1
|
Yu X, Li H, Wu J, Wu Y, Li C, Li Y, Xu Z, Xu J, Qi Z, Hou C, Wang T, Ge Y, Liu J. Design of Multimodal Supramolecular Protein Assemblies via Enzyme-Substrate Interactions for Intracellular Antioxidant Regulation. NANO LETTERS 2025; 25:4532-4539. [PMID: 40065701 DOI: 10.1021/acs.nanolett.5c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Allosteric modulation of protein function, which involves effector binding triggering distant conformational changes, is crucial for cellular and metabolic control. However, achieving tunable control, structural diversity, and precise intracellular regulation remains challenging. Here, we designed dynamic supramolecular protein assemblies driven by enzyme-substrate interactions for antioxidant regulation in cells. Using a glutathione S-transferase modified with a cysteine mutation (GSTK77C), we engineered an effector molecule (GMP4M) containing a glutathione (GSH) moiety and maleimide group linked by a PEG chain. This system forms hierarchical protein assemblies with diverse morphologies, including nanowires, nanorings, nanobranches, and nanotwists, and switchable "ON/OFF" enzymatic activity modulated by endogenous GSH. The assemblies maintain structural integrity under physiological conditions, show remarkable reversibility, and outperform native GST in stability and environmental adaptability. This approach provides a versatile platform for creating tunable and diverse protein assemblies with broad applications in antioxidant therapies and biomedical interventions.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiarun Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yaqi Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Cong Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yujun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jiayun Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhenhui Qi
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chunxi Hou
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Tingting Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
2
|
Lou M, Ji S, Wu R, Zhu Y, Wu J, Zhang J. Microbial production systems and optimization strategies of antimicrobial peptides: a review. World J Microbiol Biotechnol 2025; 41:66. [PMID: 39920500 DOI: 10.1007/s11274-025-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Antibiotic resistance has become a public safety issue of the twenty-first century, posing a growing threat and drawing increased attention. Compared to traditional antibiotics, antimicrobial peptides (AMPs), as naturally produced small peptides, can target multiple pathways within pathogens and render them less prone to developing resistance. This makes them promising alternatives to antibiotics. However, traditional chemical synthesis methods face challenges, such as high costs, low yields, and poor stability, limiting the large-scale industrial production of AMPs. Despite extensive research to improve AMP production efficiency, issues such as low yields and complex extraction processes continue to pose significant barriers to commercial application. Therefore, there is an urgent need for new biosynthesis strategies and optimization methods to enhance AMP production efficiency and quality. This review summarizes the sources, classification, mechanisms of action and recent advances in the microbial synthesis of AMPs. It also explores innovative production methods, including recombinant microbial expression systems, fusion tags, codon optimization, tandem multimer expression, and hybrid peptide expression. Furthermore, we review the applications of gene editing technologies and artificial intelligence in AMP production, providing new perspectives and strategies for efficient, large-scale AMP production.
Collapse
Affiliation(s)
- Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China.
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
3
|
Li YS, Feng CF, Chen HR, Yang WG, Liu F, Su ML, Yuan R, Zhang LQ, Liang WB. Concentration and activation biresponsive strategy in one analysis system with simultaneous use of G4 structure-specific signal probe and enzyme-catalyzed reaction. Anal Chim Acta 2024; 1329:343246. [PMID: 39396307 DOI: 10.1016/j.aca.2024.343246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Enzymes with critical effects on life systems are regulated by expression and activation to modulate life processes. However, further insights into enzyme functions and mechanisms in various physiological processes are limited to concentration or activation analysis only. Currently, enzyme analysis has received notable attention, particularly simultaneous analysis of their concentration and activation in one system. Herein, N-methyl mesoporphyrin IX (NMM), a specific dye with notable structural selectivity for parallel G-quadruplex nucleic acid enzyme (G4h DNAzyme), is employed for the analysis of its concentration. In addition, the peroxidase activity of G4h DNAzyme is characterized based on G4h DNAzyme-catalyzed decomposition of H2O2 to continuously consume luminol. Accordingly, an increased fluorescence (FL) response of NMM and a decreased FL response of luminol could be simultaneously employed to analyze the concentration and activation of G4h DNAzyme. RESULT Herein, a novel concentration and activation biresponsive strategy is proposed using a G4h DNAzyme-based model that simultaneously employs a G4h structure-specific signal probe for enzyme concentration analysis and G4h DNAzyme-catalyzed reactions for enzyme activation analysis. Under optimal conditions, the biresponsive strategy can be effectively used for the simultaneous analysis of G4h DNAzyme concentration and activation, with detection limits of 718.7 pM and 233.4 nM respectively, delivering acceptable performances both in cell and in vitro. SIGNIFICANCE This strategy can not only be applied to concentration and activation analyses of G4h DNAzyme but can also be easily extended to other enzymes by simultaneously combining concentration analysis via target-induced direct reaction and activation analysis via target-induced catalytic reaction, offering deeper insights into various enzymes and enabling their effective implementation in bioanalysis and biochemistry.
