1
|
Krajovic DM, Kumler MS, Hillmyer MA. PLA Block Polymers: Versatile Materials for a Sustainable Future. Biomacromolecules 2025; 26:2761-2783. [PMID: 40193281 DOI: 10.1021/acs.biomac.5c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Block polymers present an almost endless realm of possibilities to develop functional materials for myriad applications. The established self-assembly of block polymers allows researchers to access properties that are inaccessible in homopolymers. However, there is a need to develop more sustainable options than the current commodity block polymers. Derived from renewable resources and industrially compostable, poly(lactide) (PLA) is at the forefront of technological advancements in sustainable block polymers. Its material properties including high stiffness, relatively high glass transition temperature, and semicrystallinity in isotactic versions lend themselves to many applications, and its ease of synthesis provides a well-established platform for developing high-performance materials. This Perspective highlights recent advancements associated with PLA-containing block polymers, including their syntheses, mesostructural considerations, and mechanical properties, from resilient elastomers to tough plastics. We also give our perspective on the subfield of PLA block polymers, our outlook on the future, and our assessment of exciting developments yet to come.
Collapse
Affiliation(s)
- Daniel M Krajovic
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Margaret S Kumler
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Wang Z, Ma Y, Zhang J, Liu S, Li Z. Binary Catalyst Manipulating the Sequences of Poly(ester-carbonate) Copolymers in Metal-Free Terpolymerization of Epoxide, Anhydride, and CO 2. PRECISION CHEMISTRY 2025; 3:35-42. [PMID: 39886379 PMCID: PMC11775850 DOI: 10.1021/prechem.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 02/01/2025]
Abstract
The one-pot terpolymerization of epoxide (EP), anhydride (AH), and CO2 to synthesize polyester-polycarbonate copolymers with precise sequences remains a significant challenge in polymer chemistry. In this study, promising progress was achieved by utilizing a cyclic trimeric phosphazene base (CTPB) and triethylboron (TEB) as a binary catalyst, enabling the synthesis of both well-defined block and truly random poly(ester-carbonate) copolymers through the one-pot terpolymerization of EP/AH/CO2. By adjusting the molar ratio of CTPB/TEB to 1/0.5, remarkable chemoselectivity for ring-opening alternating copolymerization (ROAC) of propylene oxide (PO) and phthalic anhydride (PA) was achieved, followed by the ROAC of PO/CO2. This sequential control allowed for the synthesis of well-defined block poly(ester-carbonate) copolymers, containing three possible sequences, ester-ester sequence (EE)/ester-carbonate sequence (EC)/carbonate-carbonate sequence (CC) = 59/4/37, from a mixture of PO, PA, and CO2. Moreover, the versatility of this CTPB/TEB catalyst in regulating chemoselectivity was demonstrated, with a ratio of 1/3 facilitating the simultaneous ROAC of PO/PA and PO/CO2 with compatible rates, resulting in the production of random poly(ester-carbonate) copolymers, in which three possible sequences (EE/EC/CC = 26/50/24) are very close to theoretical values. This metal-free catalytic system and its flexible chemoselectivity regulation strategy proved to be applicable to a wide range of epoxides (PO, cyclohexene oxide (CHO)) and anhydrides (PA, diglycolic anhydride (DGA), and succinic anhydride (SA)), enabling the successful synthesis of poly(ester-carbonate) copolymers with diverse sequences and compositions.
Collapse
Affiliation(s)
- Zehao Wang
- Key
Laboratory of Biobased Polymer Materials, College of Polymer Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Yukun Ma
- Key
Laboratory of Biobased Polymer Materials, College of Polymer Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Jinbo Zhang
- Key
Laboratory of Biobased Polymer Materials, College of Polymer Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key
Laboratory of Biobased Polymer Materials, College of Polymer Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key
Laboratory of Biobased Polymer Materials, College of Polymer Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
- College
of Chemical Engineering, Qingdao University
of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Ma Y, Wang Z, Jiang L, Zhang J, Ren C, Kou X, Liu S, Li Z. Bulky Phosphazenium Salt Controlling Chemoselective Terpolymerization of Epoxide, Anhydride and CO 2: From Well-Defined Block to Truly Random Copolymers. Angew Chem Int Ed Engl 2025; 64:e202416104. [PMID: 39353854 DOI: 10.1002/anie.202416104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Copolymers with precise compositions and controlled sequences are great appealing for high-performance polymeric materials, but their synthesis is very challenging. In this study, tetrakis[tris(dimethylamino)phosphoranylidenamino] phosphonium chloride (P5Cl) and triethylboron (TEB) were chosen as the binary catalyst to synthesize both well-defined block and truly random poly(ester-carbonate) copolymers via the one-pot/one-step terpolymerization of epoxide/anhydride/CO2 under metal-free conditions. The bulky nature of phosphazenium cation not only led to loose cation-anion pairs and enhanced the reactivity, but also provided the chain-end an appropriate protection and improved the controllability. In particular, P5Cl/TEB with a molar ratio of 1/0.5 showed an extraordinary chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CHO/CO2. Thus, well-defined block polyester-polycarbonate copolymers were synthesized by CHO/PA/CO2 terpolymerization. The chemoselectivity was easily tuned and the ROAC of CHO/PA and ROAC of CHO/CO2 occurred simultaneously with P5Cl/TEB=1/2, producing truly random poly(ester-carbonate) copolymers from CHO/PA/CO2. In addition, this P5Cl/TEB catalyst and the strategy to regulate its chemoselectivity are versatile for various anhydrides, epoxides and initiators. Thus, poly(ester-carbonate) copolymers with varying sequences, compositions, and topologies are successfully synthesized, making it possible to compare their properties and to expand their applications.
