Reticulum Stress and Autophagy in Alzheimer's Model Cells by a Peroxynitrite-Responsive AIEgen Fluorescent Probe. ACS Chem Neurosci 2025; 16:223-231. [PMID: 39763175 DOI: 10.1021/acschemneuro.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and autophagy (ER-phagy) occurring in nerve cells are crucial physiological processes closely associated with Alzheimer's disease (AD). Visualizing the two processes is paramount to advance our understanding of AD pathologies. Among the biomarkers identified, peroxynitrite (ONOO-) emerges as a key molecule in the initiation and aggravation of ER stress and ER-phagy, highlighting its significance in the underlying mechanisms of the two processes. In this work, we designed and synthesized an innovative ONOO--responsive AIEgen-based fluorescent probe (DHQM) with the ability to monitor ER stress and ER-phagy in AD model cells. DHQM demonstrated excellent aggregation-induced emission (AIE) properties, endowing it with outstanding ability for washing-free intracellular imaging. Meanwhile, it exhibited high sensitivity, remarkable selectivity to ONOO-, and exceptional ER-targeting ability. The probe was successfully applied for fluorescence imaging of ER ONOO- fluctuations to assess the ER stress status in aluminum-induced AD model cells. Our findings revealed that aluminum-induced ferroptosis, a regulated cell death process, was pivotal in the excessive ONOO- production, which in turn activated and exacerbated ER stress. Furthermore, the aluminum-stimulated ER-phagy was observed utilizing DHQM, which might be crucial in inhibiting ferroptosis and mitigating aberrant ER stress. Overall, this study not only offers valuable insights into the pathological mechanisms of AD at the ER level but also opens new potential therapeutic avenues targeting these pathways.
Collapse
Affiliation(s)
- Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichen Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyuan Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Chen Y, Tang S, Hameed MS, Wang Q, Xu X, Bao J, Wei S, Yan J, Chen Q, Gao Q, Liu H, Zhang K, Han X. An activatable near-infrared fluorescent probe with large Stokes shift for visualizing peroxynitrite in Alzheimer's disease models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125075. [PMID: 39236569 DOI: 10.1016/j.saa.2024.125075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD), characterized by its incurable nature and prevalence among the elderly, has remained a focal point in medical research. Increasing evidence suggests that peroxynitrite (ONOO-) serves as a crucial biomarker for the diagnosis of AD. In this study, we present a novel, easily available, high-yield, and cost-effective near-infrared (NIR) fluorescent probe, CDCI-ONOO. This probe utilizes a coumarin-dicyanoisophorone conjugate as the fluorophore and diphenylphosphinic chloride as the recognition site, enabling the detection of ONOO- both in vitro and in vivo. Upon interaction with ONOO-, CDCI-ONOO exhibits a distinct maximum emission peak at 715 nm with a substantial Stokes shift of 184 nm. The probe demonstrates excellent selectivity and sensitivity (LOD = 144 nM), along with noticeable colorimetric and fluorescence changes after the reaction. Comprehensive analyses using high-performance liquid chromatography (HPLC), high-resolution mass spectrometry (HRMS), and density functional theory (DFT) calculations confirm that the reaction with ONOO- restores the initially quenched Intramolecular Charge Transfer (ICT), resulting in the formation of CDCI-OH, a product that emitting fluorescence in the near-infrared region. Furthermore, we demonstrated the successful application of CDCI-ONOO for ONOO- detection in neuronal cells and imaging of ONOO- in the brains of mice. These findings underscore the potential of CDCI-ONOO as a near-infrared fluorescent probe for in vivo ONOO- detection, offering a significant avenue for advancing our understanding of AD pathology and diagnosis.
Collapse
Affiliation(s)
- Yiliang Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Siyuan Tang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Xiaolong Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Jiawei Bao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Shihong Wei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China; Maanshan People's Hospital, Ma'anshan 243099, Anhui, China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hongchao Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China.
| |
Collapse
|
11
|
Huang L, Ma L, Zhao Q, Zhu Q, She G, Mu L, Shi W. Simultaneous Imaging of pH and Peroxynitrite in the Endoplasmic Reticulum and Mitochondria: Revealing Organelle Interactions in Alzheimer's Disease Pathogenesis. Anal Chem 2025; 97:194-202. [PMID: 39723923 DOI: 10.1021/acs.analchem.4c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
pH and peroxynitrite (ONOO-) are two critical biomarkers to unveil the corresponding status of endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are closely related to Alzheimer's disease (AD). Simultaneously monitoring pH and ONOO- fluctuations in the ER and mitochondria during AD progression is pivotal for clarifying the interplay between the disorders of the two organelles and revealing AD pathogenesis. Herein, we designed and synthesized a dual-channel fluorescent probe (DCFP) to visualize pH and ONOO- in the ER and mitochondria. DCFP possessed excellent sensitivity and selectivity to pH and ONOO- without spectral crosstalk and was utilized in monitoring the two analytes within AD model cells and larval zebrafish. Importantly, DCFP could preferentially target mitochondria in normal cells and be enriched in the ER after mitochondrial depolarization. With the aid of DCFP, the slower acidification rate of the ER than that of mitochondria induced by Aβ oligomers (AβOs) was first identified, which could be ascribed to the relief of the AβOs-triggered ER stress through the Ca2+ migration from the ER to mitochondria. Moreover, continuous exposure to AβOs led to mitochondrial Ca2+ overload, accelerating the acidification and ONOO- overproduction within mitochondria. As a result, intracellular oxidative stress levels were elevated, further exacerbating ER stress and aggravating ER acidification in turn. The advanced understanding of the potential interplay between the ER and mitochondria in this work may offer new insights and methodologies for studying AD pathogenesis. The DCFP developed in this work could also be employed to study other diseases related to ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichen Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li J, Tian M, Shen T, Sun X, Liang T, Tang L, Liu X, Yan X, Zhong K. Rational design of an ultrabright quinolinium-fused rhodamine turn-on fluorescent probe for highly sensitive detection of SO 2 derivatives: Applications in food safety and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136291. [PMID: 39471619 DOI: 10.1016/j.jhazmat.2024.136291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Sulfur dioxide (SO2) is an essential signaling molecule involved in various physiological processes within living organisms. Bisulfite (HSO3-) possesses antioxidant, antimicrobial, and preservative properties, making it a common food additive. However, elevated levels of SO2 or excessive HSO3- intake can lead to a range of diseases, highlighting the importance of detecting SO2 and its derivatives (HSO3-/SO32-). This study presents a quinolinium-fused rhodamine fluorogenic probe (RQB-R) for ultrafast, highly selective, and sensitive detection of HSO3-. The probe operates via a dual-response mechanism, exhibiting a visible color change and a transition from nonemissive to intense red fluorescence upon interaction with HSO3-. The detection mechanism involves a 1,4-nucleophilic addition reaction of HSO3- at the 4-position of the quinolinium unit, which bypasses the photoinduced electron-transfer fluorescence quenching pathway and activates the intramolecular charge transfer mechanism, thereby enhancing fluorescence emission. Practical applications of the RQB-R probe include rapid quantification of HSO3- levels in sugar samples and integration into smartphone-assisted detection platforms. This method demonstrates excellent biocompatibility and enables visualization of both exogenous and endogenous HSO3- within MCF-7 cells, with a specific focus on targeting mitochondria.
