1
|
Que M, Xu Y, Wu Q, Chen J, Gao L, Liu SF. Application of advanced quantum dots in perovskite solar cells: synthesis, characterization, mechanism, and performance enhancement. MATERIALS HORIZONS 2025; 12:2467-2502. [PMID: 39820201 DOI: 10.1039/d4mh01478b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs. We thoroughly examine advances in defect passivation, energy band alignment, perovskite crystallinity, device stability, and broader light absorption. In particular, novel approaches to enhance the photoelectric conversion efficiency (PCE) of quantum dot-enhanced perovskite solar cells are highlighted. Lastly, based on a comprehensive overview, we provide a forward-looking outlook on advanced quantum dot fabrication and its impact on enhancing the photovoltaic performance of solar cells. This review offers insights into fundamental mechanisms that endorse quantum dots for improved PSC performance, paving the way for further development of quantum dot-integrated PSCs.
Collapse
Affiliation(s)
- Meidan Que
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuan Xu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qizhao Wu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Chen
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lili Gao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- CNNP Optoelectronics Technology, 2828 Canghai Road, Lingang, Shanghai, 201306, P. R. China
| |
Collapse
|
2
|
Chen J, Sun C, Xiang Y, Wang XL, Yao YF. Bismuth-doped methylamine lead bromide perovskite CH 3NH 3PbBr 3 single crystals for efficient hydrogen evolution via hydrobromic acid splitting. J Colloid Interface Sci 2025; 693:137567. [PMID: 40262203 DOI: 10.1016/j.jcis.2025.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Organic-inorganic hybrid halide perovskites have emerged as promising photocatalysts for hydrogen production because of their high absorption coefficients and large carrier diffusion lengths. However, the synthesis and development of organic-inorganic perovskite bromide photocatalysts have not been fully explored. Herein, we report on a novel high-activity Bismuth (Bi) doped CH3NH3PbBr3 (MAPbBr3) photocatalyst that was successfully synthesized using the reverse-temperature crystallization method. This material exhibited a reduced band gap and increased free-carrier concentration compared to pure MAPbBr3. Molecular dynamics and lattice changes within the photocatalyst were systematically investigated using solid-state nuclear magnetic resonance spectroscopy (NMR). The photocatalyst employs hypophosphorous acid (H3PO2) as a stabilizer and platinum (Pt) as a co-catalyst in the photocatalytic hydrogen bromide (HBr) splitting system, achieving a hydrogen evolution rate of 3946.52 μmol·g-1·h-1 under visible light irradiation. Our experimental results suggest that the enhanced photocatalytic performance is attributed to Bi doping, which modifies the charge distribution in the region of the lead (Pb) octahedron, thereby promoting effective charge separation and improving the hydrogen production efficiency. This study provides new insights into the photocatalytic hydrogen production capabilities of organic-inorganic hybrid bromide perovskites.
Collapse
Affiliation(s)
- Jiyuan Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China
| | - Chao Sun
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China
| | - Yulong Xiang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China
| | - Xue-Lu Wang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China; Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, PR China.
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China; Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, PR China.
| |
Collapse
|
3
|
Thomas N, Welton C, Pawlak T, Raval P, Trébosc J, Jain SK, Reddy GNM. Deuteron-proton isotope correlation spectroscopy at high magnetic fields. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2025; 136:101993. [PMID: 39954529 DOI: 10.1016/j.ssnmr.2025.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
A cross-polarization 2H-1H isotope correlation spectroscopy (CP-iCOSY) approach is presented for characterizing a deuterated amino acid, pharmaceutical compound and a solid formulation. This can be achieved by isotopic enrichment in conjunction with high magnetic field (28.2 T) and fast magic-angle spinning (MAS), enabling the rapid detection of 2H NMR spectra in a few seconds to minutes. Specifically, two-dimensional (2D) 2H-1H CP-iCOSY experiment allows the local structures and through-space interactions in a partially deuterated compounds to be elucidated. In doing so, we compare conventional spin-lock and rotor-echo-short-pulse-irradiation RESPIRATIONCP sequences for acquiring 2D 1H-2H correlation spectra. The RESPIRATIONCP sequence allows the detection of 2D peaks at lower CP contact times (0.1-1 ms) than the conventional CP (0.2-4 ms) sequence. Analysis of partially deuterated L-histidine·HCl·H2O and dopamine.HCl is presented, in which the detection of 2D peaks corresponding to 2H-1H pairs separated by greater than 4 Å distance demonstrates the potential of the presented approach for the characterization of packing interactions. These results are corroborated by NMR crystallography analysis using the Gauge-Including Projector Augmented-Wave (GIPAW) approach.
Collapse
Affiliation(s)
- Neethu Thomas
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Julien Trébosc
- University of Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - Sheetal K Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France.
| |
Collapse
|
4
|
Gunes U, Hope MA, Zhang Y, Zheng L, Pfeifer L, Grätzel M, Emsley L. Formamidinium Incorporates into Rb-based Non-Perovskite Phases in Solar Cell Formulations. Angew Chem Int Ed Engl 2025; 64:e202416938. [PMID: 39431515 PMCID: PMC11773310 DOI: 10.1002/anie.202416938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Organic-inorganic hybrid perovskite materials, such as formamidinium lead iodide (FAPbI3), are among the most promising emerging photovoltaic materials. However, the spontaneous phase transition from the photoactive perovskite phase to an inactive non-perovskite phase complicates the application of FAPbI3 in solar cells. To remedy this, alkali metal cations, most often Cs+, Rb+ or K+, are included during perovskite synthesis to stabilize the photoactive phase. The atomic-level mechanisms of stabilization are complex. While Cs+ dopes directly into the perovskite lattice, Rb+ does not, but instead forms an additional non-perovskite phase, and the mechanism by which Rb confers increased stability remains unclear. Here, we use 1H-87Rb double resonance NMR experiments to show that FA+ incorporates into the Rb-based non-perovskite phases (FAyRb1-yPb2Br5 and δ-FAyRb1-yPbI3) for both bromide and iodide perovskite formulations. This is demonstrated by changes in the 1H and 87Rb chemical shifts, 1H-87Rb heteronuclear correlation spectra, and 87Rb{1H} REDOR spectra. Simulation of the REDOR dephasing curves suggests up to ~60 % FA+ incorporation into the inorganic Rb-based phase for the bromide system. In light of these results, we hypothesize that the substitution of FA+ into the non-perovskite phase may contribute to the greater stability conferred by Rb salts in the synthesis of FA-based perovskites.
Collapse
Affiliation(s)
- Ummugulsum Gunes
- Institut des Sciences et Ingenierie ChimiquesÉcole Polytechnique Fedérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Michael A. Hope
- Institut des Sciences et Ingenierie ChimiquesÉcole Polytechnique Fedérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Yuxuan Zhang
- Institut des Sciences et Ingenierie ChimiquesÉcole Polytechnique Fedérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Likai Zheng
- Institut des Sciences et Ingenierie ChimiquesÉcole Polytechnique Fedérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Lukas Pfeifer
- Institut des Sciences et Ingenierie ChimiquesÉcole Polytechnique Fedérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Michael Grätzel
- Institut des Sciences et Ingenierie ChimiquesÉcole Polytechnique Fedérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingenierie ChimiquesÉcole Polytechnique Fedérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| |
Collapse
|
5
|
Srivastava P, Maity S, Srinivasan V. Unveiling the Role Reversal of Guest and Host in OverTolerant Hybrid Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2404493. [PMID: 39807682 DOI: 10.1002/smll.202404493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl3) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites. This is also confirmed by the dominating contribution of guest reorientation along the transition pathway. Analysis using maximally localized Wannier functions reveals that polarization enhancement upon heating is primarily due to host atoms, particularly of the more distorted octahedral layer. Despite its pivotal role in the transition, the contribution of the guest to polarization is relatively weaker, in contrast to previous suggestions. Furthermore, host distortion induces a significant (∼9%) feedback polarization on the guest. This distortion is also responsible for significantly altering the density of states occupied by the guest closer to band-edges, suggesting a non-trivial contribution of the guest in impacting the optoelectronic properties and exciton binding energies.
Collapse
Affiliation(s)
- Pradhi Srivastava
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Sayan Maity
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| | - Varadharajan Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| |
Collapse
|
6
|
Mishra A, Hope MA, Emsley L. Light-Induced Metallic and Paramagnetic Defects in Halide Perovskites from Magnetic Resonance. ACS ENERGY LETTERS 2024; 9:5074-5080. [PMID: 39416673 PMCID: PMC11474947 DOI: 10.1021/acsenergylett.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Halide perovskites are promising next-generation solar cell materials, but their commercialization is hampered by their propensity to degrade under operating conditions, particularly under heat, humidity, and light. Identifying degradation products and linking them to the degradation mechanism at the atomic scale is necessary to design more stable perovskite materials. Here we use magnetic resonance methods to identify and characterize the formation of both metallic lead clusters and Pb3+ defects upon light-induced degradation of methylammonium lead halide perovskite using nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) measurements. Paramagnetic relaxation enhancement (PRE) of the 1H NMR resonances demonstrates the presence of localized paramagnetic Pb3+ defects, a large Knight shift of the 207Pb NMR proves the presence of lead metal, and their relative proportions are determined by the differing temperature dependence in variable-temperature EPR. This work reconciles previous conflicting literature results, enabling the use of EPR spectroscopy to monitor photodegradation of perovskite devices.
