1
|
Gao P, Ji Y, Hou G. Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives. J Am Chem Soc 2025; 147:2919-2937. [PMID: 39807849 PMCID: PMC11783548 DOI: 10.1021/jacs.4c10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries. Herein, we present an overview of the current state of the art from an NMR perspective. We begin with a brief introduction to contemporary ssNMR methodologies. Subsequently, we introduce and provide critical reviews on the applications of different ssNMR techniques in the detailed characterizations of the surface local structures, disorders, defects, active sites, and acidity on metal oxide nanoparticles, as well as the revelation of mechanisms behind some intriguing chemistries that occur on the surfaces, referencing representative recent studies. Finally, we address the challenges beyond the current status and provide perspectives on the future development and application of advanced ssNMR methodologies in this emerging field.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Ji
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
Wolf T, Goobes Y, Frydman L. Sensitivity Enhancement of Ultra-Wideline NMR by Progressive Saturation of the Proton Reservoir Under Magic-Angle Spinning. Chemphyschem 2024; 25:e202400613. [PMID: 39101285 DOI: 10.1002/cphc.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Solid-state NMR of low-γ nuclides is often characterized by low sensitivity and by significant spectral broadenings induced by the quadrupolar and the chemical-shift anisotropy interactions. Herein, we introduce an indirect acquisition method, termed PROgressive Saturation of the Proton Reservoir Under Spinning (PROSPRUS), which could facilitate the acquisition of ultra-wideline NMR spectra under magic-angle spinning (MAS), in systems with a sufficiently long dipolar relaxation time, T1D. PROSPRUS NMR relies on the generation of so-called second-order dipolar order among abundant protons undergoing MAS, and on the subsequent depletion of this dipolar order by a series of looped cross-polarization events, transferring the proton order into polarization of the low-γ I-nuclei as a function of the latter's offsets. While the spin dynamics of the ensuing experiment is complex, particularly when dealing with narrow I spectral lines, it is shown that PROSPRUS can lead to faithful lineshapes for ultra-wideline spin-1/2 and spin-1 species, providing high sensitivity with extremely low RF power requirements. It is also shown that the ensuing 1H-detected PROSPRUS experiments can efficiently characterize I-spin lineshapes in excess of 1 MHz without having to retune electronics, while providing improvements in sensitivity per unit time over current broadband direct-detection methods by up to a factor of four.
Collapse
Affiliation(s)
- Tamar Wolf
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yuval Goobes
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
3
|
Sarkar D, Stelmakh A, Karmakar A, Aebli M, Krieg F, Bhattacharya A, Pawsey S, Kovalenko MV, Michaelis VK. Surface Structure of Lecithin-Capped Cesium Lead Halide Perovskite Nanocrystals Using Solid-State and Dynamic Nuclear Polarization NMR Spectroscopy. ACS NANO 2024; 18:21894-21910. [PMID: 39110153 DOI: 10.1021/acsnano.4c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Inorganic colloidal cesium lead halide perovskite nanocrystals (NCs) encapsulated by surface capping ligands exhibit tremendous potential in optoelectronic applications, with their surface structure playing a pivotal role in enhancing their photophysical properties. Soy lecithin, a tightly binding zwitterionic surface-capping ligand, has recently facilitated the high-yield synthesis of stable ultraconcentrated and ultradilute colloids of CsPbX3 NCs, unlocking a myriad of potential device applications. However, the atomic-level understanding of the ligand-terminated surface structure remains uncertain. Herein, we use a versatile solid-state nuclear magnetic resonance (NMR) spectroscopic approach, in combination with dynamic nuclear polarization (DNP) and atomistic molecular dynamics (MD) simulations, to explore the effect of lecithin on the core-to-surface structures of CsPbX3 (X = Cl or Br) perovskites, sized from micron to nanoscale. Surface-selective (cross-polarization, CP) solid-state and DNP NMR (133Cs and 207Pb) methods were used to differentiate the unique surface and core chemical environments, while the head-groups {trimethylammonium [-N(CH3)3+] and phosphate (-PO4-)} of lecithin were assigned via 1H, 13C, and 31P NMR spectroscopy. A direct approach to determining the surface structure by capitalizing on the unique heteronuclear dipolar couplings between the lecithin ligand (1H and 31P) and the surface of the CsPbCl3 NCs (133Cs and 207Pb) is demonstrated. The 1H-133Cs heteronuclear correlation (HETCOR) DNP NMR indicates an abundance of Cs on the NC surface and an intimate proximity of the -N(CH3)3+ groups to the surface and subsurface 133Cs atoms, supported by 1H{133Cs} rotational-echo double-resonance (REDOR) NMR spectroscopy. Moreover, the 1H-31P{207Pb} CP REDOR dephasing curve provides average internuclear distance information that allows assessment of -PO4- groups binding to the subsurface Pb atoms. Atomistic MD simulations of ligand-capped CsPbCl3 surfaces aid in the interpretation of this information and suggest that ligand -N(CH3)3+ and -PO4- head-groups substitute Cs+ and Cl- ions, respectively, at the CsCl-terminated surface of the NCs. These detailed atomistic insights into surface structures can further guide the engineering of various relevant surface-capping zwitterionic ligands for diverse metal halide perovskite NCs.
Collapse
Affiliation(s)
- Diganta Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Andriy Stelmakh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Abhoy Karmakar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Franziska Krieg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Amit Bhattacharya
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shane Pawsey
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
4
|
Yang Y, Miao C, Wang R, Zhang R, Li X, Wang J, Wang X, Yao J. Advances in morphology-controlled alumina and its supported Pd catalysts: synthesis and applications. Chem Soc Rev 2024; 53:5014-5053. [PMID: 38600823 DOI: 10.1039/d3cs00776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.