Collapse
Affiliation(s)
- Jiaxing Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Mingyu Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Xiaofei Sun
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Tianyu Liang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, PR China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
13
|
Zhang H, Chen SS, Wang ZQ, Mi JF, Mao GJ, Ouyang J, Hu L, Li CY. A Novel Colon-Targeting Ratiometric Probe with Large Emission Shift for Imaging Peroxynitrite in Ulcerative Colitis. Anal Chem 2024; 96:18852-18858. [PMID: 39545592 DOI: 10.1021/acs.analchem.4c04529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory disease that leads to the overexpression of peroxynitrite (ONOO-). Up to now, it has been a challenge to design a colon-targeted fluorescent probe with a large emission shift that can detect and image ONOO- in UC mice. Here, a fluorophore (pyran-coumarin) is linked with cholic acid to develop a colon-targeted fluorescent probe (CPC) for the detection of ONOO-. The fluorescent probe showed strong near-infrared emission at 725 nm. After reacting with ONOO-, it can be observed that the fluorescence intensity at 725 nm decreases obviously, and the signal at 490 nm increases clearly with an obvious emission shift (235 nm). This response mechanism causes the probe to have good sensitivity and selectivity. Additionally, the probe CPC shows good targeting ability for the cells with overexpressingTGR5 receptors and displays good results for detecting exogenous and endogenous ONOO- in the cells. More importantly, the probe CPC can be especially assembled in the colon site to distinguish normal and UC mice and provide significant information for the diagnosis of UC.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Si-Si Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Jing-Fang Mi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Juan Ouyang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Liufang Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| |
Collapse
|
14
|
Zeng H, Ma X, Pan S, Han Y, Tang Y, Fan Y, Wu Y. A near-infrared frequency upconversion fluorescent probe for rapid and sensitive visual detection of sulfur dioxide. Analyst 2024. [PMID: 39569728 DOI: 10.1039/d4an01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Inflammation is a complex physiological response involving various cellular and molecular events. Sulfur dioxide (SO2), which is usually in the form of HSO3- and SO32- under physiological conditions, plays a crucial role in the regulation of inflammation and diseases. Frequency upconversion luminescence (FUCL) can realize the unique anti-Stokes process of long-wavelength excitation to short-wavelength emission; thus, it is a highly promising optical method for in vivo imaging due to its deep tissue penetration, low photo-damage, etc. Therefore, we developed a near-infrared FUCL NIRX-1 probe for the detection of HSO3-. NIRX-1 had a fast response (80 s), a low detection limit (0.43 μM), and high selectivity towards HSO3-. In addition, NIRX-1 had deep light penetration ability due to the near-infrared excitation at 808 nm and was able to detect HSO3- in living cells and mice. Lastly, NIRX-1 was employed in the imaging of HSO3- in an inflammation mouse model through FUCL imaging techniques. All these features make NIRX-1 a good candidate for the investigation of SO2-associated physiological and pathological processes.
Collapse
Affiliation(s)
- Hong Zeng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Xiao Ma
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Shufen Pan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yuting Han
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yanyan Tang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yulan Fan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yongquan Wu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| |
Collapse
|
15
|
Hou XF, Xue YL, Yang JG, Li ZS, Xu ZH, Li W, Yuan L. A Cascade Activation Probe with Double-Enhanced Near-Infrared Imaging for Monitoring Peroxynitrite Fluctuations in Vivo. Anal Chem 2024; 96:17657-17664. [PMID: 39440850 DOI: 10.1021/acs.analchem.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Monitoring peroxynitrite (ONOO-) fluctuations is particularly important for assessing pathological progression and oxidative damage due to their crucial role in maintaining the redox balance of organisms. However, due to the lack of efficient tools for differentially monitoring ONOO- fluctuations at different concentration ranges in vivo, the precise detection of endogenous ONOO- fluctuations under pathological conditions in living systems remains challenging. Herein, we rationally designed a double-enhanced emission cascade activatable near-infrared (NIR) fluorescent probe (B-TCF) for the measurement of ONOO-, which consists of a borate ester response group and a malononitrile hemicyanine fluorophore. Especially, after sequential oxidative hydrolysis of the borate ester group and xanthene skeleton, B-TCF exhibited a sequentially double-enhanced NIR emission response at 776 and 625 nm for different ONOO- concentration ranges. Moreover, B-TCF revealed excellent and promising performance for ONOO- in terms of high selectivity, sensitivity, and reaction rate (k = 28.2 M-1 s-1). Motivated by the two-step emission signal enhancement and large wavelength shift in the NIR region, B-TCF enabled discriminative imaging of ONOO- with the low and high concentrations in living cells. Importantly, B-TCF was successfully applied for assessing the pathological progression of isoniazid and acetaminophen-induced liver damage in vivo by detecting the endogenous different ONOO- levels. Overall, this study not only demonstrates the first double-enhanced emission cascade activatable NIR fluorescent probe for measuring the dynamic variation of ONOO- in related diseases but also shows great potential as an effective molecular tool for evaluating the various stages of drug-induced liver damage.
Collapse
Affiliation(s)
- Xu-Feng Hou
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yi-Lin Xue
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Jin-Gang Yang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Zhen-Sheng Li
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Zhi-Hong Xu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
16
|
Xu J, Li X, Luo Z, Li J, Yang S, Zhang T. Single Side-Chain-Modulatory of Hemicyanine for Optimized Fluorescence and Photoacoustic Dual-Modality Imaging of H 2S In Vivo. SMALL METHODS 2024; 8:e2400122. [PMID: 38564786 DOI: 10.1002/smtd.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-modality imaging integrated high-sensitivity fluorescence imaging with deep-penetration PA imaging has been recognized as a reliable tool for disease detection and diagnosis. However, it remains an immense challenge for a molecule probe to achieve the optimal NIRF and PA imaging by adjusting the energy allocation between radiative transition and nonradiative transition. Herein, a simple but effective strategy is reported to engineer a NIRF/PA dual-modality probe (Cl-HDN3) based on the near-infrared hemicyanine scaffold to optimize the energy allocation between radiative and nonradiative transition. Upon activation by H2S, the Cl-HDN3 shows a 3.6-fold enhancement in the PA signal and a 4.3-fold enhancement in the fluorescence signal. To achieve the sensitive and selective detection of H2S in vivo, the Cl-HDN3 is encapsulated within an amphiphilic lipid (DSPE-PEG2000) to form the Cl-HDN3-LP, which can successfully map the changes of H2S in a tumor-bearing mouse model with the NIRF/PA dual-modality imaging. This work presents a promising strategy for optimizing fluorescence and PA effects in a molecule probe, which may be extended to the NIRF/PA dual-modality imaging of other disease-relevant biomarkers.
Collapse
Affiliation(s)
- Juntao Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Zhiheng Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jiajun Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
17
|
Guo L, Ding Y, Li L, Gao C, Su J, Zhang Z. Molecular Logic Gate for Sensing pH/Peroxynitrite with Potential Applications in Cisplatin Treatment. Anal Chem 2024; 96:15950-15959. [PMID: 39327258 DOI: 10.1021/acs.analchem.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cisplatin is a common chemotherapy drug for multiple solid tumors; however, due to the nitrification of peroxynitrite (ONOO-), a series of side effects seriously affect its dose and efficacy. Considering that the reactivity of ONOO- is significantly affected by pH in vitro, revealing their roles in living cells contributes to understanding the side-effect process induced by cisplatin. Herein, we present a near-infrared fluorescent logic gate for sensing pH/ONOO-, which can accurately discriminate four scenarios (no analyte, analyte H+ alone, analyte ONOO- alone, and H+ + ONOO-) and which one comes first. With this probe, the significant roles of pH and ONOO- in cisplatin treatment are disclosed, in which the cell account shows a dramatic reduction accompanied by decreased pH and upregulated ONOO- levels. By artificially recovering the pH, the ONOO- content and cell account can maintain a stable state, possibly due to the protection from acidification and nitration. This work provides an ideal pH/ONOO- logical sensor for revealing their potential roles under cisplatin, which is expected to proffer new insights into more related diseases and drug research.