Collapse
Affiliation(s)
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale
de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
7
|
Zhao C, Zhao X, Huang H, Zhang X, Yuan J. Surface ligand manipulation enables ∼15% efficient MAPbI 3 perovskite quantum dot solar cells. Chem Commun (Camb) 2024; 60:9214-9217. [PMID: 39109540 DOI: 10.1039/d4cc03057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We reported a surface ligand manipulation strategy for hybrid MAPbI3 perovskite quantum dots (PeQDs) using methylamine iodide (MAI), methylamine thiocyanate (MASCN) and methylamine acetate (MAAc) salts. After MAI salt post-treatment, a record high efficiency of 14.98% was obtained for MAPbI3 PeQD solar cells together with enhanced ambient stability.
Collapse
Affiliation(s)
- Chenyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Department of Physics, University of Yangon, Pyay Road, Yangon 11181, Myanmar
| | - Xinyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Department of Physics, University of Yangon, Pyay Road, Yangon 11181, Myanmar
| | - Hehe Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Department of Physics, University of Yangon, Pyay Road, Yangon 11181, Myanmar
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Department of Physics, University of Yangon, Pyay Road, Yangon 11181, Myanmar
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Department of Physics, University of Yangon, Pyay Road, Yangon 11181, Myanmar
| |
Collapse
|
8
|
Hope MA, Mishra A, Emsley L. Hydrogen Diffusion in Hybrid Perovskites from Exchange NMR. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7525-7532. [PMID: 39156713 PMCID: PMC11325541 DOI: 10.1021/acs.chemmater.4c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Ion migration is an important phenomenon affecting the performance of hybrid perovskite solar cells. It is particularly challenging, however, to disentangle the contribution of H+ diffusion from that of other ions, and the atomic-scale mechanism remains unclear. Here, we use 2H exchange NMR to prove that 2H+ ions exchange between MA+ cations on the time scale of seconds for both MAPbI3 and FA0.7MA0.3PbI3 perovskites. We do this by exploiting 15N-enriched MA+ to label the cations by their 15N spin state. The exchange rates and activation energy are then calculated by performing experiments as functions of mixing time and temperature. By comparing the measured exchange rates to previously measured bulk H+ diffusivities, we demonstrate that, after dissociating, H+ ions travel through the lattice before associating to another cation rather than hopping between adjacent cations.
Collapse
Affiliation(s)
- Michael A. Hope
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Aditya Mishra
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Soto-Montero T, Kralj S, Gómez JS, Wolffs JW, Rodkey N, Kentgens APM, Morales-Masis M. Quantifying Organic Cation Ratios in Metal Halide Perovskites: Insights from X-ray Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6912-6924. [PMID: 39070671 PMCID: PMC11270747 DOI: 10.1021/acs.chemmater.4c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
The employment of metal halide perovskites (MHPs) in various optoelectronic applications requires the preparation of thin films whose composition plays a crucial role. Yet, the composition of the MHP films is rarely reported in the literature, partly because quantifying the actual organic cation composition cannot be done with conventional characterization methods. For MHPs, NMR has gained popularity, but for films, tedious processes like scratching several films are needed. Here, we use mechanochemical synthesis of MA1-x FA x PbI3 powders with various MA+: FA+ ratios and combine solid-state NMR spectroscopy (ssNMR) and X-ray photoelectron spectroscopy (XPS) to provide a reference characterization protocol for the organic cations' quantification in either powder form or films. Following this, we demonstrate that organic cation ratio quantification on thin films with ssNMR can be done without scraping the film and using significantly less mass than typically needed, that is, employing a single ∼800 nm-thick MA1-x FA x PbI3 film deposited by pulsed laser deposition (PLD) onto a 1 × 1 in.2, 0.2 mm-thick quartz substrate. While background signals from the quartz substrate appear in the 1H ssNMR spectra, the MA+ and FA+ signals are easily distinguishable and can be quantified. This study highlights the importance of calibrating and quantifying the source and the thin film organic cation ratio, as key for future optimization and scalability of physical vapor deposition processes.
Collapse
Affiliation(s)
- Tatiana Soto-Montero
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Suzana Kralj
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Jennifer S. Gómez
- Institute
for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Jop W. Wolffs
- Institute
for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Nathan Rodkey
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
- Instituto
de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain
| | - Arno P. M. Kentgens
- Institute
for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Monica Morales-Masis
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
10
|
Tan X, Feng Q, Nan G. Organic cations promote exciton dissociation in Ruddlesden-Popper lead iodide perovskites: a theoretical study. MATERIALS HORIZONS 2024; 11:2248-2257. [PMID: 38436053 DOI: 10.1039/d3mh01773g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) are a class of quantum well (QW) materials showing large exciton binding energy owing to quantum confinement. The existence of localized edge states was proposed to accelerate exciton dissociation into long-lived charge carriers in 2D RPPs, but recent experimental reports suggested that highly efficient internal exciton dissociation is achievable in 2D RPPs despite the absence of edge states. Herein, we adopt first-principles calculations to unveil the physical origin of the high internal quantum efficiency in the bulk region of widely familiar (BA)2(MA)n-1PbnI3n+1 (BA = butylammonium; MA = methylammonium) materials. We discover that the dipolar nature of MA cations provides the driving force for the separation of photoexcited electron-hole pairs inside QWs as the inorganic layer thickens from n = 1 to n = 3. Concurrently, electronic coupling between organic spacer layers and QWs is enhanced in the energetically favorable configurations where MA cations orient with their CH3 groups towards the exterior PbI2 layers of QWs in the n = 3 structure. Consequently, hole delocalization is promoted along the out-of-plane direction of QWs, which in turn facilitates exciton dissociation into free charge carriers despite large exciton binding energy. Our simulations reveal that the hydrogen bonding between organic species (including both MA and BA cations) and iodine atoms, which is subtly interconnected, engineers the response of morphology in QWs and electronic interactions at organic-inorganic interfaces, providing novel insights for the exciton-free carrier behavior in the bulk area of 2D RPPs.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.
| | - Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| |
Collapse
|
11
|
Dastan D, Mohammed MKA, Sh Alnayli R, M Majeed S, Ahmed DS, Al-Mousoi AK, Pandey R, Hossain MK, Bhattarai S, Al-Asbahi BA, Rahman MF. Achieving Well-Oriented FAPbI 3 Perovskite Photovoltaics by Cyclohexane Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7560-7568. [PMID: 38553424 DOI: 10.1021/acs.langmuir.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
It is essential and challenging to develop green and cost-effective solar cells to meet the energy demands. Solar cells with a perovskite light-harvesting layer are the most promising technology to propel the world toward next-generation solar energy. Formamidinium lead tri-iodide (FAPbI3)-based perovskite solar cells (F-PSCs), with their considerable performance, offer cost-effective solar cells. One of the major issues that the PSC community is now experiencing is the stability of α-FAPbI3 at relatively low temperatures. In this study, we fabricated FAPbI3-PSCs using cyclohexane (CHX) material via a two-step deposition method. For this purpose, CHX is added to the formamidinium iodide:methylammonium chloride (FAI:MACl) solution as an additive and used to form a better FAPbI3 layer by controlling the reaction between FAI and lead iodide (PbI2). The CHX additive induces the reaction of undercoordinated Pb2+ with FAI material and produces an α-FAPbI3 layer with low charge traps and large domains. In addition, the CHX-containing FAPbI3 layers show higher carrier lifetimes and facilitate carrier transfer in F-PSCs. The CHX-modified F-PSCs yield a high champion efficiency of 22.84% with improved ambient and thermal stability behavior. This breakthrough provides valuable findings regarding the formation of a desirable FAPbI3 layer for photovoltaic applications and holds promise for the industrialization of F-PSCs.
Collapse
Affiliation(s)
- Davoud Dastan
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | | | - Raad Sh Alnayli
- Radiological Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Hillah 51001, Iraq
| | - Sadeer M Majeed
- Department of Applied Sciences, University of Technology-Iraq, Baghdad 10011, Iraq
| | - Duha S Ahmed
- Department of Applied Sciences, University of Technology-Iraq, Baghdad 10011, Iraq
| | - Ali K Al-Mousoi
- Electrical Engineering Department, College of Engineering, Al-Iraqia University, Baghdad 10011, Iraq
| | - Rahul Pandey
- VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - Sagar Bhattarai
- Technology Innovation and Development Foundation, Indian Institute of Technology Guwahati, Guwahati, Assam 792103, India
| | - Bandar Ali Al-Asbahi
- Department of Physics & Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md Ferdous Rahman
- Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur 5400, Bangladesh
| |
Collapse
|
12
|
Wang Y, Zeng Z, Zhang Y, Zhang Z, Bi L, He A, Cheng Y, Jen AKY, Ho JC, Tsang SW. Unlocking the Ambient Temperature Effect on FA-Based Perovskites Crystallization by In Situ Optical Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307635. [PMID: 37714163 DOI: 10.1002/adma.202307635] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Multiple cation-composited perovskites are demonstrated as a promising approach to improving the performance and stability of perovskite solar cells (PSCs). However, recipes developed for fabricating high-performance perovskites in laboratories are always not transferable in large-scale production, as perovskite crystallization is highly sensitive to processing conditions. Here, using an in situ optical method, the ambient temperature effect on the crystallization process in multiple cation-composited perovskites is investigated. It is found that the typical solvent-coordinated intermediate phase in methylammonium lead iodide (MAPbI3) is absent in formamidinium lead iodide (FAPbI3), and nucleation is almost completed in FAPbI3 right after spin-coating. Interestingly, it is found that there is noticeable nuclei aggregation in Formamidinium (FA)-based perovskites even during the spin-coating process, which is usually only observed during the annealing in MAPbI3. Such aggregation is further promoted at a higher ambient temperature or in higher FA content. Instead of the general belief of stress release-induced crack formation, it is proposed that the origin of the cracks in FA-based perovskites is due to the aggregation-induced solute depletion effect. This work reveals the limiting factors for achieving high-quality FA-based perovskite films and helps to unlock the existing narrow processing window for future large-scale production.