Collapse
Affiliation(s)
- Yukun Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zehao Wang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lihang Jiang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanli Ren
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
4
|
Judge NG, Segal MI, Silzer RO, Dziewior CS, Chan YM, Grovogel SJ, Becker ML. Semiaromatic Polyester-Ethers with Tunable Degradation Profiles. ACS Macro Lett 2024; 13:1531-1538. [PMID: 39467181 PMCID: PMC11955967 DOI: 10.1021/acsmacrolett.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Poly(ε-caprolactone) (PCL) is a widely utilized polymer within the biomedical field; however, one of its limitations is the multi-year long degradation profile. Herein, we report a semiaromatic polyester-ether (SAEE) PCL copolymer using a salicylic acid-based monomer which can disrupt the semicrystalline nature of the bulk material. The molar percentage of incorporation correlated to a linear decrease in melting and crystallization temperature, until a totally amorphous solid was seen at 37 mol %. Alongside this, mechanical analysis elucidated a softer, more extensible material with E' decreasing from 292 to 222 to 43.8 MPa for PCL to 10 to 22 mol % SAEE, respectively. Accelerated basic degradation studies (2 M NaOH) exhibited total mass loss after 16 weeks for 6 mol % compared to only 38% mass loss for PCL over the same period. Overall, by varying the SAEE mol %, we show the ability to finely tune the thermal, mechanical, and degradation profiles of PCL copolymers while maintaining an advantageous biological profile.
Collapse
Affiliation(s)
- Nicola G. Judge
- Department of Chemistry, Duke University, Durham, NC,
27708, USA
| | - Maddison I. Segal
- Thomas Lord Department of Mechanical Engineering and
Materials Science, Duke University, Durham, NC, 27708, USA
| | - Robert O. Silzer
- Department of Chemistry, Duke University, Durham, NC,
27708, USA
| | | | - Yin Mei Chan
- Department of Chemistry, Duke University, Durham, NC,
27708, USA
| | | | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, NC,
27708, USA
- Thomas Lord Department of Mechanical Engineering and
Materials Science, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University,
Durham, NC, 27708, USA
- Department of Orthopaedic Surgery, Duke University, Durham,
NC, 27708, USA
| |
Collapse
|
5
|
Schwab S, Bühler LY, Schleheck D, Nelson TF, Mecking S. Correlation of Enzymatic Depolymerization Rates with the Structure of Polyethylene-Like Long-Chain Aliphatic Polyesters. ACS Macro Lett 2024; 13:1245-1250. [PMID: 39259499 PMCID: PMC11483938 DOI: 10.1021/acsmacrolett.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Long-chain aliphatic polyesters are emerging sustainable materials that exhibit polyethylene-like properties while being amenable to chemical recycling and biodegradation. However, varying polyester chemical structures results in markedly different degradation rates, which cannot be predicted from commonly correlated bulk polyester properties, such as polymer melting temperature. To elucidate these structure-degradability relationships, long-chain polyesters varying in their monomer composition and crystallinity were subjected to enzymatic hydrolysis, the rates of which were quantified via detection of formed monomers. Copolymers with poorly water-soluble, long-chain diol monomers (e.g., 1,18-octadecanediol) demonstrated strongly reduced depolymerization rates compared to copolymers with shorter chain length diol monomers. This was illustrated by, e.g., the 20× faster hydrolysis of PE-4,18, consisting of 1,4-butanediol and 1,18-octadecanedicarboxylic acid monomers, relative to PE-18,4. The insoluble long-chain diol monomer released upon hydrolysis was proposed to remain attached to the bulk polymer surface, decreasing the accessibility of the remaining ester bonds to enzymes for further hydrolysis. Tuning of polyester crystallinity via the introduction of branched monomers led to variable hydrolysis rates, which increased by an order of magnitude when crystallinity decreased from 72% to 45%. The results reported enables the informed design of polyester structures with balanced material properties and amenability to depolymerization.
