1
|
Klinman JP, Miller SM, Richards NGJ. A Foundational Shift in Models for Enzyme Function. J Am Chem Soc 2025. [PMID: 40277147 DOI: 10.1021/jacs.5c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
This Perspective addresses the unresolved, and still hotly contested, question of how enzymes transition from stable enzyme-substrate (ES) complexes to successful, femtosecond barrier crossings. By extending Marcus theory to enzyme-catalyzed reactions, we argue that environmental reorganization of the protein scaffold, together with associated water molecules, achieves the intersection of reactant and product potential energy surfaces. After discussing the experimentally demonstrated importance of reduced activation enthalpy in enzyme-catalyzed transformations, we describe new methodologies that measure the temperature dependence of (i) time-averaged hydrogen/deuterium exchange into backbone amides and (ii) time-dependent Stokes shifts to longer emission wavelengths in appended chromophores at the protein/water interface. These methods not only identify specific pathways for the transfer of thermal energy from solvent to the reacting bonds of bound substrates but also suggest that collective thermally activated protein restructuring must occur very rapidly (on the ns-ps time scale) over long distances. Based on these findings, we introduce a comprehensive model for how barrier crossing takes place from the ES complex. This exploits the structural preorganization inherent in protein folding and subsequent conformational sampling, which optimally positions essential catalytic components within ES ground states and correctly places reactive bonds in the substrate(s) relative to embedded energy transfer networks connecting the protein surface to the active site. The existence of these anisotropic energy distribution pathways introduces a new dimension into the ongoing quest for improved de novo enzyme design.
Collapse
Affiliation(s)
| | - Susan M Miller
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Nigel G J Richards
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
2
|
Dubey P, Somani A, Lin J, Iavarone AT, Klinman JP. Identification of Scaffold Specific Energy Transfer Networks in the Enthalpic Activation of Orotidine 5'-Monophosphate Decarboxylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635545. [PMID: 39975186 PMCID: PMC11838380 DOI: 10.1101/2025.01.29.635545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Orotidine 5'-monophosphate decarboxylase (OMPDC) is one of the most efficient enzyme systems studied, enhancing the decarboxylation of OMP to uridine 5'-monophosphate (UMP) by ca. 17 orders of magnitude, primarily by reducing the enthalpy of activation by ca. 28 kcal/mol. Despite a substantial reduction in activation enthalpy, OMPDC requires 15 kcal/mol of activation energy post-ES complex formation. This study investigates the physical basis of how thermal energy from solvent collisions is directed into the active site of enzyme to enable efficient thermal activation of the reaction. Comparative study of temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX) for WT and mutant forms of enzymes has recently been shown to uncover site specific protein networks for thermal energy transfer from solvent to enzyme active sites. In this study, we interrogate region-specific changes in the enthalpic barrier for local protein flexibility using a native OMPDC from Methanothermobacter thermautotrophicus (Mt-OMPDC) and a single site variant (Leu123Ala) that alters the activation enthalpy for catalytic turnover. The data obtained implicate four spatially resolved, thermally sensitive networks that originate at different protein/solvent interfaces and terminate at sites surrounding the substrate near the substrate phosphate-binding region (R203), the substrate- ribose binding region (K42), and a reaction enhancing loop5 (S127). These are proposed to act synergistically, transiently optimizing the position and electrostatics of the reactive carboxylate of the substrate to facilitate activated complex formation. The uncovered complexity of thermal activation networks in Mt-OMPDC distinguishes this enzyme from other members of the TIM barrel family previously investigated by TDHDX. The new findings extend the essential role of protein scaffold dynamics in orchestrating enzyme activity, with broad implications for the design of highly efficient biocatalysts.
Collapse
Affiliation(s)
- Pankaj Dubey
- California Institute for Quantitative Biosciences, University of California Berkeley; Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
| | - Anish Somani
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
| | - Jessica Lin
- Department of Bioengineering, University of California Berkeley; Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley; Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley; Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, California 94720, United States
| |
Collapse
|
3
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase. Nat Commun 2024; 15:10538. [PMID: 39627226 PMCID: PMC11615228 DOI: 10.1038/s41467-024-54912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Alanya J Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK.
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
| |
Collapse
|
4
|
Qiu G. Exceptions, Paradoxes, and Their Resolutions in Chemical Reactivity. J Org Chem 2024; 89:16307-16316. [PMID: 39506459 PMCID: PMC11574852 DOI: 10.1021/acs.joc.4c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Progress in chemistry has primarily been framed through inductive processes, leading to the frequent emergence of exceptions and unexpected reactivities. These anomalies─ranging from surprising reactivity trends and paradoxical understandings to unanticipated parameter influences and unexpected successes or failures in synthetic methods─offer valuable insights that can drive scientific discovery. While it is commonly accepted that such exceptions can drive progress, many have been passively accepted without being explored for opportunities. Although numerous chemists have addressed exceptions and refined chemical models and theories, employing a systematic framework for actively exploring and understanding the underlying causes of exceptions could resolve paradoxes in broader contexts and create a greater impact than treating anomalies as isolated occurrences. This perspective demonstrates a proactive epistemic approach to uncovering the opportunities presented by exceptions and promotes deliberate, thoughtful engagement with paradoxes and anomalies. While the examples primarily focus on physical organic chemistry, the concepts are broadly applicable across various fields in chemical science. The thinking framework presented here is neither exhaustive nor prescriptive, but it outlines one of many potentially possible ways to inspire further development in how these anomalies could be harnessed for advancement.
Collapse
Affiliation(s)
- Guanqi Qiu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Zhuravlev A, Gavrilyuk V, Chen X, Aksenov V, Kuhn H, Ivanov I. Structural and Functional Biology of Mammalian ALOX Isoforms with Particular Emphasis on Enzyme Dimerization and Their Allosteric Properties. Int J Mol Sci 2024; 25:12058. [PMID: 39596127 PMCID: PMC11593649 DOI: 10.3390/ijms252212058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The human genome involves six functional arachidonic acid (AA) lipoxygenase (ALOX) genes, and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiations and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. Humans express two different AA 15-lipoxygenating ALOX isoforms, and these enzymes are called ALOX15 (15-LOX1) and ALOX15B (15-LOX2). Chromosomal localization, sequence alignments, and comparison of the enzyme properties suggest that pig and mouse ALOX15 orthologs (leukocyte-type 12-LOX) on the one hand and rabbit and human ALOX15 orthologs on the other (reticulocyte-type 15-LOX1) belong to the same enzyme family despite their different reaction specificities with AA as a substrate. In contrast, human ALOX12 (platelet-type 12-LOX), as well as pig and mouse ALOX15 (leukocyte-type 12-LOX), belong to different enzyme families, although they exhibit a similar reaction specificity with AA as a substrate. The complex multiplicity of mammalian ALOX isoforms and the controversial enzyme nomenclatures are highly confusing and prompted us to summarize the current knowledge on the biological functions, enzymatic properties, and allosteric regulation mechanisms of mammalian ALOX15, ALOX15B, and ALOX12 orthologs that belong to three different enzyme sub-families.
Collapse
Affiliation(s)
- Alexander Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Viktor Gavrilyuk
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Xin Chen
- Department of Biochemistry, Charite, University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Vladislav Aksenov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Hartmut Kuhn
- Department of Biochemistry, Charite, University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| |
Collapse
|
6
|
Li ZL, Pei S, Chen Z, Huang TY, Wang XD, Shen L, Chen X, Wang QQ, Wang DX, Ao YF. Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity. Nat Commun 2024; 15:8778. [PMID: 39389964 PMCID: PMC11467325 DOI: 10.1038/s41467-024-53048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.
Collapse
Affiliation(s)
- Zi-Lin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuxin Pei
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Teng-Yu Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China.