Collapse
Affiliation(s)
- Yunfan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zixin Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuoqiong Zhang
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, 999077, China
| | - Leyu Bi
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Aoxi He
- College of Materials Science and Engineering and Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Yuanhang Cheng
- School of New Energy, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 21443, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), and Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), and Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
13
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
14
|
Xiao H, Li R, Cai W, Zang Z. Development of Quasi-Two-Dimensional Perovskites and Their Application in Light-Emitting Diodes. Inorg Chem 2024; 63:2853-2876. [PMID: 38299502 DOI: 10.1021/acs.inorgchem.3c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites have attracted much attention due to their outstanding properties, such as inherent quantum-well structure, strong dielectric and quantum confinement, large exciton binding energy, and high photoluminescence quantum yield. By virtue of these superior merits, quasi-2D perovskites have shown great potential for next-generation light-emitting diodes (LEDs). Herein, this review presents an overview of the basic properties of quasi-2D perovskites and their photoluminescence modulations by large organic cation engineering, monovalent cation engineering, halogen engineering, defect passivation engineering, and dimensionality engineering. Furthermore, the strategies of charge-transport layer optimization, interfacial engineering, light-outcoupling efficiency improvement, and operating stability improvement are summarized for fabricating high-performance quasi-2D perovskite LEDs (PeLEDs). Finally, the challenges and outlook for the future development of quasi-2D PeLEDs are unambiguously proposed.
Collapse
Affiliation(s)
- Hongbin Xiao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ru Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Minussi FB, Silva RM, Araújo EB. Composition-Property Relations for GA x FA y MA 1- x - y PbI 3 Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305054. [PMID: 37803390 DOI: 10.1002/smll.202305054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Halide perovskites are materials for diverse optoelectronic applications owing to a combination of factors, including their compositional flexibility. A major source of this diversity of compositions comes from the use of mixed organic cations in the A-site of such compounds to form solid solutions. Many organic cations are possible for this purpose. Although significant progress is made over years of intensive research, the determination of systematic relationships between the compositions and properties of halide perovskites is not exploited accordingly. Using the MAPbI3 prototype, a wide range of compositions substituted by formamidinium (FA+ ) and guanidinium (GA+ ) cations are studied. From a detailed collection of experimental data and results reported in the literature, heat maps correlating the composition of GAx FAy MA1- x - y PbI3 solid solutions with phase transition temperatures, dielectric permittivity, and activation energies are constructed. Considering the characteristics of organic cations, namely their sizes, dipole moments, and the number of N─H bonds, it is possible to interpret the heat maps as consequences of these characteristics. This work brings a systematization of how obtaining specific properties of halide perovskites might be possible by customizing the characteristics of the A-site organic cations.
Collapse
Affiliation(s)
- Fernando Brondani Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | - Rogério Marcos Silva
- Department of Electrical Engineering, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | - Eudes Borges Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| |
Collapse
|
16
|
Yu C, Kawakita Y, Kikuchi T, Kofu M, Honda T, Zhang Z, Zhang Z, Liu Y, Liu SF, Li B. Atomic Structure and Dynamics of Organic-Inorganic Hybrid Perovskite Formamidinium Lead Iodide. J Phys Chem Lett 2024; 15:329-338. [PMID: 38170631 DOI: 10.1021/acs.jpclett.3c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The atomic dynamic behaviors of formamidinium lead iodide [HC(NH2)2PbI3] are critical for understanding and improving photovoltaic performances. However, they remain unclear. Here, we investigate the structural phase transitions and the reorientation dynamics of the formamidinium cation [HC(NH2)2+, FA+] of FAPbI3 using neutron scattering techniques. Two structural phase transitions occur with decreasing temperature, from cubic to tetragonal phase at 285 K and then to another tetragonal at 140 K, accompanied by gradually frozen reorientation of FA cations. The nearly isotropic reorientation in the cubic phase is suppressed to reorientation motions involving a two-fold (C2) rotation along the N···N axis and a four-fold (C4) rotation along the C-H axis in the tetragonal phase, and eventually to local disordered motion as a partial C4 along the C-H axis in another tetragonal phase, thereby indicating an intimate interplay between lattice and orientation degrees of freedom in the hybrid perovskite materials. The present complete atomic structure and dynamics provide a solid standing point to understand and then improve photovoltaic properties of organic-inorganic hybrid perovskites in the future.
Collapse
Affiliation(s)
- Chenyang Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, China
| | | | - Tatsuya Kikuchi
- J-PARC Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
| | - Maiko Kofu
- J-PARC Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
| | - Takashi Honda
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan
| | - Zhe Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, China
| | - Zhao Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, China
| | - Yucheng Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Shengzhong Frank Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, China
- J-PARC Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
| |
Collapse
|
17
|
Drużbicki K, Gila-Herranz P, Marin-Villa P, Gaboardi M, Armstrong J, Fernandez-Alonso F. Cation Dynamics as Structure Explorer in Hybrid Perovskites-The Case of MAPbI 3. CRYSTAL GROWTH & DESIGN 2024; 24:391-404. [PMID: 38188269 PMCID: PMC10768891 DOI: 10.1021/acs.cgd.3c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Hybrid organic-inorganic perovskites exhibit remarkable potential as cost-effective and high-efficiency materials for photovoltaic applications. Their exceptional chemical tunability opens further routes for optimizing their optical and electronic properties through structural engineering. Nevertheless, the extraordinary softness of the lattice, stemming from its interconnected organic-inorganic composition, unveils formidable challenges in structural characterization. Here, by focusing on the quintessential methylammonium lead triiodide, MAPbI3, we combine first-principles modeling with high-resolution neutron scattering data to identify the key stationary points on its shallow potential energy landscape. This combined experimental and computational approach enables us to benchmark the performance of a collection of semilocal exchange-correlation functionals and to track the local distortions of the perovskite framework, hallmarked by the inelastic neutron scattering response of the organic cation. By conducting a thorough examination of structural distortions, we introduce the IKUR-PVP-1 structural data set. This data set contains nine mechanically stable structural models, each manifesting a distinct vibrational response. IKUR-PVP-1 constitutes a valuable resource for assessing thermal behavior in the low-temperature perovskite phase. In addition, it paves the way for the development of accurate force fields, enabling a comprehensive understanding of the interplay between the structure and dynamics in MAPbI3 and related hybrid perovskites.
Collapse
Affiliation(s)
- Kacper Drużbicki
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
- Polish
Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, Lodz 90-363, Poland
| | - Pablo Gila-Herranz
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
| | - Pelayo Marin-Villa
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
| | - Mattia Gaboardi
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
- C.S.G.I.
& Chemistry Department, University of
Pavia, Viale Taramelli,
16, Pavia 27100, Italy
| | - Jeff Armstrong
- ISIS
Neutron and Muon Facility, Rutherford Appleton
Laboratory, Didcot OX11 0QX, U.K.
| | - Felix Fernandez-Alonso
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San
Sebastian 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
18
|
Li W, Hao M, Baktash A, Wang L, Etheridge J. The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs 1-xFA xPbI 3. Nat Commun 2023; 14:8523. [PMID: 38129416 PMCID: PMC10739958 DOI: 10.1038/s41467-023-44235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Organic-inorganic hybrid perovskites are promising materials for the next generation photovoltaics and optoelectronics; however, their practical application has been hindered by poor structural stability mainly caused by ion migration and external stimuli. Understanding the mechanism(s) of ion migration and structure decomposition is thus critical. Here we observe the sequence of structural changes at the atomic level that precede structural decomposition in the technologically important Cs1-xFAxPbI3 using ultralow dose transmission electron microscopy. We find that these changes differ, depending upon the A-site composition. Initially, there is a random loss of FA+, complemented by the loss of I-. The remaining FA+ and I- ions then migrate, unit cell by unit cell, into an ordered and more stable phase with a √2 x √2 superstructure. Further ion loss is accompanied by A-site dependent octahedral tilt modes and associated tetragonal phases with different stabilities. These observations of the loss of FA+/I- ion pairs, ion migration, octahedral tilt modes, and the role of the A-cation, provide insights into the atomic-scale structural mechanisms that drive and block ion loss and ion migration, opening pathways to inhibit ion loss, migration and improve structural stability.
Collapse
Affiliation(s)
- Weilun Li
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia.
| | - Mengmeng Hao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ardeshir Baktash
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Joanne Etheridge
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia.
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
19
|
Bhat CP, Godbole AK, Bandyopadhyay D. The role of oxygen defects in the electronic, optical and phonon dispersion of the LAGO perovskite: a density functional theory investigation. Dalton Trans 2023; 52:16128-16139. [PMID: 37930338 DOI: 10.1039/d3dt02846a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The study aims to investigate the electronic, optical and phonon dispersion properties of a pure and 2.5% O-defect induced LAGO perovskite, using density functional theory (DFT) with generalized gradient approximation (GGA) and the PBE functional. The research reveals a significant reduction in the band gap from 3.27 eV in pure LAGO to 2.18 eV in defect-induced LAGO. The defect-induced LAGO exhibits relatively strong light absorption in the visible region compared to pure LAGO. The phonon-dispersion analysis identifies one acoustic and two transverse optical mode branches. The calculated Debye temperatures for pure and defect-induced systems are 469.92 K and 463.69 K, respectively, attributed to weaker bonds in defect-induced LAGO. The findings offer fundamental insights into the impact of oxygen vacancies on the electronic, optical, and phonon properties of the LAGO perovskite that can potentially improve the electronic and optoelectronic devices operating across a wide range of spectral frequencies.
