1
|
Mondal S, Panda A, Das TN, Rahimi FA, Kumar S, Singh P, Kaliginedi V, Maji TK. Photo-Controlled Conductance and Thermopower Switching in a Soft Photochromic Metallo-Supramolecular Polymer via EGaIn Junctions. J Am Chem Soc 2025. [PMID: 40403283 DOI: 10.1021/jacs.5c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Photochromic soft metallo-supramolecular materials undergo precise, reversible transformations in structure and electronic properties under light irradiation, offering potential applications in optoelectronics, sensing, and molecular switches. Herein, we report the synthesis, characterization, and investigation of light-induced reversible morphological transformations in a Zn(II)-based photochromic coordination polymer gel (Zn-pcCPG), integrated with a dithienylethene (DTE) unit. Upon UV irradiation (λ = 365 nm), Zn-pcCPG undergoes morphological transformation from nanofibers in the gel state to spherical nanoparticles in the sol state, involving reversible photoswitching with distinct color change. To explore the charge transport properties of these metallo-supramolecular polymers, we created a EGaIn/GaOX//Zn-pcCPG//AuTS junction using the nanostructures of Zn-pcCPG on a template-stripped gold substrate (AuTS) and a soft conformal EGaIn as the top electrode. These measurements show a reversible conductance photoswitching between the "open" and "closed" states of the coordination polymer gel containing a DTE core with an on/off ratio of ≈58 at -1 V. Additionally, we have also demonstrated the on-surface photoswitching of morphology and conductance properties. Interestingly, thermoelectric property measurements reveal a HOMO-dominated charge transport for both "open" and "closed" forms of Zn-pcCPG, with a reversible thermopower switching from +163 μV/K (open form) to +21 μV/K (closed form) and vice versa. By employing UV-Vis and ultraviolet photoelectron spectroscopy measurements, we have explained the experimental conductance and thermopower trends. This is the first study to demonstrate reversible conductance and thermopower switching with morphological transitions in a photochromic coordination polymer gel (pcCPG), paving the way for advancements in CPG-based supramolecular electronics.
Collapse
Affiliation(s)
- Souvik Mondal
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Arpita Panda
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Tarak Nath Das
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sunil Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pooja Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
2
|
Shekhawat AS, A B NK, Diwan A, Murugan D, Chithravel A, Daukiya L, Shrivastav AM, Srivastava T, Saxena SK. Harnessing carbon electrodes in molecular junctions: progress and challenges in device engineering. NANOSCALE 2025; 17:8363-8400. [PMID: 40080121 DOI: 10.1039/d4nr05242k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The relentless pursuit of miniaturization and enhanced functionality in electronic devices has driven researchers to explore innovative approaches. Carbon electrode-based molecular junctions (MJs) have emerged as a promising frontier in the quest for next-generation electronics. This review provides a comprehensive overview of the current state of research on carbon-based MJs for practical devices, focusing on their unique properties, such as charge transport phenomena, fabrication methods, and potential applications in revolutionizing electronic components. The inherent quantum nature of molecules introduces distinct electronic properties, enabling functionalities beyond those achievable with traditional semiconductor-based devices. The diverse range of molecules employed in creating these junctions highlights their tailored electronic characteristics and, consequently, device performance. The fabrication techniques for MJs are discussed in detail. The charge transport mechanisms in such junctions are also discussed, along with temperature effects. Additionally, the review addresses the integration of MJs into electronic circuits, considering scalability, reproducibility, and compatibility with existing manufacturing technologies. The potential applications of MJs in electronic devices, such as temperature-independent robust practical photosensors, photoswitches, charge storage devices, sensors and LEDs, are elucidated. However, challenges, such as stability, variability, and large-scale integration, are also addressed to realize the full potential of MJs in practical applications.
Collapse
Affiliation(s)
- Abhishek S Shekhawat
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| | - Navaneeth Krishnan A B
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| | - Aarti Diwan
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| | - Dhatchayani Murugan
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| | - Akila Chithravel
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| | - Lakshya Daukiya
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| | - Anand M Shrivastav
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| | - Tulika Srivastava
- Department of Electronics & Communication, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Shailendra K Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India.
| |
Collapse
|
3
|
Zou YL, Sun W, Xun J, Liang QM, Chen L, Diao TR, Shi J, Wu DY, Dou C, Hong W, Tian ZQ, Yang Y. Boron-Doped Single-Molecule van der Waals Diode. Angew Chem Int Ed Engl 2025; 64:e202415940. [PMID: 39314126 DOI: 10.1002/anie.202415940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Single-molecule diode was the first proposed device in molecular electronics. Despite the great efforts and advances over 50 years, the reported rectification ratios, the most critical parameter of a diode, remain moderate for the single-molecule diode. Herein, we report an approach to achieve a larger rectification ratio by adopting the combined strategies of p-type boron doping, the single-layer graphene nodes, and the van der Waals layer-by-layer architecture. Measured current-voltage curves showed one of the as-fabricated single-molecule diodes hit an unprecedented large rectification ratio of 457 at ±1 V. Break junction operations and spectroscopic measurements revealed the three-atom-thick configuration of the single-molecule diodes. With the experimental and theoretical calculation results, we demonstrated the doped boron atoms induced holes to redistribute the electron density, making the asymmetric coupling at positive and negative biases, and the van der Waals interaction promoted asymmetric coupling and significantly boosted diode performance.
Collapse
Affiliation(s)
- Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiao Xun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Tong-Ruo Diao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Shekhawat AS, Sahu B, Diwan A, Chaudhary A, Shrivastav AM, Srivastava T, Kumar R, Saxena SK. Insight of Employing Molecular Junctions for Sensor Applications. ACS Sens 2024; 9:5025-5051. [PMID: 39401974 DOI: 10.1021/acssensors.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Molecular junctions (MJs) exhibit distinct charge transport properties and have the potential to become the next generation of electronic devices. Advancing molecular electronics for practical uses, such as sensors, is crucial to propel its progress to the next level. In this review, we discussed how MJs can serve as a sensor for detecting a wide range of analytes with exceptional sensitivity and specificity. The primary advances and potential of molecular junctions for the various kinds of sensors including photosensors, explosives (DNTs, TNTs), cancer biomarker detection (DNA, mRNA), COVID detection, biogases (CO, NO, NH), environmental pH, practical chemicals, and water pollutants are listed and examined here. The fundamental ideas of molecular junction formation as well as the sensing mechanism have been examined here. This review demonstrates that MJ-based sensors hold significant promise for real-time and on-site detection. It provides valuable insights into current research and outlines potential future directions for advancing molecular junction-based sensors for practical applications.