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D Variability Analysis Reveals a Hidden Conformational Change Controlling Ammonia Transport in Human Asparagine Synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.541009. [PMID: 37292727 PMCID: PMC10245805 DOI: 10.1101/2023.05.16.541009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How motions in enzymes might be linked to catalytic function is of considerable general interest. Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we use 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) to identify a functional role for the Arg-142 side chain as a gate that mediates ammonia access to a catalytically relevant intramolecular tunnel. Our 3DVA-derived hypothesis is assessed experimentally, using the R142I variant in which Arg-142 is replaced by isoleucine, and by molecular dynamics (MD) simulations on independent, computational models of the WT human ASNS monomer and its catalytically relevant, ternary complex with β-aspartyl-AMP and MgPPi. Residue fluctuations in the MD trajectories for the human ASNS monomer are consistent with those determined for 3DVA-derived structures. These MD simulations also indicate that the gating function of Arg-142 is separate from the molecular events that form a continuous tunnel linking the two active sites. Experimental support for Arg-142 playing a role in intramolecular ammonia translocation is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS. MD simulations of computational models for the R142I variant and the R142I/β-aspartyl-AMP/MgPPi ternary complex provide a possible molecular basis for this observation. Overall, the combination of 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alanya. J. Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze della vita e dell’ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, 75015 Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, 69367 Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| |
Collapse
|
8
|
Jakobowski A, Hill SG, Guy SW, Offenbacher AR. Substitution of the mononuclear, non-heme iron cofactor in lipoxygenases for structural studies. Methods Enzymol 2024; 704:59-87. [PMID: 39300657 DOI: 10.1016/bs.mie.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This Chapter describes methods for the biosynthetic substitution of the mononuclear, non-heme iron in plant and animal lipoxygenases (LOXs). Substitution of this iron center for a manganese ion results in an inactive, yet faithful structural surrogate of the LOX enzymes. This metal ion substitution permits structural and dynamical studies of enzyme-substrate complexes in solution and immobilized on lipid membrane surfaces. Representative procedures for two LOXs, soybean lipoxygenase (SLO) from plants and human epithelial 15-lipoxygenase-2 (15-LOX-2) from mammals, are described as examples.
Collapse
Affiliation(s)
- Andrew Jakobowski
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - S Wyatt Guy
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
9
|
Whittington C, Sharma A, Hill SG, Iavarone AT, Hoffman BM, Offenbacher AR. Impact of N-Glycosylation on Protein Structure and Dynamics Linked to Enzymatic C-H Activation in the M. oryzae Lipoxygenase. Biochemistry 2024; 63:1335-1346. [PMID: 38690768 PMCID: PMC11587536 DOI: 10.1021/acs.biochem.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.
Collapse
Affiliation(s)
- Chris Whittington
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| |
Collapse
|
10
|
Rapp C, Borg A, Nidetzky B. Interplay of structural preorganization and conformational sampling in UDP-glucuronic acid 4-epimerase catalysis. Nat Commun 2024; 15:3897. [PMID: 38719841 PMCID: PMC11519531 DOI: 10.1038/s41467-024-48281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding enzyme catalysis as connected to protein motions is a major challenge. Here, based on temperature kinetic studies combined with isotope effect measurements, we obtain energetic description of C-H activation in NAD-dependent UDP-glucuronic acid C4 epimerase. Approach from the ensemble-averaged ground state (GS) to the transition state-like reactive conformation (TSRC) involves, alongside uptake of heat (Δ H ‡ = 54 kJ mol-1), significant loss in entropy ( - T Δ S ‡ = 20 kJ mol-1; 298 K) and negative activation heat capacity (Δ C p ‡ = -0.64 kJ mol-1 K-1). Thermodynamic changes suggest the requirement for restricting configurational freedom at the GS to populate the TSRC. Enzyme variants affecting the electrostatic GS preorganization reveal active-site interactions important for precise TSRC sampling and H-transfer. Collectively, our study captures thermodynamic effects associated with TSRC sampling and establishes rigid positioning for C-H activation in an enzyme active site that requires conformational flexibility in fulfillment of its natural epimerase function.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Annika Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
11
|
Ohler A, Taylor PE, Bledsoe JA, Iavarone AT, Gilbert NC, Offenbacher AR. Identification of the Thermal Activation Network in Human 15-Lipoxygenase-2: Divergence from Plant Orthologs and Its Relationship to Hydrogen Tunneling Activation Barriers. ACS Catal 2024; 14:5444-5457. [PMID: 38601784 PMCID: PMC11003420 DOI: 10.1021/acscatal.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The oxidation of polyunsaturated fatty acids by lipoxygenases (LOXs) is initiated by a C-H cleavage step in which the hydrogen atom is transferred quantum mechanically (i.e., via tunneling). In these reactions, protein thermal motions facilitate the conversion of ground-state enzyme-substrate complexes to tunneling-ready configurations and are thus important for transferring energy from the solvent to the active site for the activation of catalysis. In this report, we employed temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX-MS) to identify catalytically linked, thermally activated peptides in a representative animal LOX, human epithelial 15-LOX-2. TDHDX-MS of wild-type 15-LOX-2 was compared to two active site mutations that retain structural stability but have increased activation energies (Ea) of catalysis. The Ea value of one variant, V427L, is implicated to arise from suboptimal substrate positioning by increased active-site side chain rotamer dynamics, as determined by X-ray crystallography and ensemble refinement. The resolved thermal network from the comparative Eas of TDHDX-MS between wild-type and V426A is localized along the front face of the 15-LOX-2 catalytic domain. The network contains a clustering of isoleucine, leucine, and valine side chains within the helical peptides. This thermal network of 15-LOX-2 is different in location, area, and backbone structure compared to a model plant lipoxygenase from soybean that exhibits a low Ea value of catalysis compared to the human ortholog. The presented data provide insights into the divergence of thermally activated protein motions in plant and animal LOXs and their relationships to the enthalpic barriers for facilitating hydrogen tunneling.
Collapse
Affiliation(s)
- Amanda Ohler
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Paris E. Taylor
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Jasmine A. Bledsoe
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Anthony T. Iavarone
- QB3/Chemistry
Mass Spectrometry Facility, University of
California, Berkeley, Berkeley, California 94720, United States
| | - Nathaniel C. Gilbert
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Adam R. Offenbacher
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
12
|
Qiu G, Schreiner PR. The Intrinsic Barrier Width and Its Role in Chemical Reactivity. ACS CENTRAL SCIENCE 2023; 9:2129-2137. [PMID: 38033803 PMCID: PMC10683502 DOI: 10.1021/acscentsci.3c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Chemical reactions are in virtually all cases understood and explained on the basis of depicting the molecular potential energy landscape, i.e., the change in atomic positions vs the free-energy change. With such landscapes, the features of the reaction barriers solely determine chemical reactivities. The Marcus dissection of the barrier height (activation energy) on such a potential into the thermodynamically independent (intrinsic) and the thermodynamically dependent (Bell-Evans-Polanyi) contributions successfully models the interplay of reaction rate and driving force. This has led to the well-known and ubiquitously used reactivity paradigm of "kinetic versus thermodynamic control". However, an analogous dissection concept regarding the barrier width is absent. Here we define and outline the concept of intrinsic barrier width and the driving force effect on the barrier width and report experimental as well as theoretical studies to demonstrate their distinct roles. We present the idea of changing the barrier widths of conformational isomerizations of some simple aromatic carboxylic acids as models and use quantum mechanical tunneling (QMT) half-lives as a read-out for these changes because QMT is particularly sensitive to barrier widths. We demonstrate the distinct roles of the intrinsic and the thermodynamic contributions of the barrier width on QMT half-lives. This sheds light on resolving conflicting trends in chemical reactivities where barrier widths are relevant and allows us to draw some important conclusions about the general relevance of barrier widths, their qualitative definition, and the consequences for more complete descriptions of chemical reactions.
Collapse
Affiliation(s)
- Guanqi Qiu
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
13
|
Guevara L, Gouge M, Ohler A, Hill SG, Patel S, Offenbacher AR. Effect of solvent viscosity on the activation barrier of hydrogen tunneling in the lipoxygenase reaction. Arch Biochem Biophys 2023; 747:109740. [PMID: 37678425 DOI: 10.1016/j.abb.2023.109740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Hydrogen tunneling in enzyme reactions has played an important role in linking protein thermal motions to the chemical steps of catalysis. Lipoxygenases (LOXs) have served as model systems for such reactions, showcasing deep hydrogen tunneling mechanisms associated with enzymatic C-H bond cleavage from polyunsaturated fatty acids. Here, we examined the effect of solvent viscosity on the protein thermal motions associated with LOX catalysis using trehalose and glucose as viscogens. Kinetic analysis of the reaction of the paradigm plant orthologue, soybean lipoxygenase (SLO), with linoleic acid revealed no effect on the first-order rate constants, kcat, or activation energy, Ea. Further studies of SLO active site mutants displaying varying Eas, which have been used to probe catalytically relevant motions, likewise provided no evidence for viscogen-dependent motions. Kinetic analyses were extended to a representative fungal LOX from M. oryzae, MoLOX, and a human LOX, 15-LOX-2. While MoLOX behaved similarly to SLO, we show that viscogens inhibit 15-LOX-2 activity. The latter implicates viscogen sensitive, conformational motions in animal LOX reactions. The data provide insight into the role of water hydration layers in facilitating hydrogen (quantum) tunneling in LOX.