Collapse
Affiliation(s)
- Simon
T. Schwab
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Leonie Y. Bühler
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - David Schleheck
- Microbial
Ecology and Limnic Microbiology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Taylor F. Nelson
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Geng X, Liu X, Yu Q, Zhang C, Zhang X. Advancing H-Bonding Organocatalysis for Ring-Opening Polymerization: Intramolecular Activation of Initiator/Chain End. J Am Chem Soc 2024; 146:25852-25859. [PMID: 39226029 DOI: 10.1021/jacs.4c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Organocatalytic ring-opening polymerization (ROP) of lactones is a green method for accessing renewable and biodegradable polyesters. Developing new organocatalysts with high activity and controllability is a major and challenging research topic in this field. Here, we report a series of organocatalysts to achieve a fast and controlled ROP of lactones. These catalysts incorporate (thio)urea and alkoxide in one molecule and act as initiators in the ROP. Such catalysts enable an effective intramolecular activation of initiator/chain end, as revealed by computational studies, resulting in higher activity and fewer (thio)urea loads than existing (thio)urea/alkoxide binary systems. These organocatalysts exhibit ultrahigh activity comparable to metal complexes, i.e., turnover number up to 900 and turnover of frequency up to 4860 min-1, affording polyesters with tailor-made structure, predicted molecular weights, narrow dispersity, less epimerization, and minimal transesterification. The catalyst synthesis is simple and scalable, allowing widely tuned activities of the ROP.
Collapse
Affiliation(s)
- Xiaowei Geng
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiong Liu
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinglei Yu
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Xia YY, Yang X, Zhang W, Fu Y, Cai Z, Cao P, Zhu JB. A Facile Approach to Construct Novel Polyesters as Soft Midblock for Thermoplastic Elastomers. Chemistry 2024; 30:e202401727. [PMID: 38979891 DOI: 10.1002/chem.202401727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438±204 %), tensile strength (23.5±1.7 MPa), and outstanding elastic recovery (>88 %).
Collapse
Affiliation(s)
- Yun-Yun Xia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| | - Wei Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Fu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| |
Collapse
|
8
|
Warne CM, Fadlallah S, Allais F, Guebitz GM, Pellis A. Controlled Enzymatic Synthesis of Polyesters Based on a Cellulose-Derived Triol Monomer: A Design of Experiment Approach. CHEMSUSCHEM 2024; 17:e202301841. [PMID: 38545821 DOI: 10.1002/cssc.202301841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Regioselective enzymatic polycondensation of the bio-based cellulose derived polyol, Triol-citro, and dimethyl adipate using Candida antarctica Lipase B (CaLB) was investigated. A Design of Experiment approach with MODDE® Pro 13 was used to determine important factors in the branching behavior of this polymer, and reactant ratio, temperature, reaction time and enzyme wt % were the studied factors. Multifunctional polyesters with pendant hydroxy groups were synthesized and fully characterized using 2D NMR techniques to determine degree of branching. Branching was minimal, with a maximum of 16 % observed, and monomer ratio, temperature and reaction time were all determined to be significant factors. In this work, Mn of up to 13 kDa were achieved, while maintaining degree of branching below 15 %, resulting in a linear polyester with the potential to be further functionalized.
Collapse
Affiliation(s)
- Cicely M Warne
- ACIB GmbH, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, 51110, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, 51110, France
| | - Georg M Guebitz
- ACIB GmbH, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Alessandro Pellis
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- University of Genova, Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, 16146, Genova, GE, Italy
| |
Collapse
|
9
|
Cheng C, Shi JX, Kang EH, Nelson TF, Sander M, McNeill K, Hartwig JF. Polymers from Plant Oils Linked by Siloxane Bonds for Programmed Depolymerization. J Am Chem Soc 2024; 146:12645-12655. [PMID: 38651821 DOI: 10.1021/jacs.4c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The increased production of plastics is leading to the accumulation of plastic waste and depletion of limited fossil fuel resources. In this context, we report a strategy to create polymers that can undergo controlled depolymerization by linking renewable feedstocks with siloxane bonds. α,ω-Diesters and α,ω-diols containing siloxane bonds were synthesized from an alkenoic ester derived from castor oil and then polymerized with varied monomers, including related biobased monomers. In addition, cyclic monomers derived from this alkenoic ester and hydrosiloxanes were prepared and cyclized to form a 26-membered macrolactone containing a siloxane unit. Sequential ring-opening polymerization of this macrolactone and lactide afforded an ABA triblock copolymer. This set of polymers containing siloxanes underwent programmed depolymerization into monomers in protic solvents or with hexamethyldisiloxane and an acid catalyst. Monomers afforded by the depolymerization of polyesters containing siloxane linkages were repolymerized to demonstrate circularity in select polymers. Evaluation of the environmental stability of these polymers toward enzymatic degradation showed that they undergo enzymatic hydrolysis by a fungal cutinase from Fusarium solani. Evaluation of soil microbial metabolism of monomers selectively labeled with 13C revealed differential metabolism of the main chain and side chain organic groups by soil microbes.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jake X Shi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eun-Hye Kang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Taylor F Nelson
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Sander
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Schwab S, Nelson TF, Mecking S. Chemically Recyclable and Biodegradable Vulcanized Rubber. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:6281-6288. [PMID: 38665800 PMCID: PMC11041115 DOI: 10.1021/acssuschemeng.3c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The cross-linked nature of vulcanized rubbers as used in tire and many other applications prohibits an effective closed-loop mechanical or chemical recycling. Moreover, vulcanization significantly retards the material's biodegradation. Here, we report a recyclable and biodegradable rubber that is generated by the vulcanization of amorphous, unsaturated polyesters. The elastic material can be broken down via solvolysis into the underlying monomers. After removal of the vulcanized repeat units, the saturated monomers, constituting the major share of the material, can be recovered in overall recycling rates exceeding 90%. Respirometric biodegradation experiments by 13CO2 tracking under environmental conditions via the polyesters' diol monomer indicated depolymerization and partial mineralization of the vulcanized polyester rubbers.
