1
|
Yang H, Chai C, Chen M, Li Y, Qiu Z, Li T, Li J, Wang D, Han S, Yang M, Gao X, Gao R, Lv Y, Song Y. Carbon-supported uniform RuAgW nanoparticles with high activity and CO resistance toward alkaline hydrogen oxidation. Chem Commun (Camb) 2025. [PMID: 40432564 DOI: 10.1039/d5cc01855b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
RuAgW/C demonstrates an excellent mass specific exchange current density (j0,m) of 442.9 A gRu-1 superior to that of Pt/C (329.7 A gPt-1) toward the alkaline hydrogen oxidation reaction (HOR) primarily owing to weakened hydrogen binding energy (HBE) and strengthened hydroxide binding energy (OHBE).
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Chunxiao Chai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Mengting Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yongpeng Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Zhongyu Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jiahuan Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Desheng Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Shuo Han
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Mengyu Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xiaoxia Gao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Rui Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yang Lv
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yujiang Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
2
|
Chen X, Fan D, Lin X, Chen S, Yang J, Meng P, Shi H, Zheng W, Zhang Y, Yang Y, Wang D, Chen Q. Polypyrrole-decorated Vulcan XC-72R support enables a low platinum content PtRu catalyst toward alkaline hydrogen oxidation reaction. J Colloid Interface Sci 2025; 697:137908. [PMID: 40408953 DOI: 10.1016/j.jcis.2025.137908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
PtRu alloys are promising catalysts for the hydrogen oxidation reaction (HOR) in alkaline hydroxide exchange membrane fuel cells (HEMFCs) for commercial application. However, there is a need to lower the loading of platinum while simultaneously increasing its activity. Herein, we successfully prepared a PtRu alloy catalyst featuring a precisely controlled Pt-to-Ru atomic ratio of 1:5, which is typically 1:1 or 1:3, supported on polypyrrole (Ppy) decorated Vulcan XC-72R (XC). The catalyst, named Pt1Ru5/Ppy-XC, exhibits a remarkable mass catalytic activity of 10.69 ± 1.40 mA μgPGM-1, which is 7.2-fold and 2.6-fold higher than those of commercial PtRu/C and Pt1Ru5 nanoparticles supported on raw XC, respectively. Moreover, the HEMFC with Pt1Ru5/Ppy-XC anode achieves a peak power density of 1.53 W cm-2 (0.15 mgPGM cmanode-2), outperforming that of Pt1Ru5/XC (1.26 W cm-2, 0.18 mgPGM cmanode-2). The combined experimental characterization and theoretical calculations reveal that Ppy significantly enhances the active site density due to the decrease in the proportion of micropores while optimizing the binding strength of *H and *OH species on Pt1Ru5/Ppy-XC, resulting in excellent catalytic performance even with a low Pt usage. This work provides a novel strategy for developing high-performance electrocatalysts by employing functionalized XC support to fine-tune catalyst/support interactions and control over the pore structure of carbon supports.
Collapse
Affiliation(s)
- Xingyan Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dingge Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xi Lin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Siyan Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pin Meng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongda Shi
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yunlong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China; The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy, China.
| |
Collapse
|
3
|
Li C, Li D, Li L, Yang H, Zhang Y, Su J, Wang L, Liu B. CNT-Supported RuNi Composites Enable High Round-Trip Efficiency in Regenerative Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500416. [PMID: 40109090 DOI: 10.1002/adma.202500416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Regenerative fuel cells hold significant potential for efficient, large-scale energy storage by reversibly converting electrical energy into hydrogen and vice versa, making them essential for leveraging intermittent renewable energy sources. However, their practical implementation is hindered by the unsatisfactory efficiency. Addressing this challenge requires the development of cost-effective electrocatalysts. In this study, a carbon nanotube (CNT)-supported RuNi composite with low Ru loading is developed as an efficient and stable catalyst for alkaline hydrogen and oxygen electrocatalysis, including hydrogen evolution, oxygen evolution, hydrogen oxidation, and oxygen reduction reaction. Furthermore, a regenerative fuel cell using this catalyst composite is assembled and evaluated under practical relevant conditions. As anticipated, the system exhibits outstanding performance in both the electrolyzer and fuel cell modes. Specifically, it achieves a low cell voltage of 1.64 V to achieve a current density of 1 A cm- 2 for the electrolyzer mode and delivers a high output voltage of 0.52 V at the same current density in fuel cell mode, resulting in a round-trip efficiency (RTE) of 31.6% without further optimization. The multifunctionality, high activity, and impressive RTE resulted by using the RuNi catalyst composites underscore its potential as a single catalyst for regenerative fuel cells.
Collapse
Affiliation(s)
- Chunfeng Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Danning Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Lubing Li
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yan Zhang
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinzhan Su
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
4
|
Jiang Y, Qiu P, Liu Q, Li P, Chen S. Electric-Double-Layer Mechanism of Surface Oxophilicity in Regulating the Alkaline Hydrogen Electrocatalytic Kinetics. J Am Chem Soc 2025; 147:14122-14130. [PMID: 40243362 DOI: 10.1021/jacs.4c14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Regulating the surface oxophilicity of the electrocatalyst is known as an efficient strategy to mitigate the order-of-magnitude kinetic slowdown of hydrogen electrocatalysis in a base, which is of great scientific and technological significance. So far, its mechanistic origin remains mainly ascribed to the bifunctional or electronic effects that revolve around the catalyst-intermediate interactions and is under extensive debate. In addition, the understanding from the perspective of interfacial electric-double-layer (EDL) structures, which should also strongly depend on the electrode property, is still lacking. Here, by decorating a Pt electrode with Mo, Ru, Rh, and Au metal atoms to tune surface oxophilicity and systematically combining electrochemical activity tests, in situ surface-enhanced infrared absorption spectroscopy, density functional theory calculation, and ab initio molecular dynamics simulation, we found that there exist consistent volcano-type relationships between *OH adsorption strength and alkaline hydrogen evolution activity, the stretching/bending vibration information on interfacial water, and the potential of zero charge (PZC) of the electrode. This demonstrates that the origin of surface oxophilicity in impacting the alkaline hydrogen electrocatalytic activity lies in its modification toward the electrode PZC, which thereby dictates the electric field strength, rigidity, and hydrogen bonding network structure in EDL and ultimately governs the interfacial proton transfer kinetics. These findings emphasize the importance of focusing on electrocatalytic interface structures to understand electrode property-dependent reaction kinetics.
Collapse
Affiliation(s)
- Yaling Jiang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Peimeng Qiu
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Peng Li
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Liu M, Gu Y, Su H, Liu X, Luo J, Tan P, Liu F, Pan J. Electron rearrangement at the crystalline-amorphous heterogeneous interface boosts alkaline hydrogen production. Chem Sci 2025:d5sc02271a. [PMID: 40342915 PMCID: PMC12056670 DOI: 10.1039/d5sc02271a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025] Open
Abstract
Modifying the platinum (Pt) local reaction microenvironment is a critical and complex challenge in enhancing electrochemical performance. Herein, amorphous Co(OH)2 and crystalline Pt (labeled as ac-Pt@Co(OH)2) featuring abundant crystalline-amorphous (c-a) interfaces are designed to boost the hydrogen evolution reaction (HER). The engineered structure creates an advantageous chemical environment at the local level, enhancing hydrogen adsorption efficiency and resulting in exceptional HER performance. The ac-Pt@Co(OH)2 achieves a low Tafel slope of 28.5 mV dec-1 and requires merely 95 mV overpotential to reach 200 mA cm-2 in alkaline electrolyte (1 M KOH), surpassing those of conventional Pt/C catalysts (39.4 mV dec-1, 256 mV). In situ advanced characterization investigations reveal dynamic electron rearrangement at the c-a interface, where Co species initially accept electrons from Pt to optimize the adsorption of *H species and then donate electrons to Pt for accelerating reduction kinetics. Theoretical calculations reveal that amorphous Co(OH)2 promotes the dissociation of water molecules to produce active *H, and electron rearrangement at the c-a interface downshifts the d-band center, thereby optimizing the *H adsorption strength and enhancing HER activity. The ac-Pt@Co(OH)2-based alkaline anion-exchange membrane water electrolyzer (AEMWE) maintains a current density of 500 mA cm-2 over 500 h.