Collapse
Affiliation(s)
- Yanpeng Yang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Chenglin Miao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Ruoyu Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Rongxin Zhang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xiaoyu Li
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Jieguang Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 51031, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China.
| |
Collapse
|
5
|
Zheng M, Chu Y, Wang Q, Wang Y, Xu J, Deng F. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:1-41. [PMID: 38705634 DOI: 10.1016/j.pnmrs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Mingji Zheng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongxiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
6
|
Perras FA, Culver DB. On the use of NMR distance measurements for assessing surface site homogeneity. Dalton Trans 2023. [PMID: 38015038 DOI: 10.1039/d3dt03201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The past few decades have seen tremendous growth in the area of single-site heterogeneous catalysis, which aims to combine the best aspects of homogeneous and heterogeneous catalysis, namely molecular-level site control and ease of separation/recycling. Despite this, we still do not have a means of assessing site homogeneity and whether the produced catalyst is indeed a "single-site". Recent developments have enabled the use of NMR-based distance measurements to determine the conformations and configurations of surface sites, leading to the question whether such measurements can be used to distinguish materials containing either single or multiple surface sites with otherwise indistinguishable NMR properties. We describe a Monte Carlo-based multi-structure search algorithm and its application to the determination of multi-site structures from supported metal complexes. The sensitivity of REDOR data to the existence of multiple sites is assessed using synthetic data and prior literature examples are revisited to determine whether the single-site approximation was indeed appropriate. We lastly apply this new methodology to differentiate the configurations of zirconocene complexes grafted onto alumina supports that were thermally treated at different temperatures.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
- Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA
| | - Damien B Culver
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Mishra A, Hope MA, Stevanato G, Kubicki DJ, Emsley L. Dynamic Nuclear Polarization of Inorganic Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11094-11102. [PMID: 37342202 PMCID: PMC10278140 DOI: 10.1021/acs.jpcc.3c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
The intrinsic low sensitivity of nuclear magnetic resonance (NMR) experiments limits their utility for structure determination of materials. Dynamic nuclear polarization (DNP) under magic angle spinning (MAS) has shown tremendous potential to overcome this key limitation, enabling the acquisition of highly selective and sensitive NMR spectra. However, so far, DNP methods have not been explored in the context of inorganic lead halide perovskites, which are a leading class of semiconductor materials for optoelectronic applications. In this work, we study cesium lead chloride and quantitatively compare DNP methods based on impregnation with a solution of organic biradicals with doping of high-spin metal ions (Mn2+) into the perovskite structure. We find that metal-ion DNP provides the highest bulk sensitivity in this case, while highly surface-selective NMR spectra can be acquired using impregnation DNP. The performance of both methods is explained in terms of the relaxation times, particle size, dopant concentration, and surface wettability. We envisage the future use of DNP NMR approaches in establishing structure-activity relationships in inorganic perovskites, especially for mass-limited samples such as thin films.
Collapse
|
8
|
Wang Z, Völker LA, Robinson TC, Kaeffer N, Menzildjian G, Jabbour R, Venkatesh A, Gajan D, Rossini AJ, Copéret C, Lesage A. Speciation and Structures in Pt Surface Sites Stabilized by N-Heterocyclic Carbene Ligands Revealed by Dynamic Nuclear Polarization Enhanced Indirectly Detected 195Pt NMR Spectroscopic Signatures and Fingerprint Analysis. J Am Chem Soc 2022; 144:21530-21543. [DOI: 10.1021/jacs.2c08300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zhuoran Wang
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Laura A. Völker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
| | - Thomas C. Robinson
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Nicolas Kaeffer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
| | - Georges Menzildjian
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Ribal Jabbour
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - David Gajan
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
| | - Anne Lesage
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| |
Collapse
|
9
|
Wang W, Xu J, Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl Sci Rev 2022; 9:nwac155. [PMID: 36131885 PMCID: PMC9486922 DOI: 10.1093/nsr/nwac155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites are important inorganic crystalline microporous materials with a broad range of applications in the areas of catalysis, ion exchange, and adsorption/separations. Solid-state nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful tool in the study of zeolites and relevant catalytic reactions because of its advantage in providing atomic-level insights into molecular structure and dynamic behavior. In this review, we provide a brief discussion on the recent progress in exploring framework structures, catalytically active sites and intermolecular interactions in zeolites and metal-containing ones by using various solid-state NMR methods. Advances in the mechanistic understanding of zeolite-catalysed reactions including methanol and ethanol conversions are presented as selected examples. Finally, we discuss the prospect of the solid-state NMR technique for its application in zeolites.
Collapse
Affiliation(s)
- Weiyu Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Jabbour R, Renom-Carrasco M, Chan KW, Völker L, Berruyer P, Wang Z, Widdifield CM, Lelli M, Gajan D, Copéret C, Thieuleux C, Lesage A. Multiple Surface Site Three-Dimensional Structure Determination of a Supported Molecular Catalyst. J Am Chem Soc 2022; 144:10270-10281. [PMID: 35642739 DOI: 10.1021/jacs.2c01013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural characterization of supported molecular catalysts is challenging due to the low density of active sites and the presence of several organic/organometallic surface groups resulting from the often complex surface chemistry associated with support functionalization. Here, we provide a complete atomic-scale description of all surface sites in an N-heterocyclic carbene based on iridium and supported on silica, at all stages of its synthesis. By combining a suitable isotope labeling strategy with the implementation of multinuclear dipolar recoupling DNP-enhanced NMR experiments, the 3D structure of the Ir-NHC sites, as well as that of the synthesis intermediates were determined. As a significant fraction of parent surface fragments does not react during the multistep synthesis, site-selective experiments were implemented to specifically probe proximities between the organometallic groups and the solid support. The NMR-derived structure of the iridium sites points to a well-defined conformation. By interpreting EXAFS spectroscopy and chemical analysis data augmented by computational studies, the presence of two coordination geometries is demonstrated: Ir-NHC fragments coordinated by a 1,5-cyclooctadiene and one Cl ligand, as well as, more surprisingly, a fragment coordinated by two NHC and two Cl ligands. This study demonstrates a unique methodology to disclose individual surface structures in complex, multisite environments, a long-standing challenge in the field of heterogeneous/supported catalysts, while revealing new, unexpected structural features of metallo-NHC-supported substrates. It also highlights the potentially large diversity of surface sites present in functional materials prepared by surface chemistry, an essential knowledge to design materials with improved performances.