Collapse
Affiliation(s)
- Abhishek S Shekhawat
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Bhumika Sahu
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Aarti Diwan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Anjali Chaudhary
- Indian Institute of Technology Bhilai, Kutelabhata, Bhilai 491002, Chhattisgarh, India
| | - Anand M Shrivastav
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Tulika Srivastava
- Department of Electronics & Communication, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Shailendra K Saxena
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
5
|
Chen X, Volkova I, Wang Y, Zhang Z, Nijhuis CA. Gradual Change between Coherent and Incoherent Tunneling Regimes Induced by Polarizable Halide Substituents in Molecular Tunnel Junctions. J Am Chem Soc 2024; 146:23356-23364. [PMID: 39115108 PMCID: PMC11345807 DOI: 10.1021/jacs.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
This paper describes a gradual transition of charge transport across molecular junctions from coherent to incoherent tunneling by increasing the number and polarizability of halide substituents of phenyl-terminated aliphatic monolayers of the form S(CH2)10OPhXn, X = F, Cl, Br, or I; n = 0, 1, 2, 3, or 5. In contrast to earlier work where incoherent tunneling was induced by introducing redox-active groups or increasing the molecular length, we show that increasing the polarizability, while keeping the organization of the monolayer structure unaltered, results in a gradual change in the mechanism of tunneling of charge carriers where the activation energy increased from 23 meV for n = 0 (associated with coherent tunneling) to 257 meV for n = 5 with X = Br (associated with incoherent tunneling). Interestingly, this increase in incoherent tunneling rate with polarizability resulted in an improved molecular diode performance. Our findings suggest an avenue to improve the electronic function of molecular devices by introducing polarizable atoms.
Collapse
Affiliation(s)
- Xiaoping Chen
- College
of Chemistry, Chemical Engineering and Environment, Fujian Provincial
Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Ira Volkova
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yulong Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Ziyu Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Centre
for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology and Molecules Centre, Faculty of
Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Xie Y, Qiu S, Guo Q, Li C, Chen N, Zhou Z, Yang Z, Cao Z, Wang T, Du W, Wang L, Li Y. Dynamically blocking leakage current in molecular tunneling junctions. Chem Sci 2024; 15:12721-12731. [PMID: 39148779 PMCID: PMC11322961 DOI: 10.1039/d4sc02829e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024] Open
Abstract
Molecular tunneling junctions based on self-assembled monolayers (SAMs) have demonstrated rectifying characteristics at the nanoscale that can hardly be achieved using traditional approaches. However, defects in SAMs result in high leakage when applying bias. The poor performance of molecular diodes compared to silicon or thin-film devices limits their further development. In this study, we show that incorporating "mixed backbones" with flexible-rigid structures into molecular junctions can dynamically block tunneling currents, which is difficult to realize using non-molecular technology. Our idea is achieved by the interaction between interfacial dipole moments and electric field, triggering structured packing in SAMs. Efficient blocking of leakage by more than an order of magnitude leads to a significant enhancement of the rectification ratio to the initial value. The rearrangement of supramolecular structures has also been verified through electrochemistry and electroluminescence measurements. Moreover, the enhanced rectification is extended to various challenging environments, including endurance measurements, bending of electrodes, and rough electrodes, thus demonstrating the feasibility of the dynamic behavior of molecules for practical electronic applications.
Collapse
Affiliation(s)
- Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Qianqian Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Chengtai Li
- School of Materials and Chemical Engineering, Ningbo University of Technology Ningbo Zhejiang 315211 P. R. China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Ziming Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Zhenyu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Zhou Cao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Lejia Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology Ningbo Zhejiang 315211 P. R. China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
7
|
Friedrich N, Li J, Pozo I, Peña D, Pascual JI. Tuneable Current Rectification Through a Designer Graphene Nanoribbon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401955. [PMID: 38613435 DOI: 10.1002/adma.202401955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Unimolecular current rectifiers are fundamental building blocks in organic electronics. Rectifying behavior has been identified in numerous organic systems due to electron-hole asymmetries of orbital levels interfaced by a metal electrode. As a consequence, the rectifying ratio (RR) determining the diode efficiency remains fixed for a chosen molecule-metal interface. Here, a mechanically tunable molecular diode exhibiting an exceptionally large rectification ratio (>105) and reversible direction is presented. The molecular system comprises a seven-armchair graphene nanoribbon (GNR) doped with a single unit of substitutional diboron within its structure, synthesized with atomic precision on a gold substrate by on-surface synthesis. The diboron unit creates half-populated in-gap bound states and splits the GNR frontier bands into two segments, localizing the bound state in a double barrier configuration. By suspending these GNRs freely between the tip of a low-temperature scanning tunneling microscope and the substrate, unipolar hole transport is demonstrated through the boron in-gap state's resonance. Strong current rectification is observed, associated with the varying widths of the two barriers, which can be tuned by altering the distance between tip and substrate. This study introduces an innovative approach for the precise manipulation of molecular electronic functionalities, opening new avenues for advanced applications in organic electronics.
Collapse
Affiliation(s)
| | - Jingcheng Li
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Iago Pozo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
8
|
Sun X, Liu R, Kandapal S, Xu B. Development and mechanisms of photo-induced molecule junction device. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1535-1560. [PMID: 39678175 PMCID: PMC11636484 DOI: 10.1515/nanoph-2023-0921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 12/17/2024]
Abstract
The utilization of single molecule electronic devices represents a significant avenue toward advancing next-generation circuits. Recent investigations have notably augmented our understanding of the optoelectronic characteristics exhibited by diverse single molecule materials. This comprehensive review underscores the latest progressions in probing photo-induced electron transport behaviors within molecular junctions. Encompassing both single molecule and self-assembled monolayer configurations, this review primarily concentrates on unraveling the fundamental mechanisms and guiding principles underlying photo-switchable devices within single molecule junctions. Furthermore, it presents an outlook on the obstacles faced and future prospects within this dynamically evolving domain.
Collapse
Affiliation(s)
- Xin Sun
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Ran Liu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
9
|
Chen Y, Bâldea I, Yu Y, Liang Z, Li MD, Koren E, Xie Z. CP-AFM Molecular Tunnel Junctions with Alkyl Backbones Anchored Using Alkynyl and Thiol Groups: Microscopically Different Despite Phenomenological Similarity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4410-4423. [PMID: 38348971 PMCID: PMC10906003 DOI: 10.1021/acs.langmuir.3c03759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
In this paper, we report results on the electronic structure and transport properties of molecular junctions fabricated via conducting probe atomic force microscopy (CP-AFM) using self-assembled monolayers (SAMs) of n-alkyl chains anchored with acetylene groups (CnA; n = 8, 9, 10, and 12) on Ag, Au, and Pt electrodes. We found that the current-voltage (I-V) characteristics of CnA CP-AFM junctions can be very accurately reproduced by the same off-resonant single-level model (orSLM) successfully utilized previously for many other junctions. We demonstrate that important insight into the energy-level alignment can be gained from experimental data of transport (processed via the orSLM) and ultraviolet photoelectron spectroscopy combined with ab initio quantum chemical information based on the many-body outer valence Green's function method. Measured conductance GAg < GAu < GPt is found to follow the same ordering as the metal work function ΦAu < ΦAu < ΦPt, a fact that points toward a transport mediated by an occupied molecular orbital (MO). Still, careful data analysis surprisingly revealed that transport is not dominated by the ubiquitous HOMO but rather by the HOMO-1. This is an important difference from other molecular tunnel junctions with p-type HOMO-mediated conduction investigated in the past, including the alkyl thiols (CnT) to which we refer in view of some similarities. Furthermore, unlike in CnT and other junctions anchored with thiol groups investigated in the past, the AFM tip causes in CnA an additional MO shift, whose independence of size (n) rules out significant image charge effects. Along with the prevalence of the HOMO-1 over the HOMO, the impact of the "second" (tip) electrode on the energy level alignment is another important finding that makes the CnA and CnT junctions different. What ultimately makes CnA unique at the microscopic level is a salient difference never reported previously, namely, that CnA's alkyne functional group gives rise to two energetically close (HOMO and HOMO-1) orbitals. This distinguishes the present CnA from the CnT, whose HOMO stemming from its thiol group is well separated energetically from the other MOs.