Collapse
Affiliation(s)
- Luis Guevara
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Melissa Gouge
- Department of Chemistry and Biochemistry, Ohio Northern University, Ada, OH, 45810, USA
| | - Amanda Ohler
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Soham Patel
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
14
|
Sharma A, Whittington C, Jabed M, Hill SG, Kostenko A, Yu T, Li P, Doan PE, Hoffman BM, Offenbacher AR. 13C Electron Nuclear Double Resonance Spectroscopy-Guided Molecular Dynamics Computations Reveal the Structure of the Enzyme-Substrate Complex of an Active, N-Linked Glycosylated Lipoxygenase. Biochemistry 2023; 62:1531-1543. [PMID: 37115010 PMCID: PMC10704959 DOI: 10.1021/acs.biochem.3c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Mohammed Jabed
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Anastasiia Kostenko
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, United States
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| |
Collapse
|
15
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Zaragoza JPT, Offenbacher AR, Hu S, Gee CL, Firestein ZM, Minnetian N, Deng Z, Fan F, Iavarone AT, Klinman JP. Temporal and spatial resolution of distal protein motions that activate hydrogen tunneling in soybean lipoxygenase. Proc Natl Acad Sci U S A 2023; 120:e2211630120. [PMID: 36867685 PMCID: PMC10013837 DOI: 10.1073/pnas.2211630120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
The enzyme soybean lipoxygenase (SLO) provides a prototype for deep tunneling mechanisms in hydrogen transfer catalysis. This work combines room temperature X-ray studies with extended hydrogen-deuterium exchange experiments to define a catalytically-linked, radiating cone of aliphatic side chains that connects an active site iron center of SLO to the protein-solvent interface. Employing eight variants of SLO that have been appended with a fluorescent probe at the identified surface loop, nanosecond fluorescence Stokes shifts have been measured. We report a remarkable identity of the energies of activation (Ea) for the Stokes shifts decay rates and the millisecond C-H bond cleavage step that is restricted to side chain mutants within an identified thermal network. These findings implicate a direct coupling of distal protein motions surrounding the exposed fluorescent probe to active site motions controlling catalysis. While the role of dynamics in enzyme function has been predominantly attributed to a distributed protein conformational landscape, the presented data implicate a thermally initiated, cooperative protein reorganization that occurs on a timescale faster than nanosecond and represents the enthalpic barrier to the reaction of SLO.
Collapse
Affiliation(s)
- Jan Paulo T. Zaragoza
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Adam R. Offenbacher
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, East Carolina University, Greenville, NC27858
| | - Shenshen Hu
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Christine L. Gee
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
| | | | - Natalie Minnetian
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Zhenyu Deng
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Flora Fan
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
| |
Collapse
|
17
|
Kim J, Woo KC, Kim KK, Kim SK. πσ*-Mediated Nonadiabatic Tunneling Dynamics of Thiophenols in S 1: The Semiclassical Approaches. J Phys Chem A 2022; 126:9594-9604. [PMID: 36534791 DOI: 10.1021/acs.jpca.2c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The S-H bond tunneling predissociation dynamics of thiophenol and its ortho-substituted derivatives (2-fluorothiophenol, 2-methoxythiophenol, and 2-chlorothiphenol) in S1 (ππ*) where the H atom tunneling is mediated by the nearby S2 (πσ*) state (which is repulsive along the S-H bond extension coordinate) have been investigated in a state-specific way using the picosecond time-resolved pump-probe spectroscopy for the jet-cooled molecules. The effects of the specific vibrational mode excitations and the SH/SD substitutions on the S-H(D) bond rupture tunneling dynamics have been interrogated, giving deep insights into the multidimensional aspects of the S1/S2 conical intersection, which also shapes the underlying adiabatic tunneling potential energy surfaces (PESs). The semiclassical tunneling rate calculations based on the Wentzel-Kramers-Brillouin (WKB) approximation or Zhu-Nakamura (ZN) theory have been carried out based on the ab initio PESs calculated in the (one, two, or three) reduced dimensions to be compared with the experiment. Though the quantitative experimental results could not be reproduced satisfactorily by the present calculations, the qualitative trends among different molecules in terms of the behavior of the tunneling rate versus the (adiabatic) barrier height or the number of PES dimensions could be rationalized. Most interestingly, the H/D kinetic isotope effect observed in the tunneling rate could be much better explained by the ZN theory compared to the WKB approximation, indicating that the nonadiabatic coupling matrix elements should be invoked for understanding the tunneling dynamics taking place in the proximity of the conical intersection.
Collapse
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Kuk Ki Kim
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| |
Collapse
|
18
|
Sihtmäe M, Silm E, Kriis K, Kahru A, Kanger T. Aminocatalysts are More Environmentally Friendly than Hydrogen-Bonding Catalysts. CHEMSUSCHEM 2022; 15:e202201045. [PMID: 35686861 DOI: 10.1002/cssc.202201045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The importance of asymmetric organocatalysis in contemporary organic synthesis is widely acknowledged. However, there are practically no data on the environmental safety of organocatalysts, although this aspect is crucial for the sustainability of all new materials, chemicals, and technologies. To start to fill this data-gap, a library of 26 organocatalysts containing hydrogen-bonding catalysts [(thio)ureas and squaramides] and aminocatalysts (primary or secondary amines) was evaluated for their toxicity using the naturally luminescent Vibrio fischeri bacteria (ISO assay; one of the most widely used ecotoxicity tests). Thioureas and squaramides were shown to be relatively toxic: none of them was ranked as "not harmful" (i. e., half maximal effective concentration EC50 >100 mg L-1 ), whereas the presence of the trifluoromethyl moiety increased their toxic effect. Importantly, the aminocatalysts, whose EC50 values ranged from 25 to >300 mg L-1 , could be considered remarkably more environmentally safe or green alternatives.
Collapse
Affiliation(s)
- Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Estelle Silm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kadri Kriis
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
- Estonian Academy of Sciences, 6 Kohtu, 10130, Tallinn, Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
19
|
An artificial metalloprotein with metal-adaptive coordination sites and Ni-dependent quercetinase activity. J Inorg Biochem 2022; 235:111914. [PMID: 35841720 DOI: 10.1016/j.jinorgbio.2022.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022]
Abstract
Engineering non-native metal active sites into proteins using canonical amino acids offers many advantages but is hampered by significant challenges. The TIM barrel protein, imidazole glycerol phosphate synthase from the hyperthermophilic organism Thermotoga maritima (tHisF), is well-suited for the construction of artificial metalloenzymes by this approach. To this end, we have generated a tHisF variant (tHisFEHH) with a Glu/His/His motif for metal ion coordination. Crystal structures of ZnII:tHisFEHH and NiII:tHisFEHH reveal that both metal ions bind to the engineered histidines. However, the two metals bind at distinct sites with different geometries, demonstrating the adaptability of tHisF. Only ZnII additionally ligates the Glu residue and adopts a tetrahedral geometry. The pseudo-octahedral NiII site comprises the two His and a native Ser residue. NiII:tHisFEHH catalyzes the oxidative cleavage of the flavanols quercetin and myricetin, providing an unprecedented example of an artificial metalloprotein with quercetinase activity.