Collapse
Affiliation(s)
- Ribal Jabbour
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN de Lyon, UMR 5082, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marc Renom-Carrasco
- Université de Lyon, Institut de Chimie de Lyon, CP2M, UMR 5128 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Laura Völker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Zhuoran Wang
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN de Lyon, UMR 5082, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Cory M Widdifield
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Moreno Lelli
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - David Gajan
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN de Lyon, UMR 5082, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Chloé Thieuleux
- Université de Lyon, Institut de Chimie de Lyon, CP2M, UMR 5128 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Anne Lesage
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN de Lyon, UMR 5082, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
11
|
Berkson Z, Bernhardt M, Schlapansky SL, Benedikter MJ, Buchmeiser MR, Price GA, Sunley GJ, Copéret C. Olefin-Surface Interactions: A Key Activity Parameter in Silica-Supported Olefin Metathesis Catalysts. JACS AU 2022; 2:777-786. [PMID: 35373213 PMCID: PMC8969997 DOI: 10.1021/jacsau.2c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/02/2023]
Abstract
Molecularly defined and classical heterogeneous Mo-based metathesis catalysts are shown to display distinct and unexpected reactivity patterns for the metathesis of long-chain α-olefins at low temperatures (<100 °C). Catalysts based on supported Mo oxo species, whether prepared via wet impregnation or surface organometallic chemistry (SOMC), exhibit strong activity dependencies on the α-olefin chain length, with slower reaction rates for longer substrate chain lengths. In contrast, molecular and supported Mo alkylidenes are highly active and do not display such dramatic dependence on the chain length. State-of-the-art two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) spectroscopy analyses of postmetathesis catalysts, complemented by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamics calculations, evidence that the activity decrease observed for supported Mo oxo catalysts relates to the strong adsorption of internal olefin metathesis products because of interactions with surface Si-OH groups. Overall, this study shows that in addition to the nature and the number of active sites, the metathesis rates and the overall catalytic performance depend on product desorption, even in the liquid phase with nonpolar substrates. This study further highlights the role of the support and active site composition and dynamics on activity as well as the need for considering adsorption in catalyst design.
Collapse
Affiliation(s)
- Zachariah
J. Berkson
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Moritz Bernhardt
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Simon L. Schlapansky
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Mathis J. Benedikter
- Institute
of Polymer Chemistry, Universität
Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Michael R. Buchmeiser
- Institute
of Polymer Chemistry, Universität
Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Gregory A. Price
- Applied
Sciences, BP Innovation & Engineering, BP plc, Saltend, Hull HU12 8DS, U.K.
| | - Glenn J. Sunley
- Applied
Sciences, BP Innovation & Engineering, BP plc, Saltend, Hull HU12 8DS, U.K.
| | - Christophe Copéret
- Department
of Chemistry and Applied Bioscience, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
12
|
Atterberry BA, Carnahan SL, Chen Y, Venkatesh A, Rossini AJ. Double echo symmetry-based REDOR and RESPDOR pulse sequences for proton detected measurements of heteronuclear dipolar coupling constants. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107147. [PMID: 35149335 DOI: 10.1016/j.jmr.2022.107147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
1H{X} symmetry-based rotational echo double resonance pulse sequences (S-REDOR) and symmetry-based rotational echo saturation pulse double resonance (S-RESPDOR) solid-state NMR experiments have found widespread application for 1H detected measurements of difference NMR spectra, dipolar coupling constants, and internuclear distances under conditions of fast magic angle spinning (MAS). In these experiments the supercycled R412 (SR412) symmetry-based recoupling pulse sequence is typically applied to the 1H spins to reintroduce heteronuclear dipolar couplings. However, the timing of SR412 and other symmetry-based pulse sequences must be precisely synchronized with the rotation of the sample, otherwise, the evolution of 1H CSA and other interactions will not be properly refocused. For this reason, significant distortions are often observed in experimental dipolar dephasing difference curves obtained with S-REDOR or S-RESPDOR pulse sequences. Here we introduce a family of double echo (DE) S-REDOR/S-RESPDOR pulse sequences that function in an analogous manner to the recently introduced t1-noise eliminated (TONE) family of dipolar heteronuclear multiple quantum coherence (D-HMQC) pulse sequences. Through numerical simulations and experiments the DE S-REDOR/S-RESPDOR sequences are shown to provide dephasing difference curves similar to those obtained with S-REDOR/S-RESPDOR. However, the DE sequences are more robust to the deviations of the MAS frequency from the ideal value that occurs during typical solid-state NMR experiments. The DE sequences are shown to provide more reliable 1H detected dipolar dephasing difference curves for nuclei such as 15N (with isotopic labelling), 183W and 35Cl. The double echo sequences are therefore recommended to be used in place of conventional S-REDOR/S-RESPDOR sequences for measurement of weak dipolar coupling constants and long-range distances.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Scott L Carnahan
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
13
|
Perras FA, Kanbur U, Paterson AL, Chatterjee P, Slowing II, Sadow AD. Determining the Three-Dimensional Structures of Silica-Supported Metal Complexes from the Ground Up. Inorg Chem 2021; 61:1067-1078. [PMID: 34962783 DOI: 10.1021/acs.inorgchem.1c03200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immobilization of molecularly precise metal complexes to substrates, such as silica, provides an attractive platform for the design of active sites in heterogeneous catalysts. Specific steric and electronic variations of the ligand environment enable the development of structure-activity relationships and the knowledge-driven design of catalysts. At present, however, the three-dimensional environment of the precatalyst, much less the active site, is generally not known for heterogeneous single-site catalysts. We explored the degree to which NMR-based surface-to-complex interatomic distances could be used to solve the three-dimensional structures of three silica-supported metal complexes. The structure solution revealed unexpected features related to the environment around the metal that would be difficult to discern otherwise. This approach appears to be highly robust and, due to its simplicity, is readily applied to most single-site catalysts with little extra effort.