Collapse
Affiliation(s)
- Meihuan Liu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Yuke Gu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 Hunan China
| | - Xuanzhi Liu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Juan Luo
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., Ltd Kunming Yunnan 650106 China
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 Hunan China
- Yunnan Precious Metals Lab Co., Ltd Kunming Yunnan 650106 China
| |
Collapse
|
6
|
Tian X, Liu J, Zhao P, Li X, Li Z, Sheng W. The Roles of Surface Hydrogen and Hydroxyl in Alkaline Hydrogen Oxidation on Ni-Based Electrocatalysts. CHEMSUSCHEM 2025; 18:e202402150. [PMID: 39648150 DOI: 10.1002/cssc.202402150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
One important target for anion exchange membrane fuel cells (AEMFCs) is to enable the application of anode non-precious metal hydrogen oxidation reaction (HOR) catalyst. Nickel presents a promising candidate for alkaline HOR; yet, its practical application is hampered by the intrinsically sluggish activity and poor stability. Herein, a series of Ni-based metals (Ni5Mo, Ni25Co, Ni14W and Ni) are electrodeposited as model catalysts to systematically explore the alkaline HOR by considering the role of adsorbed hydroxyl (OHad). Spectroscopic studies together with density functional theory calculations shed light on the beneficial effect of transition metal M (M=Mo, Co, W) alloying/doping on HOR by introducing the charge transfer from M to Ni and down shifting Ni 3d band center. The HOR specific activities on Ni-based catalysts reveal a volcano-type relationship with the hydrogen binding energy (HBE). The strongly adsorbed OHad is proven to induce deactivation for Ni active sites, and the deactivation potential is OHad binding energy (OHBE) dependent. This study adds new insight into the HOR mechanism and stability of Ni-based electrocatalysts, providing a new avenue for the rational design of highly efficient and robust alkaline HOR catalysts.
Collapse
Affiliation(s)
- Xiaoyu Tian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Pengcheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Xianping Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Wenchao Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| |
Collapse
|
7
|
Han P, Wu L, Zhang Y, Yue J, Jin Y, Jia H, Luo W. An Interstitial Boron Inserted Metastable Hexagonal Rh Nanocrystal for Efficient Hydrogen Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202419320. [PMID: 39578235 DOI: 10.1002/anie.202419320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Constructing metastable phase structure plays an important role in changing the physicochemical properties and improving the catalytic performance of nanocrystals. Unfortunately, the synthesis of metastable phase metallic nanocrystals is highly challenging, mainly due to the thermodynamically unstable ground-state. Here, we report a synthesis of unconventional metastable hexagonal rhodium nanocrystal (Bint-Rhhcp/C) via interstitial boron insertion. The insertion of boron atoms into the interstitial sites of cubic Rh lattice not only induces the atomic arrangements from face-centered cubic (fcc) to hexagonal close-packed (hcp), but also stabilizes the metastable hexagonal Rh structure. Benefiting from the phase transition and interstitial boron doping, the Bint-Rhhcp/C catalyst exhibits remarkable catalytic performance toward hydrogen oxidation reaction (HOR) under alkaline media, with a mass activity of 1.413 mA μgPGM -1. Experimental measurements including in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) calculations indicate that the strengthened adsorption of hydroxyl species on the electrode surface of Bint-Rhhcp/C is responsible for the reconstruction of interfacial water structure and increased water proportions in the gap region in the electric double layers. As a result, the increased water connectivity and hydrogen bond network facilitate high-efficiency hydrogen transfer across the interface, thereby boost the alkaline HOR performance.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Jianchao Yue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
8
|
Lei H, Yang X, Chen Z, Rawach D, Du L, Liang Z, Li D, Zhang G, Tavares AC, Sun S. Multiscale Understanding of Anion Exchange Membrane Fuel Cells: Mechanisms, Electrocatalysts, Polymers, and Cell Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410106. [PMID: 39797443 PMCID: PMC11854883 DOI: 10.1002/adma.202410106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs. These significant advantages have made AEMFCs highly competitive in the future fuel cell market, particularly after advancements in developing non-platinum-group-metal anode electrocatalysts, anion exchange membranes and ionomers, and in understanding the relationships between cell operating conditions and mass transport in AEMFCs. This review aims to compile recent literature to provide a comprehensive understanding of AEMFCs in three key areas: i) the mechanisms of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) in alkaline media; ii) recent advancements in the synthesis routes and structure-property relationships of cutting-edge HOR and ORR electrocatalysts, as well as anion exchange membranes and ionomers; and iii) fuel cell operating conditions, including water management and impact of CO2. Finally, based on these aspects, the future development and perspectives of AEMFCs are proposed.
Collapse
Affiliation(s)
- Huiyu Lei
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Xiaohua Yang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Diane Rawach
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Gaixia Zhang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Ana C. Tavares
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| |
Collapse
|
9
|
Do VH, Lee JM. Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417516. [PMID: 39871686 DOI: 10.1002/adma.202417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability. The immense promise and rapid evolution of this design strategy, however, do not overshadow the substantial challenges and ambiguities that persist, impeding the realization of significant breakthroughs in electrocatalyst development. This review explores the latest insights into the principles guiding the design of catalytic surfaces that enable favorable adsorbate dynamics within the contexts of hydrogen and oxygen electrochemistry. Innovative approaches for tailoring adsorbate-surface interactions are discussed, delving into underlying principles that govern these dynamics. Additionally, perspectives on the prevailing challenges are presented and future research directions are proposed. By evaluating the core principles and identifying critical research gaps, this review seeks to inspire rational electrocatalyst design, the discovery of novel reaction mechanisms and concepts, and ultimately, advance the large-scale implementation of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
10
|
Sun X, Li X, Zong P, Yan D, Qin Z, Zhang Y, Jiao L, Zhai Y, Lu X. f-p-d Orbital Hybridization Promotes Hydroxyl Intermediate Adsorption for Electrochemical Biomolecular Oxidation and Identification. Anal Chem 2025; 97:880-885. [PMID: 39748674 DOI: 10.1021/acs.analchem.4c05534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The rational design of efficient hydroxyl intermediate (*OH) adsorption catalysts for dopamine electrooxidation still faces a major challenge. To address this challenge, a CeO2-loaded CuO catalyst inspired by the f-p-d orbital hybridization strategy is designed to achieve efficient *OH adsorption and improve dopamine oxidation. The experimental results and theoretical calculations demonstrate that the f-p-d orbital hybridization regulates the electron distribution at the Ce-O-Cu interface, which facilitates electron transfer and optimizes the adsorption of *OH, thereby promoting dopamine oxidation. The designed electrochemical sensor exhibits excellent catalytic activity and sensitivity, reaching a limit of detection of 3.22 nM. This work provides a promising approach for designing highly active electrocatalysts with orbital hybridization for dopamine oxidation.