Collapse
|
20
|
Rapp C, Nidetzky B. Hydride Transfer Mechanism of Enzymatic Sugar Nucleotide C2 Epimerization Probed with a Loose-Fit CDP-Glucose Substrate. ACS Catal 2022; 12:6816-6830. [PMID: 35747200 PMCID: PMC9207888 DOI: 10.1021/acscatal.2c00257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/12/2022] [Indexed: 11/29/2022]
Abstract
![]()
Transient oxidation–reduction
through hydride transfer with
tightly bound NAD coenzyme is used by a large class of sugar nucleotide
epimerases to promote configurational inversion of carbon stereocenters
in carbohydrate substrates. A requirement for the epimerases to coordinate
hydride abstraction and re-addition with substrate rotation in the
binding pocket poses a challenge for dynamical protein conformational
selection linked to enzyme catalysis. Here, we studied the thermophilic
C2 epimerase from Thermodesulfatator atlanticus (TaCPa2E) in combination with a slow CDP-glucose
substrate (kcat ≈ 1.0 min–1; 60 °C) to explore the sensitivity of the enzymatic hydride
transfer toward environmental fluctuations affected by temperature
(20–80 °C). We determined noncompetitive primary kinetic
isotope effects (KIE) due to 2H at the glucose C2 and showed
that a normal KIE on the kcat (Dkcat) reflects isotope sensitivity of
the hydrogen abstraction to enzyme-NAD+ in a rate-limiting
transient oxidation. The Dkcat peaked at 40 °C was 6.1 and decreased to 2.1 at low (20 °C)
and 3.3 at high temperature (80 °C). The temperature profiles
for kcat with the 1H and 2H substrate showed a decrease in the rate below a dynamically
important breakpoint (∼40 °C), suggesting an equilibrium
shift to an impaired conformational landscape relevant for catalysis
in the low-temperature region. Full Marcus-like model fits of the
rate and KIE profiles provided evidence for a high-temperature reaction
via low-frequency conformational sampling associated with a broad
distribution of hydride donor–acceptor distances (long-distance
population centered at 3.31 ± 0.02 Å), only poorly suitable
for quantum mechanical tunneling. Collectively, dynamical characteristics
of TaCPa2E-catalyzed hydride transfer during transient
oxidation of CDP-glucose reveal important analogies to mechanistically
simpler enzymes such as alcohol dehydrogenase and dihydrofolate reductase.
A loose-fit substrate (in TaCPa2E) resembles structural
variants of these enzymes by extensive dynamical sampling to balance
conformational flexibility and catalytic efficiency.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
21
|
Dutra M, McElhenney S, Manley O, Makris T, Rassolov V, Garashchuk S. Modeling the Ligand Effect on the Structure of CYP 450 Within the Density Functional Theory. J Phys Chem A 2022; 126:2818-2824. [PMID: 35500128 DOI: 10.1021/acs.jpca.2c01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved understanding of the P450 structure is relevant to the development of biomimetic catalysts and inhibitors for controlled CH-bond activation, an outstanding challenge of synthetic chemistry. Motivated by the experimental findings of an unusually short Fe-S bond of 2.18 Å for the wild-type (WT) OleT P450 decarboxylase relative to a cysteine pocket mutant form (A369P), a computational model that captures the effect of the thiolate axial ligand on the iron-sulfur distance is presented. With the computational efficiency and streamlined analysis in mind, this model combines a cluster representation of the enzyme─40-110 atoms, depending on the heme and ligand truncation level─with a density functional theory (DFT) description of the electronic structure (ES) and is calibrated against the experimental data. The optimized Fe-S distances show a difference of 0.25 Å between the low and high spin states, in agreement with the crystallographic structures of the OleT WT and mutant forms. We speculate that this difference is attributable to the packing of the ligand; the mutant is bulkier due to an alanine-to-proline replacement, meaning that it is excluded from the energetically favored low-spin minimum because of steric constraints. The presence of pure spin-state pairs and the intersection of the low/high spin states for the enzyme model is indicative of the limitations of single-reference ES methods in such systems and emphasizes the significance of using the proper state when modeling the hydrogen atom transfer (HAT) reaction catalyzed by OleT. At the same time, the correct characterization of both the short and long Fe-S bonds within a small DFT-based model of 42 atoms paves the way for quantum dynamics modeling of the HAT step, which initiates the OleT decarboxylation reaction.
Collapse
Affiliation(s)
- Matthew Dutra
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shannon McElhenney
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Olivia Manley
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Tom Makris
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
22
|
Dutra M, Amaya JA, McElhenney S, Manley OM, Makris TM, Rassolov V, Garashchuk S. Experimental and Theoretical Examination of the Kinetic Isotope Effect in Cytochrome P450 Decarboxylase OleT. J Phys Chem B 2022; 126:3493-3504. [PMID: 35508080 DOI: 10.1021/acs.jpcb.1c10280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a combination of experimental studies, theory, simulation, and modeling, we investigate the hydrogen atom transfer (HAT) reaction by the high-valent ferryl cytochrome P450 (CYP) intermediate known as Compound I, a species that is central to innumerable and important detoxification and biosynthetic reactions. The P450 decarboxylase known as OleT converts fatty acids, a sustainable biological feedstock, into terminal alkenes and thus is of high interest as a potential means to produce fungible biofuels. Previous experimental work has established the intermediacy of Compound I in the C─C scission reaction catalyzed by OleT and an unprecedented ability to monitor the HAT process in the presence of bound fatty acid substrates. Here, we leverage the kinetic simplicity of the OleT system to measure the activation barriers for CYP HAT and the temperature dependence of the substrate 2H kinetic isotope effect. Notably, neither measurement has been previously accessible for a CYP to date. Theoretical analysis alludes to the significance of substrate fatty acid coordination for generating the hydrogen donor/acceptor configurations that are most conducive for HAT to occur. The analysis of the two-dimensional potential energy surface, based on multireference electronic wave functions, illustrates the uncoupled character of the hydrogen motion. Quantum dynamics calculations along the hydrogen reaction path demonstrate that hydrogen tunneling is essential to qualitatively capture the experimental isotope effect, its temperature dependence, and appropriate activation energies. Overall, a more fundamental understanding of the OleT reaction coordinate contributes to the development of biomimetic catalysts for controlled C─H bond activation, an outstanding current challenge for (bio)synthetic chemistry.
Collapse
Affiliation(s)
- Matthew Dutra
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jose A Amaya
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shannon McElhenney
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Olivia M Manley
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
23
|
Sarhangi SM, Matyushov DV. Anomalously Small Reorganization Energy of the Half Redox Reaction of Azurin. J Phys Chem B 2022; 126:3000-3011. [DOI: 10.1021/acs.jpcb.2c00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Setare M. Sarhangi
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Dmitry V. Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
24
|
Roberts DE, Benton AM, Fabian-Bayola C, Spuches AM, Offenbacher AR. Thermodynamic and biophysical study of fatty acid effector binding to soybean lipoxygenase: implications for allostery driven by helix α2 dynamics. FEBS Lett 2022; 596:350-359. [PMID: 34997975 DOI: 10.1002/1873-3468.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022]
Abstract
Previous comparative kinetic isotope effects have inferred an allosteric site for fatty acids and their derivatives that modulates substrate selectivity in 15-lipoxygenases. Hydrogen-deuterium exchange also previously revealed regionally defined enhanced protein flexibility, centred at helix α2 - a gate to the substrate entrance. Direct evidence for allosteric binding and a complete understanding of its mechanism remains elusive. In this study, we examine the binding thermodynamics of the fatty acid mimic, oleyl sulfate (OS), with the monomeric model plant 15-LOX, soybean lipoxygenase (SLO), using isothermal titration calorimetry. Dynamic light scattering and differential scanning calorimetry rule out OS-induced oligomerization or structural changes. These data provide evidence that the fatty acid allosteric regulation of SLO is controlled by the dynamics of helix α2.