Collapse
Affiliation(s)
| | - Uddhav Kanbur
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Puranjan Chatterjee
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Igor I Slowing
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron D Sadow
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Goldbourt A. Distance measurements to quadrupolar nuclei: Evolution of the rotational echo double resonance technique. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:908-919. [PMID: 33729630 DOI: 10.1002/mrc.5150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Molecular structure determination is the basis for understanding chemical processes and the property of materials. The direct dependence of the magnetic dipolar interaction on the distance makes solid-state nuclear magnetic resonance (NMR) an excellent tool to study molecular structure when X-ray crystallography fails to provide atomic-resolution data. Although techniques to measure distances between pairs of isolated nuclear spin-1/2 pairs are routine and easy to implement using the rotational echo double resonance (REDOR) experiment (Gullion & Schaefer, 1989), the existence of a nucleus with a spin > 1/2, appearing in approximately 75% of the elements in the periodic table, poses a challenge due to difficulties stemming from the large nuclear quadrupolar coupling constant (QCC). This mini-review presents the existing solid-state magic-angle spinning NMR techniques aimed toward the efficient and accurate determination of internuclear distances between a spin-1/2 and a "quadrupolar" nucleus having a spin larger than one half. Analytical expressions are provided for the various recoupling curves stemming from different techniques, and a coherent nomenclature for these various techniques is suggested. Treatment of some special cases such as multiple spin effects and spins with close Larmor frequencies is also discussed. The most advanced methods can recouple spins with quadrupolar frequencies up to tens of megahertz and beyond, expanding the distance measurement capabilities of solid-state NMR to an increasingly growing number of applications and nuclear spin systems.
Collapse
Affiliation(s)
- Amir Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Chen Y, Dorn RW, Hanrahan MP, Wei L, Blome-Fernández R, Medina-Gonzalez AM, Adamson MAS, Flintgruber AH, Vela J, Rossini AJ. Revealing the Surface Structure of CdSe Nanocrystals by Dynamic Nuclear Polarization-Enhanced 77Se and 113Cd Solid-State NMR Spectroscopy. J Am Chem Soc 2021; 143:8747-8760. [PMID: 34085812 DOI: 10.1021/jacs.1c03162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) spectroscopy was used to obtain detailed surface structures of zinc blende CdSe nanocrystals (NCs) with plate or spheroidal morphologies which are capped by carboxylic acid ligands. 1D 113Cd and 77Se cross-polarization magic angle spinning (CPMAS) NMR spectra revealed distinct signals from Cd and Se atoms on the surface of the NCs, and those residing in bulk-like environments, below the surface. 113Cd cross-polarization magic-angle-turning (CP-MAT) experiments identified CdSe3O, CdSe2O2, and CdSeO3 Cd coordination environments on the surface of the NCs, where the oxygen atoms are presumably from coordinated carboxylate ligands. The sensitivity gain from DNP enabled natural isotopic abundance 2D homonuclear 113Cd-113Cd and 77Se-77Se and heteronuclear 113Cd-77Se scalar correlation solid-state NMR experiments which revealed the connectivity of the Cd and Se atoms. Importantly, 77Se{113Cd} scalar heteronuclear multiple quantum coherence (J-HMQC) experiments were used to selectively measure one-bond 77Se-113Cd scalar coupling constants (1J(77Se, 113Cd)). With knowledge of 1J(77Se, 113Cd), heteronuclear 77Se{113Cd} spin echo (J-resolved) NMR experiments were used to determine the number of Cd atoms bonded to Se atoms and vice versa. The J-resolved experiments directly confirmed that major Cd and Se surface species have CdSe2O2 and SeCd4 stoichiometries, respectively. Considering the crystal structure of zinc blende CdSe and the similarity of the solid-state NMR data for the platelets and spheroids, we conclude that the surface of the spheroidal CdSe NCs is primarily composed of {100} facets. The methods outlined here will generally be applicable to obtain detailed surface structures of various main group semiconductor nanoparticles.