Collapse
Affiliation(s)
- Yu-Shu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Feng Feng
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Guo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Fei Liu
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Li-Qun Zhang
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Font Farre M, Brown D, König M, Killinger BJ, Kaschani F, Kaiser M, Wright AT, Burton J, van der Hoorn RAL. Glutathione Transferase Photoaffinity Labeling Displays GST Induction by Safeners and Pathogen Infection. PLANT & CELL PHYSIOLOGY 2024; 65:128-141. [PMID: 37924215 PMCID: PMC10799724 DOI: 10.1093/pcp/pcad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Glutathione transferases (GSTs) represent a large and diverse enzyme family involved in the detoxification of small molecules by glutathione conjugation in crops, weeds and model plants. In this study, we introduce an easy and quick assay for photoaffinity labeling of GSTs to study GSTs globally in various plant species. The small-molecule probe contains glutathione, a photoreactive group and a minitag for coupling to reporter tags via click chemistry. Under UV irradiation, this probe quickly and robustly labels GSTs in crude protein extracts of different plant species. Purification and mass spectrometry (MS) analysis of labeled proteins from Arabidopsis identified 10 enriched GSTs from the Phi(F) and Tau(U) classes. Photoaffinity labeling of GSTs demonstrated GST induction in wheat seedlings upon treatment with safeners and in Arabidopsis leaves upon infection with avirulent bacteria. Treatment of Arabidopsis with salicylic acid (SA) analog benzothiadiazole (BTH) induces GST labeling independent of NPR1, the master regulator of SA. Six Phi- and Tau-class GSTs that are induced upon BTH treatment were identified, and their labeling was confirmed upon transient overexpression. These data demonstrate that GST photoaffinity labeling is a useful approach to studying GST induction in crude extracts of different plant species upon different types of stress.
Collapse
Affiliation(s)
- Maria Font Farre
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Daniel Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, Oxfordshire OX1 3TA, UK
| | - Maurice König
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Brian J Killinger
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Aaron T Wright
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Jonathan Burton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, Oxfordshire OX1 3TA, UK
| | | |
Collapse
|
5
|
Narwanti I, Yu ZY, Sethy B, Lai MJ, Lee HY, Olena P, Lee SB, Liou JP. 6-Regioisomeric 5,8-quinolinediones as potent CDC25 inhibitors against colorectal cancers. Eur J Med Chem 2023; 258:115505. [PMID: 37302341 DOI: 10.1016/j.ejmech.2023.115505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Precise and accurate control of cell cycle progression is required to maintain cell identity and proliferation. Failing to keep it will lead to genome instability and tumorigenesis. Cell Division Cycle 25 (CDC25) phosphatases are the key to regulating the activity of the master cell cycle controller, cyclin-dependent kinases (CDKs). Dysregulation of CDC25 has been shown to associate with several human malignancies. Here, we reported a series of derivatives of the CDC25 inhibitor, NSC663284, bearing quinones as core scaffolds and morpholin alkylamino side chains. Among these derivatives, the cytotoxic activity of the 6-isomer of 5,8-quinolinedione derivatives (6b, 16b, 17b, and 18b) displayed higher potency against colorectal cancer (CRC) cells. Compound 6b possessed the most antiproliferative activity, with IC50 values of 0.59 μM (DLD1) and 0.44 μM (HCT116). The treatment of compound 6b resulted in a remarkable effect on cell cycle progression, blocking S-phase progression in DLD1 cells straight away while slowing S-phase progression and accumulated cells in the G2/M phase in HCT116 cells. Furthermore, we showed that compound 6b inhibited CDK1 dephosphorylation and H4K20 methylation in cells. The treatment with compound 6b induced DNA damage and triggered apoptosis. Our study identifies compound 6b as a potent CDC25 inhibitor that induces genome instability and kills cancer cells through an apoptotic pathway, deserving further investigation to fulfill its candidacy as an anti-CRC agent.
Collapse
Affiliation(s)
- Iin Narwanti
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Zih-Yao Yu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bidyadhar Sethy
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | | | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Anderson AJ, Seebald LM, Arbour CA, Imperiali B. Probing Monotopic Phosphoglycosyl Transferases from Complex Cellular Milieu. ACS Chem Biol 2022; 17:3191-3197. [PMID: 36346917 PMCID: PMC9703085 DOI: 10.1021/acschembio.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monotopic phosphoglycosyl transferase enzymes (monoPGTs) initiate the assembly of prokaryotic glycoconjugates essential for bacterial survival and proliferation. MonoPGTs belong to an expansive superfamily with a diverse and richly annotated sequence space; however, the biochemical roles of most monoPGTs in glycoconjugate biosynthesis pathways remain elusive. To better understand these critical enzymes, we have implemented activity-based protein profiling (ABPP) probes as protein-centric, membrane protein compatible tools that lay the groundwork for understanding the activity and regulation of the monoPGT superfamily from a cellular proteome. With straightforward gel-based readouts, we demonstrate robust, covalent labeling at the active site of various representative monoPGTs from cell membrane fractions using 3-phenyl-2H-azirine probes.