Collapse
Affiliation(s)
- Simon
T. Schwab
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Taylor F. Nelson
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
11
|
Ximenis M, Monot J, Gabirondo E, Jeschke J, Martín-Vaca B, Bourissou D, Sardon H. Boosting the Reactivity of Bis-Lactones to Enable Step-Growth Polymerization at Room Temperature. Macromolecules 2024; 57:3319-3327. [PMID: 38616811 PMCID: PMC11008534 DOI: 10.1021/acs.macromol.3c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
The development of new sustainable polymeric materials endowed with improved performances but minimal environmental impact is a major concern, with polyesters as primary targets. Lactones are key monomers thanks to ring-opening polymerization, but their use in step-growth polymerization has remained scarce and challenging. Herein, we report a powerful bis(γ-lactone) (γSL) that was efficiently prepared on a gram scale from malonic acid by Pd-catalyzed cycloisomerization. The γ-exomethylene moieties and the spiro structure greatly enhance its reactivity toward ring-opening and enable step-growth polymerization under mild conditions. Using diols, dithiols, or diamines as comonomers, a variety of regioregular (AB)n copolymers with diverse linkages and functional groups (from oxo-ester to β-thioether lactone and β-hydroxy-lactame) have been readily prepared. Reaction modeling and monitoring revealed the occurrence of an original trans-lactonization process following the first ring-opening of γSL. This peculiar reactivity opens the way to regioregular (ABAC)n terpolymers, as illustrated by the successive step-growth polymerization of γSL with a diol and a diamine.
Collapse
Affiliation(s)
- Marta Ximenis
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Julien Monot
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Elena Gabirondo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Janna Jeschke
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Blanca Martín-Vaca
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Didier Bourissou
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials/Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Joxe
Mari Korta Center Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
12
|
Nelson TF, Rothauer D, Sander M, Mecking S. Degradable and Recyclable Polyesters from Multiple Chain Length Bio- and Waste-Sourceable Monomers. Angew Chem Int Ed Engl 2023; 62:e202310729. [PMID: 37675615 DOI: 10.1002/anie.202310729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Monomers sourced from waste or biomass are often mixtures of different chain lengths; e.g. catalytic oxidation of polyethylene waste yields mixtures of dicarboxylic acids (DCAs). Yet, polyesters synthesized from such monomer mixtures have rarely been studied. We report polyesters based on multiple linear aliphatic DCAs, present in chain length distributions that vary in their centers and ranges. We demonstrate that these materials can adopt high-density polyethylene-like solid state structures, and are ductile (e.g. Et 610 MPa), allowing for injection molding, or film and fiber extrusion. Melting and crystallization points of the polyesters show no odd-even effects as dipoles cannot favorably align in the crystal, similar to traditional odd carbon numbered, long-chain DCA polyesters. Biodegradation studies of 13 C-labelled polyesters in soil reveal rapid mineralization, and depolymerization by methanolysis indicates suitability for closed-loop recycling.
Collapse
Affiliation(s)
- Taylor F Nelson
- Department of Chemistry, University of Konstanz, Universitätstrasse 10, 78457, Konstanz, Germany
| | - Dario Rothauer
- Department of Chemistry, University of Konstanz, Universitätstrasse 10, 78457, Konstanz, Germany
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
13
|
Meyersohn M, Haque FM, Hillmyer MA. Dynamic Aliphatic Polyester Elastomers Crosslinked with Aliphatic Dianhydrides. ACS POLYMERS AU 2023; 3:365-375. [PMID: 37841953 PMCID: PMC10571103 DOI: 10.1021/acspolymersau.3c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 10/17/2023]
Abstract
Chemically crosslinked elastomers are a class of polymeric materials with properties that render them useful as adhesives, sealants, and in other engineering applications. Poly(γ-methyl-ε-caprolactone) (PγMCL) is a hydrolytically degradable and compostable aliphatic polyester that can be biosourced and exhibits competitive mechanical properties to traditional elastomers when chemically crosslinked. A typical limitation of chemically crosslinked elastomers is that they cannot be reprocessed; however, the incorporation of dynamic covalent bonds can allow for bonds to reversibly break and reform under an external stimulus, usually heat. In this work, we study the dynamic behavior and mechanical properties of PγMCL elastomers synthesized from aliphatic dianhydride crosslinkers. The crosslinked elastomers in this work were synthesized using the commercially available crosslinkers, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride and three-arm hydroxy-telechelic PγMCL star polymers. Stress relaxation experiments on the crosslinked networks showed an Arrhenius dependence of viscosity with temperature with an activation energy of 118 ± 8 kJ/mol, which agrees well with the activation energy of transesterification exchange chemistry obtained from small molecule model studies. Dynamic mechanical thermal analysis and rheological experiments confirmed the dynamic nature of the networks and provided insight into the mechanism of exchange (i.e., associative or dissociative). Tensile testing showed that these materials can exhibit high strains at break and low Young's moduli, characteristic of soft and strong elastomers. By controlling the exchange chemistry and understanding the effect of macromolecular structure on mechanical properties, we prepared the high-performance elastomers that can be potentially reprocessed at moderately elevated temperatures.