Collapse
Affiliation(s)
| | - Amy M Benton
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | | | - Anne M Spuches
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
25
|
Truong PT, Miller SG, McLaughlin Sta Maria EJ, Bowring MA. Large Isotope Effects in Organometallic Chemistry. Chemistry 2021; 27:14800-14815. [PMID: 34347912 DOI: 10.1002/chem.202102189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/24/2023]
Abstract
The kinetic isotope effect (KIE) is key to understanding reaction mechanisms in many areas of chemistry and chemical biology, including organometallic chemistry. This ratio of rate constants, kH /kD , typically falls between 1-7. However, KIEs up to 105 have been reported, and can even be so large that reactivity with deuterium is unobserved. We collect here examples of large KIEs across organometallic chemistry, in catalytic and stoichiometric reactions, along with their mechanistic interpretations. Large KIEs occur in proton transfer reactions such as protonation of organometallic complexes and clusters, protonolysis of metal-carbon bonds, and dihydrogen reactivity. C-H activation reactions with large KIEs occur with late and early transition metals, photogenerated intermediates, and abstraction by metal-oxo complexes. We categorize the mechanistic interpretations of large KIEs into the following three types: (a) proton tunneling, (b) compound effects from multiple steps, and (c) semi-classical effects on a single step. This comprehensive collection of large KIEs in organometallics provides context for future mechanistic interpretation.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | - Sophia G Miller
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | | | - Miriam A Bowring
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| |
Collapse
|
26
|
Schmidt-Engler JM, von Berg S, Bredenbeck J. Temperature-Dependent Low-Frequency Modes in the Active Site of Bovine Carbonic Anhydrase II Probed by 2D-IR Spectroscopy. J Phys Chem Lett 2021; 12:7777-7782. [PMID: 34374547 DOI: 10.1021/acs.jpclett.1c01453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme catalysis achieves tremendous rate accelerations. Enzyme reaction centers provide a constraint geometry that preferentially binds an activated form of the substrate and thus lowers the energy barrier. However, this transition state picture neglects the flexibility of proteins and its role in enzymatic catalysis. Especially for proton transfer reactions, it has been suggested that motions of the protein modulate the donor-acceptor distance and prepare a tunneling-ready state. We report the detection of frequency fluctuations of an azide anion (N3-) bound in the active site of the protein carbonic anhydrase II, where a low-frequency mode of the protein has been proposed to facilitate proton transfer over two water molecules during the catalyzed reaction. 2D-IR spectroscopy resolves an underdamped low-frequency mode at about 1 THz (30 cm-1). We find its frequency to be viscosity- and temperature-dependent and to decrease by 6 cm-1 between 230 and 320 K, reporting the softening of the mode's potential.
Collapse
Affiliation(s)
- Julian M Schmidt-Engler
- Institute of Biophysics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Sarah von Berg
- Institute of Biophysics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Jens Bredenbeck
- Institute of Biophysics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Dong M. A Minireview on Temperature Dependent Protein Conformational Sampling. Protein J 2021; 40:545-553. [PMID: 34181188 DOI: 10.1007/s10930-021-10012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2021] [Indexed: 12/01/2022]
Abstract
In this minireview we discuss the role of the more subtle conformational change-protein conformational sampling and connect it to the classic relationship of protein structure and function. The theory of pre-existing functional states of protein are discussed in context of alternate protein conformational sampling. Last, we discuss how temperature, ligand binding and mutations affect the protein conformational sampling mode which is linked to the protein function regulation. The review includes several protein systems that showed temperature dependent protein conformational sampling. We also specifically included two enzyme systems, thermophilic alcohol dehydrogenase (ht-ADH) and thermolysin which we previously studied when discussing temperature dependent protein conformational sampling.
Collapse
Affiliation(s)
- Ming Dong
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC, 27410, USA.
| |
Collapse
|
28
|
Thompson EJ, Paul A, Iavarone AT, Klinman JP. Identification of Thermal Conduits That Link the Protein-Water Interface to the Active Site Loop and Catalytic Base in Enolase. J Am Chem Soc 2021; 143:785-797. [PMID: 33395523 DOI: 10.1021/jacs.0c09423] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report here on the salient role of protein mobility in accessing conformational landscapes that enable efficient enzyme catalysis. We are focused on yeast enolase, a highly conserved lyase with a TIM barrel domain and catalytic loop, as part of a larger study of the relationship of site selective protein motions to chemical reactivity within superfamilies. Enthalpically hindered variants were developed by replacement of a conserved hydrophobic side chain (Leu 343) with smaller side chains. Leu343 is proximal to the active site base in enolase, and comparative pH rate profiles for the valine and alanine variants indicate a role for side chain hydrophobicity in tuning the pKa of the catalytic base. However, the magnitude of a substrate deuterium isotope effect is almost identical for wild-type (WT) and Leu343Ala, supporting an unchanged rate-determining proton abstraction step. The introduced hydrophobic side chains at position 343 lead to a discontinuous break in both activity and activation energy as a function of side chain volume. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments were performed as a function of time and temperature for WT and Leu343Ala, and provide a spatially resolved map of changes in protein flexibility following mutation. Impacts on protein flexibility are localized to specific networks that arise at the protein-solvent interface and terminate in a loop that has been shown by X-ray crystallography to close over the active site. These interrelated effects are discussed in the context of long-range, solvent-accessible and thermally activated networks that play key roles in tuning the precise distances and interactions among reactants.
Collapse
Affiliation(s)
- Emily J Thompson
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Adhayana Paul
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Abstract
This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.
Collapse
|
30
|
Assessment of enzyme active site positioning and tests of catalytic mechanisms through X-ray-derived conformational ensembles. Proc Natl Acad Sci U S A 2020; 117:33204-33215. [PMID: 33376217 DOI: 10.1073/pnas.2011350117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for Pseudomonas putida ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.
Collapse
|
31
|
Gao S, Thompson EJ, Barrow SL, Zhang W, Iavarone AT, Klinman JP. Hydrogen-Deuterium Exchange within Adenosine Deaminase, a TIM Barrel Hydrolase, Identifies Networks for Thermal Activation of Catalysis. J Am Chem Soc 2020; 142:19936-19949. [PMID: 33181018 DOI: 10.1021/jacs.0c07866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteins are intrinsically flexible macromolecules that undergo internal motions with time scales spanning femtoseconds to milliseconds. These fluctuations are implicated in the optimization of reaction barriers for enzyme catalyzed reactions. Time, temperature, and mutation dependent hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been previously employed to identify spatially resolved, catalysis-linked dynamical regions of enzymes. We now extend this technique to pursue the correlation of protein flexibility and chemical reactivity within the diverse and widespread TIM barrel proteins, targeting murine adenosine deaminase (mADA) that catalyzes the irreversible deamination of adenosine to inosine and ammonia. Following a structure-function analysis of rate and activation energy for a series of mutations at a second sphere phenylalanine positioned in proximity to the bound substrate, the catalytically impaired Phe61Ala with an elevated activation energy (Ea = 7.5 kcal/mol) and the wild type (WT) mADA (Ea = 5.0 kcal/mol) were selected for HDX-MS experiments. The rate constants and activation energies of HDX for peptide segments are quantified and used to assess mutation-dependent changes in local and distal motions. Analyses reveal that approximately 50% of the protein sequence of Phe61Ala displays significant changes in the temperature dependence of HDX behaviors, with the dominant change being an increase in protein flexibility. Utilizing Phe61Ile, which displays the same activation energy for kcat as WT, as a control, we were able to further refine the HDX analysis, highlighting the regions of mADA that are altered in a functionally relevant manner. A map is constructed that illustrates the regions of protein that are proposed to be essential for the thermal optimization of active site configurations that dominate reaction barrier crossings in the native enzyme.