Collapse
Affiliation(s)
- Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuxi Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lu Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Caifang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
18
|
Ji P, Liu Y, Li W, Guo R, Xiong L, Song Z, Wang B, Feng G. A new FRET-based fluorescent probe: Colorimetric and ratiometric detection of hypochlorite and anti-counterfeiting applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124477. [PMID: 38810433 DOI: 10.1016/j.saa.2024.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Hypochlorite (ClO-), as the main component of widely used disinfectants in daily life, comes into closer contact with the human body, which can lead to a number of diseases. The high-performance method is increasingly needed to detect ClO- in our daily life. In this report, we successfully synthesized a FRET ratiometric fluorescent probe (NDAC) containing benzoxadiazole moieties and coumarin moieties bound via ethylenediamine. As expected, NDAC has excellent selectivity and anti-interference ability toward ClO-, and the ratio of fluorescence intensity (I471 nm/I533 nm) has a very good linear relationship with the concentration of ClO-, with a wide linear range (2.5-1750 μM) and low detection limit (0.887 μM). Furthermore, we have successfully applied it for the quantitative detection of ClO- in water samples in daily life. At the same time, there is a very clear change in the fluorescence color after the reaction of the NDAC with ClO-. The blue/green value (B/G) of this color change also shows a very good linear relationship to ClO- (5.0-1000 μM). Therefore, the NDAC has also been successfully used for test strip detection and quantitative detection of ClO- in actual samples through smartphone-based fluorescence image analysis, and this method can provide faster, more convenient and more accessible detection. In addition, NDAC sensors also have potential applications in the field of information anti-counterfeiting.
Collapse
Affiliation(s)
- Peng Ji
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Yuntong Liu
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Wanmeng Li
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Ruixue Guo
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Lingxiao Xiong
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Bo Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
19
|
Sun N, Cai Y, Yan H, Yang W, Hu Y. Development of a ratiometric fluorescent probe for the detection of peroxynitrite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124404. [PMID: 38723465 DOI: 10.1016/j.saa.2024.124404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Peroxynitrite is one of the important reactive oxygen species in the human body and is closely related to the physiological and pathological processes of many diseases. Therefore, the development of probes to detect peroxynitrite is important for diagnostic and pathologic studies of many diseases. In this work, a ratiometric probe was designed using benzopyran as the recognition site, and the sensitivity and selectivity of the probe were tuned by modification of substituents on benzopyran. Upon reaction with peroxynitrite, the color of the solution changes to the naked eye (from blue to yellow), and the fluorescence changes from red to blue. The probe SJ has the advantages of large Stokes shift (237 nm), fast response (≤10 s), wide linear range, good selectivity, low detection line (21.3 nm), and low cytotoxicity. Probe SJ has been successfully used for bioimaging of endogenous and exogenous peroxynitrite.
Collapse
Affiliation(s)
- Ningning Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Yijin Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Haijun Yan
- Jiangsu Provincial Institute of Materia Medica Co., Ltd
| | - Wenge Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
20
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
21
|
Amiripour F, Ghasemi S, Chaichi MJ. Nanostructured rhodamine B/aluminosilicate extracted sugarcane bagasse modified with tobacco-derived carbon quantum dot as ratiometric fluorescence probe for determination of tetracycline. Talanta 2024; 276:126158. [PMID: 38714008 DOI: 10.1016/j.talanta.2024.126158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024]
Abstract
Tetracycline (TC), as a widely used antibiotic, is very useful in treating bacterial infections. However, its residues in animal foodstuffs can enter the human body through the food cycle and causes severe and chronic diseases. On the other hand, due to its weak non-biodegradability, it is considered a threat to the environment. In this regard, the development of sensing methods to detect and measure TC is need of the hour. Herein, a dual-emission fluorescence sensor based on porous aluminosilicate structure (ASS) with rough surface hexagonal shape morphology and pore diameter less than 2 nm was prepared. The porous AAS was modified by post-modification method with blue carbon dots (CDT) and rhodamine B (RB) as two fluorophores to develop the ratiometric fluorescence (RF) sensor (CDT-AAS/RB). Nanostructured CDT-AAS/RB emitted two resolved peaks at 445 and 585 nm , which were dramatically quenched in the presence of TC. The RF sensor, with excellent sensitivity, was able to measure TC over the linear range of 0.001-150 μM with a limit of detection of 5.4 nM in the aqueous phosphate buffer. Moreover, the AAS component granted high selectivity and anti-interference ability to the sensor. In addition, the stability of the sensor was greatly improved due to the non-accumulation of CDT nanoparticles and RB molecules in the presence of the AAS. The proposed method was able to determine TC in complex real samples with satisfactory recovery, and the obtained results were validated with standard high-performance liquid chromatography technique.
Collapse
Affiliation(s)
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | | |
Collapse
|
22
|
Zeng Q, Yuwen Z, Zhang L, Li Y, Liu H, Zhang K. Molecular Engineering of a Doubly Quenched Fluorescent Probe Enables Ultrasensitive Detection of Biothiols in Highly Diluted Plasma and High-Fidelity Imaging of Dihydroartemisinin-Induced Ferroptosis. Anal Chem 2024; 96:13260-13269. [PMID: 39087711 DOI: 10.1021/acs.analchem.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The occurrence and development of diseases are accompanied by abnormal activity or concentration of biomarkers in cells, tissues, and blood. However, the insufficient sensitivity and accuracy of the available fluorescence probes hinder the precise monitoring of associated indexes in biological systems, which is generally due to the high probe intrinsic fluorescence and false-negative signal caused by the reactive oxygen species (ROS)-induced probe decomposition. To resolve these problems, we have engineered a ROS-stable, meso-carboxylate boron dipyrromethene (BODIPY)-based fluorescent probe, which displays quite a low background fluorescence due to the doubly quenched intrinsic fluorescence by a combined strategy of the photoinduced electron transfer (PET) effect and "ester-to-carboxylate" conversion. The probe achieved a high S/N ratio with ultrasensitivity and good selectivity toward biothiols, endowing its fast detection capability toward the biothiol level in 200×-diluted plasma samples. Using this probe, we achieved remarkable distinguishing of liver injury plasma from normal plasma even at 80× dilution. Moreover, owing to its good stability toward ROS, the probe was successfully employed for high-fidelity imaging of the negative fluctuation of the biothiol level in nonsmall-cell lung cancer (NSCLC) during dihydroartemisinin-induced ferroptosis. This delicate design of suppressing intrinsic fluorescence reveals insights into enhancing the sensitivity and accuracy of fluorescent probes toward the detection and imaging of biomarkers in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lemeng Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Yuning Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| |
Collapse
|
23
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
24
|
Karak A, Banik D, Ganguly R, Banerjee S, Ghosh P, Maiti A, Mandal D, Mahapatra AK. A Phenanthrenequinone-Based Ratiometric Fluorescent Probe for Rapid Detection of Peroxynitrite with Imaging in Osteoblast Precursor Cells. Chem Res Toxicol 2024; 37:771-778. [PMID: 38658839 DOI: 10.1021/acs.chemrestox.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the current situation, peroxynitrite (ONOO-) is drawing the increasing attention of researchers for its pivotal role in diverse pathological and physiological processes on grounds of robust oxidation and nitrification. Herein, we have successfully designed and synthesized a phenanthrenequinone benzyl borate-based chemosensor for fast and selective detection of ONOO-. The probe PTDP itself had an orange fluorescence, which was changed to strong blue fluorescence upon the addition of ONOO-, indicating the ratiometric response of the probe. This is so because of the cleavage of the benzyl boronate-protecting group of PTDP upon the addition of ONOO- with simultaneous releasing of pyridinyl-based chemosensor PPI. The PTDP showed outstanding performance in the various photophysical studies such as good selectivity, excellent sensitivity with a very low detection limit of 2.74 nM, and a very fast response time (<15 s). Furthermore, for practical applicability, it was successfully applied in the ratiometric detection of ONOO- in osteoblast precursor cells.