Collapse
Affiliation(s)
- Marianne
S. Meyersohn
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Farihah M. Haque
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Wang Z, Zhang W, Bai G, Lu Q, Li X, Zhou Y, Yang C, Xiao Y, Lang M. Highly resilient and fatigue-resistant poly(4-methyl- ε-caprolactone) porous scaffold fabricated via thiol-yne photo-crosslinking/salt-templating for soft tissue regeneration. Bioact Mater 2023; 28:311-325. [PMID: 37334070 PMCID: PMC10275743 DOI: 10.1016/j.bioactmat.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Elastomeric scaffolds, individually customized to mimic the structural and mechanical properties of natural tissues have been used for tissue regeneration. In this regard, polyester elastic scaffolds with tunable mechanical properties and exceptional biological properties have been reported to provide mechanical support and structural integrity for tissue repair. Herein, poly(4-methyl-ε-caprolactone) (PMCL) was first double-terminated by alkynylation (PMCL-DY) as a liquid precursor at room temperature. Subsequently, three-dimensional porous scaffolds with custom shapes were fabricated from PMCL-DY via thiol-yne photocrosslinking using a practical salt template method. By manipulating the Mn of the precursor, the modulus of compression of the scaffold was easily adjusted. As evidenced by the complete recovery from 90% compression, the rapid recovery rate of >500 mm min-1, the extremely low energy loss coefficient of <0.1, and the superior fatigue resistance, the PMCL20-DY porous scaffold was confirmed to harbor excellent elastic properties. In addition, the high resilience of the scaffold was confirmed to endow it with a minimally invasive application potential. In vitro testing revealed that the 3D porous scaffold was biocompatible with rat bone marrow stromal cells (BMSCs), inducing BMSCs to differentiate into chondrogenic cells. In addition, the elastic porous scaffold demonstrated good regenerative efficiency in a 12-week rabbit cartilage defect model. Thus, the novel polyester scaffold with adaptable mechanical properties may have extensive applications in soft tissue regeneration.
Collapse
Affiliation(s)
- Zhaochuang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wenhao Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guo Bai
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyu Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chi Yang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
15
|
Hu Z, Hu F, Deng L, Yang Y, Xie Q, Gao Z, Pan C, Jin Y, Tang J, Yu G, Zhang W. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability. Angew Chem Int Ed Engl 2023; 62:e202306039. [PMID: 37314932 DOI: 10.1002/anie.202306039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/16/2023]
Abstract
Development of thermosets that can be repeatedly recycled via both chemical route (closed-loop) and thermo-mechanical process is attractive and remains an imperative task. In this work, we reported a triketoenamine based dynamic covalent network derived from 2,4,6-triformylphloroglucinol and secondary amines. The resulting triketoenamine based network does not have intramolecular hydrogen bonds, thus reducing its π-electron delocalization, lowering the stability of the tautomer structure, and enabling its dynamic feature. By virtue of the highly reversible bond exchange, this novel dynamic covalent bond enables the easy construction of highly crosslinked and chemically reprocessable networks from commercially available monomers. The as-made polymer monoliths exhibit high mechanical properties (tensile strength of 79.4 MPa and Young's modulus of 571.4 MPa) and can undergo a monomer-network-monomer (yields up to 90 %) recycling mediated by an aqueous solution, with the new-generation polymer capable of restoring the material strength to its original state. In addition, owing to its dynamic nature, a catalyst-free and low-temperature reprogrammable covalent adaptable network (vitrimer) was achieved. The design concept reported herein can be applied to the development of other novel vitrimers with high repressibility and recyclability, and sheds light on future design of sustainable polymers with minimal environmental impact.