Collapse
Affiliation(s)
- Alyssa J. Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Killinger BJ, Whidbey C, Sadler NC, DeLeon AJ, Munoz N, Kim YM, Wright AT. Activity-based protein profiling identifies alternating activation of enzymes involved in the bifidobacterium shunt pathway or mucin degradation in the gut microbiome response to soluble dietary fiber. NPJ Biofilms Microbiomes 2022; 8:60. [PMID: 35858888 PMCID: PMC9300575 DOI: 10.1038/s41522-022-00313-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
While deprivation of dietary fiber has been associated with adverse health outcomes, investigations concerning the effect of dietary fiber on the gut microbiome have been largely limited to compositional sequence-based analyses or utilize a defined microbiota not native to the host. To extend understanding of the microbiome's functional response to dietary fiber deprivation beyond correlative evidence from sequence-based analyses, approaches capable of measuring functional enzymatic activity are needed. In this study, we use an activity-based protein profiling (ABPP) approach to identify sugar metabolizing and transport proteins in native mouse gut microbiomes that respond with differential activity to the deprivation or supplementation of the soluble dietary fibers inulin and pectin. We found that the microbiome of mice subjected to a high fiber diet high in soluble fiber had increased functional activity of multiple proteins, including glycoside hydrolases, polysaccharide lyases, and sugar transport proteins from diverse taxa. The results point to an increase in activity of the Bifidobacterium shunt metabolic pathway in the microbiome of mice fed high fiber diets. In those subjected to a low fiber diet, we identified a shift from the degradation of dietary fibers to that of gut mucins, in particular by the recently isolated taxon "Musculibacterium intestinale", which experienced dramatic growth in response to fiber deprivation. When combined with metabolomics and shotgun metagenomics analyses, our findings provide a functional investigation of dietary fiber metabolism in the gut microbiome and demonstrates the power of a combined ABPP-multiomics approach for characterizing the response of the gut microbiome to perturbations.
Collapse
Affiliation(s)
- Bryan J Killinger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163, USA
| | - Christopher Whidbey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Chemistry Department, Seattle University, Seattle, WA, 98122, USA
| | - Natalie C Sadler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adrian J DeLeon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
8
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angew Chem Int Ed Engl 2022; 61:e202201136. [PMID: 35286003 PMCID: PMC9401033 DOI: 10.1002/anie.202201136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Martin Pfanzelt
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Stephan A. Sieber
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| |
Collapse
|
9
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Funktionalisierte Cofaktor‐Analoga für die Erforschung von Interaktomen und darüber hinaus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Martin Pfanzelt
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Stephan A. Sieber
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| |
Collapse
|
10
|
Putnam EE, Abellon-Ruiz J, Killinger BJ, Rosnow JJ, Wexler AG, Folta-Stogniew E, Wright AT, van den Berg B, Goodman AL. Gut Commensal Bacteroidetes Encode a Novel Class of Vitamin B 12-Binding Proteins. mBio 2022; 13:e0284521. [PMID: 35227073 PMCID: PMC8941943 DOI: 10.1128/mbio.02845-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Human gut commensal Bacteroidetes rely on multiple transport systems to acquire vitamin B12 and related cobamides for fitness in the gut. In addition to a set of conserved transport proteins, these systems also include a diverse repertoire of additional proteins with unknown function. Here, we report the function and structural characterization of one of these proteins, BtuH, which binds vitamin B12 directly via a C-terminal globular domain that has no known structural homologs. This protein is required for efficient B12 transport and competitive fitness in the gut, demonstrating that members of the heterogeneous suite of accessory proteins encoded in Bacteroides cobamide transport system loci can play key roles in vitamin acquisition. IMPORTANCE The gut microbiome is a complex microbial community with important impacts on human health. One of the major groups within the gut microbiome, the Bacteroidetes, rely on their ability to capture vitamin B12 and related molecules for fitness in the gut. Unlike well-studied model organisms, gut Bacteroidetes genomes often include multiple vitamin B12 transport systems with a heterogeneous set of components. The role, if any, of these components was unknown. Here, we identify new proteins that play key roles in vitamin B12 capture in these organisms. Notably, these proteins are associated with some B12 transport systems and not others (even in the same bacterial strain), suggesting that these systems may assemble into functionally distinct machines to capture vitamin B12 and related molecules.