Collapse
Affiliation(s)
- Xiaolei Sun
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Peipei Zong
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Zirui Qin
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Yiming Zhang
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
11
|
Su L, Wu H, Zhang S, Cui C, Zhou S, Pang H. Insight Into Intermediate Behaviors and Design Strategies of Platinum Group Metal-Based Alkaline Hydrogen Oxidation Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414628. [PMID: 39558771 DOI: 10.1002/adma.202414628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Indexed: 11/20/2024]
Abstract
Hydrogen oxidation reaction (HOR) can effectively convert the hydrogen energy through the hydrogen fuel cells, which plays an increasingly important role in the renewable hydrogen cycle. Nevertheless, when the electrolyte pH changes from acid to base, even with platinum group metal (PGM) catalysts, the HOR kinetics declines with several orders of magnitude. More critically, the pivotal role of reaction intermediates and interfacial environment during intermediate behaviors on alkaline HOR remains controversial. Therefore, exploring the exceptional PGM-based alkaline HOR electrocatalysts and identifying the reaction mechanism are indispensable for promoting the commercial development of hydrogen fuel cells. Consequently, the fundamental understanding of the HOR mechanism is first introduced, with emphases on the adsorption/desorption process of distinct reactive intermediates and the interfacial structure during catalytic process. Subsequently, with the guidance of reaction mechanism, the latest advances in the rational design of advanced PGM-based (Pt, Pd, Ir, Ru, Rh-based) alkaline HOR catalysts are discussed, focusing on the correlation between the intermediate behaviors and the electrocatalytic performance. Finally, given that the challenges standing in the development of the alkaline HOR, the prospect for the rational catalysts design and thorough mechanism investigation towards alkaline HOR are emphatically proposed.
Collapse
Affiliation(s)
- Lixin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shaokun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Chenxi Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shengnan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
12
|
Xia J, Xu J, Yu B, Liang X, Qiu Z, Li H, Feng H, Li Y, Cai Y, Wei H, Li H, Xiang H, Zhuang Z, Wang D. A Metal-Sulfur-Carbon Catalyst Mimicking the Two-Component Architecture of Nitrogenase. Angew Chem Int Ed Engl 2024; 63:e202412740. [PMID: 39107257 DOI: 10.1002/anie.202412740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
The production of ammonia (NH3) from nitrogen sources involves competitive adsorption of different intermediates and multiple electron and proton transfers, presenting grand challenges in catalyst design. In nature nitrogenases reduce dinitrogen to NH3 using two component proteins, in which electrons and protons are delivered from Fe protein to the active site in MoFe protein for transfer to the bound N2. We draw inspiration from this structural enzymology, and design a two-component metal-sulfur-carbon (M-S-C) catalyst composed of sulfur-doped carbon-supported ruthenium (Ru) single atoms (SAs) and nanoparticles (NPs) for the electrochemical reduction of nitrate (NO3 -) to NH3. The catalyst demonstrates a remarkable NH3 yield rate of ~37 mg L-1 h-1 and a Faradaic efficiency of ~97 % for over 200 hours, outperforming those consisting solely of SAs or NPs, and even surpassing most reported electrocatalysts. Our experimental and theoretical investigations reveal the critical role of Ru SAs with the coordination of S in promoting the formation of the HONO intermediate and the subsequent reduction reaction over the NP-surface nearby. Such process results in a more energetically accessible pathway for NO3 - reduction on Ru NPs co-existing with SAs. This study proves a better understanding of how M-S-Cs act as a synthetic nitrogenase mimic during ammonia synthesis, and contributes to the future mechanism-based catalyst design.
Collapse
Affiliation(s)
- Junkai Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Jiawei Xu
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Bing Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhen Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 980-8577, Sendai, Japan
| | - Huajun Feng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Haitao Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- Department of Chemical Engineering, Columbia University, 10027, New York, NY, USA
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
13
|
Cai M, Zhang Y, He P, Zhang Z. Recent Advances in Revealing the Electrocatalytic Mechanism for Hydrogen Energy Conversion System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405008. [PMID: 39075971 DOI: 10.1002/smll.202405008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Indexed: 07/31/2024]
Abstract
In light of the intensifying global energy crisis and the mounting demand for environmental protection, it is of vital importance to develop advanced hydrogen energy conversion systems. Electrolysis cells for hydrogen production and fuel cell devices for hydrogen utilization are indispensable in hydrogen energy conversion. As one of the electrolysis cells, water splitting involves two electrochemical reactions, hydrogen evolution reaction and oxygen evolution reaction. And oxygen reduction reaction coupled with hydrogen oxidation reaction, represent the core electrocatalytic reactions in fuel cell devices. However, the inherent complexity and the lack of a clear understanding of the structure-performance relationship of these electrocatalytic reactions, have posed significant challenges to the advancement of research in this field. In this work, the recent development in revealing the mechanism of electrocatalytic reactions in hydrogen energy conversion systems is reviewed, including in situ characterization and theoretical calculation. First, the working principles and applications of operando measurements in unveiling the reaction mechanism are systematically introduced. Then the application of theoretical calculations in the design of catalysts and the investigation of the reaction mechanism are discussed. Furthermore, the challenges and opportunities are also summarized and discussed for paving the development of hydrogen energy conversion systems.
Collapse
Affiliation(s)
- Mingxin Cai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiran Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Peilei He
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhicheng Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
14
|
Cui WG, Gao F, Na G, Wang X, Li Z, Yang Y, Niu Z, Qu Y, Wang D, Pan H. Insights into the pH effect on hydrogen electrocatalysis. Chem Soc Rev 2024; 53:10253-10311. [PMID: 39239864 DOI: 10.1039/d4cs00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Guoquan Na
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xingqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
15
|
Pan HR, Shi ZQ, Liu XZ, Jin S, Fu J, Ding L, Wang SQ, Li J, Zhang L, Su D, Ling C, Huang Y, Xu C, Tang T, Hu JS. Unconventional hcp/fcc Nickel Heteronanocrystal with Asymmetric Convex Sites Boosts Hydrogen Oxidation. Angew Chem Int Ed Engl 2024; 63:e202409763. [PMID: 38954763 DOI: 10.1002/anie.202409763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi -1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.
Collapse
Affiliation(s)
- Hai-Rui Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Zhuo-Qi Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shifeng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaju Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Liang Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Qi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Jian Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Luo H, Li L, Lin F, Zhang Q, Wang K, Wang D, Gu L, Luo M, Lv F, Guo S. Sub-2 nm Microstrained High-Entropy-Alloy Nanoparticles Boost Hydrogen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403674. [PMID: 38794827 DOI: 10.1002/adma.202403674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Indexed: 05/26/2024]
Abstract
High-entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub-2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion-rich HEA catalysts with optimized electronic structure can downshift the d-band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg-1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non-Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H2 s-1 at 70 mV versus RHE, 4.6-fold higher than that of Pt/C catalyst, exceeding most noble metal-based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (Had) and enhanced hydroxyl (OHad) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.