Collapse
Affiliation(s)
- Yuhong Chen
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ioan Bâldea
- Theoretical
Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Yongxin Yu
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zining Liang
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ming-De Li
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Elad Koren
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Zuoti Xie
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Quantum
Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen-Hong Kong International Science and Technology
Park, No. 3 Binglang
Road, Futian District, Shenzhen, Guangdong 518048, China
| |
Collapse
|
10
|
Kumar A, Nwosu ID, Meunier-Prest R, Lesniewska E, Bouvet M. Tuning of Interfacial Charge Transport in Organic Heterostructures via Aryl Electrografting for Efficient Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3795-3808. [PMID: 38224467 DOI: 10.1021/acsami.3c16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Modulation of interfacial conductivity in organic heterostructures is a highly promising strategy to improve the performance of electronic devices. In this endeavor, the present work reports the fabrication of a bilayer heterojunction device, combining octafluoro copper phthalocyanine (CuF8Pc) and lutetium bis-phthalocyanine (LuPc2) and tunes the charge transport at the Cu(F8Pc)-(LuPc2) interface by aryl electrografting on the device electrode to improve the device NH3-sensing properties. Dimethoxybenzene (DMB) and tetrafluoro benzene (TFB) electrografted by an aryldiazonium electroreduction method form a few-nanometer-thick organic film on ITO. The conductivity of the heterojunction devices formed by coating a Cu(F8Pc)/LuPc2 bilayer over the aryl-grafted electrode strongly varies according to the electronic effects of the substituents in the aryl. Accordingly, DMB increases while TFB decreases the mobile charges accumulation at the Cu(F8Pc)-(LuPc2) interface. This is explained by the perfect alignment of the frontier molecular orbitals of DMB and Cu(F8Pc), facilitating charge injection into the Cu(F8Pc) layer. On the contrary, TFB behaves like a strong acceptor and reduces the mobile charges accumulation at the Cu(F8Pc)-(LuPc2) interface. Such interfacial conductivity variation influences the device NH3-sensing properties, which increase because of DMB grafting and decrease in the presence of TFB. DMB-based heterojunction devices contain four times higher active sites for NH3 adsorption and could detect NH3 down to 1 ppm with limited interference from humidity, making them suitable for real environment NH3 detection.
Collapse
Affiliation(s)
- Abhishek Kumar
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Ikechukwu David Nwosu
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Rita Meunier-Prest
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Eric Lesniewska
- Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), UMR CNRS 6303, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| |
Collapse
|
11
|
Taherinia D, Frisbie CD. Deciphering I-V characteristics in molecular electronics with the benefit of an analytical model. Phys Chem Chem Phys 2023; 25:32305-32316. [PMID: 37991400 DOI: 10.1039/d3cp03877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We share our perspective that a simple analytical model for electron tunneling in molecular junctions can greatly aid quantitative analysis of experimental data in molecular electronics. In particular, the single-level model (SLM), derived from first principles, provides a precise prediction for the current-voltage (I-V) characteristics in terms of key electronic structure parameters, which in turn depend on the molecular and contact architecture. SLM analysis thus facilitates understanding of structure-property relationships and provides metrics that can be compared across different types of tunnel junctions, as we illustrate with several examples.
Collapse
Affiliation(s)
- Davood Taherinia
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
13
|
Nguyen QV, Martin P, Lacroix JC. Probing the Effect of the Density of Active Molecules in Large-Area Molecular Junctions. J Phys Chem Lett 2022; 13:11990-11995. [PMID: 36537879 DOI: 10.1021/acs.jpclett.2c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effect of the density of active molecules in molecular junctions (MJs) has been investigated by using a host/guest strategy. Mixed layers consisting of oligothiophene (BTB) encapsulated by β-cyclodextrin (BTB@β-CD) were generated. Cyclodextrins were then removed, and the pinholes generated were filled with BTB to obtain BTB@BTB films. MJs based on mixed BTB@β-CD and BTB@BTB layers, as well as single-component BTB MJs, were compared. The variation of ln J vs thickness is similar for all systems while the Jo of BTB@β-CD MJs is 20 times lower than that of BTB MJs. After β-cyclodextrin has been removed, and the pinholes filled, Jo increases and reaches the same value as for the BTB MJs, showing that the conductance scales with the number of active molecules. This strategy provides a unique method for investigating molecular interactions in direct tunneling MJs as well as the possibility of fabricating new functionalized MJs based on mixed layers.
Collapse
Affiliation(s)
- Quyen Van Nguyen
- Université Paris Cité, ITODYS, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 11307 Cau Giay, Hanoi Vietnam
| | - Pascal Martin
- Université Paris Cité, ITODYS, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean Christophe Lacroix
- Université Paris Cité, ITODYS, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 11307 Cau Giay, Hanoi Vietnam
| |
Collapse
|
14
|
Nguyen QV, Thi HL, Truong GL. Chemical Conformation Induced Transport Carrier Switching in Molecular Junction based on Carboxylic-Terminated Thiol Molecules. NANO LETTERS 2022; 22:10147-10153. [PMID: 36475760 DOI: 10.1021/acs.nanolett.2c04031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The paper demonstrates the effect of the chemical conformation of the -COOH group on the transport characteristic including conductance, rectification, and length effect in molecular junctions (MJs) formed by self-assembled monolayers of carboxylic-terminated thiol molecules. For an alkyl chain shorter than C11, the transport mechanism was attributed to a direct off-resonant tunneling of a hole carrier, located at the Au-S interface, whereas a hopping mechanism was assigned to the alkyl chain longer than the C11 chain located at the -COOH group. The hopping mechanism may be operated by electron transport associated with the breaking of the -OH bonding likely driven by a voltage. Importantly, at the C11 alkyl chain, we observed that the transport carrier operating in MJs could change from a hole carrier into an electron carrier. The result strongly proves that the chemical conformation should be considered in analyzing molecular electronics and provides a basis for the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Quyen Van Nguyen
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huong Le Thi
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Giang Le Truong
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| |
Collapse
|
15
|
Martin P, Dlubak B, Mattana R, Seneor P, Martin MB, Henner T, Godel F, Sander A, Collin S, Chen L, Suffit S, Mallet F, Lafarge P, Della Rocca ML, Droghetti A, Barraud C. Combined spin filtering actions in hybrid magnetic junctions based on organic chains covalently attached to graphene. NANOSCALE 2022; 14:12692-12702. [PMID: 35993375 DOI: 10.1039/d2nr01917e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a bias-controlled spin-filtering mechanism in spin-valves including a hybrid organic chain/graphene interface. Wet growth conditions of oligomeric molecular chains would usually lead, during standard CMOS-compatible fabrication processes, to the quenching of spintronics properties of metallic spin sources due to oxidation. We demonstrate by X-ray photoelectron spectroscopy that the use of a protective graphene layer fully preserves the metallic character of the ferromagnetic surface and thus its capability to deliver spin polarized currents. We focus here on a small aromatic chain of controllable lengths, formed by nitrobenzene monomers and derived from the commercial 4-nitrobenzene diazonium tetrafluoroborate, covalently attached to the graphene passivated spin sources thanks to electroreduction. A unique bias dependent switch of the spin signal is then observed in complete spin valve devices, from minority to majority spin carriers filtering. First-principles calculations are used to highlight the key role played by the spin-dependent hybridization of electronic states present at the different interfaces. Our work is a first step towards the exploration of spin transport using different functional molecular chains. It opens the perspective of atomic tailoring of magnetic junction devices towards spin and quantum transport control, thanks to the flexibility of ambient electrochemical surface functionalization processes.