Collapse
Affiliation(s)
- Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711103, India
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala ,Punjab 147004, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| |
Collapse
|
25
|
Zhao B, Xu X, Wen X, Liu Q, Dong C, Yang Q, Fan C, Yoon J, Lu Z. Ratiometric Near-Infrared Fluorescent Probe Monitors Ferroptosis in HCC Cells by Imaging HClO in Mitochondria. Anal Chem 2024; 96:5992-6000. [PMID: 38574346 DOI: 10.1021/acs.analchem.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Hypochlorous acid (HClO) is a typical endogenous ROS produced mainly in mitochondria, and it has strong oxidative properties. Abnormal HClO levels lead to mitochondrial dysfunction, strongly associated with various diseases. It has been shown that HClO shows traces of overexpression in cells of both ferroptosis and hepatocellular carcinoma (HCC). Therefore, visualization of HClO levels during ferroptosis of HCC is important to explore its physiological and pathological roles. So far, there has been no report on the visualization of HClO in ferroptosis of HCC. Thus, we present a ratiometric near-infrared (NIR) fluorescent probe Mito-Rh-S which visualized for the first time the fluctuation of HClO in mitochondria during ferroptosis of HCC. Mito-Rh-S has an ultrafast response rate (2 s) and large emission shift (115 nm). Mito-Rh-S was constructed based on the PET sensing mechanism and thus has a high signal-to-noise ratio. The cell experiments of Mito-Rh-S demonstrated that Fe2+- and erastin-induced ferroptosis in HepG2 cells resulted in elevated levels of mitochondrial HClO and that high concentration levels of Fe2+ and erastin cause severe mitochondrial damage and oxidative stress and had the potential to kill HepG2 cells. By regulating the erastin concentration, erastin induction time, and treatment of the ferroptosis model, Mito-Rh-S can accurately detect the fluctuation of mitochondrial HClO levels during ferroptosis in HCC.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xionghao Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qingqing Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chao Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qingkun Yang
- Shandong Anshun Pharmaceutical Company, Limited, Laoling, Shandong 253600, China
| | - Chunhua Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Zhengliang Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
26
|
Sun S, Xue K, Zhao Y, Qi Z. A near-infrared AIE fluorescent probe for accurate detection of sulfur dioxide derivatives and visualization of fingerprints. Talanta 2024; 270:125568. [PMID: 38150966 DOI: 10.1016/j.talanta.2023.125568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In most biophysiological processes, sulfur dioxide (SO2) is an important intracellular signaling molecule that plays an important role. The change of SO2 in cells are closely related to various diseases such as neurological disorders and lung cancer, so it is necessary to develop fluorescent probes with the ability to accurately detect SO2 during physiological processes. In this work, we designed and synthesized a multifunctional fluorescent probe TIS. TIS has excellent properties such as near-infrared emission, large stokes shift, excellent SO2 detection capabilities, low detection limit, high specificity and visualization of color change before and after reaction. Simultaneously, TIS has low cytotoxicity, good biocompatibility, clear cell imaging capability and mitochondrial targeting ability. In addition, the ability of TIS to be applied to different material surfaces for latent fingerprint fluorescence imaging was also explored. TIS provides an excellent method for the accurate detection of SO2 derivatives and shows great potential applications in near-infrared cellular imaging and latent fingerprint fluorescence imaging.
Collapse
Affiliation(s)
- Saidong Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.
| |
Collapse
|
27
|
Jiang R, Xia Y, Liu Q, Zhang H, Yang X, He L, Cheng D. Carboxylesterase-activated near-infrared fluorescence probe for highly sensitive imaging of liver tumors. J Mater Chem B 2024; 12:1530-1537. [PMID: 38251432 DOI: 10.1039/d3tb02759g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Carboxylesterases (CESs) are critical for metabolizing ester-containing biomolecules and are specifically important in liver metabolic disorders. The modulation of CESs is also an important issue in pharmacology and clinical applications. Herein, we present a near-infrared (NIR) CES fluorescent probe (NCES) based on the protection-deprotection of the hydroxyl group for monitoring CES levels in living systems. The NCES probe has good selectivity and sensitivity for CESs with a limit of detection (LOD) of 5.24 mU mL-1, which allows for tracing the fluctuation of cellular CES after treatment with anticancer drugs and under inflammation and apoptosis states. Furthermore, NCES can be successfully applied for guiding liver cancer surgery with high-contrast in vivo imaging and detecting clinical serum samples from liver cancer patients. This work showed that the NCES probe has great potential in drug development, imaging applications for medical diagnosis, and early-stage detection for clinical liver diseases.
Collapse
Affiliation(s)
- Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Yuqing Xia
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Qian Liu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Hongshuai Zhang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China.
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Xuefeng Yang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China.
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Dan Cheng
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China.
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| |
Collapse
|
28
|
Ye M, Yu X, Yuan Y, He M, Zhuang J, Xiong S, Li J, Wang Y, Li C, Xiong X, Deng H. Design a dual-response two-photon fluorescent probe for simultaneous imaging of mitochondrial viscosity and peroxynitrite in a thrombosis model. Anal Chim Acta 2024; 1287:342088. [PMID: 38182381 DOI: 10.1016/j.aca.2023.342088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Venous thromboembolism is a sudden cardiovascular disease that can lead to death, and its pathologic development is closely related to vascular viscosity and inflammation. However, direct evidence from in vivo is really scarce. The key limitation is that the combined probes cannot detect multiple markers simultaneously, which may lead to unreliable results. Therefore, to develop a single probe that can simultaneously monitor the variations of viscosity in the vascular microenvironment as well as inflammation level during venous thrombosis. RESULTS A dual-responsive two-photon fluorescent probe, Cou-ONOO, was designed and synthesized. Cou-ONOO provides a visualization tool for monitoring the viscosity of the vascular as well as the inflammatory marker ONOO‾ during thromboembolism via dual-channel simultaneous imaging. As a single probe that can recognize dual targets, Cou-ONOO effectively avoids the problems from unreliable results caused by complex synthesis and differences in intracellular localization, diffusion, and metabolism of different dyes as using combinatorial probes. Using Cou-ONOO, simultaneous imaging the variations of viscosity and ONOO‾at the cellular and tissue levels was successfully performed. In addition, Cou-ONOO also successfully visualized and tracked the viscosity of the vascular microenvironment and ONOO‾ during venous embolism in mice. SIGNIFICANCE Experimental results show that both viscosity and inflammation are abnormally overexpressed in the microenvironment at the thrombus site during venous thrombosis. An intuitive visualization tool to elucidate the variations of viscosity as well as inflammation level in the vascular microenvironment during thrombosis was provided, which will facilitate a better clinical understanding of the pathological process of thrombosis.