Collapse
Affiliation(s)
- Yunhua Chen
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rick W Dorn
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Michael P Hanrahan
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Lin Wei
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | | | - Marquix A S Adamson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Anne H Flintgruber
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States
| | - Javier Vela
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron J Rossini
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
16
|
Kaeffer N, Mance D, Copéret C. N‐Heterocyclic Carbene Coordination to Surface Copper Sites in Selective Semihydrogenation Catalysts from Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicolas Kaeffer
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim a. d. Ruhr Germany
| | - Deni Mance
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Christophe Copéret
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
17
|
Kaeffer N, Mance D, Copéret C. N‐Heterocyclic Carbene Coordination to Surface Copper Sites in Selective Semihydrogenation Catalysts from Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2020; 59:19999-20007. [DOI: 10.1002/anie.202006209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Nicolas Kaeffer
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim a. d. Ruhr Germany
| | - Deni Mance
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Christophe Copéret
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
18
|
Buntkowsky G, Vogel M. Small Molecules, Non-Covalent Interactions, and Confinement. Molecules 2020; 25:E3311. [PMID: 32708283 PMCID: PMC7397022 DOI: 10.3390/molecules25143311] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 11/27/2022] Open
Abstract
This review gives an overview of current trends in the investigation of small guest molecules, confined in neat and functionalized mesoporous silica materials by a combination of solid-state NMR and relaxometry with other physico-chemical techniques. The reported guest molecules are water, small alcohols, and carbonic acids, small aromatic and heteroaromatic molecules, ionic liquids, and surfactants. They are taken as characteristic role-models, which are representatives for the typical classes of organic molecules. It is shown that this combination delivers unique insights into the structure, arrangement, dynamics, guest-host interactions, and the binding sites in these confined systems, and is probably the most powerful analytical technique to probe these systems.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64295 Darmstadt, Germany
| |
Collapse
|
19
|
Chen Y, Smock SR, Flintgruber AH, Perras FA, Brutchey RL, Rossini AJ. Surface Termination of CsPbBr3 Perovskite Quantum Dots Determined by Solid-State NMR Spectroscopy. J Am Chem Soc 2020; 142:6117-6127. [DOI: 10.1021/jacs.9b13396] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yunhua Chen
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Sara R. Smock
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | - Richard L. Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Aaron J. Rossini
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
20
|
Rodriguez-Gomez A, Chowdhury AD, Caglayan M, Bau JA, Abou-Hamad E, Gascon J. Non-oxidative dehydrogenation of isobutane over supported vanadium oxide: nature of the active sites and coke formation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01174f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combine Raman spectroscopy, EPR, XPS, temperature programmed reduction, XRD, 51V MAS ssNMR, TEM and N2-physisorption to unravel structure–activity relationships during the non-oxidative dehydrogenation of isobutane over a V based catalyst.
Collapse
Affiliation(s)
- Alberto Rodriguez-Gomez
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Abhishek Dutta Chowdhury
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Mustafa Caglayan
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Jeremy A. Bau
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Edy Abou-Hamad
- Core Labs
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| |
Collapse
|
21
|
Johnson RL, Perras FA, Hanrahan MP, Mellmer M, Garrison TF, Kobayashi T, Dumesic JA, Pruski M, Rossini AJ, Shanks BH. Condensed Phase Deactivation of Solid Brønsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert L. Johnson
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | | | | | - Max Mellmer
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Thomas F. Garrison
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | | | - James A. Dumesic
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Marek Pruski
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011-3020, United States
| | | | - Brent H. Shanks
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| |
Collapse
|
22
|
Dutta Chowdhury A, Yarulina I, Abou-Hamad E, Gurinov A, Gascon J. Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process. Chem Sci 2019; 10:8946-8954. [PMID: 32190235 PMCID: PMC7068724 DOI: 10.1039/c9sc02215e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023] Open
Abstract
After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (i.e., via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.
Collapse
Affiliation(s)
- Abhishek Dutta Chowdhury
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| | - Irina Yarulina
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology , KAUST Core Labs , Thuwal 23955 , Saudi Arabia .
| | - Andrei Gurinov
- King Abdullah University of Science and Technology , KAUST Core Labs , Thuwal 23955 , Saudi Arabia .
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| |
Collapse
|
23
|
Hanrahan MP, Chen Y, Blome-Fernández R, Stein JL, Pach GF, Adamson MAS, Neale NR, Cossairt BM, Vela J, Rossini AJ. Probing the Surface Structure of Semiconductor Nanoparticles by DNP SENS with Dielectric Support Materials. J Am Chem Soc 2019; 141:15532-15546. [PMID: 31456398 DOI: 10.1021/jacs.9b05509] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Surface characterization is crucial for understanding how the atomic-level structure affects the chemical and photophysical properties of semiconducting nanoparticles (NPs). Solid-state nuclear magnetic resonance spectroscopy (NMR) is potentially a powerful technique for the characterization of the surface of NPs, but it is hindered by poor sensitivity. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) has previously been demonstrated to enhance the sensitivity of surface-selective solid-state NMR experiments by 1-2 orders of magnitude. Established sample preparations for DNP SENS experiments on NPs require the dilution of the NPs on mesoporous silica. Using hexagonal boron nitride (h-BN) to disperse the NPs doubles DNP enhancements and absolute sensitivity in comparison to standard protocols with mesoporous silica. Alternatively, precipitating the NPs as powders, mixing them with h-BN, and then impregnating the powdered mixture with radical solution leads to further 4-fold sensitivity enhancements by increasing the concentration of NPs in the final sample. This modified procedure provides a factor of 9 improvement in NMR sensitivity in comparison to previously established DNP SENS procedures, enabling challenging homonuclear and heteronuclear 2D NMR experiments on CdS, Si, and Cd3P2 NPs. These experiments allow NMR signals from the surface, subsurface, and core sites to be observed and assigned. For example, we demonstrate the acquisition of DNP-enhanced 2D 113Cd-113Cd correlation NMR experiments on CdS NPs and natural isotropic abundance 2D 13C-29Si HETCOR of functionalized Si NPs. These experiments provide a critical understanding of NP surface structures.
Collapse
Affiliation(s)
- Michael P Hanrahan
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | - Yunhua Chen
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | | | - Jennifer L Stein
- University of Washington , Department of Chemistry , Seattle , Washington 98195 , United States
| | - Gregory F Pach
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Marquix A S Adamson
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States
| | - Nathan R Neale
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Brandi M Cossairt
- University of Washington , Department of Chemistry , Seattle , Washington 98195 , United States
| | - Javier Vela
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | - Aaron J Rossini
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| |
Collapse
|
24
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
25
|
Chmelka BF. Materializing opportunities for NMR of solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:91-97. [PMID: 31377152 DOI: 10.1016/j.jmr.2019.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 05/04/2023]
Abstract
Advancements in sensitivity and resolution of NMR of solids are opening a bonanza of fundamental and technological opportunities in materials science. Many of these are at the boundaries of related disciplines that provide creative inputs to motivate the development of new methodologies and possibilities for new applications. As Boltzmann limitations are surmounted by dynamic-nuclear-polarization- and laser-enhanced hyperpolarization techniques, the correlative benefits of multidimensional NMR are becoming more and more impactful. Nevertheless, there are limits, and the atomic-level information provided by solid-state NMR will be most useful in combination with state-of-the-art diffraction, microscopy, computational, and materials synthesis methods. Collectively these can be expected to lead to design criteria that will promote discovery of new materials, lead to novel or improved material properties, catalyze new applications, and motivate further methodological advancements.