Collapse
Affiliation(s)
- Pascal Martin
- Université Paris Cité, Laboratoire ITODYS, CNRS, UMR 7086, 75013 Paris, France
| | - Bruno Dlubak
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
| | - Richard Mattana
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
| | - Pierre Seneor
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
| | - Marie-Blandine Martin
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
| | - Théo Henner
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, 75013 Paris, France.
| | - Florian Godel
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
| | - Anke Sander
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
| | - Sophie Collin
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
| | - Linsai Chen
- Université Paris Cité, Laboratoire ITODYS, CNRS, UMR 7086, 75013 Paris, France
| | - Stéphan Suffit
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, 75013 Paris, France.
| | - François Mallet
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, 75013 Paris, France.
| | - Philippe Lafarge
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, 75013 Paris, France.
| | - Maria Luisa Della Rocca
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, 75013 Paris, France.
| | | | - Clément Barraud
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, UMR 7162, 75013 Paris, France.
| |
Collapse
|
16
|
Bastide M, Gam-Derouich S, Lacroix JC. Long-Range Plasmon-Induced Anisotropic Growth of an Organic Semiconductor between Isotropic Gold Nanoparticles. NANO LETTERS 2022; 22:4253-4259. [PMID: 35503742 DOI: 10.1021/acs.nanolett.2c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmon-induced diazonium reduction was used to graft an organic semiconductor, namely oligo(bisthienylbenzene) (BTB), onto square arrays of gold nanoparticles (NPs) of various diameters. Grafting was evidenced by scanning electron microscopy (SEM) measurements by the extinction spectra of the localized surface plasmon resonance, as well as by Raman and energy dispersive X-ray (EDX) spectroscopies. We show that BTB is selectively deposited around the NPs. The thickness of the layer increases with increasing irradiation time and reaches a limit which depends on the size of the NPs with the thicker organic layers being generated for smaller NPs. Under polarized irradiation, BTB growth is strongly anisotropic. Starting from arrays with square gratings and spherical NPs, long-range plasmon-induced anisotropic growth makes it possible to generate in the direction of the polarized light, lines, columns, or lines and columns of NPs connected by an organic semiconductor. These results demonstrate that the growth is due to hot electrons.
Collapse
Affiliation(s)
- Mathieu Bastide
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Sarra Gam-Derouich
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Christophe Lacroix
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
17
|
Kong GD, Byeon SE, Jang J, Kim JW, Yoon HJ. Electronic Mechanism of In Situ Inversion of Rectification Polarity in Supramolecular Engineered Monolayer. J Am Chem Soc 2022; 144:7966-7971. [PMID: 35500106 DOI: 10.1021/jacs.2c02391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Communication describes polarity inversion in molecular rectification and the related mechanism. Using a supramolecular engineered, ultrastable, binary-mixed self-assembled monolayer (SAM) composed of an organic molecular diode (SC11BIPY) and an inert reinforcement molecule (SC8), we probed a rectification ratio (r)-voltage relationship over an unprecedentedly wide voltage range (up to |3.5 V|) with statistical significance. We observed positive polarity in rectification at |1.0 V| (r = 107), followed by disappearance of rectification at ∼|2.25 V|, and then eventual emergence of new rectification with the opposite polarity at ∼|3.5 V| (r = 0.006; 1/r = 162). The polarity inversion occurred with a span over 4 orders of magnitude in r. Low-temperature experiments, electronic structure analysis, and theoretical calculations revealed that the unusually wide voltage range permits access to molecular orbital energy levels that are inaccessible in the traditional narrow voltage regime, inducing the unprecedented in situ inversion of polarity.
Collapse
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seo Eun Byeon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeong Won Kim
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
18
|
Light-Driven Charge Transport and Optical Sensing in Molecular Junctions. NANOMATERIALS 2022; 12:nano12040698. [PMID: 35215024 PMCID: PMC8878161 DOI: 10.3390/nano12040698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Probing charge and energy transport in molecular junctions (MJs) has not only enabled a fundamental understanding of quantum transport at the atomic and molecular scale, but it also holds significant promise for the development of molecular-scale electronic devices. Recent years have witnessed a rapidly growing interest in understanding light-matter interactions in illuminated MJs. These studies have profoundly deepened our knowledge of the structure–property relations of various molecular materials and paved critical pathways towards utilizing single molecules in future optoelectronics applications. In this article, we survey recent progress in investigating light-driven charge transport in MJs, including junctions composed of a single molecule and self-assembled monolayers (SAMs) of molecules, and new opportunities in optical sensing at the single-molecule level. We focus our attention on describing the experimental design, key phenomena, and the underlying mechanisms. Specifically, topics presented include light-assisted charge transport, photoswitch, and photoemission in MJs. Emerging Raman sensing in MJs is also discussed. Finally, outstanding challenges are explored, and future perspectives in the field are provided.
Collapse
|
19
|
Médard J, Sun X, Pinson J, Li D, Mangeney C, Michel JP. Electrografting and Langmuir-Blodgett: Covalently Bound Nanometer-Thick Ordered Films on Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12539-12547. [PMID: 34677986 DOI: 10.1021/acs.langmuir.1c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present two different molecular organizations obtained from octadecylamine (ODA) molecules on a highly oriented pyrolytic graphite (HOPG) surface: (i) self-organized physisorbed ODA molecules lying flat on the surface and (ii) a strongly electrografted compact crystalline monolayer of ODA molecules standing up on the surface. This new structure is obtained by combining the Langmuir-Blodgett transfer of an ODA Langmuir film onto HOPG with oxidative electrografting. The presence of an organic film on HOPG is characterized by attenuated total reflectance-infrared spectroscopy and Raman spectroscopy, while atomic force microscopy and scanning tunneling microscopy allow the observation of the two molecular organizations with adsorbed molecules lying flat on HOPG or strongly grafted in an upright position on the HOPG surface. Interestingly, the second molecular organization preserves a hexagonal symmetry and its lattice parameters are intermediate between those of ODA Langmuir films and that of the HOPG underlying surface. The functionalization of surfaces with organic films is a major issue in the design of sensors with biomedical applications or organic electronics and energy storage devices and these structures may find applications in these fields.