Collapse
Affiliation(s)
- E E Putnam
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale Universitygrid.47100.32 School of Medicine, New Haven, Connecticut, USA
| | - J Abellon-Ruiz
- Biosciences Institute, The Medical School, Newcastle Universitygrid.1006.7, Newcastle upon Tyne, United Kingdom
| | - B J Killinger
- Biological Sciences Division, Pacific Northwest National Laboratorygrid.451303.0, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - J J Rosnow
- Biological Sciences Division, Pacific Northwest National Laboratorygrid.451303.0, Richland, Washington, USA
| | - A G Wexler
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale Universitygrid.47100.32 School of Medicine, New Haven, Connecticut, USA
| | - E Folta-Stogniew
- W. M. Keck Biotechnology Resource Laboratory, Yale Universitygrid.47100.32 School of Medicine, New Haven, USA
| | - A T Wright
- Biological Sciences Division, Pacific Northwest National Laboratorygrid.451303.0, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - B van den Berg
- Biosciences Institute, The Medical School, Newcastle Universitygrid.1006.7, Newcastle upon Tyne, United Kingdom
| | - A L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale Universitygrid.47100.32 School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Garcia WL, Miller CJ, Lomas GX, Gaither KA, Tyrrell KJ, Smith JN, Brandvold KR, Wright AT. Profiling How the Gut Microbiome Modulates Host Xenobiotic Metabolism in Response to Benzo[ a]pyrene and 1-Nitropyrene Exposure. Chem Res Toxicol 2022; 35:585-596. [PMID: 35347982 PMCID: PMC9878584 DOI: 10.1021/acs.chemrestox.1c00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The gut microbiome is a key contributor to xenobiotic metabolism. Polycyclic aromatic hydrocarbons (PAHs) are an abundant class of environmental contaminants that have varying levels of carcinogenicity depending on their individual structures. Little is known about how the gut microbiome affects the rates of PAH metabolism. This study sought to determine the role that the gut microbiome has in determining the various aspects of metabolism in the liver, before and after exposure to two structurally different PAHs, benzo[a]pyrene and 1-nitropyrene. Following exposures, the metabolic rates of PAH metabolism were measured, and activity-based protein profiling was performed. We observed differences in PAH metabolism rates between germ-free and conventional mice under both unexposed and exposed conditions. Our activity-based protein profiling (ABPP) analysis showed that, under unexposed conditions, there were only minor differences in total P450 activity in germ-free mice relative to conventional mice. However, we observed distinct activity profiles in response to corn oil vehicle and PAH treatment, primarily in the case of 1-NP treatment. This study revealed that the repertoire of active P450s in the liver is impacted by the presence of the gut microbiome, which modifies PAH metabolism in a substrate-specific fashion.
Collapse
Affiliation(s)
- Whitney L. Garcia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),Biological Systems Engineering Department, CAHNRS, Washington State University, Pullman, WA 99163 (USA)
| | - Carson J. Miller
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Gerard X. Lomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Kari A. Gaither
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Kimberly J. Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Jordan N. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (USA)
| | - Kristoffer R. Brandvold
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202 (USA),Corresponding Authors: Kristoffer R. Brandvold - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA); , Aaron T. Wright - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA);
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163 (USA),Corresponding Authors: Kristoffer R. Brandvold - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA); , Aaron T. Wright - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA);
| |
Collapse
|
12
|
Pande P, Madeen EP, Williams DE, Crowell SR, Ognibene TJ, Turteltaub KW, Corley RA, Smith JN. Translating dosimetry of Dibenzo[def,p]chrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol Appl Pharmacol 2022; 438:115830. [PMID: 34933053 PMCID: PMC9264404 DOI: 10.1016/j.taap.2021.115830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.
Collapse
Affiliation(s)
- Paritosh Pande
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erin P Madeen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Susan R Crowell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ted J Ognibene
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Ken W Turteltaub
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Richard A Corley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
13
|
Xu B, Tong T, Wang X, Liu F, Zhang X, Hu X, Li X, Yang X, Liao F. Short divalent ethacrynic amides as pro-inhibitors of glutathione S-transferase isozyme Mu and potent sensitisers of cisplatin-resistant ovarian cancers. J Enzyme Inhib Med Chem 2022; 37:728-742. [PMID: 35176963 PMCID: PMC8865112 DOI: 10.1080/14756366.2022.2038591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The linking of ethacrynic acid with ethylenediamine and 1,4-butanediamine gave EDEA and BDEA, respectively, as membrane-permeable divalent pro-inhibitors of glutathione S-transferase (GST). Their divalent glutathione conjugates showed subnanomolar inhibition and divalence-binding to GSTmu (GSTM) (PDB: 5HWL) at ∼0.35 min-1. In cisplatin-resistant SK-OV-3, COC1, SGC7901 and A549 cells, GSTM activities probed by 15 nM BDEA or EDEA revealed 5-fold and 1.0-fold increases in cisplatin-resistant SK-OV-3 and COC1 cells, respectively, in comparison with the susceptible parental cells. Being tolerable by HEK293 and LO2 cells, BDEA at 0.2 μM sensitised resistant SK-OV-3 and COC1 cells by ∼3- and ∼5-folds, respectively, released cytochrome c and increased apoptosis; EDEA at 1.0 μM sensitised resistant SK-OV-3 and A549 cells by ∼5- and ∼7-fold, respectively. EDEA at 1.7 μg/g sensitised resistant SK-OV-3 cells to cisplatin at 3.3 μg/g in nude mouse xenograft model. BDEA and EDEA are promising leads for probing cellular GSTM and sensitising cisplatin-resistant ovarian cancers.