Collapse
Affiliation(s)
- Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
17
|
Wu J, Gao X, Liu G, Qiu X, Xia Q, Wang X, Zhu W, He T, Zhou Y, Feng K, Wang J, Huang H, Liu Y, Shao M, Kang Z, Zhang X. Immobilizing Ordered Oxophilic Indium Sites on Platinum Enabling Efficient Hydrogen Oxidation in Alkaline Electrolyte. J Am Chem Soc 2024; 146:20323-20332. [PMID: 38995375 DOI: 10.1021/jacs.4c05844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Addressing the sluggish kinetics in the alkaline hydrogen oxidation reaction (HOR) is a pivotal yet challenging step toward the commercialization of anion-exchange membrane fuel cells (AEMFCs). Here, we have successfully immobilized indium (In) atoms in an orderly fashion into platinum (Pt) nanoparticles supported by reduced graphene oxide (denoted as O-Pt3In/rGO), significantly enhancing alkaline HOR kinetics. We have revealed that the ordered atomic matrix enables uniform and optimized hydrogen binding energy (HBE), hydroxyl binding energy (OHBE), and carbon monoxide binding energy (COBE) across the catalyst. With a mass activity of 2.3066 A mg-1 at an overpotential of 50 mV, over 10 times greater than that of Pt/C, the catalyst also demonstrates admirable CO resistance and stability. Importantly, the AEMFC implementing this catalyst as the anode catalyst has achieved an impressive power output compared to Pt/C. This work not only highlights the significance of constructing ordered oxophilic sites for alkaline HOR but also sheds light on the design of well-structured catalysts for energy conversion.
Collapse
Affiliation(s)
- Jie Wu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xin Gao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Guimei Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xiaoyi Qiu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xinzhong Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tiwei He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiaxuan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- CAS-HK Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, Guangdong 511458, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
18
|
Wang M, Tang C, Geng S, Zhan C, Wang L, Huang WH, Pao CW, Hu Z, Li Y, Huang X, Bu L. Compressive Strain in Platinum-Iridium-Nickel Zigzag-Like Nanowire Boosts Hydrogen Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310036. [PMID: 38126916 DOI: 10.1002/smll.202310036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum-iridium-metal zigzag-like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs-PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs-PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt-based nanomaterials for hydrogen catalysis and beyond.
Collapse
Affiliation(s)
- Mingmin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chongyang Tang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shize Geng
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Liyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Yunhua Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
19
|
Yan R, Li J, Zhao L, Liu D, Long Y, Mao B, Wang D, Dai Y, Hu C. PtPd Atomic Layer Shelled PdCu Hollow Nanoparticles on Partially Unzipped Carbon Nanotubes for Breaking the Activity-Stability Trade-Off toward the Hydrogen Oxidation Reaction in Alkaline Media. NANO LETTERS 2024. [PMID: 38619280 DOI: 10.1021/acs.nanolett.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Developing highly active yet stable catalysts for the hydrogen oxidation reaction (HOR) in alkaline media remains a significant challenge. Herein, we designed a novel catalyst of atomic PtPd-layer shelled ultrasmall PdCu hollow nanoparticles (HPdCu NPs) on partially unzipped carbon nanotubes (PtPd@HPdCu/W-CNTs), which can achieve a high mass activity, 5 times that of the benchmark Pt/C, and show exceptional stability with negligible decay after 20,000 cycles of accelerated degradation test. The atomically thin PtPd shell serves as the primary active site for the HOR and a protective layer that prevents Cu leaching. Additionally, the HPdCu substrate not only tunes the adsorption properties of the PtPd layer but also prevents corrosive Pt from reaching the interface between NPs and the carbon support, thereby mitigating carbon corrosion. This work introduces a new strategy that leverages the distinct advantages of multiple components to address the challenges associated with slow kinetics and poor durability toward the HOR.
Collapse
Affiliation(s)
- Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yao Dai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Feng Y, Lu S, Fu L, Yang F, Feng L. Alleviating the competitive adsorption of hydrogen and hydroxyl intermediates on Ru by d-p orbital hybridization for hydrogen electrooxidation. Chem Sci 2024; 15:2123-2132. [PMID: 38332840 PMCID: PMC10848706 DOI: 10.1039/d3sc05387c] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Strengthening the hydroxyl binding energy (OHBE) on Ru surfaces for efficient hydrogen oxidation reaction (HOR) in alkaline electrolytes at the expense of narrowing the effective potential window (EPW) increases the risk of passivation under transient conditions for the alkaline exchange membrane fuel cell technique. Herein, an effective Ru/NiSe2 catalyst was reported which exhibits a gradually enhanced intrinsic activity and slightly enlarged EPW with the increased degree of coupling between Ru and NiSe2. This promotion could be attributed to the optimized electron distribution and d-band structures of Ru surfaces weakening the hydrogen binding energy and especially the OHBE through the strong d-p orbital hybridization between Ru and NiSe2. Unlike the conventional way of strengthened OHBE enhancing the oxidative desorption of hydrogen intermediates (Had) via the bi-functional mechanism, the weakened OHBE on this Ru/NiSe2 model catalyst alleviates the competitive adsorption between Had and the hydroxyl intermediates (OHad), thereby accelerating the HOR kinetics at low overpotentials and hindering the full poisoning of the catalytic surfaces by strongly adsorbed OHad spectators at high overpotentials. The work reveals a missed but important approach for Ru-based catalyst development for the fuel cell technique.
Collapse
Affiliation(s)
- Youkai Feng
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 China
| | - Siguang Lu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 China
| | - Luhong Fu
- College of Materials Science and Engineering, Huaqiao University Xiamen Fujian 361021 China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 China
| |
Collapse
|
21
|
Han P, Yang X, Wu L, Jia H, Chen J, Shi W, Cheng G, Luo W. A Highly-Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304496. [PMID: 37934652 DOI: 10.1002/adma.202304496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Indexed: 11/09/2023]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the commercialization of anion exchange membrane fuel cells (AEMFCs). Here, boron interstitially inserted ruthenium (B-Ru/C) is synthesized and used as an anode catalyst for AEMFC, achieving a peak power density of 1.37 W cm-2 , close to the state-of-the-art commercial PtRu catalyst. Unexpectedly, instead of the monotonous decline of HOR kinetics with pH as generally believed, an inflection point behavior in the pH-dependent HOR kinetics on B-Ru/C is observed, showing an anomalous behavior that the HOR activity under alkaline electrolyte surpasses acidic electrolyte. Experimental results and density functional theory calculations reveal that the upshifted d-band center of Ru after the intervention of interstitial boron can lead to enhanced adsorption ability of OH and H2 O, which together with the reduced energy barrier of water formation, contributes to the outstanding alkaline HOR performance with a mass activity of 1.716 mA µgPGM -1 , which is 13.4-fold and 5.2-fold higher than that of Ru/C and commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jingchao Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
22
|
Cheng Z, Yang Y, Wang P, Wang P, Yang J, Wang D, Chen Q. Optimizing Hydrogen and Hydroxyl Adsorption over Ru/WO 2.9 Metal/Metalloid Heterostructure Electrocatalysts for Highly Efficient and Stable Hydrogen Oxidation Reactions in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2307780. [PMID: 38168535 DOI: 10.1002/smll.202307780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Indexed: 01/05/2024]
Abstract
The development of high-performance, stable and platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline media is crucial for the commercial application of anion exchange membrane fuel cells (AEMFCs). Ruthenium, as an emerging HOR electrocatalyst with a price advantage over platinum, still needs to solve the problems of low intrinsic activity and easy oxidation. Herein, Ru nanoparticles are anchored on the oxygen-vacancy-rich metalloid WO2.9 by interfacial engineering to create abundant and efficient Ru and WO2.9 interfacial active sites for accelerated HOR in alkaline media. Ru/WO2.9 /C displays excellent catalytic activity with mass activity (8.29 A mgNM -1 ) and specific activity (1.32 mA cmNM -2 ), which are 2.5/3.3 and 21.8/8.3 times that of PtRu/C and Pt/C, respectively. Moreover, Ru/WO2.9 /C exhibits excellent CO tolerance and operational stability. Experimental and theoretical studies reveal that the improved charge transfer from Ru to WO2.9 in the metal/metalloid heterostructure significantly tune the electronic structure of Ru sites and optimize the hydrogen binding energy (HBE) of Ru. While, WO2.9 provides abundant hydroxyl adsorption sites. Therefore, the equilibrium adsorption of hydrogen and hydroxyl at the interface of Ru/WO2.9 will be realized, and the oxidation of metal Ru would be avoided, thereby achieving excellent HOR activity and durability.