Collapse
Affiliation(s)
- Jérôme Médard
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Xiaonan Sun
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Jean Pinson
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Da Li
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Claire Mangeney
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Jean-Philippe Michel
- Université Paris Saclay, Institut Galien Paris Saclay, CNRS, UMR 8612, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
20
|
Xie Z, Bâldea I, Nguyen QV, Frisbie CD. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols versus alkane thiols. NANOSCALE 2021; 13:16755-16768. [PMID: 34604892 DOI: 10.1039/d1nr04410a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-molecule-metal junctions based on alkane thiol (CnT) and oligophenylene thiol (OPTn) self-assembled monolayers (SAMs) and Au electrodes are expected to exhibit similar electrical asymmetry, as both junctions have one chemisorbed Au-S contact and one physisorbed, van der Waals contact. Asymmetry is quantified by the current rectification ratio RR apparent in the current-voltage (I-V) characteristics. Here we show that RR < 1 for CnT and RR > 1 for OPTn junctions, in contrast to expectation, and further, that RR behaves very differently for CnT and OPTn junctions under mechanical extension using the conducting probe atomic force microscopy (CP-AFM) testbed. The analysis presented in this paper, which leverages results from the previously validated single level model and ab initio quantum chemical calculations, allows us to explain the puzzling experimental findings for CnT and OPTn in terms of different current rectification mechanisms. Specifically, in CnT-based junctions the Stark effect creates the HOMO level shifting necessary for rectification, while for OPTn junctions the level shift arises from position-dependent coupling of the HOMO wavefunction with the junction electrostatic potential profile. On the basis of these mechanisms, our quantum chemical calculations allow quantitative description of the impact of mechanical deformation on the measured current rectification. Additionally, our analysis, matched to experiment, facilitates direct estimation of the impact of intramolecular electrostatic screening on the junction potential profile. Overall, our examination of current rectification in benchmark molecular tunnel junctions illuminates key physical mechanisms at play in single step tunneling through molecules, and demonstrates the quantitative agreement that can be obtained between experiment and theory in these systems.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Quyen Van Nguyen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
21
|
Hnid I, Liu M, Frath D, Bellynck S, Lafolet F, Sun X, Lacroix JC. Unprecedented ON/OFF Ratios in Photoactive Diarylethene-Bisthienylbenzene Molecular Junctions. NANO LETTERS 2021; 21:7555-7560. [PMID: 34478314 DOI: 10.1021/acs.nanolett.1c01983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoactive molecular junctions, based on 4 nm thick diarylethene (DAE) and 5 nm thick bisthienylbenzene (BTB) layers, were fabricated by electrochemical deposition. Total thickness was around 9 nm, that is, above the direct tunneling limit and in the hopping regime. The DAE units were switched between their open and closed forms. The DAE/BTB bilayer structure exhibits new electronic functions combining photoswitching and photorectification. The open form of DAE/BTB shows low conductance and asymmetric I-V curves while the closed form shows symmetric I-V curves and high conductance. More importantly, unprecedented ON/OFF current ratios of over 10 000 at 1 V were reproducibly measured.
Collapse
Affiliation(s)
- Imen Hnid
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 France
| | - Mingyang Liu
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 France
| | - Denis Frath
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 France
| | - Sebastien Bellynck
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 France
| | - Frederic Lafolet
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 France
| | - Xiaonan Sun
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 France
| | - Jean-Christophe Lacroix
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13 France
| |
Collapse
|
22
|
Yao X, Vonesch M, Combes M, Weiss J, Sun X, Lacroix JC. Single-Molecule Junctions with Highly Improved Stability. NANO LETTERS 2021; 21:6540-6548. [PMID: 34286999 DOI: 10.1021/acs.nanolett.1c01747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-molecule junctions (SMJs) have been fabricated using layers generated by diazonium electroreduction. This process creates a C-Au covalent bond between the molecule and the electrode. Rigid oligomers of variable length, based on porphyrin derivatives in their free base or cobalt complex forms, have been grafted on the surface. The conductance of the oligomers has been studied by a scanning tunneling microscopy break junction (STM-bj) technique and G(t) measurements, and the lifetime of the SMJs has been investigated. The conductance histograms indicate that charge transport in the porphyrins is relatively efficient and influenced by the presence of the cobalt center. With both systems, random telegraph G(t) signals are easily recorded, showing SMJ on/off states. The SMJs then stabilize and exhibit a surprisingly long lifetime around 10 s, and attenuation plots, obtained by both G(t) and STM-bj measurements, give identical values. This work shows that highly stable SMJs can be prepared using a diazonium grafting approach.
Collapse
Affiliation(s)
- Xinlei Yao
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Maxime Vonesch
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Maïwenn Combes
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Xiaonan Sun
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Christophe Lacroix
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
23
|
Zhao YQ, Lan JQ, Hu CE, Mu Y, Chen XR. Electron Transport of the Nanojunctions of (BN) n ( n = 1-4) Linear Chains: A First-Principles Study. ACS OMEGA 2021; 6:15727-15736. [PMID: 34179616 PMCID: PMC8223222 DOI: 10.1021/acsomega.1c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
We applied the density functional theory and nonequilibrium Green's function method (DFT + NEGF) to investigate the relationship between the conductance and chain length in the stretching process, the asymmetric coupling of contact points, and the influence of positive and negative biases on the electron transport properties of the nanojunctions formed by the coupling of (BN) n (n = 1-4) linear chains and Au(100)-3 × 3 semi-infinite electrodes. We find that the BN junction has the lowest stability and the (BN)2 junction has the highest stability. Under zero bias, the equilibrium conductance decreases as the chain length increases; px and py orbitals play a leading role in electron transport. In the bias range of -1.6 to 1.6 V, the current of the (BN) n (n = 1-4) linear chains increases linearly with increasing voltage. Under the same bias voltage, (BN)1 has the largest current, so its electron transport property is the best. The rectification effect reflects the asymmetry of the structure of BN linear chains themselves and the asymmetry of coupling with the Au electrode surfaces at both ends. With the chain length increasing, the transmission spectrum near E f is suppressed, the tunneling current decreases, and the rectification ratio increases. (BN)4 molecular junctions have the largest rectification ratio, reaching 13.32 when the bias voltage is 1.6 V. Additionally, the Au-N strong coupling is more conducive to the electron transport of the molecular chain than the Au-B weak coupling. Our calculations provide an important theoretical reference for the design and development of BN linear-chain nanodevices.