Collapse
Affiliation(s)
- Bangtian Xu
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Tong
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fang Liu
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaolei Hu
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinpeng Li
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaolan Yang
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fei Liao
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Stoddard EG, Nag S, Martin J, Tyrrell KJ, Gibbins T, Anderson KA, Shukla AK, Corley R, Wright AT, Smith JN. Exposure to an Environmental Mixture of Polycyclic Aromatic Hydrocarbons Induces Hepatic Cytochrome P450 Enzymes in Mice. Chem Res Toxicol 2021; 34:2145-2156. [PMID: 34472326 DOI: 10.1021/acs.chemrestox.1c00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 enzymes (CYPs) play an important role in bioactivating or detoxifying polycyclic aromatic hydrocarbons (PAHs), common environmental contaminants. While it is widely accepted that exposure to PAHs induces CYPs, effectively increasing rates of xenobiotic metabolism, dose- and time-response patterns of CYP induction are not well-known. In order to better understand dose- and time-response relationships of individual CYPs following induction, we exposed B6129SF1/J mice to single or repeated doses (2-180 μmol/kg/d) of benzo[a]pyrene (BaP) or Supermix-10, a mixture of the top 10 most abundant PAHs found at the Portland Harbor Superfund Site. In hepatic microsomes from exposed mice, we measured amounts of active CYPs using activity-based protein profiling and total CYP expression using global proteomics. We observed rapid Cyp1a1 induction after 6 h at the lowest PAH exposures and broad induction of many CYPs after 3 daily PAH doses at 72 h following the first dose. Using samples displaying Cyp1a1 induction, we observed significantly higher metabolic affinity for BaP metabolism (Km reduced 3-fold), 3-fold higher intrinsic clearance, but no changes to the Vmax. Mice dosed with the highest PAH exposures exhibited 1.7-5-fold higher intrinsic clearance rates for BaP compared to controls and higher Vmax values indicating greater amounts of enzymes capable of metabolizing BaP. This study demonstrates exposure to PAHs found at superfund sites induces enzymes in dose- and time-dependent patterns in mice. Accounting for specific changes in enzyme profiles, relative rates of PAH bioactivation and detoxification, and resulting risk will help translate internal dosimetry of animal models to humans and improve risk assessments of PAHs at superfund sites.
Collapse
Affiliation(s)
- Ethan G Stoddard
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Subhasree Nag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jude Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kimberly J Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Teresa Gibbins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard Corley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
15
|
Killinger BJ, Petyuk VA, Wright AT. Detecting differential protein abundance by combining peptide level P-values. Mol Omics 2020; 16:554-562. [PMID: 32924053 DOI: 10.1039/d0mo00045k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The majority of methods for detecting differentially abundant proteins between samples in label-free LC-MS bottom-up proteomics experiments rely on statistically testing inferred protein abundances derived from peptide ionization intensities or averaging peptide level statistics. Here, we statistically test peptide ionization intensities directly and combine the resulting dependent P-values using the Empirical Brown's Method (EBM), avoiding error introduced through the estimation of protein abundances or summarizing test statistics. We show that on a spike-in proteomics dataset, a peptide level approach using EBM outperforms differential abundance detection using a protein level approach and several analysis workflows, including MSstats. Additionally, we demonstrate the effectiveness of this approach by detecting enriched proteins from an activity-based protein profiling dataset.
Collapse
Affiliation(s)
- Bryan J Killinger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|
16
|
Zegeye EK, Sadler NC, Lomas GX, Attah IK, Jansson JK, Hofmockel KS, Anderton CR, Wright AT. Activity-Based Protein Profiling of Chitin Catabolism. Chembiochem 2020; 22:717-723. [PMID: 33049124 DOI: 10.1002/cbic.202000616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Indexed: 01/09/2023]
Abstract
The microbial catabolism of chitin, an abundant and ubiquitous environmental organic polymer, is a fundamental cog in terrestrial and aquatic carbon and nitrogen cycles. Despite the importance of this critical bio-geochemical function, there is a limited understanding of the synergy between the various hydrolytic and accessory enzymes involved in chitin catabolism. To address this deficit, we synthesized activity-based probes (ABPs) designed to target active chitinolytic enzymes by modifying the chitin subunits N-acetyl glucosamine and chitotriose. The ABPs were used to determine the active complement of chitinolytic enzymes produced over time by the soil bacterium Cellvibrio japonicus treated with various C substrates. We demonstrate the utility of these ABPs in determining the synergy between various enzymes involved in chitin catabolism. The strategy can be used to gain molecular-level insights that can be used to better understand microbial roles in soil bio-geochemical cycling in the face of a changing climate.