Collapse
Affiliation(s)
- Zhiyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pengcheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
23
|
Tian X, Ren R, Wei F, Pei J, Zhuang Z, Zhuang L, Sheng W. Metal-support interaction boosts the stability of Ni-based electrocatalysts for alkaline hydrogen oxidation. Nat Commun 2024; 15:76. [PMID: 38167348 PMCID: PMC10762024 DOI: 10.1038/s41467-023-44320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Ni-based hydrogen oxidation reaction (HOR) electrocatalysts are promising anode materials for the anion exchange membrane fuel cells (AEMFCs), but their application is hindered by their inherent instability for practical operations. Here, we report a TiO2 supported Ni4Mo (Ni4Mo/TiO2) catalyst that can effectively catalyze HOR in alkaline electrolyte with a mass activity of 10.1 ± 0.9 A g-1Ni and remain active even up to 1.2 V. The Ni4Mo/TiO2 anode AEMFC delivers a peak power density of 520 mW cm-2 and durability at 400 mA cm-2 for nearly 100 h. The origin for the enhanced activity and stability is attributed to the down-shifted d band center, caused by the efficient charge transfer from TiO2 to Ni. The modulated electronic structure weakens the binding strength of oxygen species, rendering a high stability. The Ni4Mo/TiO2 has achieved greatly improved stability both in half cell and single AEMFC tests, and made a step forward for feasibility of efficient and durable AEMFCs.
Collapse
Affiliation(s)
- Xiaoyu Tian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Renjie Ren
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, PR China
| | - Fengyuan Wei
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, PR China
| | - Jiajing Pei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, PR China.
| | - Wenchao Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
24
|
Park J, Kim H, Kim S, Yi SY, Min H, Choi D, Lee S, Kim J, Lee J. Boosting Alkaline Hydrogen Oxidation Activity of Ru Single-Atom Through Promoting Hydroxyl Adsorption on Ru/WC 1- x Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308899. [PMID: 37910632 DOI: 10.1002/adma.202308899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Indexed: 11/03/2023]
Abstract
The sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline conditions continue to pose a significant challenge for the practical implementation of anion-exchange membrane fuel cells. Developing single-atom catalysts can accelerate the pace of new HOR catalyst discovery for highly cost-effective and active HOR performance. However, single-atom catalysts (SACs) for the alkaline HOR have rarely been reported, and fundamental studies on the rational design of SACs are still required. Herein, the design of Ru SAC supported on the tungsten carbide (Ru SA/WC1- x ) via in situ high-temperature annealing strategy is reported. The resulting Ru SA/WC1- x catalyst exhibits remarkably enhanced HOR performance in alkaline media, a level of activity that can not be achieved with carbon-supported Ru SAC. Electrochemical results and density functional theory demonstrate that promoting the hydroxyl adsorption on Ru SA/WC1- x interfaces, which is derived from the low potential of zero charge of WC1- x support, has a significant effect on enhancing the HOR performance of SACs. This enhancement leads to 5.8 and 60.1 times higher Ru mass activity of Ru SA/WC1- x than Ru nanoparticles on carbon and Ru single-atom on N-doped carbon, respectively. This work provides new insights into the design of highly active SACs for alkaline HOR.
Collapse
Affiliation(s)
- Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Honghui Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hakyung Min
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
25
|
Yang F, Wang Y, Cui Y, Yang X, Zhu Y, Weiss CM, Li M, Chen G, Yan Y, Gu MD, Shao M. Sub-3 nm Pt@Ru toward Outstanding Hydrogen Oxidation Reaction Performance in Alkaline Media. J Am Chem Soc 2023; 145:27500-27511. [PMID: 38056604 DOI: 10.1021/jacs.3c08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Anion-exchange membrane fuel cells (AEMFCs) are promising alternative hydrogen conversion devices. However, the sluggish kinetics of the hydrogen oxidation reaction in alkaline media hinders further development of AEMFCs. As a synthesis method commonly used to prepare disordered PtRu alloys, the impregnation process is ingeniously designed herein to synthesize sub-3 nm Pt@Ru core-shell nanoparticles by sequentially reducing Pt and Ru at different annealing temperatures. This method avoids complex procedures and synthesis conditions for organic synthesis systems, and the atomic structure evolution of the synthesized core-shell nanoparticles can be tracked. The synthesized Pt@Ru electrocatalyst shows an ultrasmall average size of ∼2.5 nm and thereby a large electrochemical surface area (ECSA) of 166.66 m2 gPt+Ru-1. Exchange current densities (j0) normalized to the mass (Pt + Ru) and ECSA of this electrocatalyst are 8.0 and 5.8 times as high as those of commercial Pt/C, respectively. To the best of our knowledge, the achieved mass-normalized j0 measured by rotating disk electrodes is the highest reported so far. The membrane electrode assembly test of the Pt@Ru electrocatalyst shows a peak power density of 1.78 W cm-2 (0.152 mgPt+Ru cmanode-2), which is higher than that of commercial PtRu/C (1.62 W cm-2, 0.211 mgPt+Ru cmanode-2). The improvement of the intrinsic activity can be attributed to the electron transfer from the Ru shell to the Pt core, and the ultrafine particles further enhance the mass activity. This work reveals the feasibility of using simple impregnation to synthesize fine core-shell nanocatalysts and the importance of investigating the atomic structure of PtRu nanoparticles and other disordered alloys.
Collapse
Affiliation(s)
- Fei Yang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yingdan Cui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xuming Yang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanmin Zhu
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Catherine M Weiss
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Menghao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangyu Chen
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
26
|
Liu H, Sun F, Yang L, Chen M, Wang H. Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation. J Colloid Interface Sci 2023; 652:890-900. [PMID: 37634362 DOI: 10.1016/j.jcis.2023.08.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Alloy engineering has been utilized as a potent strategy to modulate the oxygen reduction reaction (ORR) activity. However, the regulatory mechanism underpinning the ORR kinetics by means of alloy engineering is still shrouded in ambiguity. This work places emphasis on the kinetics of the ORR concerning Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering. The ORR kinetic activity, as prognosticated by theory, shows significant agreement with experimental results, provided that the rate-determining step (RDS) accounts for a dominant role in the potential-independent kinetic mechanism. In essence, alloy engineering manipulates electronic properties through electron transfer to modulate intermediate adsorption and adjusts the interface electric field (Efield) to regulate hydrogen atom transport, ultimately influencing kinetics. The Efield holds greater significance in ORR kinetics compared to the intermediate adsorption (EadsO), the corresponding degrees of correlation with free energy barriers (Ea) of RDS are -0.89, and 0.75, respectively. This work highlights the nature of alloy engineering for ORR kinetics modulation and assists in the design of efficient catalysts.