Collapse
Affiliation(s)
- Ying-Qin Zhao
- College
of Physics, Sichuan University, Chengdu 610064, China
| | - Jun-Qing Lan
- College
of Electronic Engineering, Chengdu University
of Information Technology, Chengdu 610225, China
| | - Cui-E Hu
- College
of Physics and Electronic Engineering, Chongqing
Normal University, Chongqing 400047, China
| | - Yi Mu
- School
of Physics and Electronic Engineering, Sichuan
Normal University, Chengdu 610066, China
| | - Xiang-Rong Chen
- College
of Physics, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Ma W, Wang W, Huang Y, Zhou T, Wang S. A multi-functional spintronic device based on 1,4,5,8-naphthalenetetracarboxylic diimide. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Chen H, Brasiliense V, Mo J, Zhang L, Jiao Y, Chen Z, Jones LO, He G, Guo QH, Chen XY, Song B, Schatz GC, Stoddart JF. Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. J Am Chem Soc 2021; 143:2886-2895. [DOI: 10.1021/jacs.0c12664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vitor Brasiliense
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 4 avenue des Sciences, 91190 Gif/Yvette, France
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhu Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215, China
| |
Collapse
|
26
|
Han Y, Maglione MS, Diez Cabanes V, Casado-Montenegro J, Yu X, Karuppannan SK, Zhang Z, Crivillers N, Mas-Torrent M, Rovira C, Cornil J, Veciana J, Nijhuis CA. Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule-Electrode Interfaces in Redox-Active Tunneling Junctions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55044-55055. [PMID: 33237732 DOI: 10.1021/acsami.0c15435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Control over the energy level alignment in molecular junctions is notoriously difficult, making it challenging to control basic electronic functions such as the direction of rectification. Therefore, alternative approaches to control electronic functions in molecular junctions are needed. This paper describes switching of the direction of rectification by changing the bottom electrode material M = Ag, Au, or Pt in M-S(CH2)11S-BTTF//EGaIn junctions based on self-assembled monolayers incorporating benzotetrathiafulvalene (BTTF) with EGaIn (eutectic alloy of Ga and In) as the top electrode. The stability of the junctions is determined by the choice of the bottom electrode, which, in turn, determines the maximum applied bias window, and the mechanism of rectification is dominated by the energy levels centered on the BTTF units. The energy level alignments of the three junctions are similar because of Fermi level pinning induced by charge transfer at the metal-thiolate interface and by a varying degree of additional charge transfer between BTTF and the metal. Density functional theory calculations show that the amount of electron transfer from M to the lowest unoccupied molecular orbital (LUMO) of BTTF follows the order Ag > Au > Pt. Junctions with Ag electrodes are the least stable and can only withstand an applied bias of ±1.0 V. As a result, no molecular orbitals can fall in the applied bias window, and the junctions do not rectify. The junction stability increases for M = Au, and the highest occupied molecular orbital (HOMO) dominates charge transport at a positive bias resulting in a positive rectification ratio of 83 at ±1.5 V. The junctions are very stable for M = Pt, but now the LUMO dominates charge transport at a negative bias resulting in a negative rectification ratio of 912 at ±2.5 V. Thus, the limitations of Fermi level pinning can be bypassed by a judicious choice of the bottom electrode material, making it possible to access selectively HOMO- or LUMO-based charge transport and, as shown here, associated reversal of rectification.
Collapse
Affiliation(s)
- Yingmei Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Maria Serena Maglione
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Valentin Diez Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Javier Casado-Montenegro
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ziyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Núria Crivillers
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Marta Mas-Torrent
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Concepció Rovira
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Jaume Veciana
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
27
|
Yao X, Sun X, Lafolet F, Lacroix JC. Long-Range Charge Transport in Diazonium-Based Single-Molecule Junctions. NANO LETTERS 2020; 20:6899-6907. [PMID: 32786941 DOI: 10.1021/acs.nanolett.0c03000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin layers of cobalt and ruthenium polypyridyl-oligomers with thicknesses between 2 and 8 nm were deposited on gold by electrochemical reduction of diazonium salts. A scanning tunneling microscope was used to create single-molecule junctions (SMJs). The charge transport properties of the Au-[Co(tpy)2]n-Au (n = 1-4) SMJs do not depend markedly on the oligomer length, have an extremely low attenuation factor (β ∼ 0.19 nm-1), and do not show a thickness-dependent transition between two mechanisms. Resonant charge transport is proposed as the main transport mechanism. The SMJ conductance decreases by 1 order of magnitude upon changing the metal from Co to Ru. In Au-[Ru(tpy)2]n-Au and Au-[Ru(bpy)3]n-Au SMJs, a charge transport transition from direct tunneling to hopping is evidenced by a break in the length-dependent β-plot. The three different mechanisms observed are a clear molecular signature on transport in SMJs. Most importantly, these results are in good agreement with those obtained on large-area molecular junctions.
Collapse
Affiliation(s)
- Xinlei Yao
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Xiaonan Sun
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Frédéric Lafolet
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Christophe Lacroix
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
28
|
Sergi Lopes C, Merces L, de Oliveira RF, de Camargo DHS, Bof Bufon CC. Rectification ratio and direction controlled by temperature in copper phthalocyanine ensemble molecular diodes. NANOSCALE 2020; 12:10001-10009. [PMID: 32196026 DOI: 10.1039/c9nr10601d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic diodes and molecular rectifiers are fundamental electronic devices that share one common feature: current rectification ability. Since both present distinct spatial dimensions and working principles, the rectification of organic diodes is usually achieved by interface engineering, while changes in molecular structures commonly control the molecular rectifiers' features. Here, we report on the first observation of temperature-driven inversion of the rectification direction (IRD) in ensemble molecular diodes (EMDs) prepared in a vertical stack configuration. The EMDs are composed of 20 nm thick molecular ensembles of copper phthalocyanine in close contact with one of its fluorinated derivatives. The material interface was found to be responsible for modifying the junction's conduction mechanisms from nearly activationless transport to Poole-Frenkel emission and phonon-assisted tunneling. In this context, the current rectification was found to be dependent on the interplay of such distinct charge transport mechanisms. The temperature has played a crucial role in each charge transport transition, which we have investigated via electrical measurements and band diagram analysis, thus providing the fundamentals on the IRD occurrence. Our findings represent an important step towards simple and rational control of rectification in carbon-based electronic nanodevices.
Collapse
Affiliation(s)
- Carolina Sergi Lopes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
29
|
Hnid I, Frath D, Lafolet F, Sun X, Lacroix JC. Highly Efficient Photoswitch in Diarylethene-Based Molecular Junctions. J Am Chem Soc 2020; 142:7732-7736. [DOI: 10.1021/jacs.0c01213] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Imen Hnid
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Denis Frath
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Frederic Lafolet
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Xiaonan Sun
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Christophe Lacroix
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
30
|
Dithienylpyrrole Electrografting on a Surface through the Electroreduction of Diazonium Salts. ELECTROCHEM 2020. [DOI: 10.3390/electrochem1010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The control of the interface and the adhesion process are key issues for the development of new application based on electrochromic materials. In this work the functionalization of an electrode’s surface through electroreduction of diazonium generated in situ from 4-(2,5-di-thiophen-2-yl-pyrrol-1-yl)-phenylamine (SNS-An) has been proposed. The synthesis of the aniline derivative SNS-An was performed and the electrografting was investigated by cyclic voltammetry on various electrodes. Then the organic thin film was fully characterized by several techniques and XPS analysis confirms the presence of an organic film based on the chemical composition of the starting monomer and allows an estimation of its thickness confirmed by AFM scratching measurements. Depending on the number of electrodeposition cycles, the thickness varies from 2 nm to 10 nm, which corresponds to a few grafted oligomers. In addition, the grafted film showed a good electrochemical stability depending on the scan rates up to 400 V/s and the electrochemical response of the modified electrode towards several redox probes showed that the attached layer acts as a conductive switch. Therefore, the electrode behaves as a barrier to electron transfer when the standard redox potential of the probe is below the layer switching potential, whereas the layer can be considered as transparent towards the electron transfer for redox probes with a redox potential above it.
Collapse
|
31
|
Ai Y, Lacroix JC. Self-terminated fabrication of electrochemically-gated conducting polymer nanojunctions. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
32
|
Hetemi D, Noël V, Pinson J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. BIOSENSORS-BASEL 2020; 10:bios10010004. [PMID: 31952195 PMCID: PMC7168266 DOI: 10.3390/bios10010004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/31/2023]
Abstract
This review is divided into two parts; the first one summarizes the main features of surface modification by diazonium salts with a focus on most recent advances, while the second part deals with diazonium-based biosensors including small molecules of biological interest, proteins, and nucleic acids.