Collapse
Affiliation(s)
- Miantai Ye
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Xiaohui Yu
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Meng He
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Junli Zhuang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Li
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanying Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
29
|
Gong J, Wang X, Fan HE, Wang J, Zhang F, Mao Z. Engineering an activatable fluorescent probe for studying ONOO - in pyroptotic process. Talanta 2024; 267:125216. [PMID: 37722344 DOI: 10.1016/j.talanta.2023.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Pyroptosis, a recently discovered form of programmed cell death, plays a pivotal role in oncological treatment. Howbeit, the mechanisms underlying pyroptosis in tumor treatment remain unclear. Previous research has demonstrated that the occurrence of pyroptosis generally accompanies a surge of reactive oxygen species (ROS) generation, with ONOO- being one of these ROS and closely linked to numerous diseases. Therefore, it is imperative to investigate the potential association between ONOO- and pyroptosis. Herein, a highly sensitive and rapidly responsive near-infrared (NIR) probe, Rd700-PN, is fabricated for exploring unrevealed relationships between ONOO- and pyroptosis. We successfully harness Rd700-PN to detect ONOO- fluctuation during cellular pyroptosis for the first time. Furthermore, the results demonstrate that Rd700-PN can scout the chemotherapeutic drug's induction ability of tumor pyroptosis in vivo. Notably, this study provides an excellent means to shed light on the correlation between ONOO- and pyroptosis and to screen antitumor drugs activating pyroptosis.
Collapse
Affiliation(s)
- Jiankang Gong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Hai-En Fan
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jiaxuan Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fan Zhang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Zhiqiang Mao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
30
|
Jiang R, Zhang H, Liu Q, Yang X, He L, Yuan L, Cheng D. De Novo Design of Near-Infrared Fluorescent Agents Activated by Peroxynitrite and Glutathione-Responsive Imaging for Diabetic Liver Disease. Adv Healthc Mater 2024; 13:e2302466. [PMID: 37840532 DOI: 10.1002/adhm.202302466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Diabetes and its complications, such as diabetes liver disease, is a major problem puzzling people's health. The detection of redox states in its pathological process can effectively help us gain a deeper understanding of the disease. The pair of oxidation-reduction substances peroxynitrite (ONOO- ) and glutathione (GSH) is considered to be closely related to their occurrence and development. Thus, direct visualization of ONOO- and GSH in diabetes liver disease is critical to evaluate the disease at the molecular level. Herein, two activatable agents NTCF-ONOO- and NTCF-GSH are prepared for selectively detecting ONOO- and GSH through protection and deprotection strategies based on hydroxyl and amino groups of near-infrared fluorophore. Fluorescence imaging of exogenous and endogenous ONOO- and GSH changes in living cells and in vivo is observed. The ONOO- and GSH level in the diabetes liver disease cellular model are visualized and the possible redox imbalance mechanism related to the oxidized (NAD+ ) and reduced (NADH) nicotinamide adenine dinucleotides is explored in this process. Moreover, these probes can sensitively recognize ONOO- and GSH in the process of oxidative stress resulting from streptozotocin and streptozotocin/acetaminophen-induced complex diabetic liver disease in vivo. In addition, they can be applied for monitoring the clinical serum sample related with diabetic patients.
Collapse
Affiliation(s)
- Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Hongshuai Zhang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Qian Liu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Xuefeng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Dan Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
31
|
Tyagi R, Yadav K, Srivastava N, Sagar R. Applications of Pyrrole and Pyridine-based Heterocycles in Cancer Diagnosis and Treatment. Curr Pharm Des 2024; 30:255-277. [PMID: 38711394 DOI: 10.2174/0113816128280082231205071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Nitin Srivastava
- Department of Chemistry, Amity University Lucknow Campus, Lucknow, Uttar Pradesh 226028, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| |
Collapse
|
32
|
Liu Y, Zhao J, Wang Y. Visualization of peroxynitrite/GSH cross-talk in the oxidant-antioxidant balance by a dual-fluorophore and dual-site based mito-specific fluorescent probe. Org Biomol Chem 2023; 22:159-168. [PMID: 38051231 DOI: 10.1039/d3ob00872j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Peroxynitrite (ONOO-) and glutathione (GSH) play mutually regulating roles in the oxidant-antioxidant balance of organisms, which has a profound relationship with people's health and disease. In this study, we designed a two-photon fluorescent probe CD-NA that could simultaneously detect ONOO- and GSH via dual-fluorophore and dual-site properties. CD-NA shows different fluorescence responses to ONOO- (annihilated red fluorescence) and GSH (enhanced green emission) with high specificity and sensitivity. Notably, the response of CD-NA to ONOO- was unaffected by GSH, and the reverse is also true. It allows the ONOO-/GSH cross-talk to be successfully imaged. Given these excellent properties, CD-NA has been favorably employed in detecting ONOO- and GSH in living cells with the ability to target mitochondria. Therefore, CD-NA offers an efficient method for understanding the oxidant-antioxidant balance and interrelated physiological functions of ONOO- and GSH in living systems, and provides a new strategy to sort out the complex relationships and roles of various analytes in complex physiological processes.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China.
| | - Jinjin Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China.
| | - Yingzhe Wang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China.
| |
Collapse
|
33
|
Gao X, Zhang W, Dong Z, Ren J, Song B, Zhang R, Yuan J. FRET Luminescent Probe for the Ratiometric Imaging of Peroxynitrite in Rat Brain Models of Epilepsy-Based on Organic Dye-Conjugated Iridium(III) Complex. Anal Chem 2023; 95:18530-18539. [PMID: 38048161 DOI: 10.1021/acs.analchem.3c03908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures globally, imposing a substantial burden on patients and their families. The pathological role of peroxynitrite (ONOO-), which can trigger oxidative stress, inflammation, and neuronal hyperexcitability, is critical in epilepsy. However, the development of reliable, in situ, and real-time optical imaging tools to detect ONOO- in the brain encounters some challenges related to the depth of tissue penetration, background interference, optical bleaching, and spectral overlapping. To address these limitations, we present Ir-CBM, a new one-photon and two-photon excitable and long-lived ratiometric luminescent probe designed specifically for precise detection of ONOO- in epilepsy-based on the Förster resonance energy transfer mechanism by combining an iridium(III) complex with an organic fluorophore. Ir-CBM possesses the advantages of rapid response, one-/two-photon excitation, and ratiometric luminescent imaging for monitoring the cellular levels of ONOO- and evaluating the effects of different therapeutic drugs on ONOO- in the brain of an epilepsy model rat. The development and utilization of Ir-CBM offer valuable insights into the design of ratiometric luminescent probes. Furthermore, Ir-CBM serves as a rapid imaging and screening tool for antiepileptic drugs, thereby accelerating the exploration of novel antiepileptic drug screening and improving preventive and therapeutic strategies in epilepsy research.