Collapse
Affiliation(s)
- Chaithanya P Bhat
- Department of Physics, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan - 333031, India.
| | - Ashwin K Godbole
- Department of Physics, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan - 333031, India.
| | - Debashis Bandyopadhyay
- Department of Physics, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan - 333031, India.
| |
Collapse
|
20
|
Sarkar D, Bhattacharya A, Meyer J, Kirchberger AM, Mishra V, Nilges T, Michaelis VK. Unraveling Sodium-Ion Dynamics in Honeycomb-Layered Na 2Mg xZn 2-xTeO 6 Solid Electrolytes with Solid-State NMR. J Am Chem Soc 2023; 145:19727-19745. [PMID: 37642533 DOI: 10.1021/jacs.3c04928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
All-solid-state sodium-ion batteries (SIBs) have the potential to offer large-scale, safe, cost-effective, and sustainable energy storage solutions by supplementing the industry-leading lithium-ion batteries. However, for the enhanced bulk properties of SIB components (e.g., solid electrolytes), a comprehensive understanding of their atomic-scale structure and the dynamic behavior of sodium (Na) ions is essential. Here, we utilize a robust multinuclear (23Na, 125Te, 25Mg, and 67Zn) magnetic resonance approach to explore a novel Mg/Zn homogeneously mixed-cation honeycomb-layered oxide Na2MgxZn2-xTeO6 solid solution series. These new intermediate compounds exhibit tailorable bulk Na-ion conductivity (σ) with the highest σ = 0.14 × 10-4 S cm-1 for Na2MgZnTeO6 at room temperature suitable for SIB solid electrolyte applications as observed by powder electrochemical impedance spectroscopy (EIS). A combination of powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and field emission scanning electron microscopy (FESEM) reveals highly crystalline phase-pure compounds in the P6322 space group. We show that the Mg/Zn disorder is random within the honeycomb layers using 125Te nuclear magnetic resonance (NMR) and resolve multiple Na sites using two-dimensional (triple-quantum magic-angle spinning (3QMAS)) 23Na NMR. The medium-range disorder in the honeycomb layer is revealed through the combination of 25Mg and 67Zn NMR, complemented by electronic structure calculations using density functional theory (DFT). Furthermore, we expose very fast local Na-ion hopping processes (hopping rate, 1/τNMR = 0.83 × 109 Hz) by using a laser to achieve variable high-temperature (∼860 K) 23Na NMR, which are sensitive to different Mg/Zn ratios. The Na2MgZnTeO6 with maximum Mg/Zn disorder displays the highest short-range Na-ion dynamics among all of the solid solution members.
Collapse
Affiliation(s)
- Diganta Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Amit Bhattacharya
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jan Meyer
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
| | - Anna Maria Kirchberger
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
- TUMint Energy Research GmbH, 85748 Garching b., München, Germany
| | - Vidyanshu Mishra
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tom Nilges
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
21
|
Chu D, Jia B, Liu N, Zhang Y, Li X, Feng J, Pi J, Yang Z, Zhao G, Liu Y, Liu S(F, Park NG. Lattice engineering for stabilized black FAPbI 3 perovskite single crystals for high-resolution x-ray imaging at the lowest dose. SCIENCE ADVANCES 2023; 9:eadh2255. [PMID: 37647409 PMCID: PMC10468129 DOI: 10.1126/sciadv.adh2255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023]
Abstract
Preliminary theoretical analyses indicate that lattice relaxation may be used to release lattice strain in the FAPbI3 perovskite to warrant both high x-ray detection performance and improved stability. Herein, we demonstrate stable black α-phase FAPbI3 single crystals (SCs) realized by lattice engineering via annealing in the ambient atmosphere. The engineered α-FAPbI3 SC detector shows almost all the best figures of merit including a high sensitivity of 4.15 × 105 μC Gyair-1 cm-2, a low detection limit of 1.1 nGyair s-1, a high resolution of 15.9 lp mm-1, and a short response time of 214 μs. We further demonstrate high-definition x-ray imaging at a dose rate below 10 nGyair s-1 on the FAPbI3 SC, indicating a minimal dose-area product of 0.048 mGyair cm2 to the patient for one-time posteroanterior chest diagnosis, which is more than 3000 times lower than the international reference level of 150 mGyair cm2. In addition, the robust long-term stability enables the FAPbI3 SC x-ray detector to work steadily for more than 40 years.
Collapse
Affiliation(s)
- Depeng Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Binxia Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Naiming Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yunxia Zhang
- School of Science, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
| | - Xiaotong Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jiacheng Pi
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Guangtao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nam-Gyu Park
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
22
|
Li H, Wang Q, Oteki Y, Ding C, Liu D, Guo Y, Li Y, Wei Y, Wang D, Yang Y, Masuda T, Chen M, Zhang Z, Sogabe T, Hayase S, Okada Y, Iikubo S, Shen Q. Enhanced Hot-Phonon Bottleneck Effect on Slowing Hot Carrier Cooling in Metal Halide Perovskite Quantum Dots with Alloyed A-Site. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301834. [PMID: 37311157 DOI: 10.1002/adma.202301834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Indexed: 06/15/2023]
Abstract
A deep understanding of the effect of the A-site cation cross-exchange on the hot-carrier relaxation dynamics in perovskite quantum dots (PQDs) has profound implications on the further development of disruptive photovoltaic technologies. In this study, the hot carrier cooling kinetics of pure FAPbI3 (FA+ , CH(NH2 )2 + ), MAPbI3 (MA+ , CH3 NH3 + + ), CsPbI3 (Cs+ , Cesium) and alloyed FA0.5 MA0.5 PbI3 , FA0.5 Cs0.5 PbI3 , and MA0.5 Cs0.5 PbI3 QDs are investigated using ultrafast transient absorption (TA) spectroscopy. The lifetimes of the initial fast cooling stage (<1 ps) of all the organic cation-containing PQDs are shorter than those of the CsPbI3 QDs, as verified by the electron-phonon coupling strength extracted from the temperature-dependent photoluminescence spectra. The lifetimes of the slow cooling stage of the alloyed PQDs are longer under illumination greater than 1 sun, which is ascribed to the introduction of co-vibrational optical phonon modes in the alloyed PQDs. This facilitated efficient acoustic phonon upconversion and enhanced the hot-phonon bottleneck effect, as demonstrated by first-principles calculations.
Collapse
Affiliation(s)
- Hua Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Qing Wang
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Yusuke Oteki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Chao Ding
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Dong Liu
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yao Guo
- Department of Materials Science and Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yusheng Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yuyao Wei
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dandan Wang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yongge Yang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Taizo Masuda
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- CN development division, Toyota Motor Corporation, Susono, Shizuoka, 410-1193, Japan
| | - Mengmeng Chen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Zheng Zhang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tomah Sogabe
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shuzi Hayase
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yoshitaka Okada
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Satoshi Iikubo
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
23
|
Liu X, Luo D, Lu ZH, Yun JS, Saliba M, Seok SI, Zhang W. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem 2023; 7:462-479. [PMID: 37414982 DOI: 10.1038/s41570-023-00492-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 07/08/2023]
Abstract
Interest in photovoltaics (PVs) based on Earth-abundant halide perovskites has increased markedly in recent years owing to the remarkable properties of these materials and their suitability for energy-efficient and scalable solution processing. Formamidinium lead triiodide (FAPbI3)-rich perovskite absorbers have emerged as the frontrunners for commercialization, but commercial success is reliant on the stability meeting the highest industrial standards and the photoactive FAPbI3 phase suffers from instabilities that lead to degradation - an effect that is accelerated under working conditions. Here, we critically assess the current understanding of these phase instabilities and summarize the approaches for stabilizing the desired phases, covering aspects from fundamental research to device engineering. We subsequently analyse the remaining challenges for state-of-the-art perovskite PVs and demonstrate the opportunities to enhance phase stability with ongoing materials discovery and in operando analysis. Finally, we propose future directions towards upscaling perovskite modules, multijunction PVs and other potential applications.
Collapse
Affiliation(s)
- Xueping Liu
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Deying Luo
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Zheng-Hong Lu
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jae Sung Yun
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Michael Saliba
- Institute for Photovoltaics (IPV), University of Stuttgart, Stuttgart, Germany.
- Helmholtz Young Investigator Group FRONTRUNNER, IEK5-Photovoltaik, Forschungszentrum Jülich, Jülich, Germany.
| | - Sang Il Seok
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Wei Zhang
- Advanced Technology Institute, University of Surrey, Guildford, UK.
| |
Collapse
|
24
|
Mishra A, Hope MA, Stevanato G, Kubicki DJ, Emsley L. Dynamic Nuclear Polarization of Inorganic Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11094-11102. [PMID: 37342202 PMCID: PMC10278140 DOI: 10.1021/acs.jpcc.3c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
The intrinsic low sensitivity of nuclear magnetic resonance (NMR) experiments limits their utility for structure determination of materials. Dynamic nuclear polarization (DNP) under magic angle spinning (MAS) has shown tremendous potential to overcome this key limitation, enabling the acquisition of highly selective and sensitive NMR spectra. However, so far, DNP methods have not been explored in the context of inorganic lead halide perovskites, which are a leading class of semiconductor materials for optoelectronic applications. In this work, we study cesium lead chloride and quantitatively compare DNP methods based on impregnation with a solution of organic biradicals with doping of high-spin metal ions (Mn2+) into the perovskite structure. We find that metal-ion DNP provides the highest bulk sensitivity in this case, while highly surface-selective NMR spectra can be acquired using impregnation DNP. The performance of both methods is explained in terms of the relaxation times, particle size, dopant concentration, and surface wettability. We envisage the future use of DNP NMR approaches in establishing structure-activity relationships in inorganic perovskites, especially for mass-limited samples such as thin films.