Collapse
Affiliation(s)
- Dardan Hetemi
- Pharmacy Department, Medical Faculty, University of Prishtina, “Hasan Prishtina”, Rr. “Dëshmorët e Kombit” p.n., 10000 Prishtina, Kosovo;
| | - Vincent Noël
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France;
| | - Jean Pinson
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France;
- Correspondence:
| |
Collapse
|
33
|
Sachan P, Mondal PC. Versatile electrochemical approaches towards the fabrication of molecular electronic devices. Analyst 2020; 145:1563-1582. [DOI: 10.1039/c9an01948k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We highlight state-of-the-art electrochemical approaches for diazonium electroreduction on various electrodes that may be suitable for flexible molecular electronic junctions.
Collapse
Affiliation(s)
- Pradeep Sachan
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | | |
Collapse
|
34
|
Nguyen VQ, Schaming D, Martin P, Lacroix JC. Nanostructured Mixed Layers of Organic Materials Obtained by Nanosphere Lithography and Electrochemical Reduction of Aryldiazonium Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15071-15077. [PMID: 31660746 DOI: 10.1021/acs.langmuir.9b02811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we have combined nanosphere lithography with electrochemical reduction of aryldiazonium salts to elaborate nanostructured mixed layers of organic materials. The strategy consists first in the deposition of a close-packed hexagonal monolayer of microbeads used as a mask for the electroreduction of a first aryldiazonium salt. After removing the beads, an ultrathin organic layer with holes remains. Then, a second aryldiazonium salt is electrochemically reduced selectively inside the holes. The relative thickness of the two deposited materials can be changed, leading to mixed layers of different topographies. Moreover, using diazoniums with complementary redox properties, a modified bifunctional electrode acting as a filter for electron transfer with a low potential gap has been obtained. Such layers are similar to low-band-gap organic semiconductors that can be easily n or p doped. Despite this analogy, the oxidation and reduction of redox probes in solution on such nanostructured surfaces occur on completely separated areas of the mixed layer.
Collapse
Affiliation(s)
- Van-Quynh Nguyen
- Université de Paris, ITODYS, CNRS-UMR 7086 , 15 rue J.-A. de Baïf , 75013 Paris , France
- Department of Advanced Materials Science and Nanotechnology , University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet , Cau Giay, Hanoi , Vietnam
| | - Delphine Schaming
- Université de Paris, ITODYS, CNRS-UMR 7086 , 15 rue J.-A. de Baïf , 75013 Paris , France
| | - Pascal Martin
- Université de Paris, ITODYS, CNRS-UMR 7086 , 15 rue J.-A. de Baïf , 75013 Paris , France
| | | |
Collapse
|
35
|
Xie Z, Bâldea I, Frisbie CD. Energy Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Alkyl Thiols and Dithiols on Ag, Au, and Pt Electrodes. J Am Chem Soc 2019; 141:18182-18192. [PMID: 31617711 DOI: 10.1021/jacs.9b08905] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here an extensive study of transport and electronic structure of molecular junctions based on alkyl thiols (CnT; n = 7, 8, 9, 10, 12) and dithiols (CnDT; n = 8, 9, 10) with various lengths contacted with different metal electrodes (Ag, Au, Pt). The dependence of the low-bias resistance (R) on contact work function indicates that transport is HOMO-assisted (p-type transport). Analysis of the current-voltage (I-V) characteristics for CnT and CnDT tunnel junctions with the analytical single-level model (SLM) provides both the HOMO-Fermi energy offset εhtrans and the average molecule-electrode coupling (Γ) as a function of molecular length (n), electrode work function (Φ), and the number of chemical contacts (one or two). The SLM analysis reveals a strong Fermi level (EF) pinning effect in all the junctions, i.e., εhtrans changes very little with n, Φ, and the number of chemical contacts, but Γ depends strongly on these variables. Significantly, independent measurements of the HOMO-Fermi level offset (εhUPS) by ultraviolet photoelectron spectroscopy (UPS) for CnT and CnDT SAMs agree remarkably well with the transport-estimated εhtrans. This result provides strong evidence for hole transport mediated by localized HOMO states at the Au-thiol interface, and not by the delocalized σ states in the C-C backbones, clarifying a long-standing issue in molecular electronics. Our results also substantiate the application of the single-level model for quantitative, unified understanding of transport in benchmark molecular junctions.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ioan Bâldea
- Theoretische Chemie , Universität Heidelberg , INF 229 , D-69120 Heidelberg , Germany
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
36
|
Barraud C, Lemaitre M, Bonnet R, Rastikian J, Salhani C, Lau S, van Nguyen Q, Decorse P, Lacroix JC, Della Rocca ML, Lafarge P, Martin P. Charge injection and transport properties of large area organic junctions based on aryl thin films covalently attached to a multilayer graphene electrode. NANOSCALE ADVANCES 2019; 1:414-420. [PMID: 36132450 PMCID: PMC9473172 DOI: 10.1039/c8na00106e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/25/2018] [Indexed: 06/15/2023]
Abstract
The quantum interaction between molecules and electrode materials at molecule/electrode interfaces is a major ingredient in the electron transport properties of organic junctions. Driven by the coupling strength between the two materials, it results mainly in the broadening and energy shift of the interacting molecular orbitals. Using new electrode materials, such as the recently developed semi-conducting two-dimensional nanomaterials, has become a significant advancement in the field of molecular/organic electronics that opens new possibilities for controlling the interfacial electronic properties and thus the charge injection properties. In this article, we report the use of atomically thin two-dimensional multilayer graphene films as the base electrode in organic junctions with a vertical architecture. The interfacial electronic structure dominated by the covalent bonding between bis-thienyl benzene diazonium-based molecules and the multilayer graphene electrode has been probed by ultraviolet photoelectron spectroscopy and the results are compared with those obtained on junctions with standard Au electrodes. Room temperature injection properties of such interfaces have also been explored by electron transport measurements. We find that, despite strong variations of the density of states, the Fermi energy and the injection barriers, both organic junctions with Au base electrodes and multilayer graphene base electrodes show similar electronic responses. We explain this observation by the strong orbital coupling occurring at the bottom electrode/bis-thienyl benzene molecule interface and by the pinning of the hybridized molecular orbitals.