Collapse
Affiliation(s)
- Zeyou Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Fan Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Lifeng Deng
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Yumin Yang
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Qiujian Xie
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Zhu Gao
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
16
|
Filippova OV, Maksimkin AV, Dayyoub T, Larionov DI, Telyshev DV. Sustainable Elastomers for Actuators: "Green" Synthetic Approaches and Material Properties. Polymers (Basel) 2023; 15:2755. [PMID: 37376401 DOI: 10.3390/polym15122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Elastomeric materials have great application potential in actuator design and soft robot development. The most common elastomers used for these purposes are polyurethanes, silicones, and acrylic elastomers due to their outstanding physical, mechanical, and electrical properties. Currently, these types of polymers are produced by traditional synthetic methods, which may be harmful to the environment and hazardous to human health. The development of new synthetic routes using green chemistry principles is an important step to reduce the ecological footprint and create more sustainable biocompatible materials. Another promising trend is the synthesis of other types of elastomers from renewable bioresources, such as terpenes, lignin, chitin, various bio-oils, etc. The aim of this review is to address existing approaches to the synthesis of elastomers using "green" chemistry methods, compare the properties of sustainable elastomers with the properties of materials produced by traditional methods, and analyze the feasibility of said sustainable elastomers for the development of actuators. Finally, the advantages and challenges of existing "green" methods of elastomer synthesis will be summarized, along with an estimation of future development prospects.
Collapse
Affiliation(s)
- Olga V Filippova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Aleksey V Maksimkin
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Tarek Dayyoub
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Department of Physical Chemistry, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Dmitry I Larionov
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Dmitry V Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, 124498 Moscow, Russia
| |
Collapse
|
17
|
Fransen KA, Av-Ron SHM, Buchanan TR, Walsh DJ, Rota DT, Van Note L, Olsen BD. High-throughput experimentation for discovery of biodegradable polyesters. Proc Natl Acad Sci U S A 2023; 120:e2220021120. [PMID: 37252959 PMCID: PMC10266013 DOI: 10.1073/pnas.2220021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/08/2023] [Indexed: 06/01/2023] Open
Abstract
The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single Pseudomonas lemoignei bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.
Collapse
Affiliation(s)
- Katharina A. Fransen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sarah H. M. Av-Ron
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Tess R. Buchanan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Dylan J. Walsh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Dechen T. Rota
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lana Van Note
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
18
|
Nakagawa S, Aoki D, Asano Y, Yoshie N. Module-Assembled Elastomer Showing Large Strain Stiffening Capability and High Stretchability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301124. [PMID: 36929528 DOI: 10.1002/adma.202301124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/07/2023] [Indexed: 06/09/2023]
Abstract
Elastomers are indispensable materials due to their flexible, stretchable, and elastic nature. However, the polymer network structure constituting an elastomer is generally inhomogeneous, limiting the performance of the material. Here, a highly stretchable elastomer with unprecedented strain-stiffening capability is developed based on a highly homogeneous network structure enabled by a module assembly strategy. The elastomer is synthesized by efficient end-linking of a star-shaped aliphatic polyester precursor with a narrow molecular-weight distribution. The resulting product shows high strength (≈26 MPa) and remarkable stretchability (stretch ratio at break ≈1900%), as well as good fatigue resistance and notch insensitivity. Moreover, it shows extraordinary strain-stiffening capability (>2000-fold increase in the apparent stiffness) that exceeds the performance of any existing soft material. These unique properties are due to strain-induced ordering of the polymer chains in a uniformly stretched network, as revealed by in situ X-ray scattering analyses. The utility of this great strain-stiffening capability is demonstrated by realizing a simple variable stiffness actuator for soft robotics.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Daisuke Aoki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yuki Asano
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
19
|
Guo X, Liang J, Wang Z, Qin J, Zhang Q, Zhu S, Zhang K, Zhu H. Tough, Recyclable, and Degradable Elastomers for Potential Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210092. [PMID: 36929503 DOI: 10.1002/adma.202210092] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Indexed: 05/19/2023]
Abstract
Elastomers have many industrial, medical and commercial applications, however, their huge demand raises an important question of how to dispose of the out-of-service elastomers. Ideal elastomers that are concurrently tough, recyclable, and degradable are in urgent need, but their preparation remains a rigorous challenge. Herein, a polycaprolactone (PCL) based polyurethane elastomer is designed and prepared to meet this demand. Owing to the presence of dynamic coordination bond and the occurrence of strain-induced crystallization, the obtained elastomer exhibits a high toughness of ≈372 MJ m-3 and an unprecedented fracture energy of ≈646 kJ m-2 , which is much higher than natural rubber (≈50 MJ m-3 for toughness and ≈10 kJ m-2 for fracture energy). In addition, the elastomer can be recycled at least three times using solvent without losing its mechanical properties and can be degraded by lipase in ≈2 months. Finally, biological experiments demonstrate that the elastomer possesses good biocompatibility and can facilitate wound healing in mice when used as sutures. It is believed that the obtained elastomer meets the requirements for next-generation elastomers and is expected to be used in emerging fields such as biomedicine, flexible electronics, robotics and beyond.