Collapse
Affiliation(s)
- Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Junyu Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Dong H, Tang MY, Shen S, Cao XQ, Zhang XF. A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite. Molecules 2023; 28:7976. [PMID: 38138467 PMCID: PMC10745935 DOI: 10.3390/molecules28247976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are pivotal signaling molecules that control a variety of physiological functions. As a member of the ROS family, peroxynitrite (ONOO-) possesses strong oxidation and nitrification abilities. Abnormally elevated levels of ONOO- can lead to cellular oxidative stress, which may cause several diseases. In this work, based on the rhodamine fluorophore, we designed and synthesized a novel small-molecule fluorescent probe (DH-1) for ONOO-. Upon reaction with ONOO-, DH-1 exhibited a significant fluorescence signal enhancement (approximately 34-fold). Moreover, DH-1 showed an excellent mitochondria-targeting capability. Confocal fluorescence imaging validated its ability to detect ONOO- changes in HeLa and RAW264.7 cells. Notably, we observed the ONOO- generation during the ferroptosis process by taking advantage of the probe. DH-1 displayed good biocompatibility, facile synthesis, and high selectivity, and may have potential applications in the study of ONOO--associated diseases in biosystems.
Collapse
Affiliation(s)
| | | | - Shili Shen
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China (X.-Q.C.)
| | | | - Xiao-Fan Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China (X.-Q.C.)
| |
Collapse
|
35
|
Lu Z, Dong C, Wang Y, Liu Q, Wei H, Zhao B, Xu X, Dong B, Fan C. A near-infrared fluorescent probe with remarkably large stokes shift for specifical imaging of peroxynitrite fluctuations in Hela cells. Bioorg Chem 2023; 141:106866. [PMID: 37729809 DOI: 10.1016/j.bioorg.2023.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Peroxynitrite (ONOO-), an endogenous reactive nitrogen species, plays an important role in maintaining intracellular homeostasis. Abnormal levels of ONOO- in cells could cause protein oxidation which is confirmed that related with Alzheimer's diseases, so accurate monitoring of ONOO- in cells is crucial. Herein, a novel fluorescent probe (XPC) based on dicyanomethylene-4H-benzothiopyran was developed by regulating its intramolecular charge transfer (ICT) effect to detect ONOO-. Once reaction with ONOO-, the fluorescence of XPC was turned on and the emission wavelength could reach up to 750 nm. Furthermore, XPC exhibited satisfactory performances for ONOO- such as large Stokes shift (200 nm), good sensitivity (Limit of detection = 13 nM), high selectivity to ONOO- over other a reactive nitrogen species (RNS)/reactive oxygen species (ROS). More importantly, XPC was successfully applied for monitoring the fluctuations of ONOO- in living cells.
Collapse
Affiliation(s)
- Zhengliang Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Chao Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qingqing Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hua Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xionghao Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Chunhua Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| |
Collapse
|
36
|
Li L, Huang Y, Jin X, Wang Q, Su J, Guo L. Dual Ratio and Ultraprecision Quantification of Mitochondrial Viscosity in Ferroptosis Enabled by a Vibration-Based Triple-Emission Fluorescent Probe. Anal Chem 2023; 95:17003-17010. [PMID: 37942555 DOI: 10.1021/acs.analchem.3c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ferroptosis is a new mode of cell death with major morphological changes in mitochondria, including structural shrinkage and increased membrane density, indicating the mitochondrial abnormality during this process. Viscosity, as one of the crucial microenvironmental parameters for characterizing the mitochondrial state, is thought to be highly involved in the ferroptosis. Herein, we present a single fluorescent probe (PPAC-C4) for the dual ratio and ultrahigh-accuracy quantification of mitochondrial viscosity. This probe is constructed by linking a mitochondria-targeting cation fragment on a vibration-based fluorescent scaffold whose fluorescence exhibits the rare triple emission (480, 533, and 628 nm) depending on the viscosity. The intensity ratios of 480 nm/628 nm and 533 nm/628 nm can be used to monitor the viscosity changes in a double self-calibration manner and finally afford an average viscosity value with improved precision. By virtue of this pattern, we reveal that the mitochondrial viscosity will increase from 43.58 to 152.05 cP in A549 cells during the ferroptosis. This dual-ratio probe with triemission not only shows great potential in the study of ferroptosis and ferroptosis-related diseases but also proposes a new concept for ultraprecision quantitative analysis.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Yidan Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Qiaochun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
37
|
Zheng YL, Yu R, Li M, Fan C, Liu L, Zhang H, Kang W, Shi R, Li C, Li Y, Wang J, Zheng X. A dual-channel fluorescence probe for simultaneously visualizing cysteine and viscosity during drug-induced hepatotoxicity. Heliyon 2023; 9:e22276. [PMID: 38053901 PMCID: PMC10694328 DOI: 10.1016/j.heliyon.2023.e22276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Cysteine (Cys), one of the important participants in protecting cells from oxidative stress, is closely associated with the occurrence and development of various diseases. Moreover, cell viscosity as a pivotal microenvironmental parameter has recently attracted increasing attention due to its dominant role in governing intracellular signal transduction and diffusion of reactive metabolites. Thus, simultaneous detection of Cys and viscosity is imperative for investigating their pathophysiological functions and cross-link. Herein we present a mitochondria-targetable dual-channel fluorescence probe ABDSP by grafting the acrylate modified pyridinium unit to dimethylaminobenzene. Whilst the probe is a seemingly simple, it could simultaneously discriminate Cys and viscosity in a fashion of distinguishable signals. Furthermore, the probe was successfully employed for visualizing mitochondrial Cys and viscosity, and probe into their cross-link during acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Long Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ruixue Yu
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Mengbo Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Cailian Fan
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Li Liu
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Huijie Zhang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Wenqian Kang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Run Shi
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Changzhi Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yarui Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiaqi Wang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xinhua Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| |
Collapse
|
38
|
Sun L, Dong X, Gao J, Zhu T, Sun J, Dong C, Wang R, Gu X, Zhao C. Precise Spatiotemporal Identification of Mitochondrial H 2S Fluctuations through Exploiting an On-Demand Photoactivated Probe. Anal Chem 2023; 95:14288-14296. [PMID: 37697825 DOI: 10.1021/acs.analchem.3c02509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Various signal molecules participate in complex biological processes in mitochondria. However, most currently available probes have problems in elucidating the functions of these active species in mitochondria due to the inability to light up these probes exclusively at the desired mitochondrial location, thereby compromising the specificity and accuracy. In this study, we present an on-demand photoactivation approach to the molecular design of optimized probes for precise spatiotemporal identification of mitochondrial H2S fluctuations. The designed probe with native yellow fluorescence can monitor the process into mitochondria but maintains nonfluorescent response to H2S during cellular delivery, providing the accurate timing of accumulation in mitochondria. On-demand photoactivation exclusively at the desired mitochondrial location affords a significant aggregation-enhanced and emissive response to H2S with lighting up red fluorescence at 690 nm, which is the only way to get such an emissive phenomenon and greatly improves the specificity and accuracy of targeting mitochondrial H2S. By using this photocontrolled fluorescence responsiveness to H2S, precise spatiotemporal identification of mitochondrial H2S fluctuations is successfully performed. Our work could facilitate advances toward interrogating the physiological and pathological consequences of mitochondrial H2S in various biological events.
Collapse
Affiliation(s)
- Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
39
|
Tang J, Zhang K, Ni T, Xu B, Hou B, Liu X, Jiang W. Multiple fluorescence and hydrogen peroxide-responsive properties of novel triphenylamine-benzothiazole derivatives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4021-4031. [PMID: 37548508 DOI: 10.1039/d3ay01038d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A novel fluorescent dye molecule - triphenylamine (TPA)-benzothiazole (BZT) - based on excited state intramolecular proton transfer (ESIPT) was prepared by the Suzuki coupling reaction. The photophysical property assay indicates that BZT-TPA appeared in distinguishable colors in mixed solvents with different water contents. Moreover, BZT-TPA exhibited observable AIE behavior. On this basis, a fluorescent probe BZT-TPA-BO was synthesized for detecting H2O2. This probe molecule was found to have excellent selectivity, rapid response, and good linear relationship (R2 = 0.989) for detecting H2O2 in aqueous medium. Through DFT calculation, fluorescence spectrum, nuclear magnetic titration and HR-MS, the mechanism of recognition of H2O2 by the probe BZT-TPA-BO is proposed. In addition, the probe BZT-TPA-BO to some extent exhibited better performance for detecting exogenous H2O2 in HeLa cells.