Collapse
Affiliation(s)
| | | | | | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | |
Collapse
|
32
|
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020; 25:molecules25153374. [PMID: 32722330 PMCID: PMC7436259 DOI: 10.3390/molecules25153374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the (per) oxidation of fatty acids that serve as important mediators for cell signaling and inflammation. These reactions are initiated by a C-H activation step that is allosterically regulated in plant and animal enzymes. LOXs from higher eukaryotes are equipped with an N-terminal PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain that has been implicated to bind to small molecule allosteric effectors, which in turn modulate substrate specificity and the rate-limiting steps of catalysis. Herein, the kinetic and structural evidence that describes the allosteric regulation of plant and animal lipoxygenase chemistry by fatty acids and their derivatives are summarized.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
33
|
Zhang J, Balsbaugh JL, Gao S, Ahn NG, Klinman JP. Hydrogen deuterium exchange defines catalytically linked regions of protein flexibility in the catechol O-methyltransferase reaction. Proc Natl Acad Sci U S A 2020; 117:10797-10805. [PMID: 32371482 PMCID: PMC7245127 DOI: 10.1073/pnas.1917219117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human catechol O-methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from S-adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H. J. Kulik, T. J. Martinez, J. P. Klinman, Proc. Natl. Acad. Sci. U.S.A. 112, 7954-7959 (2015)]. This predicts the involvement of spatially defined protein dynamical effects that further tune the donor/acceptor distance and geometry as well as the electrostatics of the reactants. Here, we present a hydrogen/deuterium exchange (HDX)-mass spectrometric study of wild type and mutant COMT, comparing temperature dependences of HDX against corresponding kinetic and cofactor binding parameters. The data show that the impaired Tyr68Ala mutant displays similar breaks in Arrhenius plots of both kinetic and HDX properties that are absent in the wild type enzyme. The spatial resolution of HDX below a break point of 15-20 °C indicates changes in flexibility across ∼40% of the protein structure that is confined primarily to the periphery of the AdoMet binding site. Above 20 °C, Tyr68Ala behaves more like WT in HDX, but its rate and enthalpic barrier remain significantly altered. The impairment of catalysis by Tyr68Ala can be understood in the context of a mutationally induced alteration in protein motions that becomes manifest along and perpendicular to the primary group transfer coordinate.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Jeremy L Balsbaugh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309;
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA 94720;
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
34
|
Abstract
This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA;
| |
Collapse
|
35
|
Offenbacher AR, Sharma A, Doan PE, Klinman JP, Hoffman BM. The Soybean Lipoxygenase-Substrate Complex: Correlation between the Properties of Tunneling-Ready States and ENDOR-Detected Structures of Ground States. Biochemistry 2020; 59:901-910. [PMID: 32022556 PMCID: PMC7188194 DOI: 10.1021/acs.biochem.9b00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hydrogen tunneling in enzymatic C-H activation requires a dynamical sampling among ground-state enzyme-substrate (E-S) conformations, which transiently generates a tunneling-ready state (TRS). The TRS is characterized by a hydrogen donor-acceptor distance (DAD) of 2.7 Å, ∼0.5 Å shorter than the dominant DAD of optimized ground states. Recently, a high-resolution, 13C electron-nuclear double-resonance (ENDOR) approach was developed to characterize the ground-state structure of the complex of the linoleic acid (LA) substrate with soybean lipoxygenase (SLO). The resulting enzyme-substrate model revealed two ground-state conformers with different distances between the target C11 of LA and the catalytically active cofactor [Fe(III)-OH]: the active conformer "a", with a van der Waals DAD of 3.1 Å between C11 and metal-bound hydroxide, and an inactive conformer "b", with a distance that is almost 1 Å longer. Herein, the structure of the E-S complex is examined for a series of six variants in which subtle structural modifications of SLO have been introduced either at a hydrophobic side chain near the bound substrate or at a remote residue within a protein network whose flexibility influences hydrogen transfer. A remarkable correlation is found between the ENDOR-derived population of the active ground-state conformer a and the kinetically derived differential enthalpic barrier for D versus H transfer, ΔEa, with the latter increasing as the fraction of conformer a decreases. As proposed, ΔEa provides a "ruler" for the DAD within the TRS. ENDOR measurements further corroborate the previous identification of a dynamical network coupling the buried active site of SLO to the surface. This study shows that subtle imperfections within the initial ground-state structures of E-S complexes are accompanied by compromised geometries at the TRS.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
- Department of Chemistry and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois 602084
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, Illinois 602084
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 602084
| |
Collapse
|
36
|
DeGregorio N, Iyengar SS. Challenges in constructing accurate methods for hydrogen transfer reactions in large biological assemblies: rare events sampling for mechanistic discovery and tensor networks for quantum nuclear effects. Faraday Discuss 2020; 221:379-405. [DOI: 10.1039/c9fd00071b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present two methods that address the computational complexities arising in hydrogen transfer reactions in enzyme active sites.
Collapse
Affiliation(s)
- Nicole DeGregorio
- Department of Chemistry
- Department of Physics
- Indiana University
- Bloomington
- USA
| | | |
Collapse
|
37
|
Soler J, González-Lafont À, Lluch JM. A protocol to obtain multidimensional quantum tunneling corrections derived from QM(DFT)/MM calculations for an enzyme reaction. Phys Chem Chem Phys 2020; 22:27385-27393. [DOI: 10.1039/d0cp05265e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The multidimensional small-curvature tunneling (SCT) method with Electrostatic Embedding calculations is a compromise between an accessible computational cost and the attainment of an accurate enough estimation of tunneling for an enzyme reaction.
Collapse
Affiliation(s)
- Jordi Soler
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
| | - Àngels González-Lafont
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autònoma de Barcelona
| | - José M. Lluch
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autònoma de Barcelona
| |
Collapse
|
38
|
Ding CW, Luo W, Zhou JY, Ma XJ, Chen GH, Zhou XP, Li D. Hydroxo Iron(III) Sites in a Metal-Organic Framework: Proton-Coupled Electron Transfer and Catalytic Oxidation of Alcohol with Molecular Oxygen. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45621-45628. [PMID: 31724842 DOI: 10.1021/acsami.9b15311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metalloenzymes are powerful biocatalysts that can catalyze particular chemical reactions with high activity, selectivity, and specificity under mild conditions. Metal-organic frameworks (MOFs) composed of metal ions or metal clusters and organic ligands with defined cavities have the potential to impart enzyme-like catalytic activity and mimic metalloenzymes. Here, a new metal-organic framework implanted with hydroxo iron(III) sites with the structural and reactivity characteristics of iron-containing lipoxygenases is reported. Similar to lipoxygenases, the hydrogen atoms and electrons of the substrate can transfer to the hydroxo iron(III) sites, showing typical proton-coupled electron transfer behavior. In the reactivity mimicking biology system, similar to alcohol oxidase, the material also catalyses the oxidation of alcohol into aldehyde by using O2 with a high yield and 100% selectivity under mild conditions, without the use of a radical cocatalyst or photoexcitation. These results provide strong evidence for the high structural fidelity of enzymatically active sites in MOF materials, verifying that MOFs provide an ideal platform for designing biomimetic heterogeneous catalysts with high conversion efficiency and product selectivity.
Collapse
Affiliation(s)
- Chong-Wei Ding
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Wenzhi Luo
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Jie-Yi Zhou
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Xin-Jie Ma
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Guang-Hui Chen
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| | - Dan Li
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| |
Collapse
|
39
|
Hu S, Offenbacher AR, Lu ED, Klinman JP. Comparative kinetic isotope effects on first- and second-order rate constants of soybean lipoxygenase variants uncover a substrate-binding network. J Biol Chem 2019; 294:18069-18076. [PMID: 31624150 PMCID: PMC6885649 DOI: 10.1074/jbc.ra119.010826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
Lipoxygenases are widespread enzymes found in virtually all eukaryotes, including fungi, and, more recently, in prokaryotes. These enzymes act on long-chain polyunsaturated fatty acid substrates (C18 to C20), raising questions regarding how the substrate threads its way from solvent to the active site. Herein, we report a comparison of the temperature dependence of isotope effects on first- and second-order rate constants among single-site variants of the prototypic plant enzyme soybean lipoxygenase-1 substituted at amino acid residues inferred to impact substrate binding. We created 10 protein variants including four amino acid positions, Val-750, Ile-552, Ile-839, and Trp-500, located within a previously proposed substrate portal. The conversion of these bulky hydrophobic side chains to smaller side chains is concluded to increase the mobility of flanking helices, giving rise to increased off rates for substrate dissociation from the enzyme. In this manner, we identified a specific "binding network" that can regulate movement of the substrate from the solvent to the active site. Taken together with our previous findings on C-H and O2 activation of soybean lipoxygenase-1, these results support the emergence of multiple complementary networks within a single protein scaffold that modulate different steps along the enzymatic reaction coordinate.