Collapse
|
25
|
Hooper RW, Lin K, Veinot JGC, Michaelis VK. 3D to 0D cesium lead bromide: A 79/81Br NMR, NQR and theoretical investigation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107472. [PMID: 37186965 DOI: 10.1016/j.jmr.2023.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Inorganic metal halides offer unprecedented tunability through elemental variation of simple three-element compositions, but can exhibit complicated phase behaviour, degradation, and microscopic phenomena (disorder/dynamics) that play an integral role for the bulk-level chemical and physical properties of these materials. Understanding the halogen chemical environment in such materials is crucial to addressing many of the concerns regarding implementing these materials in commercial applications. In this study, a combined solid-state nuclear magnetic resonance, nuclear quadrupole resonance and quantum chemical computation approach is used to interrogate the Br chemical environment in a series of related inorganic lead bromide materials: CsPbBr3, CsPb2Br5, and Cs4PbBr6. The quadrupole coupling constants (CQ) were determined to range from 61 to 114 MHz for 81Br, with CsPbBr3 exhibiting the largest measured CQ and Cs4PbBr6 the smallest. GIPAW DFT was shown to be an excellent pre-screening tool for estimating the EFG of Br materials and can increase experimental efficiency by providing good starting estimates for acquisition. Finally, the combination of theory and experiment to inform the best methods for expanding further to the other quadrupolar halogens is discussed.
Collapse
Affiliation(s)
- Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Katherine Lin
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
26
|
Duijnstee EA, Gallant BM, Holzhey P, Kubicki DJ, Collavini S, Sturdza BK, Sansom HC, Smith J, Gutmann MJ, Saha S, Gedda M, Nugraha MI, Kober-Czerny M, Xia C, Wright AD, Lin YH, Ramadan AJ, Matzen A, Hung EYH, Seo S, Zhou S, Lim J, Anthopoulos TD, Filip MR, Johnston MB, Nicholas RJ, Delgado JL, Snaith HJ. Understanding the Degradation of Methylenediammonium and Its Role in Phase-Stabilizing Formamidinium Lead Triiodide. J Am Chem Soc 2023; 145:10275-10284. [PMID: 37115733 PMCID: PMC10176466 DOI: 10.1021/jacs.3c01531] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Formamidinium lead triiodide (FAPbI3) is the leading candidate for single-junction metal-halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl2) has been used as an additive in FAPbI3. MDA2+ has been reported as incorporated into the perovskite lattice alongside Cl-. However, the precise function and role of MDA2+ remain uncertain. Here, we grow FAPbI3 single crystals from a solution containing MDACl2 (FAPbI3-M). We demonstrate that FAPbI3-M crystals are stable against transformation to the photoinactive δ-phase for more than one year under ambient conditions. Critically, we reveal that MDA2+ is not the direct cause of the enhanced material stability. Instead, MDA2+ degrades rapidly to produce ammonium and methaniminium, which subsequently oligomerizes to yield hexamethylenetetramine (HMTA). FAPbI3 crystals grown from a solution containing HMTA (FAPbI3-H) replicate the enhanced α-phase stability of FAPbI3-M. However, we further determine that HMTA is unstable in the perovskite precursor solution, where reaction with FA+ is possible, leading instead to the formation of tetrahydrotriazinium (THTZ-H+). By a combination of liquid- and solid-state NMR techniques, we show that THTZ-H+ is selectively incorporated into the bulk of both FAPbI3-M and FAPbI3-H at ∼0.5 mol % and infer that this addition is responsible for the improved α-phase stability.
Collapse
Affiliation(s)
- Elisabeth A Duijnstee
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Benjamin M Gallant
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Philippe Holzhey
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dominik J Kubicki
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Silvia Collavini
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Bernd K Sturdza
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Harry C Sansom
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Joel Smith
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Matthias J Gutmann
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0QX,United Kingdom
| | - Santanu Saha
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Murali Gedda
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
| | - Mohamad I Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang 15314, Banten, Indonesia
| | - Manuel Kober-Czerny
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Chelsea Xia
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Adam D Wright
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Yen-Hung Lin
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Alexandra J Ramadan
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - Andrew Matzen
- Department of Earth Sciences, University of Oxford, 3 South Parks Road, Oxford OX1 3AN, United Kingdom
| | - Esther Y-H Hung
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Seongrok Seo
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Suer Zhou
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Jongchul Lim
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia
| | - Marina R Filip
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Michael B Johnston
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Robin J Nicholas
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Juan Luis Delgado
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
27
|
Lavén R, Koza MM, Malavasi L, Perrichon A, Appel M, Karlsson M. Rotational Dynamics of Organic Cations in Formamidinium Lead Iodide Perovskites. J Phys Chem Lett 2023; 14:2784-2791. [PMID: 36898059 PMCID: PMC10041645 DOI: 10.1021/acs.jpclett.3c00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
We report results from quasi-elastic neutron scattering studies on the rotational dynamics of formamidinium (HC[NH2]2+, FA) and methylammonium (CH3NH3+, MA) cations in FA1-xMAxPbI3 with x = 0 and 0.4 and compare it to the dynamics in MAPbI3. For FAPbI3, the FA cation dynamics evolve from nearly isotropic rotations in the high-temperature (T > 285 K) cubic phase through reorientations between preferred orientations in the intermediate-temperature tetragonal phase (140 K < T ⩽ 285 K) to an even more complex dynamics, due to a disordered arrangement of the FA cations, in the low-temperature tetragonal phase (T ⩽ 140 K). For FA0.6MA0.4PbI3, the dynamics of the respective organic cations evolve from a relatively similar behavior to FAPbI3 and MAPbI3 at room temperature to a different behavior in the lower-temperature phases where the MA cation dynamics are a factor of 50 faster as compared to those of MAPbI3. This insight suggests that tuning the MA/FA cation ratio may be a promising approach to tailoring the dynamics and, in effect, optical properties of FA1-xMAxPbI3.
Collapse
Affiliation(s)
- Rasmus Lavén
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| | - Michael M. Koza
- Institut
Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 Grenoble cedex 9, France
| | - Lorenzo Malavasi
- Department
of Chemistry and INSTM, University of Pavia, Viale Taramelli 16, Pavia 27100, Italy
| | - Adrien Perrichon
- ISIS
Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Markus Appel
- Institut
Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 Grenoble cedex 9, France
| | - Maths Karlsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
28
|
Fykouras K, Lahnsteiner J, Leupold N, Tinnemans P, Moos R, Panzer F, de Wijs GA, Bokdam M, Grüninger H, Kentgens APM. Disorder to order: how halide mixing in MAPbI 3-xBr x perovskites restricts MA dynamics. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:4587-4597. [PMID: 37383090 PMCID: PMC10294545 DOI: 10.1039/d2ta09069d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 06/30/2023]
Abstract
Mixed-halide lead perovskites are of particular interest for the design of tandem solar cells currently reaching record efficiencies. While halide phase segregation upon illumination of mixed perovskites is extensively studied, the effect of halide disorder on A cation dynamics is not well understood, despite its importance for charge carrier diffusion and lifetime. Here, we study the methylammonium (MA) reorientational dynamics in mixed halide MAPbI3-xBrx perovskites by a combined approach of experimental solid-state NMR spectroscopy and molecular dynamics (MD) simulations based on machine-learning force-fields (MLFF). 207Pb NMR spectra indicate the halides are randomly distributed over their lattice positions, whereas PXRD measurements show that all mixed MAPbI3-xBrx samples are cubic. The experimental 14N spectra and 1H double-quantum (DQ) NMR data reveal anisotropic MA reorientations depending on the halide composition and thus associated disorder in the inorganic sublattice. MD calculations allow us to correlate these experimental results to restrictions of MA dynamics due to preferred MA orientations in their local Pb8I12-nBrn "cages". Based on the experimental and simulated results, we develop a phenomenological model that correlates the 1H dipolar coupling and thus the MA dynamics with the local composition and reproduces the experimental data over the whole composition range. We show that the dominant interaction between the MA cations and the Pb-X lattice that influences the cation dynamics is the local electrostatic potential being inhomogeneous in mixed halide systems. As such, we generate a fundamental understanding of the predominant interaction between the MA cations and the inorganic sublattice, as well as MA dynamics in asymmetric halide coordinations.
Collapse
Affiliation(s)
- Kostas Fykouras
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente P.O. Box 217 7500 AE Enschede Netherlands
| | - Jonathan Lahnsteiner
- Department of Functional Materials, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Nico Leupold
- Department of Functional Materials, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Paul Tinnemans
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Ralf Moos
- Department of Functional Materials, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Fabian Panzer
- Soft Matter Optoelectronics, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Gilles A de Wijs
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Menno Bokdam
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente P.O. Box 217 7500 AE Enschede Netherlands
| | - Helen Grüninger
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Arno P M Kentgens
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| |
Collapse
|
29
|
Chan WK, Chen J, Zhou D, Ye J, Vázquez RJ, Zhou C, Bazan GC, Rao A, Yu Z, Tan TTY. Hybrid Organic-Inorganic Perovskite Superstructures for Ultrapure Green Emissions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:815. [PMID: 36903695 PMCID: PMC10005548 DOI: 10.3390/nano13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic-inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic-inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications.