Collapse
Affiliation(s)
- Jiyu Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Tong Ni
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
| | - Bin Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Binjie Hou
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| |
Collapse
|
40
|
Liu Z, Mo S, Hao Z, Hu L. Recent Progress of Spectroscopic Probes for Peroxynitrite and Their Potential Medical Diagnostic Applications. Int J Mol Sci 2023; 24:12821. [PMID: 37629002 PMCID: PMC10454944 DOI: 10.3390/ijms241612821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Peroxynitrite (ONOO-) is a crucial reactive oxygen species that plays a vital role in cellular signal transduction and homeostatic regulation. Determining and visualizing peroxynitrite accurately in biological systems is important for understanding its roles in physiological and pathological activity. Among the various detection methods, fluorescent probe-based spectroscopic detection offers real-time and minimally invasive detection, high sensitivity and selectivity, and easy structural and property modification. This review categorizes fluorescent probes by their fluorophore structures, highlighting their chemical structures, recognition mechanisms, and response behaviors in detail. We hope that this review could help trigger novel ideas for potential medical diagnostic applications of peroxynitrite-related molecular diseases.
Collapse
Affiliation(s)
| | | | | | - Liming Hu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (S.M.); (Z.H.)
| |
Collapse
|
41
|
Luo P, Gao FQ, Sun W, Li JY, Wang C, Zhang QY, Li ZZ, Xu P. Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis. Mil Med Res 2023; 10:31. [PMID: 37443101 DOI: 10.1186/s40779-023-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability, thus adversely affecting locomotion ability and life quality. Consequently, good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA. Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging. Herein, we review the fluorescent probes developed for the detection and imaging of RA biomarkers, namely reactive oxygen/nitrogen species (hypochlorous acid, peroxynitrite, hydroxyl radical, nitroxyl), pH, and cysteine, and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fu-Qiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Sun
- Department of Orthopaedic Surgery of the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun-You Li
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Qing-Yu Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Zhi-Zhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
42
|
Zhou Z, Wang X, Wang Z, Wu J, Zhang F, Mao Z. Evaluation of peroxynitrite fluxes in inflammatory mice with a ratiometric fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122503. [PMID: 36848859 DOI: 10.1016/j.saa.2023.122503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Inflammation is a critical physiological process in the human body, which is closely related to numerous disorders and cancers. ONOO- is generated and functionalized in the inflamed process, but the roles of ONOO- are still blurred. To illuminate the roles of ONOO-, we fabricated an intramolecular charge transfer (ICT)-based fluorescence probe, HDM-Cl-PN, for the ratiometric determination of ONOO- in the inflamed mouse model. The probe displayed a gradual fluorescence increase at 676 nm and a fluorescence drop at 590 nm toward 0-10.5 μM ONOO-, and the ratio of 676 nm fluorescence and 590 nm fluorescence varied from 0.7 to 24.7. The significantly changed ratio and favorable selectivity ensure the sensitive detection of subtle changes in cellular ONOO-. Thanks to the excellent sensing performance, HDM-Cl-PNin vivo ratiometrically visualized ONOO- fluctuations in the LPS-triggered inflammatory process. Overall, this work not only expatiated the rational design for a ratiometric ONOO- probe but also built a bridge to investigate the connections between ONOO- and inflammation in living mice.
Collapse
Affiliation(s)
- Zhenhua Zhou
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhao Wang
- Wuhan Business University, Wuhan 430056, China
| | - Jiao Wu
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Fan Zhang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Zhiqiang Mao
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
43
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
44
|
Tang J, Li Z, Qiang C, Han Y, Yang L, Zhu L, Dang T, Chen G, Ye Y. A long-wavelength mitochondria-targeted fluorescent probe for imaging of peroxynitrite during dexamethasone treatment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122429. [PMID: 36750010 DOI: 10.1016/j.saa.2023.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Peroxynitrite (ONOO-), as a strong oxidizing reactive nitrogen substance (RNS), is generated endogenously by cells. Its visualization research is crucial to understand relevant disease processes. Herein, we reported a long-wavelength mitochondria-targeted fluorescence "turn on" probe TL. The probe TL could react with ONOO- by using 4-(Bromomethyl)benzeneboronic as a reactive site, which exhibited outstanding characteristics for detection of ONOO-, thus improving response time (about 50 s), sensitivity (DL, 10.1 nM), and emission wavelength (667 nm). Besides, TL displayed well mitochondria targeting and biological visualizing of exogenous and endogenous ONOO- in biological systems. Finally, TL was used to monitor high concentration of dexamethasone-induced an up-regulation of ONOO-. This indicated that TL has excellent potential to study the fluctuation of ONOO- in the physiological and pathological system.
Collapse
Affiliation(s)
- Jun Tang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China.
| | - Ziyi Li
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Chuchu Qiang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Yan Han
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Lifang Yang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Li Zhu
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Tan Dang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Gairong Chen
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
45
|
Zhang L, Jiao Y, Yang H, Jia X, Li H, He C, Si W, Duan C. Supramolecular Host-Guest Strategy for the Accelerating Detection of Nitroreductase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21198-21209. [PMID: 37070853 DOI: 10.1021/acsami.2c22851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Identifying nitroreductase (NTR) with fluorescent techniques has become a research hotspot, due to its good sensitivity and selectivity toward the early-stage cancer diagnosis and monitoring. Herein, a host-guest reporter (NAQA⊂Zn-MPPB) is successfully achieved by encapsulating the NTR probe NAQA into a new NADH-functioned metal-organic cage Zn-MPPB, which makes the reporter for ultrafast detection of NTR within dozens of seconds in solution. The host-guest strategy fuses the Zn-MPPB and NAQA to form a pseudomolecule material, which changes the reaction process of NTR and NAQA from a double substrates mechanism to a single substrate one, and accelerates the reduction efficiency of NAQA. This advantage make the new host-guest reporter exhibit a linear relationship between emission changes and NTR concentration, and it shows better sensitively toward NTR than that of NAQA. Additionally, the positively charged water-soluble metal-organic cage can encapsulate NAQA in the cavity, promote it to dissolve in an aqueous environment, and facilitate their accumulation into tumor cells. As expected, such host-guest reporter displays a fast and high efficiently imaging capability toward NTR in tumor cells and tumor-bearing mice, and flow cytometry assay is conducted to corroborate the capability as well, implying the considerably potential of host-guest strategy for early tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Hui Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Xianchao Jia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Huiyang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wen Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
46
|
Guo B, Shen T, Liu Y, Jing J, Shao C, Zhang X. An endoplasmic reticulum-specific ratiometric fluorescent probe for imaging esterase in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122389. [PMID: 36689909 DOI: 10.1016/j.saa.2023.122389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Esterase is primarily distributed in the endoplasmic reticulum (ER) and often overexpressed in cancer cells. Therefore, the detection of esterase in ER is significant for monitoring the metabolic process of various esters and evaluating the efficacy of chemotherapeutic prodrugs. However, only few fluorescent probes can detect esterase in the ER due to the lack of ER-specificity. More seriously, these probes are often limited by low pearson's colocalization coefficient and one single wavelength emission. To solve those problems, an ER-specific ratiometric fluorescent probe (ER-EST) is designed for detecting esterase in living cells. The ER-EST shows a ratiometric and red-shifted emission (125 nm) from 435 to 560 nm after hydrolysis by esterase. The fluorescence intensity ratio of ER-EST displays quantitative response to the esterase activity (0-0.5 U/mL) with low detection limit of 1.8 × 10-4 U/mL. Importantly, the ER-EST with good biocompatibility and excellent ER-targeted ability was successfully employed to ratiometric image the endogenous endoplasmic reticulum esterase in living cells.