Collapse
Affiliation(s)
- Haijun Liu
- Harbin Institute of Technology, Harbin 150001, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| | - Fengman Sun
- Harbin Institute of Technology, Harbin 150001, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| | - Lin Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ming Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China.
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China.
| |
Collapse
|
27
|
Zhao T, Li M, Xiao D, Yang X, An L, Deng Z, Shen T, Gong M, Chen Y, Liu H, Feng L, Yang X, Li L, Wang D. Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core-Shell Electrocatalysts. Angew Chem Int Ed Engl 2023:e202315148. [PMID: 38078596 DOI: 10.1002/anie.202315148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/29/2023]
Abstract
Tracking the trajectory of hydrogen intermediates during hydrogen electro-catalysis is beneficial for designing synergetic multi-component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization-driven electrochemical hydrogenation process from Pd@Pt to PdHx @Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate-determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx @Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro-catalysis.
Collapse
Affiliation(s)
- Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengting Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lulu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
28
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
29
|
Wang X, Tong Y, Feng W, Liu P, Li X, Cui Y, Cai T, Zhao L, Xue Q, Yan Z, Yuan X, Xing W. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat Commun 2023; 14:3767. [PMID: 37355646 DOI: 10.1038/s41467-023-39475-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Designing Pt-based electrocatalysts with high catalytic activity and CO tolerance is challenging but extremely desirable for alkaline hydrogen oxidation reaction. Herein we report the design of a series of single-atom lanthanide (La, Ce, Pr, Nd, and Lu)-embedded ultrasmall Pt nanoclusters for efficient alkaline hydrogen electro-oxidation catalysis based on vapor filling and spatially confined reduction/growth of metal species. Mechanism studies reveal that oxophilic single-atom lanthanide species in Pt nanoclusters can serve as the Lewis acid site for selective OH- adsorption and regulate the binding strength of intermediates on Pt sites, which promotes the kinetics of hydrogen oxidation and CO oxidation by accelerating the combination of OH- and *H/*CO in kinetics and thermodynamics, endowing the electrocatalyst with up to 14.3-times higher mass activity than commercial Pt/C and enhanced CO tolerance. This work may shed light on the design of metal nanocluster-based electrocatalysts for energy conversion.
Collapse
Affiliation(s)
- Xiaoning Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Yanfu Tong
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Wenting Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Pengyun Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Xuejin Li
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Yongpeng Cui
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Tonghui Cai
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Lianming Zhao
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Qingzhong Xue
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Wei Xing
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China.
| |
Collapse
|
30
|
Yang C, Li Y, Yue J, Cong H, Luo W. Promoting water formation in sulphate-functionalized Ru for efficient hydrogen oxidation reaction under alkaline electrolytes. Chem Sci 2023; 14:6289-6294. [PMID: 37325155 PMCID: PMC10266470 DOI: 10.1039/d3sc02144k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
Improving the sluggish kinetics of the hydrogen oxidation reaction (HOR) under alkaline electrolytes plays a significant role in the practical application of alkaline polymer electrolyte fuel cells (APEFCs). Here we report a sulphate functionalized Ru catalyst (Ru-SO4) that exhibits remarkable electrocatalytic performance and stability toward alkaline HOR, with a mass activity of 1182.2 mA mgPGM-1, which is four-times higher than that of the pristine Ru catalyst. Theoretical calculations and experimental studies including in situ electrochemical impedance spectroscopy and in situ Raman spectroscopy demonstrate that the charge redistribution on the interface of Ru through sulphate functionalization could lead to optimized adsorption energies of hydrogen and hydroxide, together with facilitated H2 transfer through the inter Helmholtz plane and precisely tailored interfacial water molecules, contributing to a decreased energy barrier of the water formation step and enhanced HOR performance under alkaline electrolytes.
Collapse
Affiliation(s)
- Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yunbo Li
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jianchao Yue
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
31
|
Song X, Zhang XG, Deng YL, Nan ZA, Song W, Wang Y, Lü L, Jiang Q, Jin X, Zheng Y, Chen M, Xie Z, Li JF, Tian ZQ, Fan FR. Improving the Hydrogen Oxidation Reaction Rate of Ru by Active Hydrogen in the Ultrathin Pd Interlayer. J Am Chem Soc 2023. [PMID: 37268602 DOI: 10.1021/jacs.3c02604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enhancing the catalytic activity of Ru metal in the hydrogen oxidation reaction (HOR) potential range, improving the insufficient activity of Ru caused by its oxophilicity, is of great significance for reducing the cost of anion exchange membrane fuel cells (AEMFCs). Here, we use Ru grown on Au@Pd as a model system to understand the underlying mechanism for activity improvement by combining direct in situ surface-enhanced Raman spectroscopy (SERS) evidence of the catalytic reaction intermediate (OHad) with in situ X-ray diffraction (XRD), electrochemical characterization, as well as DFT calculations. The results showed that the Au@Pd@Ru nanocatalyst utilizes the hydrogen storage capacity of the Pd interlayer to "temporarily" store the activated hydrogen enriched at the interface, which spontaneously overflows at the "hydrogen-deficient interface" to react with OHad adsorbed on Ru. It is the essential reason for the enhanced catalytic activity of Ru at anodic potential. This work deepens our understanding of the HOR mechanism and provides new ideas for the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Xianmeng Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yong-Liang Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Zi-Ang Nan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Weishen Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanjie Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Linzhe Lü
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Qiaorong Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xi Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
32
|
Wu L, Su L, Liang Q, Zhang W, Men Y, Luo W. Boosting Hydrogen Oxidation Kinetics by Promoting Interfacial Water Adsorption on d-p Hybridized Ru Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lixin Su
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Liang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Yana Men
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
33
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Zhao T, Li M, Xiao D, Yang X, Li Q, An L, Deng Z, Shen T, Gong M, Chen Y, Wang G, Zhao X, Xiao L, Yang X, Li L, Wang D. Pseudo-Pt Monolayer for Robust Hydrogen Oxidation. J Am Chem Soc 2023; 145:4088-4097. [PMID: 36734666 DOI: 10.1021/jacs.2c11907] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heteroepitaxial core-shell structure is conducive to combining the advantages of the epilayer and the substrate, creating a novel multifunctionality for catalysis application. Herein, we report a pseudomorphic-Pt atomic layer (PmPt) epitaxially growing on an IrPd-core matrix (PmPt@IrPd/C) as an efficient and stable catalyst for alkaline hydrogen oxidation reaction that exhibits ∼29.2 times more mass activity enhancement than that of benchmark Pt/C. The PmPt@IrPd/C catalyst also gives rise to ∼25.0 times more enhancement than Pt/C during a 50,000-cycle accelerated stability test. This robust stability originates from the resistance to carbon corrosion owing to the stronger H2O interaction instead of carbon oxide (COx) poison species, and the modulated hydroxyl (OH*) adsorption could inhibit the OH* species from shuffling the surface Pt atoms away from the substrate. Moreover, the anion-exchange membrane fuel cells assembled by PmPt@IrPd/C with an ultralow Pt loading of 0.009 mgPt cm-2 in the anode can deliver a power density of 1.27 W cm-2.