Collapse
Affiliation(s)
- Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhifen Wang
- College of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jianliang Qin
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| |
Collapse
|
20
|
Eck M, Bernabeu L, Mecking S. Polyethylene-Like Blends Amenable to Abiotic Hydrolytic Degradation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4523-4530. [PMID: 37008182 PMCID: PMC10052336 DOI: 10.1021/acssuschemeng.2c07537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Long-chain aliphatic polyester-18,18 (PE-18,18) exhibits high density polyethylene-like material properties and, as opposed to high density polyethylene (HDPE), can be recycled in a closed loop via depolymerization to monomers under mild conditions. Despite the in-chain ester groups, its high crystallinity and hydrophobicity render PE-18,18 stable toward hydrolysis even under acidic conditions for one year. Hydrolytic degradability, however, can be a desirable material property as it can serve as a universal backstop to plastic accumulation in the environment. We present an approach to render PE-18,18 hydrolytically degradable by melt blending with long-chain aliphatic poly(H-phosphonate)s (PP). The blends can be processed via common injection molding and 3D printing and exhibit HDPE-like tensile properties, namely, high stiffness (E = 750-940 MPa) and ductility (εtb = 330-460%) over a wide range of blend ratios (0.5-20 wt % PP content). Likewise, the orthorhombic solid-state structure and crystallinity (χ ≈ 70%) of the blends are similar to HDPE. Under aqueous conditions in phosphate-buffered media at 25 °C, the blends' PP component is hydrolyzed completely to the underlying long-chain diol and phosphorous acid within four months, as evidenced by NMR analyses. Concomitant, the PE-18,18 major blend component is partially hydrolyzed, while neat PE-18,18 is inert under identical conditions. The hydrolysis of the blend components proceeded throughout the bulk of the specimens as confirmed by gel permeation chromatography (GPC) measurements. The significant molar mass reduction upon extended immersion in water (M n(virgin blends) ≈ 50-70 kg mol-1; M n(hydrolyzed blends) ≈ 7-11 kg mol-1) resulted in embrittlement and fragmentation of the injection molded specimens. This increases the surface area and is anticipated to promote eventual mineralization by abiotic and biotic pathways of these HDPE-like polyesters in the environment.
Collapse
|
21
|
Şucu T, Wang M, Shaver MP. Degradable and Reprocessable Resins from a Dioxolanone Cross-Linker. Macromolecules 2023; 56:1625-1632. [PMID: 36874530 PMCID: PMC9979638 DOI: 10.1021/acs.macromol.2c02560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Indexed: 02/11/2023]
Abstract
Chemically cross-linked polymers offer excellent temperature and solvent resistance, but their high dimensional stability precludes reprocessing. The renewed demand for sustainable and circular polymers from public, industry, and government stakeholders has increased research into recycling thermoplastics, but thermosets have often been overlooked. To address this need for more sustainable thermosets, we have developed a novel bis(1,3-dioxolan-4-one) monomer, derived from the naturally occurring l-(+)-tartaric acid. This compound can be used as a cross-linker and copolymerized in situ with common cyclic esters such as l-lactide, ε-caprolactone, and δ-valerolactone to produce cross-linked, degradable polymers. The structure-property relationships and the final network properties were tuned by both co-monomer choice and composition, with properties ranging from resilient solids with tensile strengths of 46.7 MPa to elastomers with elongations up to 147%. In addition to exhibiting properties rivalling those of commercial thermosets, the synthesized resins could be recovered at end-of-life through triggered degradation or reprocessing. Accelerated hydrolysis experiments showed the materials fully degraded to tartaric acid and the corresponding oligomers from 1 to 14 days under mild basic conditions and in a matter of minutes in the presence of a transesterification catalyst. The vitrimeric reprocessing of networks was demonstrated at elevated temperatures, and rates could be tuned by modifying the concentration of the residual catalyst. This work develops new thermosets, and indeed their glass fiber composites, with an unprecedented ability to tune degradability and high performance by creating resins from sustainable monomers and a bio-derived cross-linker.
Collapse
Affiliation(s)
- Theona Şucu
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Meng Wang
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Michael P Shaver
- Department of Materials, Engineering Building A, University of Manchester, Oxford Road M13 9PL, U.K.,Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
22
|
Pranav U, Malhotra M, Pathan S, Jayakannan M. Structural Engineering of Star Block Biodegradable Polymer Unimolecular Micelles for Drug Delivery in Cancer Cells. ACS Biomater Sci Eng 2023; 9:743-759. [PMID: 36579913 DOI: 10.1021/acsbiomaterials.2c01201] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present investigation reports the structural engineering of biodegradable star block polycaprolactone (PCL) to tailor-make aggregated micelles and unimolecular micelles to study their effect on drug delivery aspects in cancer cell lines. Fully PCL-based star block copolymers were designed by varying the arm numbers from two to eight while keeping the arm length constant throughout. Multifunctional initiators were exploited for stepwise solvent-free melt ring-opening polymerization of ε-caprolactone and γ-substituted caprolactone to construct star block copolymers having a PCL hydrophobic core and a carboxylic PCL hydrophilic shell, respectively. A higher arm number and a higher degree of branching in star polymers facilitated the formation of unimolecular micelles as opposed to the formation of conventional multimicellar aggregates in lower arm analogues. The dense core of the unimolecular micelles enabled them to load high amounts of the anticancer drug doxorubicin (DOX, ∼12-15%) compared to the aggregated micelles (∼3-4%). The star unimolecular micelle completely degraded leading to 90% release of the loaded drug upon treatment with the lysosomal esterase enzyme in vitro. The anticancer efficacies of these DOX-loaded unimolecular micelles were tested in a breast cancer cell line (MCF-7), and their IC50 values were found to be much lower compared to those of aggregated micelles. Time-dependent cellular uptake studies by confocal microscopy revealed that unimolecular micelles were readily taken up by the cells, and enhancement of the drug concentration was observed at the intracellular level up to 36 h. The present work opens new synthetic strategies for building a next-generation biodegradable unimolecular micellar nanoplatform for drug delivery in cancer research.