Collapse
Affiliation(s)
- Elias K Zegeye
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA 99164, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Natalie C Sadler
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Gerard X Lomas
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Isaac K Attah
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
- Department of Ecology, Evolution and Organismal Biology Iowa State University, 251 Bessey Hall, Ames, Iowa (USA) 50011
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA
| | - Aaron T Wright
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA 99164, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| |
Collapse
|
17
|
Abstract
Drug-induced liver injury (DILI) has been a long-standing concern of modern medicine, and the single most frequent reason for drug nonapprovals and postapproval restrictions or withdrawals. Chemical probes for early diagnosis of DILI has triggered a tremendous interest in the field of molecular imaging. In this review, we make a brief summary of the recently developed chemical probes and their applications in DILI imaging with special attention to the design of chemical probes, mechanism of their actions and their performances in DILI imaging.
Collapse
|
18
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
Yin F, Wang Z, Jiang Y, Zhang T, Wang Z, Hua Y, Song Z, Liu J, Xu W, Xu J, Cai Z, Ding J. Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 23:102085. [DOI: 10.1016/j.nano.2019.102085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/27/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
|
20
|
Lin VS, Volk RF, DeLeon AJ, Anderson LN, Purvine SO, Shukla AK, Bernstein HC, Smith JN, Wright AT. Structure Dependent Determination of Organophosphate Targets in Mammalian Tissues Using Activity-Based Protein Profiling. Chem Res Toxicol 2019; 33:414-425. [DOI: 10.1021/acs.chemrestox.9b00344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vivian S. Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Regan F. Volk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Adrian J. DeLeon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anil K. Shukla
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hans C. Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø 9019, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø 9019, Norway
| | - Jordan N. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
21
|
Clinical Role of Epigenetics and Network Analysis in Eye Diseases: A Translational Science Review. J Ophthalmol 2019; 2019:2424956. [PMID: 31976085 PMCID: PMC6959156 DOI: 10.1155/2019/2424956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Network medicine is a molecular-bioinformatic approach analyzing gene-gene interactions that can perturb the human interactome. This review focuses on epigenetic changes involved in several ocular diseases, such as DNA methylation, histone and nonhistone post-translational modifications, and noncoding RNA regulators. Although changes in aberrant DNA methylation play a major role in the pathogenesis of most ocular diseases, histone modifications are seldom investigated. Hypermethylation in TGM-2 and hypomethylation in MMP-2/CD24 promoter genes may play a crucial role in pterygium development; hypermethylation in regulatory regions of GSTP1 and OGG1 genes appear to be diagnostic biomarkers of cataract; hypomethylation of TGF-β1 promoter may trigger glaucoma onset; hypermethylation of the LOXL1 gene might be associated with pseudoexfoliation syndrome. A large panel of upregulated micro-RNAs (miRNAs), including hsa-hsa-miR-494, hsa-let-7e, hsa-miR-513-1, hsa-miR-513-2, hsa-miR-518c, hsa-miR-129-1, hsa-miR-129-2, hsa-miR-198, hsa-miR-492, hsa-miR-498, hsa-miR-320, hsa-miR-503, and hsa-miR-373, ∗ may have a putative role in the development of retinoblastoma. Hypermethylation of H3K4 and hypomethylation of H3K27 at the TGFBIp locus are putative pathogenic mechanisms involved in corneal dystrophies. Determining how, where, and when specific epigenetic changes trigger ocular diseases may provide useful clinical biomarkers for their prevention, diagnosis, and management, as well as innovative drug targets. PF-04523655, a 19-nucleotide methylated double-stranded siRNA targeting the RTP80 gene, showed a dose-related improvement in best-corrected visual acuity (BCVA) in patients affected by diabetic macular edema. The observed results support a clinical network-based research program aimed to clarify the role of epigenetic regulators in the development of ocular diseases and personalized therapy.