Collapse
Affiliation(s)
- Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Mengting Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan430072, China
| | - Lulu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan430072, China
| | - Xu Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan430072, China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
35
|
Hu C, Xu J, Tan Y, Huang X. Recent advances of ruthenium-based electrocatalysts for hydrogen energy. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Lin X, Li J. Applications of In Situ Raman Spectroscopy on Rechargeable Batteries and Hydrogen Energy Systems. ChemElectroChem 2023. [DOI: 10.1002/celc.202201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiu‐Mei Lin
- Department of Chemistry and Environment Science Minnan Normal University Zhangzhou 363000 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
37
|
Zhang B, Zhang B, Zhao G, Wang J, Liu D, Chen Y, Xia L, Gao M, Liu Y, Sun W, Pan H. Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium. Nat Commun 2022; 13:5894. [PMID: 36202856 PMCID: PMC9537559 DOI: 10.1038/s41467-022-33625-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Overcoming the sluggish kinetics of alkaline hydrogen oxidation reaction (HOR) is challenging but is of critical importance for practical anion exchange membrane fuel cells. Herein, abundant and efficient interfacial active sites are created on ruthenium (Ru) nanoparticles by anchoring atomically isolated chromium coordinated with hydroxyl clusters (Cr1(OH)x) for accelerated alkaline HOR. This catalyst system delivers 50-fold enhanced HOR activity with excellent durability and CO anti-poisoning ability via switching the active sites from Ru surface to Cr1(OH)x-Ru interface. Fundamentally different from the conventional mechanism merely focusing on surface metal sites, the isolated Cr1(OH)x could provide unique oxygen species for accelerating hydrogen or CO spillover from Ru to Cr1(OH)x. Furthermore, the original oxygen species from Cr1(OH)x are confirmed to participate in hydrogen oxidation and H2O formation. The incorporation of such atomically isolated metal hydroxide clusters in heterostructured catalysts opens up new opportunities for rationally designing advanced electrocatalysts for HOR and other complex electrochemical reactions. This work also highlights the importance of size effect of co-catalysts, which should also be paid substantial attention to in the catalysis field.
Collapse
Affiliation(s)
- Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Baohua Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Jianmei Wang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Danqing Liu
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Yaping Chen
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Lixue Xia
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Mingxia Gao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Yongfeng Liu
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China.
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China. .,Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, PR China.
| |
Collapse
|
38
|
Kumar A, Zhang G, Liu W, Sun X. Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Zhao K, Chang X, Su H, Nie Y, Lu Q, Xu B. Enhancing Hydrogen Oxidation and Evolution Kinetics by Tuning the Interfacial Hydrogen‐Bonding Environment on Functionalized Platinum Surfaces. Angew Chem Int Ed Engl 2022; 61:e202207197. [DOI: 10.1002/anie.202207197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kaiyue Zhao
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hai‐Sheng Su
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yiming Nie
- Department of Medicinal Chemistry School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong 250012 China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
40
|
Li Q, Zhang G, Yuan B, Zhong S, Ji Y, Liu Y, Wu X, Kong Q, Han J, He W. Core‐shell nanocatalysts with reduced platinum content toward more cost‐effective proton exchange membrane fuel cells. NANO SELECT 2022. [DOI: 10.1002/nano.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Qun Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Guisheng Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Botao Yuan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Shijie Zhong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Yuanpeng Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
| | - Yuanpeng Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Xiaoqiang Wu
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Qingquan Kong
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Weidong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
- School of Mechanical Engineering Chengdu University Chengdu China
| |
Collapse
|
41
|
Zhao K, Chang X, Su HS, Nie Y, Lu Q, Xu B. Enhancing Hydrogen Oxidation and Evolution Kinetics by Tuning Interfacial Hydrogen‐Bonding Environment on Functionalized Pt Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kaiyue Zhao
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Xiaoxia Chang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Hai-Sheng Su
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Yiming Nie
- Shandong University School of Medicine: Shandong University Cheeloo College of Medicine School of Pharmaceutical Sciences CHINA
| | - Qi Lu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Bingjun Xu
- Peking University College of Chemistry and Molecular Engineering 202 Chengfu Road, Haidian District 100871 Beijing CHINA
| |
Collapse
|
42
|
Yang C, Li Y, Ge C, Jiang W, Cheng G, Zhuang L, Luo W. The role of hydroxide binding energy in alkaline hydrogen oxidation reaction kinetics on
RuCr
nanosheet. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yunbo Li
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chuangxin Ge
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wenyong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic Materials, Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
43
|
Lin XM, Wang XT, Deng YL, Chen X, Chen HN, Radjenovic PM, Zhang XG, Wang YH, Dong JC, Tian ZQ, Li JF. In Situ Probe of the Hydrogen Oxidation Reaction Intermediates on PtRu a Bimetallic Catalyst Surface by Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. NANO LETTERS 2022; 22:5544-5552. [PMID: 35699945 DOI: 10.1021/acs.nanolett.2c01744] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In situ monitoring of the evolution of intermediates and catalysts during hydrogen oxidation reaction (HOR) processes and elucidating the reaction mechanism are crucial in catalysis and energy science. However, spectroscopic information on trace intermediates on catalyst surfaces is challenging to obtain due to the complexity of interfacial environments and lack of in situ techniques. Herein, core-shell nanoparticle-enhanced Raman spectroscopy was employed to probe alkaline HOR processes on representative PtRu surfaces. Direct spectroscopic evidence of an OHad intermediate and RuOx (Ru(+3)/Ru(+4)) surface oxides is simultaneously obtained, verifying that Ru doping onto Pt promotes OHad adsorption on the RuOx surface to react with Had adsorption on the Pt surface to form H2O. In situ Raman, XPS, and DFT results reveal that RuOx coverage tunes the electronic structure of PtRuOx to optimize the adsorption energy of OHad on catalyst surfaces, leading to an improvement in HOR activity. Our findings provide mechanistic guidelines for the rational design of HOR catalysts with high activity.
Collapse
Affiliation(s)
- Xiu-Mei Lin
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yong-Liang Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xing Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hao-Ning Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
44
|
Montserrat-Sisó G, Wickman B. PdNi thin films for hydrogen oxidation reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Ni W, Wang T, Héroguel F, Krammer A, Lee S, Yao L, Schüler A, Luterbacher JS, Yan Y, Hu X. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. NATURE MATERIALS 2022; 21:804-810. [PMID: 35379980 DOI: 10.1038/s41563-022-01221-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The hydroxide exchange membrane fuel cell (HEMFC) is a promising energy conversion technology but is limited by the need for platinum group metal (PGM) electrocatalysts, especially for the hydrogen oxidation reaction (HOR). Here we report a Ni-based HOR catalyst that exhibits an electrochemical surface area-normalized exchange current density of 70 μA cm-2, the highest among PGM-free catalysts. The catalyst comprises Ni nanoparticles embedded in a nitrogen-doped carbon support. According to X-ray and ultraviolet photoelectron spectroscopy as well as H2 chemisorption data, the electronic interaction between the Ni nanoparticles and the support leads to balanced hydrogen and hydroxide binding energies, which are the likely origin of the catalyst's high activity. PGM-free HEMFCs employing this Ni-based HOR catalyst give a peak power density of 488 mW cm-2, up to 6.4 times higher than previous best-performing analogous HEMFCs. This work demonstrates the feasibility of efficient PGM-free HEMFCs.