Collapse
Affiliation(s)
- Clément Barraud
- MPQ UMR 7162, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | - Matthieu Lemaitre
- MPQ UMR 7162, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | - Roméo Bonnet
- MPQ UMR 7162, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | - Jacko Rastikian
- MPQ UMR 7162, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | - Chloé Salhani
- MPQ UMR 7162, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | - Stéphanie Lau
- ITODYS UMR 7086, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | - Quyen van Nguyen
- ITODYS UMR 7086, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet CauGiay Hanoi Vietnam
| | - Philippe Decorse
- ITODYS UMR 7086, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | | | | | - Philippe Lafarge
- MPQ UMR 7162, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| | - Pascal Martin
- ITODYS UMR 7086, Université Paris Diderot, Sorbonne Paris Cité, CNRS F-75013 Paris France
| |
Collapse
|
37
|
Modification of glassy carbon with polypyrrole through an aminophenyl linker to create supercapacitive materials using bipolar electrochemistry. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Nguyen QV, Martin P, Frath D, Della Rocca ML, Lafolet F, Bellinck S, Lafarge P, Lacroix JC. Highly Efficient Long-Range Electron Transport in a Viologen-Based Molecular Junction. J Am Chem Soc 2018; 140:10131-10134. [DOI: 10.1021/jacs.8b05589] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quyen Van Nguyen
- Université Paris Diderot, Sorbonne Paris Cité,
ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Pascal Martin
- Université Paris Diderot, Sorbonne Paris Cité,
ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Denis Frath
- Université Paris Diderot, Sorbonne Paris Cité,
ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Maria Luisa Della Rocca
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Frederic Lafolet
- Université Paris Diderot, Sorbonne Paris Cité,
ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Sebastien Bellinck
- Université Paris Diderot, Sorbonne Paris Cité,
ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Philippe Lafarge
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Jean-Christophe Lacroix
- Université Paris Diderot, Sorbonne Paris Cité,
ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| |
Collapse
|
39
|
Xie Z, Bâldea I, Frisbie CD. Why one can expect large rectification in molecular junctions based on alkane monothiols and why rectification is so modest. Chem Sci 2018; 9:4456-4467. [PMID: 29896387 PMCID: PMC5956982 DOI: 10.1039/c8sc00938d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 11/23/2022] Open
Abstract
Many attempts to obtain high current rectification ratios (RRs) in molecular electronics are triggered by a potentiometer rule argument, which predicts that a strongly asymmetric location of the dominant molecular orbital yields large RR-values. Invoking this argument, molecular junctions based on alkane monothiols (CnT) can be expected to exhibit high RRs; the HOMO of these molecules is localized on the thiol terminal group bonded to one electrode. The extensive current-voltage (I-V) results for CP-AFM (conducting probe atomic force microscope) CnT junctions of various molecular lengths (n = 7, 8, 9, 10, and 12) and different metallic contacts (Ag, Au, and Pt) are consistent with conduction dominated by the HOMO, but the measured RR ∼ 1.5 is much smaller than that predicted by the potentiometer rule framework. Further, the linear shift in the HOMO position with applied bias, γ, which gives rise to rectification, is also smaller than expected, and critically, γ has the opposite sign from potentiometer rule predictions. Companion ab initio OVGF (outer valence Green's function) quantum chemical calculations provide important insight. Namely, a linear Stark shift γm is calculated for the HOMO of CnT molecules for electric field strengths (106-107 V cm-1) typical of molecular junctions, and the sign of γm matches the sign of the experimental γ for junctions derived from transport measurements, suggesting that the Stark effect plays an important role. However, the magnitude of the measured γ is only 10-15% of the computed value γm. We propose that this implies that the contacts are far from optimal; they substantially screen the effect of the applied bias, possibly via molecule-electrode interface states. We predict that, with optimized contacts, the rectification ratios in CnT-based junctions can reach reasonably high values (RR ≈ 500). We believe that Stark shifts and limited current rectification due to non-ideal contacts discussed here for the specific case of alkane monothiol junctions are issues of general interest for molecular electronics that deserve further consideration.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science , Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , USA .
| | - Ioan Bâldea
- Theoretische Chemie , Universität Heidelberg , INF 229 , D-69120 Heidelberg , Germany .
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science , Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , USA .
| |
Collapse
|
40
|
Song P, Guerin S, Tan SJR, Annadata HV, Yu X, Scully M, Han YM, Roemer M, Loh KP, Thompson D, Nijhuis CA. Stable Molecular Diodes Based on π-π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1706322. [PMID: 29356141 DOI: 10.1002/adma.201706322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/01/2017] [Indexed: 06/07/2023]
Abstract
In molecular electronics, it is important to control the strength of the molecule-electrode interaction to balance the trade-off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π-π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self-assembled monolayers (SAMs) of Fc(CH2 )11 X (Fc = ferrocenyl, X = NH2 , Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30-40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π-π molecule-electrode coupling are promising platforms to fabricate stable and well-performing molecular diodes.
Collapse
Affiliation(s)
- Peng Song
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Sarah Guerin
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Sherman Jun Rong Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Harshini Venkata Annadata
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Micheál Scully
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Ying Mei Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Max Roemer
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- NUSNNI-Nanocore, National University of Singapore, Singapore, 117411, Singapore
| |
Collapse
|
41
|
Broadnax AD, Lamport ZA, Scharmann B, Jurchescu OD, Welker ME. Ferrocenealkylsilane molecular rectifiers. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
James DD, Bayat A, Smith SR, Lacroix JC, McCreery RL. Nanometric building blocks for robust multifunctional molecular junctions. NANOSCALE HORIZONS 2018; 3:45-52. [PMID: 32254109 DOI: 10.1039/c7nh00109f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Much of the motivation for developing molecular electronic devices is the prospect of achieving novel electronic functions by varying molecular structure. We describe a "building block" approach for molecular junctions resulting in one, two or three nanometer-thick molecular layers in a commercially proven junction design. A single layer of anthraquinone between carbon electrodes provides a tunnel device with applications in electronic music, and a second layer of a thiophene derivative yields a molecular rectifier with quite different audio characteristics. A third layer of lithium benzoate produces a redox-active device with possible applications in non-volatile memory devices or on-chip energy storage. The building block approach forms a basis for "rational design" of electronic functions, in which layers of varying structure produce distinct and desirable electronic behaviours.
Collapse
Affiliation(s)
- David D James
- National Institute for Nanotechnology, University of Alberta, 11421 Saskatchewan Dr Edmonton, AB T6G 2M9, Canada.
| | | | | | | | | |
Collapse
|
43
|
Sangeeth CSS, Jiang L, Nijhuis CA. Bottom-electrode induced defects in self-assembled monolayer (SAM)-based tunnel junctions affect only the SAM resistance, not the contact resistance or SAM capacitance. RSC Adv 2018; 8:19939-19949. [PMID: 35541643 PMCID: PMC9080736 DOI: 10.1039/c8ra01513a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
In large area molecular junctions, defects are always present and can be caused by impurities and/or defects in the electrode materials and/or SAMs, but how they affect the electrical characteristics of junctions has rarely been studied. Usually, junctions are characterized by two-terminal current–voltage measurements where only the total current across the junction is measured, but with these methods one cannot distinguish how the individual components of the junctions are altered by the defects. Here we show that the roughness of the bottom-electrode is a crucial factor in determining the electrical properties of self-assembled monolayer (SAM)-based junctions. We used potentiodynamic impedance spectroscopy to reveal which components of the junctions are altered by defective bottom electrodes because this method allows for direct determination of all components that impede charge transport in the equivalent circuit of the junctions. We intentionally introduced defects via the roughness of the bottom electrode and found that these defects lower the SAM resistance but they do not alter the capacitance of the SAM or the contact resistance of the junction. In other words, defective junctions can be seen as “leaky capacitors” resulting in an underestimation of the SAM resistance of two orders of magnitude. These results help to improve the interpretation of data generated by SAM-based junctions and explain in part the observed large spread of reported tunneling rates for the same molecules measured across different platforms. In large area molecular junctions, defects are always present and can be caused by impurities and/or defects in the electrode materials and/or SAMs, but how they affect the electrical characteristics of junctions has rarely been studied.![]()
Collapse
Affiliation(s)
| | - Li Jiang
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Christian A. Nijhuis
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre
| |
Collapse
|