Collapse
|
22
|
Xu M, Yang Q, Xu L, Rao Z, Cao D, Gao M, Liu S. Protein target identification and toxicological mechanism investigation of silver nanoparticles-induced hepatotoxicity by integrating proteomic and metallomic strategies. Part Fibre Toxicol 2019; 16:46. [PMID: 31775802 PMCID: PMC6880521 DOI: 10.1186/s12989-019-0322-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/13/2019] [Indexed: 11/17/2022] Open
Abstract
Background Silver nanoparticles (AgNPs), as promising anti-microbials and anti-cancer therapeutics, the toxicological effect and killing efficiency towards cells need in-depth investigation for better applications in daily life and healthcare fields. Thus far, limited studies have yet elucidated the protein targets of AgNPs and silver ions (Ag+) released from intracellular AgNPs dissolution in hepatocytes, as well as potential interaction mechanism. Results Through integrating proteomic and metallomic methodologies, six intracellular protein targets (i.e. glutathione S-transferase (GST), peroxiredoxin, myosin, elongation factor 1, 60S ribosomal protein and 40S ribosomal protein) were ultimately identified and confirmed as AgNPs- and Ag+ −binding proteins. Toward a deep understanding the direct interaction mechanism between AgNPs and these protein targets, GST was chosen as a representative for toxicological investigation. The results revealed that AgNPs could remarkably deplete the enzyme activity of GST but did not depress the expressions, resulting in elevated intracellular oxidative stress and cell death. Finally, both “Ag+ effect” and “particle-specific effect” were demonstrated to concomitantly account for the overall cytotoxicity of AgNPs, and the former relatively contributed more via activity depletion of GST. Conclusions Collectively, our major contribution is the development of an efficient strategy to identify the intracellular AgNPs-targeted protein (e.g. GST) through integrating proteomic and metallomic methodologies, which is helpful to accelerate the interpretation of underlying toxicological mechanism of AgNPs.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiuyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Stoddard EG, Killinger BJ, Nag SA, Corley RA, Smith JN, Wright AT. Benzo[ a]pyrene Induction of Glutathione S-Transferases: An Activity-Based Protein Profiling Investigation. Chem Res Toxicol 2019; 32:1259-1267. [PMID: 30938511 PMCID: PMC7138413 DOI: 10.1021/acs.chemrestox.9b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.
Collapse
Affiliation(s)
- Ethan G. Stoddard
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bryan J. Killinger
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| | - Subhasree A. Nag
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard A. Corley
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N. Smith
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Aaron T. Wright
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
24
|
Ordóñez YF, Abad JL, Aseeri M, Casas J, Garcia V, Casasampere M, Schuchman EH, Levade T, Delgado A, Triola G, Fabrias G. Activity-Based Imaging of Acid Ceramidase in Living Cells. J Am Chem Soc 2019; 141:7736-7742. [PMID: 31030513 DOI: 10.1021/jacs.8b11687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Acid ceramidase (AC) hydrolyzes ceramides into sphingoid bases and fatty acids. The enzyme is overexpressed in several types of cancer and Alzheimer's disease, and its genetic defect causes different incurable disorders. The availability of a method for the specific visualization of catalytically active AC in intracellular compartments is crucial for diagnosis and follow-up of therapeutic strategies in diseases linked to altered AC activity. This work was undertaken to develop activity-based probes for the detection of AC. Several analogues of the AC inhibitor SABRAC were synthesized and found to act as very potent (two-digit nM range) irreversible AC inhibitors by reaction with the active site Cys143. Detection of active AC in cell-free systems was achieved either by using fluorescent SABRAC analogues or by click chemistry with an azide-substituted analogue. The compound affording the best features allowed the unprecedented labeling of active AC in living cells.
Collapse
Affiliation(s)
- Yadira F Ordóñez
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain
| | - José Luís Abad
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain
| | - Mazen Aseeri
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain
| | - Josefina Casas
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain.,Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD) , 28029 Madrid , Spain
| | | | - Mireia Casasampere
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York 10029 , United States
| | - Thierry Levade
- INSERM, UMR1037 CRCT , 31037 Toulouse , France.,Laboratoire de Biochimie Métabolique , Institut Fédératif de Biologie, CHU Purpan , 31300 Toulouse , France
| | - Antonio Delgado
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain.,Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
| | - Gemma Triola
- Chemical Biology group, Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain
| | - Gemma Fabrias
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona, 18 , 08034 Barcelona , Spain.,Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD) , 28029 Madrid , Spain
| |
Collapse
|
25
|
New Thiol-Sensitive Dye Application for Measuring Oxidative Stress in Cell Cultures. Sci Rep 2019; 9:1659. [PMID: 30733499 PMCID: PMC6367440 DOI: 10.1038/s41598-018-38132-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
A xanthene derivative, Granada Green dinitrobenzene sulfonate (GGDNBS), has been synthesized to assay cellular oxidative stress based on changes in the concentration of biothiols. The dye is able to react with biological thiols by a thiolysis reaction that promotes a change in fluorescence intensity. To demonstrate the usefulness of GGDNBS for in vivo oxidative stress measurements, 661 W photoreceptor-derived cells were exposed to light to induce ROS generation, and changes in GGDNBS fluorescence were measured. In these cells, GGDNBS fluorescence was correlated with the biothiol levels measured by an enzymatic method. Therefore, GGDNBS allows us to monitor changes in the levels of biothiols associated with ROS generation via single-cell bioimaging.