Collapse
Affiliation(s)
- Weiyan Ni
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Teng Wang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Florent Héroguel
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Krammer
- Solar Energy and Building Physics Laboratory, Institute of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Seunghwa Lee
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Liang Yao
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andreas Schüler
- Solar Energy and Building Physics Laboratory, Institute of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
46
|
Li Y, Yang C, Ge C, Yao N, Yin J, Jiang W, Cong H, Cheng G, Luo W, Zhuang L. Electronic Modulation of Ru Nanosheet by d-d Orbital Coupling for Enhanced Hydrogen Oxidation Reaction in Alkaline Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202404. [PMID: 35754182 DOI: 10.1002/smll.202202404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The alkaline polymer electrolyte fuel cells (APEFCs) hold great promise for using nonnoble metal-based electrocatalysts toward the cathodic oxygen reduction reaction (ORR), but are hindered by the sluggish anodic hydrogen oxidation reaction (HOR) in alkaline electrolytes. Here, a strategy is reported to promote the alkaline HOR performance of Ru by incorporating 3d-transition metals (V, Fe, Co, and Ni), where the conduction band minimum (CBM) level of Ru can be rationally tailored through strong d-d orbital coupling. As expected, the obtained RuFe nanosheet exhibits outstanding HOR performance with the mass activity of 233.46 A gPGM -1 and 23-fold higher than the Ru catalyst, even threefold higher than the commercial Pt/C. APEFC employing this RuFe as anodic catalyst gives a peak power density of 1.2 W cm-2 , outperforming the documented Pt-free anodic catalyst-based APEFCs. Experimental results and density functional theory calculations suggest the enhanced OH-binding energy and reduced formation energy of water derived from the downshifted CBM level of Ru contribute to the enhanced HOR activity.
Collapse
Affiliation(s)
- Yunbo Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chuangxin Ge
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Na Yao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jinlong Yin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wenyong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
47
|
Fan L, Shen H, Ji D, Xing Y, Tao L, Sun Q, Guo S. Biaxially Compressive Strain in Ni/Ru Core/Shell Nanoplates Boosts Li-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204134. [PMID: 35640098 DOI: 10.1002/adma.202204134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Regulating surface strain of nanomaterials is an effective strategy to manipulate the activity of catalysts, yet not well recognized in rechargeable Li-CO2 batteries. Herein, biaxially compressive strained nickel/ruthenium core/shell hexagonal nanoplates (Ni/Ru HNPs) with lattice compression of ≈5.1% and ≈3.2% in the Ru {10-10} and (0002) facets are developed as advanced catalysts for Li-CO2 batteries. It is demonstrated that tuning the electronic structure of Ru shell through biaxially compressive strain engineering can boost the kinetically sluggish CO2 reduction and evolution reactions, thus achieving a high-performance Li-CO2 battery with low charge platform/overpotential (3.75 V/0.88 V) and ultralong cycling life (120 cycles at 200 mA g-1 with a fixed capacity of 1000 mAh g-1 ). Density functional theory calculations reveal that the biaxially compressive strain can downshift the d-band center of surface Ru atoms and thus weaken the binding of CO2 molecules, which is energetically beneficial for the nucleation and decomposition of Li2 CO3 crystals during the discharge and charge processes. This study confirms that strain engineering, though constructing a well-defined core/shell structure, is a promising strategy to improve the inherent catalytic activity of Ru-based materials in Li-CO2 batteries.
Collapse
Affiliation(s)
- Li Fan
- Department of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Haoming Shen
- Center for Applied Physics & Technology, Peking University, Beijing, 100871, China
| | - Dongxiao Ji
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi Xing
- Department of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Lu Tao
- Department of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Qiang Sun
- Center for Applied Physics & Technology, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- Department of Materials Science & Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
48
|
Silva-Carrillo C, Reynoso-Soto EA, Flores-Hernández JR, Trujillo-Navarrete B, Salazar-Gastelum MI, Castañon TR, Perez-Sicairos S, Romo-Herrera JM, Félix-Navarro RM. Support Effect in Bimetallic Particles PtNi for Hydrogen Oxidation Reaction in Alkaline Media. Top Catal 2022. [DOI: 10.1007/s11244-022-01646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Han L, Ou P, Liu W, Wang X, Wang HT, Zhang R, Pao CW, Liu X, Pong WF, Song J, Zhuang Z, Mirkin MV, Luo J, Xin HL. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. SCIENCE ADVANCES 2022; 8:eabm3779. [PMID: 35648856 PMCID: PMC9159574 DOI: 10.1126/sciadv.abm3779] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Anion exchange membrane fuel cells are limited by the slow kinetics of alkaline hydrogen oxidation reaction (HOR). Here, we establish HOR catalytic activities of single-atom and diatomic sites as a function of *H and *OH binding energies to screen the optimal active sites for the HOR. As a result, the Ru-Ni diatomic one is identified as the best active center. Guided by the theoretical finding, we subsequently synthesize a catalyst with Ru-Ni diatomic sites supported on N-doped porous carbon, which exhibits excellent catalytic activity, CO tolerance, and stability for alkaline HOR and is also superior to single-site counterparts. In situ scanning electrochemical microscopy study validates the HOR activity resulting from the Ru-Ni diatomic sites. Furthermore, in situ x-ray absorption spectroscopy and computational studies unveil a synergistic interaction between Ru and Ni to promote the molecular H2 dissociation and strengthen OH adsorption at the diatomic sites, and thus enhance the kinetics of HOR.
Collapse
Affiliation(s)
- Lili Han
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Pengfei Ou
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Wei Liu
- Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiang Wang
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, Queens, NY 11367, USA
| | - Hsiao-Tsu Wang
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
- Corresponding author. (X.L.); (H.L.X.)
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, Queens, NY 11367, USA
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
- Corresponding author. (X.L.); (H.L.X.)
| |
Collapse
|
50
|
Feng Y, Han W, Wang T, Chen Q, Zhang Y, Sun Y, Zhang X, Yang L, Chen S, Xu Y, Tang H, Zhang B, Wang H. Nano-Sized PtRu/C Electrocatalyst With Separated Phases and High Dispersion Improves Electrochemical Performance of Hydrogen Oxidation Reaction. Front Chem 2022; 10:885965. [PMID: 35711957 PMCID: PMC9194480 DOI: 10.3389/fchem.2022.885965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alloys and core-shell nanoparticles have recently received enormous attention which opened up new avenues for highly active catalysts. Despite considerable advances in this field, the majority of proposed approaches suffer from either complicated procedures or unstable structures, severely hindering their practical applications. Here, we successfully synthesized alloy electrocatalyst with separated phases, PtRu alloy nanoparticles robustly supported by carbon matrix (PtRu/C), using a convenient two-step solvothermal method. The constructed PtRu/C at different NaOH contents (0–1.25 mmol) were compared and electrochemical activity were evaluated by the hydrogen oxidation reaction (HOR). In contrast, the homogeneous distribution and minimum average size of Ru and Pt nanoparticles on carbon, appeared at approximately 4 nm, proving that PtRu/C-0.75 possessed abundant accessible active sites. The catalytic activities and the reaction mechanism were studied via electrochemical techniques. PtRu/C-0.75 has excellent activity due to its unique electronic structure and efficient charge transfer, with the largest j0 value of 3.68 mA cm−2 in the HOR.
Collapse
Affiliation(s)
- Yiling Feng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Wei Han
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
- School of Chemistry and Chemical Engineering, Guizhou Minzu University, Guizhou, China
| | - Tingyu Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
- School of Chemistry and Chemical Engineering, Guizhou Minzu University, Guizhou, China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yonggang Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Song Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
- *Correspondence: Song Chen,
| | - YuXiang Xu
- Jiangsu Ancan Technology Co., Ltd, Yancheng, China
| | - Hong Tang
- Jiangsu Ancan Technology Co., Ltd, Yancheng, China
| | - Bing Zhang
- Jiangsu Ancan Technology Co., Ltd, Yancheng, China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|