Collapse
Affiliation(s)
- Shenshen Hu
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Adam R Offenbacher
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720; Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Edbert D Lu
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, California 94720; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.
| |
Collapse
|
40
|
Zaragoza JPT, Nguy A, Minnetian N, Deng Z, Iavarone AT, Offenbacher AR, Klinman JP. Detecting and Characterizing the Kinetic Activation of Thermal Networks in Proteins: Thermal Transfer from a Distal, Solvent-Exposed Loop to the Active Site in Soybean Lipoxygenase. J Phys Chem B 2019; 123:8662-8674. [PMID: 31580070 PMCID: PMC6944211 DOI: 10.1021/acs.jpcb.9b07228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting chemical reaction catalyzed by soybean lipoxygenase (SLO) involves quantum mechanical tunneling of a hydrogen atom from substrate to its active site ferric-hydroxide cofactor. SLO has emerged as a prototypical system for linking the thermal activation of a protein scaffold to the efficiency of active site chemistry. Significantly, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) experiments on wild type and mutant forms of SLO have uncovered trends in the enthalpic barriers for HDX within a solvent-exposed loop (positions 317-334) that correlate well with trends in the corresponding enthalpic barriers for kcat. A model for this behavior posits that collisions between water and loop 317-334 initiate thermal activation at the protein surface that is then propagated 15-34 Å inward toward the reactive carbon of substrate in proximity to the iron catalyst. In this study, we have prepared protein samples containing cysteine residues either at the tip of the loop 317-334 (Q322C) or on a control loop, 586-603 (S596C). Chemical modification of cysteines with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (Badan, BD) provides site-specific probes for the measurement of fluorescence relaxation lifetimes and Stokes shift decays as a function of temperature. Computational studies indicate that surface water structure is likely to be largely preserved in each sample. While both loops exhibit temperature-independent fluorescence relaxation lifetimes as do the Stokes shifts for S596C-BD, the activation enthalpy for the nanosecond solvent reorganization at Q322C-BD (Ea(ksolv) = 2.8(0.9) kcal/mol)) approximates the enthalpy of activation for catalytic C-H activation (Ea(kcat) = 2.3(0.4) kcal/mol). This study establishes and validates the methodology for measuring rates of rapid local motions at the protein/solvent interface of SLO. These new findings, when combined with previously published correlations between protein motions and the rate-limiting hydride transfer in a thermophilic alcohol dehydrogenase, provide experimental evidence for thermally induced "protein quakes" as the origin of enthalpic barriers in catalysis.
Collapse
Affiliation(s)
- Jan Paulo T. Zaragoza
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Andy Nguy
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Natalie Minnetian
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Zhenyu Deng
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Hershelman D, Kahler KM, Price MJ, Lu I, Fu Y, Plumeri PA, Karaisz F, Bassett NF, Findeis PM, Clapp CH. Oxygenation reactions catalyzed by the F557V mutant of soybean lipoxygenase-1: Evidence for two orientations of substrate binding. Arch Biochem Biophys 2019; 674:108082. [PMID: 31473191 DOI: 10.1016/j.abb.2019.108082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/18/2023]
Abstract
Plant lipoxygenases oxygenate linoleic acid to produce 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPOD) or 9-hydroperoxy-10E,12Z-octadecadienoic acid (9(S)-HPOD). The manner in which these enzymes bind substrates and the mechanisms by which they control regiospecificity are uncertain. Hornung et al. (Proc. Natl. Acad. Sci. USA96 (1999) 4192-4197) have identified an important residue, corresponding to phe-557 in soybean lipoxygenase-1 (SBLO-1). These authors proposed that large residues in this position favored binding of linoleate with the carboxylate group near the surface of the enzyme (tail-first binding), resulting in formation of 13(S)-HPOD. They also proposed that smaller residues in this position facilitate binding of linoleate in a head-first manner with its carboxylate group interacting with a conserved arginine residue (arg-707 in SBLO-1), which leads to 9(S)-HPOD. In the present work, we have tested these proposals on SBLO-1. The F557V mutant produced 33% 9-HPOD (S:R = 87:13) from linoleic acid at pH 7.5, compared with 8% for the wild-type enzyme and 12% with the F557V,R707L double mutant. Experiments with 11(S)-deuteriolinoleic acid indicated that the 9(S)-HPOD produced by the F557V mutant involves removal of hydrogen from the pro-R position on C-11 of linoleic acid, as expected if 9(S)-HPOD results from binding in an orientation that is inverted relative to that leading to 13(S)-HPOD. The product distributions obtained by oxygenation of 10Z,13Z-nonadecadienoic acid and arachidonic acid by the F557V mutant support the hypothesis that ω6 oxygenation results from tail-first binding and ω10 oxygenation from head-first binding. The results demonstrate that the regiospecificity of SBLO-1 can be altered by a mutation that facilitates an alternative mode of substrate binding and adds to the body of evidence that 13(S)-HPOD arises from tail-first binding.
Collapse
Affiliation(s)
| | - Kirsten M Kahler
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Morgan J Price
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Iris Lu
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Yuhan Fu
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | | | - Fred Karaisz
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | | | - Peter M Findeis
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Charles H Clapp
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA.
| |
Collapse
|
42
|
Howe GW, van der Donk WA. Temperature-Independent Kinetic Isotope Effects as Evidence for a Marcus-like Model of Hydride Tunneling in Phosphite Dehydrogenase. Biochemistry 2019; 58:4260-4268. [PMID: 31535852 PMCID: PMC6852621 DOI: 10.1021/acs.biochem.9b00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphite dehydrogenase catalyzes the transfer of a hydride from phosphite to NAD+, producing phosphate and NADH. We have evaluated the role of hydride tunneling in a thermostable variant of this enzyme (17X-PTDH) by measuring the temperature dependence of the primary 2H kinetic isotope effects (KIEs) between 5 and 45 °C. Pre-steady-state kinetic measurements were used to demonstrate that the hydride transfer is rate-determining across this temperature range and that the observed KIEs are equal to the intrinsic isotope effect on the chemical step. The KIEs on the pre-exponential factor (AH/AD) and the activation energy (ΔEa) were 1.6 ± 0.1 and 0.21 ± 0.05 kcal/mol, respectively, suggesting that 17X-PTDH facilitates extensive tunneling of both isotopes via a Marcus-like model. Site-directed mutagenesis was used to evaluate the role of an active site threonine (Thr104) found on the back face of the nicotinamide in promoting the close packing of the substrates. In mutants with reduced steric bulk at this position, values of AH/AD and ΔEa fall within the range describing semiclassical "over the barrier" reactivity, suggesting that Thr104 acts as a steric backstop to promote tunneling in 17X-PTDH. Whereas hydrogen tunneling is now a widely appreciated feature of C-H activating enzymes, these observations with a P-H activating system are consistent with the proposal that tunneling is likely to be a common feature on all enzymes that catalyze hydrogen transfers.
Collapse
Affiliation(s)
- Graeme W Howe
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States.,Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| |
Collapse
|
43
|
Kostenko A, Ray K, Iavarone AT, Offenbacher AR. Kinetic Characterization of the C-H Activation Step for the Lipoxygenase from the Pathogenic Fungus Magnaporthe oryzae: Impact of N-Linked Glycosylation. Biochemistry 2019; 58:3193-3203. [PMID: 31264852 DOI: 10.1021/acs.biochem.9b00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipoxygenases from pathogenic fungi belong to the lipoxygenase family of enzymes, which catalyze C-H activation of polyunsaturated fatty acids to form a diverse set of cell-signaling hydroperoxides. While the lipoxygenase catalytic domains are structurally and functionally similar, these fungal enzymes are decorated with N-linked glycans. The impact of N-linked glycans on the structure and function of these enzymes remains largely unknown. One exemplary system is MoLOX, a lipoxygenase from the fungus Magnaporthe oryzae, that is emerging as an important target for the devastating rice blast disease. Herein, we demonstrate that hydrogen transfer, associated with C-H cleavage of the substrate linoleic acid by MoLOX, is rate-determining and occurs by a hydrogen tunneling mechanism. Using the differential enthalpic barrier for hydrogen and deuterium transfer, ΔEa, as a kinetic reporter of tunneling efficiency, a disproportionate increase in the activation energy for deuterium transfer is observed upon treatment of MoLOX with a peptide:N-glycosidase that cleaves N-linked carbohydrates from the protein. This increased ΔEa is consistent with an impairment of substrate positioning in the enzyme-substrate complex for both the tunneling ready state and the ground state. These results provide new insight into the functional consequences of N-linked glycosylation on lipoxygenase C-H activation and have important implications for MoLOX inhibitor design.
Collapse
Affiliation(s)
- Anastasiia Kostenko
- Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States
| | - Katherine Ray
- Department of Biology , East Carolina University , Greenville , North Carolina 27858 , United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States
| | - Adam R Offenbacher
- Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States
| |
Collapse
|
44
|
Czarnota S, Johannissen LO, Baxter NJ, Rummel F, Wilson AL, Cliff MJ, Levy CW, Scrutton NS, Waltho JP, Hay S. Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol- O-methyltransferase. ACS Catal 2019; 9:4394-4401. [PMID: 31080692 PMCID: PMC6503465 DOI: 10.1021/acscatal.9b00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a model S-adenosyl-l-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal-derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site "compaction", which is driven by electrostatic stabilization between the transferring methyl group and "equatorial" active site residues that are orthogonal to the donor-acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor-acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via "equatorial" H-bonding and electrostatic interactions orthogonal to the donor-acceptor coordinate.