Collapse
|
26
|
Song A, Feng T, Shen X, Gai S, Zhai Y, Chen H. Fluorescence detection of glutathione S-transferases in a low GSH level environment. Chem Commun (Camb) 2019; 55:7219-7222. [DOI: 10.1039/c9cc02702e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glutathione S-transferases (GSTs) play crucial roles in the detoxification process and the development of drug-resistance and are proved to be important markers for various tumors.
Collapse
Affiliation(s)
- Aiguo Song
- Institute of Medical Research
- Northwestern Polytechnical University
- Xi’an
- P. R. China
| | - Tian Feng
- Department of Chinese Materia Medica and Natural Medicines
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Xin Shen
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Shouchang Gai
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Yumeng Zhai
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Hui Chen
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| |
Collapse
|
27
|
Prejanò M, Marino T, Russo N. On the Inhibition Mechanism of Glutathione Transferase P1 by Piperlongumine. Insight From Theory. Front Chem 2018; 6:606. [PMID: 30619815 PMCID: PMC6296316 DOI: 10.3389/fchem.2018.00606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Piperlongumine (PL) is an anticancer compound whose activity is related to the inhibition of human glutathione transferase of pi class (GSTP1) overexpressed in cancerous tumors and implicated in the metabolism of electrophilic compounds. In the present work, the inhibition mechanism of hydrolyzed piperlongumine (hPL) has been investigated employing QM and QM/MM levels of theory. The potential energy surfaces (PESs) underline the contributions of Tyr residue close to G site in the catalytic pocket of the enzyme. The proposed mechanism occurs through a one-step process represented by the nucleophilic addition of the glutathione thiol to electrophilic species giving rise to the simultaneous C-S and H-C bonds formation. Both the used methods give barrier heights (19.8 and 21.5 kcal mol−1 at QM/MM and QM, respectively) close to that experimentally measured for the C-S bond formations (23.8 kcal mol−1).
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
28
|
Zhang KY, Zhang T, Wei H, Wu Q, Liu S, Zhao Q, Huang W. Phosphorescent iridium(iii) complexes capable of imaging and distinguishing between exogenous and endogenous analytes in living cells. Chem Sci 2018; 9:7236-7240. [PMID: 30288243 PMCID: PMC6148462 DOI: 10.1039/c8sc02984a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Many luminescent probes have been developed for intracellular imaging and sensing. During cellular luminescence sensing, it is difficult to distinguish species generated inside cells from those internalized from extracellular environments since they are chemically the same and lead to the same luminescence response of the probes. Considering that endogenous species usually give more information about the physiological and pathological parameters of the cells while internalized species often reflect the extracellular environmental conditions, we herein reported a series of cyclometalated iridium(iii) complexes as phosphorescent probes that are partially retained in the cell membrane during their cellular uptake. The utilization of the probes for sensing and distinguishing between exogenous and endogenous analytes has been demonstrated using hypoxia and hypochlorite as two examples of target analytes. The endogenous analytes lead to the luminescence response of the intracellular probes while the exogenous analytes are reported by the probes retained in the cell membrane during their internalization.
Collapse
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Taiwei Zhang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Qi Wu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ; .,Xi'an Institute of Flexible Electronics (XIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , P. R. China
| |
Collapse
|
29
|
Murale DP, Hong SC, Haque MM, Lee JS. Chloro-Functionalized Photo-crosslinking BODIPY for Glutathione Sensing and Subcellular Trafficking. Chembiochem 2018. [DOI: 10.1002/cbic.201800059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dhiraj P. Murale
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Seong Cheol Hong
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biological Chemistry; KIST-School UST; 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Md Mamunul Haque
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Korea Institute of Science and Technology; 5 Hwarang-ro 14gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biological Chemistry; KIST-School UST; 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
30
|
Smith JN, Tyrrell KJ, Hansen JR, Thomas DG, Murphree TA, Shukla A, Luders T, Madden JM, Li Y, Wright AT, Piehowski PD. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling. Anal Chem 2017; 89:13559-13566. [PMID: 29164873 DOI: 10.1021/acs.analchem.7b03984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n = 5) were fed 13C6-labeled lysine ("heavy") feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed ("light"), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins and quantify heavy/light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ∼70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing turnover measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein biomarkers through better understanding of processes governing biomarker kinetics.
Collapse
Affiliation(s)
- Jordan Ned Smith
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Kimberly J Tyrrell
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Joshua R Hansen
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Dennis G Thomas
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Taylor A Murphree
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Anil Shukla
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Teresa Luders
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - James M Madden
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Yunying Li
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Aaron T Wright
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Paul D Piehowski
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| |
Collapse
|