Collapse
Affiliation(s)
- Wen Kiat Chan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jiawei Chen
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Ricardo Javier Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Guillermo Carlos Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Zhongzheng Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Timothy Thatt Yang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
30
|
Zhang Z. Automated Graph Neural Networks Accelerate the Screening of Optoelectronic Properties of Metal-Organic Frameworks. J Phys Chem Lett 2023; 14:1239-1245. [PMID: 36716343 DOI: 10.1021/acs.jpclett.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The numerous organic and inorganic components of metal-organic framework (MOF) materials provide intriguing optoelectronic properties. Accurately predicting the electronic structural properties of MOFs has become the main focus. This work establishes two graph neural network models, crystal graph convolutional neural networks and a materials graph network, for predicting the band gaps of more than 10 000 MOF structures and promotes to improve the prediction accuracy through automatic hyperparameter tuning algorithms. Subsequently, for exploring machine learning-assisted screening of MOFs for the broader electronic properties, the screened copper-based MOFs are compared with lead-based MAPbI3 solar cells with respect to the band gaps, densities of states, and charge density distributions, and the results have demonstrated that the overlap of the wave functions between the initial and final states of MOFs is weakened, which is conducive to the improvement of photoelectric performance. The chlorine doping strategy further enhances the advantage. The tuning of the machine learning model and hyperparameters and the doping strategy of halogen elements furnish empirical rules for the design of MOFs with excellent optoelectronic properties.
Collapse
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding071002, P. R. China
| |
Collapse
|
31
|
Tsai H, Ghosh D, Kinigstein E, Dryzhakov B, Driscoll H, Owczarek M, Hu B, Zhang X, Tretiak S, Nie W. Light-Induced Structural Dynamics and Charge Transport in Layered Halide Perovskite Thin Films. NANO LETTERS 2023; 23:429-436. [PMID: 36603204 DOI: 10.1021/acs.nanolett.2c03403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The dynamic nature of the metal halide perovskite lattice upon photoexcitation plays a vital role in their properties. Here we report an observation of light-induced structure dynamics in quasi-2D Ruddlesden-Popper phase perovskite thin films and its impact on the carrier transport properties. By a time-resolved X-ray scattering technique, we observe a rapid lattice expansion upon photoexcitation, followed by a slow relaxation over the course of 100 ns in the dark. Theoretical modeling suggests that the expansion originates from the lattice's thermal fluctuations caused by photon energy deposition. Power dependent optical spectroscopy and photoconductivity indicate that high laser powers triggered a strong local structural disorder, which increased the charge dissociation activation energy that results in localized transport. Our study investigates the impact of laser energy deposition on the lattices and the subsequent carrier transport properties, that are relevant to device operations.
Collapse
Affiliation(s)
- Hsinhan Tsai
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States
| | - Dibyajyoti Ghosh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Eli Kinigstein
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Bogdan Dryzhakov
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Honora Driscoll
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Magdalena Owczarek
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Bin Hu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Wanyi Nie
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
32
|
Mishra A, Hope MA, Grätzel M, Emsley L. A Complete Picture of Cation Dynamics in Hybrid Perovskite Materials from Solid-State NMR Spectroscopy. J Am Chem Soc 2023; 145:978-990. [PMID: 36580303 PMCID: PMC9853870 DOI: 10.1021/jacs.2c10149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/30/2022]
Abstract
The organic cations in hybrid organic-inorganic perovskites rotate rapidly inside the cuboctahedral cavities formed by the inorganic lattice, influencing optoelectronic properties. Here, we provide a complete quantitative picture of cation dynamics for formamidinium-based perovskites and mixed-cation compositions, which are the most widely used and promising absorber layers for perovskite solar cells today. We use 2H and 14N quadrupolar solid-state NMR relaxometry under magic-angle spinning to determine the activation energy (Ea) and correlation time (τc) at room temperature for rotation about each principal axis of a series of organic cations. Specifically, we investigate methylammonium (MA+), formamidinium (FA+), and guanidinium (GUA+) cations in current state-of-the-art single- and multi-cation perovskite compositions. We find that MA+, FA+, and GUA+ all have at least one component of rotation that occurs on the picosecond timescale at room temperature, with MA+ and GUA+ also exhibiting faster and slower components, respectively. The cation dynamics depend on the symmetry of the inorganic lattice but are found to be insensitive to the degree of cation substitution. In particular, the FA+ rotation is invariant across all compositions studied here, when sufficiently above the phase transition temperature. We further identify an unusual relaxation mechanism for the 2H of MA+ in mechanosynthesized FAxMA1-xPbI3, which was found to result from physical diffusion to paramagnetic defects. This precise picture of cation dynamics will enable better understanding of the relationship between the organic cations and the optoelectronic properties of perovskites, guiding the design principles for more efficient perovskite solar cells in the future.
Collapse
Affiliation(s)
- Aditya Mishra
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Michael A. Hope
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Michael Grätzel
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
33
|
Soultati A, Tountas M, Armadorou KK, Yusoff ARBM, Vasilopoulou M, Nazeeruddin MK. Synthetic approaches for perovskite thin films and single-crystals. ENERGY ADVANCES 2023; 2:1075-1115. [DOI: 10.1039/d3ya00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Halide perovskites are compelling candidates for the next generation of photovoltaic technologies owing to an unprecedented increase in power conversion efficiency and their low cost, facile fabrication and outstanding semiconductor properties.
Collapse
Affiliation(s)
- Anastasia Soultati
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Attica, Greece
| | - Marinos Tountas
- Department of Electrical Engineering, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion Crete, Greece
| | - Konstantina K. Armadorou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Attica, Greece
| | - Abd. Rashid bin Mohd Yusoff
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Attica, Greece
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
34
|
Gallop NP, Ye J, Greetham GM, Jansen TLC, Dai L, Zelewski SJ, Arul R, Baumberg JJ, Hoye RLZ, Bakulin AA. The effect of caesium alloying on the ultrafast structural dynamics of hybrid organic-inorganic halide perovskites. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:22408-22418. [PMID: 36352854 PMCID: PMC9624371 DOI: 10.1039/d2ta05207e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Hybrid inorganic-organic perovskites have attracted considerable attention over recent years as promising processable electronic materials. In particular, the rich structural dynamics of these 'soft' materials has become a subject of investigation and debate due to their direct influence on the perovskites' optoelectronic properties. Significant effort has focused on understanding the role and behaviour of the organic cations within the perovskite, as their rotational dynamics may be linked to material stability, heterogeneity and performance in (opto)electronic devices. To this end, we use two-dimensional IR spectroscopy (2DIR) to understand the effect of partial caesium alloying on the rotational dynamics of the methylammonium cation in the archetypal hybrid perovskite CH3NH3PbI3. We find that caesium incorporation primarily inhibits the slower 'reorientational jump' modes of the organic cation, whilst a smaller effect on the fast 'wobbling time' may be due to distortions and rigidisation of the inorganic cuboctahedral cage. 2DIR centre-line-slope analysis further reveals that while static disorder increases with caesium substitution, the dynamic disorder (reflected in the phase memory of the N-H stretching mode of methylammonium) is largely independent of caesium addition. Our results contribute to the development of a unified model of cation dynamics within organohalide perovskites.
Collapse
Affiliation(s)
- Nathaniel P Gallop
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 83 Wood Lane London W12 0BZ UK
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Gregory M Greetham
- Central Laser Facility, Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX UK
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Szymon J Zelewski
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rakesh Arul
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Jeremy J Baumberg
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Artem A Bakulin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 83 Wood Lane London W12 0BZ UK
| |
Collapse
|
35
|
Landi N, Maurina E, Marongiu D, Simbula A, Borsacchi S, Calucci L, Saba M, Carignani E, Geppi M. Solid-State Nuclear Magnetic Resonance of Triple-Cation Mixed-Halide Perovskites. J Phys Chem Lett 2022; 13:9517-9525. [PMID: 36200785 PMCID: PMC9575147 DOI: 10.1021/acs.jpclett.2c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Mixed-cation lead mixed-halide perovskites are the best candidates for perovskite-based photovoltaics, thanks to their higher efficiency and stability compared to the single-cation single-halide parent compounds. TripleMix (Cs0.05MA0.14FA0.81PbI2.55Br0.45 with FA = formamidinium and MA = methylammonium) is one of the most efficient and stable mixed perovskites for single-junction solar cells. The microscopic reasons why triple-cation perovskites perform so well are still under debate. In this work, we investigated the structure and dynamics of TripleMix by exploiting multinuclear solid-state nuclear magnetic resonance (SSNMR), which can provide this information at a level of detail not accessible by other techniques. 133Cs, 13C, 1H, and 207Pb SSNMR spectra confirmed the inclusion of all ions in the perovskite, without phase segregation. Complementary measurements showed a peculiar longitudinal relaxation behavior for the 1H and 207Pb nuclei in TripleMix with respect to single-cation single-halide perovskites, suggesting slower dynamics of both organic cations and halide anions, possibly related to the high photovoltaic performances.