Collapse
Affiliation(s)
- Sylwia Czarnota
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Felix Rummel
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alex L. Wilson
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Colin W. Levy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jonathan P. Waltho
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
45
|
Hu S, Offenbacher AR, Thompson EM, Gee CL, Wilcoxen J, Carr CAM, Prigozhin DM, Yang V, Alber T, Britt RD, Fraser JS, Klinman J. Biophysical Characterization of a Disabled Double Mutant of Soybean Lipoxygenase: The "Undoing" of Precise Substrate Positioning Relative to Metal Cofactor and an Identified Dynamical Network. J Am Chem Soc 2019; 141:1555-1567. [PMID: 30645119 PMCID: PMC6353671 DOI: 10.1021/jacs.8b10992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Soybean lipoxygenase (SLO) has served as a prototype for understanding the molecular origin of enzymatic rate accelerations. The double mutant (DM) L546A/L754A is considered a dramatic outlier, due to the unprecedented size and near temperature-independence of its primary kinetic isotope effect, low catalytic efficiency, and elevated enthalpy of activation. To uncover the physical basis of these features, we herein apply three structural probes: hydrogen-deuterium exchange mass spectrometry, room-temperature X-ray crystallography and EPR spectroscopy on four SLO variants (wild-type (WT) enzyme, DM, and the two parental single mutants, L546A and L754A). DM is found to incorporate features of each parent, with the perturbation at position 546 predominantly influencing thermally activated motions that connect the active site to a protein-solvent interface, while mutation at position 754 disrupts the ligand field and solvation near the cofactor iron. However, the expanded active site in DM leads to more active site water molecules and their associated hydrogen bond network, and the individual features from L546A and L754A alone cannot explain the aggregate kinetic properties for DM. Using recently published QM/MM-derived ground-state SLO-substrate complexes for WT and DM, together with the thorough structural analyses presented herein, we propose that the impairment of DM is the combined result of a repositioning of the reactive carbon of linoleic acid substrate with regard to both the iron cofactor and a catalytically linked dynamic region of protein.
Collapse
Affiliation(s)
- Shenshen Hu
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Adam R. Offenbacher
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Chemistry, East Carolina University, Greenville, NC 27858
| | - Erin M. Thompson
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Christine L. Gee
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - Cody A. M. Carr
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Daniil M. Prigozhin
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Vanessa Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tom Alber
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Judith Klinman
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Matyushov DV, Newton MD. Thermodynamics of Reactions Affected by Medium Reorganization. J Phys Chem B 2018; 122:12302-12311. [PMID: 30514079 DOI: 10.1021/acs.jpcb.8b08865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a thermodynamic analysis of the activation barrier for reactions which can be monitored through the difference in the energies of reactants and products defined as the reaction coordinate (electron and atom transfer, enzyme catalysis, etc.). The free-energy surfaces along the reaction coordinate are separated into the enthalpy and entropy surfaces. For the Gaussian statistics of the reaction coordinate, the free-energy surfaces are parabolas, and the entropy surface is an inverted parabola. Its maximum coincides with the transition state for reactions with zero value of the reaction free energy. Maximum entropic depression of the activation barrier, anticipated by the concept of transition-state ensembles, can be achieved for such reactions. From Onsager's reversibility, the entropy of equilibrium fluctuations encodes the entropic component of the activation barrier. The reorganization entropy thus becomes the critical parameter of the theory reducing the problem of activation entropy to the problem of reorganization entropy. Standard solvation theories do not allow reorganization entropy sufficient for the barrier depression. Complex media, characterized by many relaxation processes, need to be involved. Proteins provide several routes for achieving large entropic effects through incomplete (nonergodic) sampling of the complex energy landscape and by facilitating an active role of water in the reaction mechanism.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences , Arizona State University , PO Box 871504, Tempe , Arizona 85287 , United States
| | - Marshall D Newton
- Brookhaven National Laboratory , Chemistry Department , Box 5000, Upton , New York 11973-5000 , United States
| |
Collapse
|
47
|
Abstract
Even after a century of investigation, our understanding of how enzymes work remains far from complete. In particular, several factors that enable enzymes to achieve high catalytic efficiencies remain only poorly understood. A number of theories have been developed, which propose or reaffirm that enzymes work as structural scaffolds, serving to bring together and properly orient the participants so that the reaction can proceed; therefore, leading to enzymes being viewed as only passive participants in the catalyzed reaction. A growing body of evidence shows that enzymes are not rigid structures but are constantly undergoing a wide range of internal motions and conformational fluctuations. In this Perspective, on the basis of studies from our group, we discuss the emerging biophysical model of enzyme catalysis that provides a detailed understanding of the interconnection among internal protein motions, conformational substates, enzyme mechanisms, and the catalytic efficiency of enzymes. For a number of enzymes, networks of conserved residues that extend from the surface of the enzyme all the way to the active site have been discovered. These networks are hypothesized to serve as pathways of energy transfer that enables thermodynamical coupling of the surrounding solvent with enzyme catalysis and play a role in promoting enzyme function. Additionally, the role of enzyme structure and electrostatic effects has been well acknowledged for quite some time. Collectively, the recent knowledge gained about enzyme mechanisms suggests that the conventional paradigm of enzyme structure encoding function is incomplete and needs to be extended to structure encodes dynamics, and together these enzyme features encode function including catalytic rate acceleration.
Collapse
Affiliation(s)
- Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
48
|
Kreß N, Halder JM, Rapp LR, Hauer B. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr Opin Chem Biol 2018; 47:109-116. [DOI: 10.1016/j.cbpa.2018.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
49
|
Li P, Soudackov AV, Hammes-Schiffer S. Impact of Mutations on the Binding Pocket of Soybean Lipoxygenase: Implications for Proton-Coupled Electron Transfer. J Phys Chem Lett 2018; 9:6444-6449. [PMID: 30359035 PMCID: PMC6402330 DOI: 10.1021/acs.jpclett.8b02945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soybean lipoxygenase catalyzes a proton-coupled electron transfer (PCET) reaction and serves as a prototype for hydrogen tunneling in enzymes due to the unusually high kinetic isotope effect and significant modulation of the rate constant and kinetic isotope effect by mutation. Herein these experimental observations are interpreted in the context of changes to the substrate binding pocket in microsecond molecular dynamics simulations of wild-type and mutant soybean lipoxygenase. The binding pocket exhibits an hourglass shape with residues L546 and L754 bracketing the bottleneck, positioning the linoleic acid substrate for PCET. Mutation of I553 to less bulky residues slightly increases the width of the bottleneck and the volume of the binding pocket. Mutating L546 or L754 to a smaller residue also enlarges this width and volume, and mutating both has an even more dramatic effect. This analysis illustrates how mutation of the substrate binding pocket can be used as a strategy to tune the kinetics.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Alexander V. Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| |
Collapse
|
50
|
Sayfutyarova ER, Goldsmith ZK, Hammes-Schiffer S. Theoretical Study of C-H Bond Cleavage via Concerted Proton-Coupled Electron Transfer in Fluorenyl-Benzoates. J Am Chem Soc 2018; 140:15641-15645. [PMID: 30383371 DOI: 10.1021/jacs.8b10461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developing new strategies to activate and cleave C-H bonds is important for a broad range of applications. Recently a new approach for C-H bond activation using multi-site concerted proton-coupled electron transfer (PCET) involving intermolecular electron transfer to an oxidant coupled to intramolecular proton transfer was reported. For a series of oxidants reacting with 2-(9 H-fluoren-9-yl)benzoate, experimental studies revealed an atypical Brønsted α, defined as the slope of the logarithm of the PCET rate constant versus the logarithm of the equilibrium constant or the scaled driving force. Herein this reaction is modeled with a vibronically nonadiabatic PCET theory. Hydrogen tunneling, thermal sampling of the proton donor-acceptor mode, solute and solvent reorganization, and contributions from excited vibronic states are found to play important roles. The calculations qualitatively reproduce the experimental observation of a Brønsted α significantly less than 0.5 and explain this shallow slope in terms of exoergic processes between pairs of electron-proton vibronic states. These fundamental mechanistic insights may guide the design of more effective strategies for C-H bond activation and cleavage.
Collapse
Affiliation(s)
- Elvira R Sayfutyarova
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Zachary K Goldsmith
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|