Collapse
Affiliation(s)
- Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
26
|
Shimon D, van Schooten KJ, Paul S, Peng Z, Takahashi S, Köckenberger W, Ramanathan C. DNP-NMR of surface hydrogen on silicon microparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:68-75. [PMID: 31128358 DOI: 10.1016/j.ssnmr.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) offers a promising route to studying local atomic environments at the surface of both crystalline and amorphous materials. We take advantage of unpaired electrons due to defects close to the surface of the silicon microparticles to hyperpolarize adjacent 1H nuclei. At 3.3 T and 4.2 K, we observe the presence of two proton peaks, each with a linewidth on the order of 5 kHz. Echo experiments indicate a homogeneous linewidth of ∼150-300 Hz for both peaks, indicative of a sparse distribution of protons in both environments. The high frequency peak at 10 ppm lies within the typical chemical shift range for proton NMR, and was found to be relatively stable over repeated measurements. The low frequency peak was found to vary in position between -19 and -37 ppm, well outside the range of typical proton NMR shifts, and indicative of a high-degree of chemical shielding. The low frequency peak was also found to vary significantly in intensity across different experimental runs, suggesting a weakly-bound species. These results suggest that the hydrogen is located in two distinct microscopic environments on the surface of these Si particles.
Collapse
Affiliation(s)
- Daphna Shimon
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA.
| | - Kipp J van Schooten
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA
| | - Subhradip Paul
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Zaili Peng
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Susumu Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Walter Köckenberger
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
27
|
Smith AN, Märker K, Hediger S, De Paëpe G. Natural Isotopic Abundance 13C and 15N Multidimensional Solid-State NMR Enabled by Dynamic Nuclear Polarization. J Phys Chem Lett 2019; 10:4652-4662. [PMID: 31361489 DOI: 10.1021/acs.jpclett.8b03874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dynamic nuclear polarization (DNP) has made feasible solid-state NMR experiments that were previously thought impractical due to sensitivity limitations. One such class of experiments is the structural characterization of organic and biological samples at natural isotopic abundance (NA). Herein, we describe the many advantages of DNP-enabled ssNMR at NA, including the extraction of long-range distance constraints using dipolar recoupling pulse sequences without the deleterious effects of dipolar truncation. In addition to the theoretical underpinnings in the analysis of these types of experiments, numerous applications of DNP-enabled ssNMR at NA are discussed.
Collapse
Affiliation(s)
- Adam N Smith
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Katharina Märker
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| |
Collapse
|
28
|
Paul P, Ghosh A, Chatterjee S, Bera A, Alam SM, Islam SM. Development of a polymer embedded reusable heterogeneous oxovanadium(IV) catalyst for selective oxidation of aromatic alkanes and alkenes using green oxidant. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Mais M, Torroba J, Barrow NS, Paul S, Titman JJ. Ion exchange and binding in selenium remediation materials using DNP-enhanced solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 98:19-23. [PMID: 30690321 DOI: 10.1016/j.ssnmr.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Selenate-loaded selenium water remediation materials based on polymer fibres have been investigated by dynamic nuclear polarization (DNP) enhanced solid-state NMR. For carbon-13 a significant reduction in experiment time is obtained with DNP even when compared with conventional carbon-13 NMR spectra recorded using larger samples. For the selenium remediation materials studied here this reduction allows efficient acquisition of {1H}-77Se heteronuclear correlation spectra which give information about the nature of the binding of the remediated selenate ions with the grafted side chains which provide the required ion exchange functionality.
Collapse
Affiliation(s)
- Marco Mais
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Javier Torroba
- Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading, RG4 9NH, UK
| | - Nathan S Barrow
- Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading, RG4 9NH, UK
| | - Subhradip Paul
- Nottingham DNP MAS NMR Facility, Sir Peter Mansfield Imaging Centre, University Park, Nottingham, NG7 2RD, UK
| | - Jeremy J Titman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
30
|
Zhao EW, Maligal-Ganesh R, Mentink-Vigier F, Zhao TY, Du Y, Pei Y, Huang W, Bowers CR. Atomic-Scale Structure of Mesoporous Silica-Encapsulated Pt and PtSn Nanoparticles Revealed by Dynamic Nuclear Polarization- Enhanced 29Si MAS NMR Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:7299-7307. [PMID: 31186824 PMCID: PMC6558955 DOI: 10.1021/acs.jpcc.9b01782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mesoporous silica encapsulated Pt (Pt@mSiO2) and PtSn (PtSn@mSiO2) nanoparticles (NPs) are representatives of a novel class of heterogeneous catalysts with uniform particle size, enhanced catalytic properties, and superior thermal stability. In the ship-in-a-bottle synthesis, PtSn@mSiO2 intermetallic NPs are derived from Pt@mSiO2 seeds where the mSiO2 shell is formed by polymerization of tetraethyl orthosilicate around a tetradecyltrimethylammonium bromide template, a surfactant used to template MCM-41. Incorporation of Sn into the Pt@mSiO2 seeds is accommodated by chemical etching of the mSiO2 shell. The effect of this etching on the atomic-scale structure of the mSiO2 has not been previously examined, nor has the extent of the structural similarity to MCM-41. Here, the quaternary Q2, Q3 and Q4 sites corresponding to formulas Si(O1/2)2(OH)2, Si(O1/2)3(OH)1 and Si(O1/2)4, in MCM-41 and the mesoporous silica of Pt@mSiO2 and PtSn@mSiO2 NPs were identified and quantified by conventional and dynamic nuclear polarization enhanced Si-29 Magic Angle Spinning Nuclear Magnetic Resonance (DNP MAS NMR). The connectivity of the -Si-O-Si-network was revealed by DNP enhanced two-dimensional 29Si-29Si correlation spectroscopy.