Collapse
Affiliation(s)
- Noemi Landi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Elena Maurina
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Daniela Marongiu
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Angelica Simbula
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Silvia Borsacchi
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| | - Lucia Calucci
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| | - Michele Saba
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu Km. 0700, 09042Monserrato, Cagliari, Italy
| | - Elisa Carignani
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
| | - Marco Geppi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
- Institute
for the Chemistry of OrganoMetallic Compounds - ICCOM, Italian National Research Council - CNR, via G. Moruzzi 1, 56124Pisa, Italy
- Center
for Instrument Sharing, University of Pisa
(CISUP), 56126Pisa, Italy
| |
Collapse
|
36
|
Liu YH, Singh RK, Lu SA, Som S, Lu CH. Incorporation of Cesium ions in FAPbBr3 quantum dots: Spectroscopic characterization for light-emitting application. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Welton C, Raval P, Trébosc J, Reddy GNM. Chemical exchange of labile protons by deuterium enables selective detection of pharmaceuticals in solid formulations. Chem Commun (Camb) 2022; 58:11551-11554. [PMID: 36165029 DOI: 10.1039/d2cc04585k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemically assisted swapping of labile protons by deuterons is presented for amino acids, polysaccharides, pharmaceutical compounds, and their solid formulations. Solid-state packing interactions in these compounds are elucidated by 1H-2H isotope correlation NMR spectroscopy (iCOSY). A minuscule concentration of dopamine, 5 wt% or ∼100 μg, in a solid formulation can be detected by 2H NMR at 28.2 T (1H, 1200 MHz) in under a minute.
Collapse
Affiliation(s)
- Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Julien Trébosc
- University of Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| |
Collapse
|
38
|
Ambrosio F, De Angelis F, Goñi AR. The Ferroelectric-Ferroelastic Debate about Metal Halide Perovskites. J Phys Chem Lett 2022; 13:7731-7740. [PMID: 35969174 PMCID: PMC9421894 DOI: 10.1021/acs.jpclett.2c01945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 05/19/2023]
Abstract
Metal halide perovskites (MHPs) are solution-processed materials with exceptional photoconversion efficiencies that have brought a paradigm shift in photovoltaics. The nature of the peculiar optoelectronic properties underlying such astounding performance is still controversial. The existence of ferroelectricity in MHPs and its alleged impact on photovoltaic activity have fueled an intense debate, in which unanimous consensus is still far from being reached. Here we critically review recent experimental and theoretical results with a two-fold objective: we argue that the occurrence of ferroelectric domains is incompatible with the A-site cation dynamics in MHPs and propose an alternative interpretation of the experiments based on the concept of ferroelasticity. We further underline that ferroic behavior in MHPs would not be relevant at room temperature or higher for the physics of photogenerated charge carriers, since it would be overshadowed by competing effects like polaron formation and ion migration.
Collapse
Affiliation(s)
- Francesco Ambrosio
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce
di Sotto 8, 06123 Perugia, Italy
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno Italy
- Center
for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
| | - Filippo De Angelis
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce
di Sotto 8, 06123 Perugia, Italy
- Center
for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milano, Italy
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and UdR INSTM of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Department
of Natural Sciences & Mathematics, College of Sciences & Human
Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Alejandro R. Goñi
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Mishra A, Hope MA, Almalki M, Pfeifer L, Zakeeruddin SM, Grätzel M, Emsley L. Dynamic Nuclear Polarization Enables NMR of Surface Passivating Agents on Hybrid Perovskite Thin Films. J Am Chem Soc 2022; 144:15175-15184. [PMID: 35959925 PMCID: PMC9413210 DOI: 10.1021/jacs.2c05316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/26/2022]
Abstract
Surface and bulk molecular modulators are the key to improving the efficiency and stability of hybrid perovskite solar cells. However, due to their low concentration, heterogeneous environments, and low sample mass, it remains challenging to characterize their structure and dynamics at the atomic level, as required to establish structure-activity relationships. Nuclear magnetic resonance (NMR) spectroscopy has revealed a wealth of information on the atomic-level structure of hybrid perovskites, but the inherent insensitivity of NMR severely limits its utility to characterize thin-film samples. Dynamic nuclear polarization (DNP) can enhance NMR sensitivity by orders of magnitude, but DNP methods for perovskite materials have so far been limited. Here, we determined the factors that limit the efficiency of DNP NMR for perovskite samples by systematically studying layered hybrid perovskite analogues. We find that the fast-relaxing dynamic cation is the major impediment to higher DNP efficiency, while microwave absorption and particle morphology play a secondary role. We then show that the former can be mitigated by deuteration, enabling 1H DNP enhancement factors of up to 100, which can be harnessed to enhance signals from dopants or additives present in very low concentrations. Specifically, using this new DNP methodology at a high magnetic field and with small sample volumes, we have recorded the NMR spectrum of the 20 nm (6 μg) passivating layer on a single perovskite thin film, revealing a two-dimensional (2D) layered perovskite structure at the surface that resembles the n = 1 homologue but which has greater disorder than in bulk layered perovskites.
Collapse
Affiliation(s)
- Aditya Mishra
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael A. Hope
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masaud Almalki
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lukas Pfeifer
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shaik Mohammed Zakeeruddin
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Lin CC, Huang SJ, Wu PH, Chen TP, Huang CY, Wang YC, Chen PT, Radeva D, Petrov O, Gelev VM, Sankar R, Chen CC, Chen CW, Yu TY. Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR. Nat Commun 2022; 13:1513. [PMID: 35314691 PMCID: PMC8938534 DOI: 10.1038/s41467-022-29207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic-inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and ¹³C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-site cation dynamics and the structural rigidity of the organic spacers, so providing a molecular-level insight into the design of 2D OIHPs.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, 11529, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, 10617, Taipei, Taiwan
| | - Pei-Hao Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 10617, Taipei, Taiwan
| | - Tzu-Pei Chen
- Department of Materials Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Chih-Ying Huang
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, 11529, Taipei, Taiwan
| | - Ying-Chiao Wang
- Department of Materials Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Po-Tuan Chen
- Department of Vehicle Engineering, National Taipei University of Technology, 10608, Taipei, Taiwan
| | - Denitsa Radeva
- Department of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Boulevard, 1164, Sofia, Bulgaria
| | - Ognyan Petrov
- Department of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Boulevard, 1164, Sofia, Bulgaria
| | - Vladimir M Gelev
- Department of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Boulevard, 1164, Sofia, Bulgaria
| | - Raman Sankar
- Institute of Physics, Academia Sinica, 115201, Taipei, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, 11677, Taipei, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan.
- Department of Materials Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan.
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, 10617, Taipei, Taiwan.
| | - Tsyr-Yan Yu
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, 11529, Taipei, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, 10617, Taipei, Taiwan.
| |
Collapse
|
41
|
Liu L, Najar A, Wang K, Du M, Liu S(F. Perovskite Quantum Dots in Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104577. [PMID: 35032118 PMCID: PMC8895128 DOI: 10.1002/advs.202104577] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Indexed: 05/08/2023]
Abstract
Perovskite quantum dots (PQDs) have captured a host of researchers' attention due to their unique properties, which have been introduced to lots of optoelectronics areas, such as light-emitting diodes, lasers, photodetectors, and solar cells. Herein, the authors aim at reviewing the achievements of PQDs applied to solar cells in recent years. The engineering concerning surface ligands, additives, and hybrid composition for PQDSCs is outlined first, followed by analyzing the reasons of undesired performance of PQDSCs. Subsequently, a novel overview that PQDs are utilized to improve the photovoltaic performance of various kinds of solar cells, is provided. Finally, this review is summarized and some challenges and perspectives concerning PQDs are also discussed.
Collapse
Affiliation(s)
- Lu Liu
- Dalian National Laboratory for Clean EnergyiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- University of the Chinese Academy of SciencesBeijing100039China
| | - Adel Najar
- Department of PhysicsCollege of ScienceUnited Arab Emirates UniversityAl Ain15551United Arab Emirates
| | - Kai Wang
- Dalian National Laboratory for Clean EnergyiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Minyong Du
- Dalian National Laboratory for Clean EnergyiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Shengzhong (Frank) Liu
- Dalian National Laboratory for Clean EnergyiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- University of the Chinese Academy of SciencesBeijing100039China
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'anShaanxi710119China
| |
Collapse
|
42
|
Hooper RW, Ni C, Tkachuk DG, He Y, Terskikh VV, Veinot JGC, Michaelis VK. Exploring Structural Nuances in Germanium Halide Perovskites Using Solid-State 73Ge and 133Cs NMR Spectroscopy. J Phys Chem Lett 2022; 13:1687-1696. [PMID: 35148108 DOI: 10.1021/acs.jpclett.1c04033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Metal halide perovskites remain top candidates for higher-performance photovoltaic devices, but concerns about leading lead-based materials remain. Ge perovskites remain understudied for use in solar cells compared to their Sn-based counterparts. In this work, we undertake a combined 73Ge and 133Cs solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and density functional theory (DFT) study of the bulk CsGeX3 (X = Cl, Br, or I) series. We show how seemingly small structural variations within germanium halide perovskites have major effects on their 73Ge and 133Cs NMR signatures and reveal a near-cubic phase at room temperature for CsGeCl3 with severe local Ge polyhedral distortion. Quantum chemical computations are effective at predicting the structural impact on NMR parameters for 73Ge and 133Cs. This study demonstrates the value of a combined solid-state NMR and DFT approach for investigating promising materials for energy applications, providing information that is out of reach with conventional characterization methods, and adds the challenging 73Ge nucleus to the NMR toolkit.