Collapse
Affiliation(s)
- Bingpeng Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China
| | - Tianjiao Shen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yifan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jing Jing
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Changxiang Shao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271099, PR China.
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
47
|
Ou P, Ran H, Ye X, Wang J, Pang M, Zhao L, Chen M, Li X, Ma Y, Wang P, Chen J, Luo Q, Peng Y. A robust high selectivity fluorescence turn-on nanoprobe for peroxynitrite detection in inflammatory cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122381. [PMID: 36689907 DOI: 10.1016/j.saa.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Changed levels of intracellular peroxynitrite anion (ONOO-) are closely related to the occurrence and development of inflammation. Specific imaging of ONOO- at sites of inflammation can be of great significance not only for inflammation diagnosis but also for obtaining a deeper understanding of the role of ONOO- in inflammation. Therefore, there is an urgent need for constructing some reliable tools to study the relationship between ONOO- and inflammation in biosystems. In this work, we developed a robust high selectivity fluorescence turn-on nanoprobe (Rhb-ONOO) for inflammation-targeted imaging of ONOO-. The Rhb-ONOO was obtained by self-assembly of amphiphilic Rhb-ONOO, which was constructed by the condensation reaction of the hydrophobic, ONOO--response and deep red-emitting fluorophore (Rhb) with hydrophilic biopolymer glycol chitosan (GC). Rhb-ONOO showed rapid response towards ONOO- during 60 s, high sensitivity with 19-fold enhancement of fluorescence intensity ratio (I628/I0), and excellent selectivity towards ONOO- over other analytes as well as a good linear relationship was observed between the I628/I0 and the ONOO- concentration range 0-1 μM, with an excellent limit of detection (LOD) of 33 nM. Impressively, it was successfully employed Rhb-ONOO for ONOO- imaging in living inflammatory cells and drug-induced inflammatory mice, illustrating nanoprobe Rhb-ONOO has excellent potential for further study ONOO--related inflammatory diseases.
Collapse
Affiliation(s)
- Pinghua Ou
- Department of Stomatology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Hongyan Ran
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoping Ye
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Junyi Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Meiling Pang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lulu Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Meizi Chen
- Department of Respiratory Medicine, The First People's Hospital of Chenzhou, Chenzhou 423000, PR China
| | - Xiong Li
- School of Clinical Pharmacy and the First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yongping Ma
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, PR China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, PR China
| | - Quan Luo
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, PR China.
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
48
|
Zhan Z, Chai L, Yang H, Dai Y, Wei Z, Wang D, Lv Y. Endoplasmic Reticulum Peroxynitrite Fluctuations in Hypoxia-Induced Endothelial Injury and Sepsis with a Two-Photon Fluorescence Probe. Anal Chem 2023; 95:5585-5593. [PMID: 36952574 DOI: 10.1021/acs.analchem.2c05040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sepsis is a serious systemic inflammatory disease that frequently results in death. Early diagnosis and timely targeted interventions could improve the therapeutic effect. Recent work has revealed that the reactive oxygen species (ROS) in the endoplasmic reticulum (ER) and hypoxia-induced endothelial injury play significant roles in sepsis. However, the relationship between the levels of peroxynitrite (ONOO-) and hypoxia-induced endothelial injury as well as different states of sepsis remain unexplored. Herein, we developed a unique two-photon fluorescent probe (ER-ONOO-) for detecting ONOO- in aqueous solution that has high sensitivity, high selectivity, and ultrafast response time. In addition, ER-ONOO- was successfully used to evaluate the levels of ONOO- at the ER with three kinds of methods in a hypoxia-induced endothelial injury model. Furthermore, ER-ONOO- is capable of monitoring the changes in organ fluorescence through ONOO- variation in different stages of a cecum ligation and puncture (CLP) mouse model. Moreover, we also confirmed that the endoplasmic reticulum stress and oxidative stress participated in the CLP model. Consequently, this research can provide a reliable tool for studying ONOO- fluctuation in sepsis and provide new insights into the pathogenic and therapeutic mechanisms involved.
Collapse
Affiliation(s)
- Zixuan Zhan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Chai
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haihui Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongcheng Dai
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zeliang Wei
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Denian Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
49
|
Erdemir S, Oguz M, Malkondu S. Visual and quantitative monitoring of thiophenol by a novel deep-red emitting fluorescent probe in environmental and biological systems. Anal Chim Acta 2023; 1246:340901. [PMID: 36764773 DOI: 10.1016/j.aca.2023.340901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Detection of highly toxic thiophenols in biological or environmental systems is of great importance. Therefore, fast, reliable, and sensitive probes are needed to detect thiophenols. Herein, a novel triphenylamine conjugated dicyanoisophorone-based near infrared fluorescence probe is reported to determine trace thiophenol (PhSH) levels. The probe demonstrates a distinct "turn-on" fluorescence response to thiophenol among the tested analytes and its quantum yield (Φ) increases from 0.011 to 0.142. It has low cytotoxicity with cell viability of 90-100% up to 10.0 μM of the probe, a strong anti-interference capability, a large Stokes shift (150 nm), and a fast response time (<1 min). In addition, the probe exhibits a good linear response to PhSH over the range from 0 to 15.0 μM with a detection limit of 32.3 nM (R2 = 0.9978). The detection process is also confirmed through HPLC. The practical applicability of the probe is proved by a smartphone platform, TLC kit, plant tissue imaging, soil assay, tap, and lake water analysis with good recovery values (92.3-117%), and concentration-dependent live cell bioimaging PhSH from 5.0 to 15.0 μM. Therefore, the present probe is a robust candidate for monitoring PhSH levels in biological and environmental systems.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| |
Collapse
|
50
|
Xu S, Pan W, Song ZL, Yuan L. Molecular Engineering of Near-Infrared Fluorescent Probes for Cell Membrane Imaging. Molecules 2023; 28:1906. [PMID: 36838896 PMCID: PMC9960866 DOI: 10.3390/molecules28041906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Cell membrane (CM) is a phospholipid bilayer that maintains integrity of a whole cell and relates to many physiological and pathological processes. Developing CM imaging tools is a feasible method for visualizing membrane-related events. In recent decades, small-molecular fluorescent probes in the near-infrared (NIR) region have been pursued extensively for CM staining to investigate its functions and related events. In this review, we summarize development of such probes from the aspect of design principles, CM-targeting mechanisms and biological applications. Moreover, at the end of this review, the challenges and future research directions in designing NIR CM-targeting probes are discussed. This review indicates that more efforts are required to design activatable NIR CM-targeting probes, easily prepared and biocompatible probes with long retention time regarding CM, super-resolution imaging probes for monitoring CM nanoscale organization and multifunctional probes with imaging and phototherapy effects.
Collapse
Affiliation(s)
- Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenjing Pan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhi-Ling Song
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha 410082, China
| |
Collapse
|