Collapse
Affiliation(s)
- Evan Wenbo Zhao
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
- Correspondence to:
, ,
| | | | | | - Tommy Yunpu Zhao
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
| | - Yong Du
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
| | - Yuchen Pei
- Department of Chemistry, Iowa State University, Ames, Iowa,
50011 United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa,
50011 United States
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa
50011 United States
- Correspondence to:
, ,
| | - Clifford Russell Bowers
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
- Correspondence to:
, ,
| |
Collapse
|
31
|
Syed ZH, Kaphan DM, Perras FA, Pruski M, Ferrandon MS, Wegener EC, Celik G, Wen J, Liu C, Dogan F, Goldberg KI, Delferro M. Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. J Am Chem Soc 2019; 141:6325-6337. [DOI: 10.1021/jacs.9b00896] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zoha H. Syed
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Magali S. Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gokhan Celik
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fulya Dogan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karen I. Goldberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
32
|
Zhang W, Xiao Z, Wang J, Fu W, Tan R, Yin D. Selective Aerobic Oxidation of Alcohols over Gold‐Palladium Alloy Catalysts Using Air at Atmospheric Pressure in Water. ChemCatChem 2019. [DOI: 10.1002/cctc.201900015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha Hunan 410081 China
| | - Ziqiang Xiao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha Hunan 410081 China
| | - Jiajun Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha Hunan 410081 China
| | - Wenqin Fu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha Hunan 410081 China
| | - Rong Tan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha Hunan 410081 China
| | - Donghong Yin
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)Hunan Normal University Changsha Hunan 410081 China
| |
Collapse
|
33
|
Klimavicius V, Neumann S, Kunz S, Gutmann T, Buntkowsky G. Room temperature CO oxidation catalysed by supported Pt nanoparticles revealed by solid-state NMR and DNP spectroscopy. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00684b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of 1 and 2 nm sized platinum nanoparticles deposited on different support materials are investigated by solid-state NMR combined with dynamic nuclear polarization (DNP).
Collapse
Affiliation(s)
- Vytautas Klimavicius
- TU Darmstadt
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry
- 64287 Darmstadt
- Germany
| | - Sarah Neumann
- University of Bremen
- Institute for Applied and Physical Chemistry
- 28359 Bremen
- Germany
| | - Sebastian Kunz
- University of Bremen
- Institute for Applied and Physical Chemistry
- 28359 Bremen
- Germany
| | - Torsten Gutmann
- TU Darmstadt
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry
- 64287 Darmstadt
- Germany
- University Kassel
| | - Gerd Buntkowsky
- TU Darmstadt
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry
- 64287 Darmstadt
- Germany
| |
Collapse
|
34
|
Perras FA, Wang Z, Kobayashi T, Baiker A, Huang J, Pruski M. Shedding light on the atomic-scale structure of amorphous silica–alumina and its Brønsted acid sites. Phys Chem Chem Phys 2019; 21:19529-19537. [DOI: 10.1039/c9cp04099d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advanced solid-state NMR methods, using dynamic nuclear polarization (DNP), are applied to probe the atomic-scale bulk structure of amorphous silica–alumina catalysts prepared by flame-spray pyrolysis, and the structure of their Brønsted acid sites.
Collapse
Affiliation(s)
| | - Zichun Wang
- Laboratory for Catalysis Engineering
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute
- University of Sydney
- Sydney
- Australia
| | | | - Alfons Baiker
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Bioscience
- ETH Zürich
- HCI
- Switzerland
| | - Jun Huang
- Laboratory for Catalysis Engineering
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute
- University of Sydney
- Sydney
- Australia
| | - Marek Pruski
- US DOE
- Ames Laboratory
- Ames
- USA
- Department of Chemistry
| |
Collapse
|
35
|
Rossini AJ. Materials Characterization by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. J Phys Chem Lett 2018; 9:5150-5159. [PMID: 30107121 DOI: 10.1021/acs.jpclett.8b01891] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-resolution solid-state NMR spectroscopy is a powerful tool for the study of organic and inorganic materials because it can directly probe the symmetry and structure at nuclear sites, the connectivity/bonding of atoms and precisely measure interatomic distances. However, NMR spectroscopy is hampered by intrinsically poor sensitivity; consequently, the application of NMR spectroscopy to many solid materials is often infeasible. High-field dynamic nuclear polarization (DNP) has emerged as a technique to routinely enhance the sensitivity of solid-state NMR experiments by 1-3 orders of magnitude. This Perspective gives a general overview of how DNP-enhanced solid-state NMR spectroscopy can be applied to a variety of inorganic and organic materials. DNP-enhanced solid-state NMR experiments provide unique insights into the molecular structure, which makes it possible to form structure-activity relationships that ultimately assist in the rational design and improvement of materials.
Collapse
Affiliation(s)
- Aaron J Rossini
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
- U.S. DOE Ames Laboratory , Ames , Iowa 50011 , United States
| |
Collapse
|
36
|
Makrinich M, Nimerovsky E, Goldbourt A. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 92:19-24. [PMID: 29751342 DOI: 10.1016/j.ssnmr.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31P-79/81Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13C-209Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure.