Collapse
Affiliation(s)
- Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chuyi Ni
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dylan G Tkachuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yingjie He
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Victor V Terskikh
- Metrology, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
43
|
Zheng Z, Wang S, Hu Y, Rong Y, Mei A, Han H. Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chem Sci 2022; 13:2167-2183. [PMID: 35310498 PMCID: PMC8865136 DOI: 10.1039/d1sc04769h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Perovskite materials have been particularly eye-catching by virtue of their excellent properties such as high light absorption coefficient, long carrier lifetime, low exciton binding energy and ambipolar transmission (perovskites have the characteristics of transporting both electrons and holes). Limited by the wider band gap (1.55 eV), worse thermal stability and more defect states, the first widely used methylammonium lead iodide has been gradually replaced by formamidinium lead iodide (FAPbI3) with a narrower band gap of 1.48 eV and better thermal stability. However, FAPbI3 is stabilized as the yellow non-perovskite active phase at low temperatures, and the required black phase (α-FAPbI3) can only be obtained at high temperatures. In this perspective, we summarize the current efforts to stabilize α-FAPbI3, and propose that pure α-FAPbI3 is an ideal material for single-junction cells, and a triple-layer mesoporous architecture could help to stabilize pure α-FAPbI3. Furthermore, reducing the band gap and using tandem solar cells may ulteriorly approach the Shockley-Queisser limit efficiency. We also make a prospect that the enhancement of industrial applications as well as the lifetime of devices may help achieve commercialization of PSCs in the future.
Collapse
Affiliation(s)
- Ziwei Zheng
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei PR China
| | - Shiyu Wang
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei PR China
| | - Yue Hu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei PR China
| | - Yaoguang Rong
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei PR China
| | - Anyi Mei
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei PR China
| | - Hongwei Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei PR China
| |
Collapse
|
44
|
Maiti A, Pal AJ. Carrier recombination in CH 3NH 3PbI 3: why is it a slow process? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:024501. [PMID: 35038679 DOI: 10.1088/1361-6633/ac4be9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In methylammonium lead iodide (MAPbI3), a slow recombination process of photogenerated carriers has often been considered to be the most intriguing property of the material resulting in high-efficiency perovskite solar cells. In spite of intense research over a decade or so, a complete understanding of carrier recombination dynamics in MAPbI3has remained inconclusive. In this regard, several microscopic processes have been proposed so far in order to explain the slow recombination pathways (both radiative and non-radiative), such as the existence of shallow defects, a weak electron-phonon coupling, presence of ferroelectric domains, screening of band-edge charges through the formation of polarons, occurrence of the Rashba splitting in the band(s), and photon-recycling in the material. Based on the up-to-date findings, we have critically assessed each of these proposals/models to shed light on the origin of a slow recombination process in MAPbI3. In this review, we have presented the interplay between the mechanisms and our views/perspectives in determining the likely processes, which may dictate the recombination dynamics in the material. We have also deliberated on their interdependences in decoupling contributions of different recombination processes.
Collapse
Affiliation(s)
- Abhishek Maiti
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
45
|
Ummadisingu A, Mishra A, Kubicki DJ, LaGrange T, Dučinskas A, Siczek M, Bury W, Milić JV, Grätzel M, Emsley L. Multi-Length Scale Structure of 2D/3D Dion-Jacobson Hybrid Perovskites Based on an Aromatic Diammonium Spacer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104287. [PMID: 34816572 DOI: 10.1002/smll.202104287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Indexed: 05/18/2023]
Abstract
Dion-Jacobson (DJ) iodoplumbates based on 1,4-phenylenedimethanammonium (PDMA) have recently emerged as promising light absorbers for perovskite solar cells. While PDMA is one of the simplest aromatic spacers potentially capable of forming a DJ structure based on (PDMA)An-1 Pbn I3n+1 composition, the crystallographic proof has not been reported so far. Single crystal structure of a DJ phase based on PDMA is presented and high-field solid-state NMR spectroscopy is used to characterize the structure of PDMA-based iodoplumbates prepared as thin films and bulk microcrystalline powders. It is shown that their atomic-level structure does not depend on the method of synthesis and that it is ordered and similar for all iodoplumbate homologues. Moreover, the presence of lower (n) homologues in thin films is identified through UV-Vis spectroscopy, photoluminescence spectroscopy, and X-ray diffraction measurements, complemented by cathodoluminescence mapping. A closer look using cathodoluminescence shows that the micron-scale microstructure corresponds to a mixture of different layered homologues that are well distributed throughout the film and the presence of layer edge states which dominate the emission. This work therefore determines the formation of DJ phases based on PDMA as the spacer cation and reveals their properties on a multi-length scale, which is relevant for their application in optoelectronics.
Collapse
Affiliation(s)
- Amita Ummadisingu
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Aditya Mishra
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dominik J Kubicki
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Thomas LaGrange
- Laboratory for Ultrafast Microscopy and Electron Scattering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Algirdas Dučinskas
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław, 50-383, Poland
| | - Wojciech Bury
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław, 50-383, Poland
| | - Jovana V Milić
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
46
|
Wang H, Zhang C, Huang W, Zou X, Chen Z, Sun S, Zhang L, Li J, Cheng J, Huang S, Gu M, Chen X, Guo X, Gui R, Wang W. Research progress of ABX 3-type lead-free perovskites for optoelectronic applications: materials and devices. Phys Chem Chem Phys 2022; 24:27585-27605. [DOI: 10.1039/d2cp02451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We summarize the development and application of ABX3-type lead-free halide perovskite materials, especially in optoelectronic devices.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Chunqian Zhang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Wenqi Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xiaoping Zou
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Zhenyu Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Shengliu Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Lixin Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Junming Li
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Jin Cheng
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Shixian Huang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Mingkai Gu
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xinyao Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xin Guo
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Ruoxia Gui
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Weimin Wang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| |
Collapse
|
47
|
Bai Y, Hao M, Ding S, Chen P, Wang L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105958. [PMID: 34643300 DOI: 10.1002/adma.202105958] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/07/2021] [Indexed: 05/27/2023]
Abstract
The presence of surface ligands not only plays a key role in keeping the colloidal integrity and non-defective surface of metal halide perovskite quantum dots (PQDs), but also serves as a knob to tune their optoelectronic properties for a variety of exciting applications including solar cells and light-emitting diodes. However, these indispensable surface ligands may also deteriorate the stability and key properties of PQDs due to their highly dynamic binding and insulating nature. To address these issues, a number of innovative surface chemistry engineering approaches have been developed in the past few years. Based on an in-depth fundamental understanding of the surface atomistic structure and surface defect formation mechanism in the tiny nanoparticles, a critical overview focusing on the surface chemistry engineering of PQDs including advanced colloidal synthesis, in-situ surface passivation, and solution-phase/solid-state ligand exchange is presented, after which their unprecedented achievements in photovoltaics and other optoelectronics are presented. The practical hurdles and future directions are critically discussed to inspire more rational design of PQD surface chemistry toward practical applications.
Collapse
Affiliation(s)
- Yang Bai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Mengmeng Hao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Shanshan Ding
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
48
|
Feng Q, Zhang X, Nan G. Unveiling the Nature of Light-Triggered Hole Traps in Lead Halide Perovskites: A Study with Time-Dependent Density Functional Theory. J Phys Chem Lett 2021; 12:12075-12083. [PMID: 34910490 DOI: 10.1021/acs.jpclett.1c03652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structural variations of lead halide perovskites (LHPs) upon light illumination play an important role in their photovoltaic applications. However, density functional theory (DFT)-based simulations have often been performed to unveil the nature of defects in LHPs without light illumination. So far, the nature of traps in LHPs triggered by the light remains largely unexplored. In this work, hole traps induced by the halogen interstitial in LHPs are studied by combining DFT and time-dependent DFT approaches, the latter of which treats electron-hole and electron-nuclei interactions on the same footing. Both a semilocal exchange functional and hybrid functional are adopted to relax the ground-state and excited-state geometries followed by the calculations of energy levels of hole traps. The effect of the self-interaction corrections on the light-triggered geometric deformation and the electronic structure of hole traps is analyzed. Relaxation energies that correspond to the light-triggered geometric deformation are also calculated with different functionals. The relationship between the hole traps and light-triggered geometric variations are then explored.
Collapse
Affiliation(s)
- Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330-8268, United States
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| |
Collapse
|
49
|
Ptak M, Sieradzki A, Šimėnas M, Maczka M. Molecular spectroscopy of hybrid organic–inorganic perovskites and related compounds. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat Rev Chem 2021; 5:624-645. [PMID: 37118421 DOI: 10.1038/s41570-021-00309-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
Solid-state magic-angle spinning NMR spectroscopy is a powerful technique to probe atomic-level microstructure and structural dynamics in metal halide perovskites. It can be used to measure dopant incorporation, phase segregation, halide mixing, decomposition pathways, passivation mechanisms, short-range and long-range dynamics, and other local properties. This Review describes practical aspects of recording solid-state NMR data on halide perovskites and how these afford unique insights into new compositions, dopants and passivation agents. We discuss the applicability, feasibility and limitations of 1H, 13C, 15N, 14N, 133Cs, 87Rb, 39K, 207Pb, 119Sn, 113Cd, 209Bi, 115In, 19F and 2H NMR in typical experimental scenarios. We highlight the pivotal complementary role of solid-state mechanosynthesis, which enables highly sensitive NMR studies by providing large quantities of high-purity materials of arbitrary complexity and of chemical shifts calculated using density functional theory. We examine the broader impact of solid-state NMR on materials research and how its evolution over seven decades has benefitted structural studies of contemporary materials such as halide perovskites. Finally, we summarize some of the open questions in perovskite optoelectronics that could be addressed using solid-state NMR. We, thereby, hope to stimulate wider use of this technique in materials and optoelectronics research.
Collapse
|