Collapse
Affiliation(s)
- M Makrinich
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - E Nimerovsky
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - A Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
37
|
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. NANOSCALE 2018; 10:12871-12934. [PMID: 29926865 DOI: 10.1039/c8nr02278j] [Citation(s) in RCA: 661] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
38
|
Li W, Wang Q, Xu J, Aussenac F, Qi G, Zhao X, Gao P, Wang C, Deng F. Probing the surface of γ-Al 2O 3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Phys Chem Chem Phys 2018; 20:17218-17225. [PMID: 29900471 DOI: 10.1039/c8cp03132k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Al2O3 is an important catalyst and catalyst support of industrial interest. Its acid/base characteristics are correlated to the surface structure, which has always been an issue of concern. In this work, the complex (sub-)surface oxygen species on surface-selectively labelled γ-Al2O3 were probed by 17O dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS). Direct 17O MAS and indirect 1H-17O cross-polarization (CP)/MAS DNP experiments enable observation of the (sub-)surface bare oxygen species and hydroxyl groups. In particular, a two-dimensional (2D) 17O 3QMAS DNP spectrum was for the first time achieved for γ-Al2O3, in which two O(Al)4 and one O(Al)3 bare oxygen species were identified. The 17O isotropic chemical shifts (δcs) vary from 56.7 to 81.0 ppm and the quadrupolar coupling constants (CQ) range from 0.6 to 2.5 MHz for the three oxygen species. The coordinatively unsaturated O(Al)3 species is characterized by a higher field chemical shift (56.7 ppm) and the largest CQ value (2.5 MHz) among these oxygen sites. 2D 1H → 17O HETCOR DNP experiments allow us to discriminate three bridging (Aln)-μ2-OH and two terminal (Aln)-μ1-OH hydroxyl groups. The structural features of the bare oxygen species and hydroxyl groups are similar for the γ-Al2O3 samples isotopically labelled by 17O2 gas or H217O. The results presented here show that the combination of surface-selective labelling and DNP-SENS is an effective approach for characterizing oxides with complex surface species.
Collapse
Affiliation(s)
- Wenzheng Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pfennig T, Chemburkar A, Johnson RL, Ryan MJ, Rossini AJ, Neurock M, Shanks BH. Modulating Reactivity and Selectivity of 2-Pyrone-Derived Bicyclic Lactones through Choice of Catalyst and Solvent. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toni Pfennig
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Ashwin Chemburkar
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Robert L. Johnson
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | | | | | - Matthew Neurock
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Brent H. Shanks
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| |
Collapse
|
40
|
Designing of a New Heterogeneous Polymer Supported Naphthyl-Azo Iron Catalyst for the Selective Oxidation of Substituted Methyl Benzenes. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0785-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Liao WC, Ghaffari B, Gordon CP, Xu J, Copéret C. Dynamic Nuclear Polarization Surface Enhanced NMR spectroscopy (DNP SENS): Principles, protocols, and practice. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Perras FA, Boteju KC, Slowing II, Sadow AD, Pruski M. Direct 17O dynamic nuclear polarization of single-site heterogeneous catalysts. Chem Commun (Camb) 2018; 54:3472-3475. [DOI: 10.1039/c8cc00293b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Direct DNP is shown to effectively enhance 17O signals from non-protonated binding sites for surface-supported catalysts.
Collapse
Affiliation(s)
| | | | | | | | - Marek Pruski
- US DOE
- Ames Laboratory
- Ames
- USA
- Department of Chemistry
| |
Collapse
|
43
|
Optimal sample formulations for DNP SENS: The importance of radical-surface interactions. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Smeets S, Berkson ZJ, Xie D, Zones SI, Wan W, Zou X, Hsieh MF, Chmelka BF, McCusker LB, Baerlocher C. Well-Defined Silanols in the Structure of the Calcined High-Silica Zeolite SSZ-70: New Understanding of a Successful Catalytic Material. J Am Chem Soc 2017; 139:16803-16812. [DOI: 10.1021/jacs.7b08810] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stef Smeets
- Laboratory
of Crystallography, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich CH 8093, Switzerland
- Berzelii
Center EXSELENT on Porous Materials, Department of Material and Environmental
Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zachariah J. Berkson
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Dan Xie
- Chevron
Energy Technology Company, Richmond, California 94802, United States
| | - Stacey I. Zones
- Chevron
Energy Technology Company, Richmond, California 94802, United States
| | - Wei Wan
- Berzelii
Center EXSELENT on Porous Materials, Department of Material and Environmental
Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Xiaodong Zou
- Berzelii
Center EXSELENT on Porous Materials, Department of Material and Environmental
Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ming-Feng Hsieh
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Bradley F. Chmelka
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Lynne B. McCusker
- Laboratory
of Crystallography, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich CH 8093, Switzerland
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christian Baerlocher
- Laboratory
of Crystallography, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich CH 8093, Switzerland
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
45
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
46
|
Wang C, Xu J, Wang Q, Zhou X, Qi G, Feng N, Liu X, Meng X, Xiao F, Deng F. Host–Guest Interactions and Their Catalytic Consequences in Methanol to Olefins Conversion on Zeolites Studied by 13C–27Al Double-Resonance Solid-State NMR Spectroscopy. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01738] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Xu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Qiang Wang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xue Zhou
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Guodong Qi
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Ningdong Feng
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiaolong Liu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiangju Meng
- Department
of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Fengshou Xiao
- Department
of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Feng Deng
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
47
|
Copéret C, Liao WC, Gordon CP, Ong TC. Active Sites in Supported Single-Site Catalysts: An NMR Perspective. J Am Chem Soc 2017; 139:10588-10596. [DOI: 10.1021/jacs.6b12981] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Christopher P. Gordon
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Ta-Chung Ong
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|