Collapse
Affiliation(s)
- Upendiran Pranav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Mehak Malhotra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| |
Collapse
|
23
|
Eck M, Schwab ST, Nelson TF, Wurst K, Iberl S, Schleheck D, Link C, Battagliarin G, Mecking S. Biodegradable High-Density Polyethylene-like Material. Angew Chem Int Ed Engl 2023; 62:e202213438. [PMID: 36480133 PMCID: PMC10107712 DOI: 10.1002/anie.202213438] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
We report a novel polyester material generated from readily available biobased 1,18-octadecanedicarboxylic acid and ethylene glycol possesses a polyethylene-like solid-state structure and also tensile properties similar to high density polyethylene (HDPE). Despite its crystallinity, high melting point (Tm =96 °C) and hydrophobic nature, polyester-2,18 is subject to rapid and complete hydrolytic degradation in in vitro assays with isolated naturally occurring enzymes. Under industrial composting conditions (ISO standard 14855-1) the material is biodegraded with mineralization above 95 % within two months. Reference studies with polyester-18,18 (Tm =99 °C) reveal a strong impact of the nature of the diol repeating unit on degradation rates, possibly related to the density of ester groups in the amorphous phase. Depolymerization by methanolysis indicates suitability for closed-loop recycling.
Collapse
Affiliation(s)
- Marcel Eck
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Simon Timm Schwab
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Taylor Frederick Nelson
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Katrin Wurst
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Steffen Iberl
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - David Schleheck
- Microbial Ecology and Limnic Microbiology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Christoph Link
- BASF SE, PMD/GB-B001, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Glauco Battagliarin
- BASF SE, PMD/GB-B001, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
24
|
Martinez MR, Schild D, De Luca Bossa F, Matyjaszewski K. Depolymerization of Polymethacrylates by Iron ATRP. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Dirk Schild
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
25
|
Kang F, Yang Y, Wang W, Li Z. Preparation of degradable aliphatic polyester elastomers with tunable strength and elasticity via photo‐crosslinking. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Kang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yan Yang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Wenpin Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
26
|
Wang Y, Liu J, Li C, Xiao Y, Wu S, Zhang B. Synthesis and characterization of poly(butylene terephthalate-co-glycolic acid) biodegradable copolyesters. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Kölsch JC, Berač CM, Lossada F, Stach OS, Seiffert S, Walther A, Besenius P. Recyclable Vitrimers from Biogenic Poly(itaconate) Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas C. Kölsch
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christian M. Berač
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Francisco Lossada
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Oliver S. Stach
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Andreas Walther
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
28
|
Spring SW, Hsu JH, Sifri RJ, Yang SM, Cerione CS, Lambert TH, Ellison CJ, Fors BP. Poly(2,3-Dihydrofuran): A Strong, Biorenewable, and Degradable Thermoplastic Synthesized via Room Temperature Cationic Polymerization. J Am Chem Soc 2022; 144:15727-15734. [PMID: 35981404 DOI: 10.1021/jacs.2c06103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Creation of strong and tough plastics from sustainable and biorenewable resources is a significant challenge in polymer science. This challenge is further complicated when attempting to make these materials using an economically viable process, which is often hindered by the production and availability of chemical feedstocks and the efficiency of the monomer synthesis. Herein, we report the synthesis and characterization of a strong thermoplastic made from 2,3-dihydrofuran (DHF), a monomer made in one step from 1,4-butanediol, a bioalcohol already produced on the plant scale. We developed a green, metal-free cationic polymerization to enable the production of poly(2,3-dihydrofuran) (PDHF) with molecular weights of up to 256 kg/mol at room temperature. Characterization of these polymers showed that PDHF possesses high tensile strength and toughness (70 and 14 MPa, respectively) comparable to commercial polycarbonate, high optical clarity, and good barrier properties to oxygen, carbon dioxide, and water. These properties make this material amenable to a variety of applications, from food packaging to high strength windows. Importantly, we have also developed a facile oxidative degradation process of PDHF, providing an end-of-life solution for PDHF materials.
Collapse
Affiliation(s)
- Scott W Spring
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Renee J Sifri
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Szu-Ming Yang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Chloe S Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Petersen SR, Yu J, Yeazel TR, Bass G, Alamdari A, Becker ML. Degradable, Photochemically Printable Poly(propylene fumarate)-Based ABA Triblock Elastomers. Biomacromolecules 2022; 23:2388-2395. [PMID: 35512280 DOI: 10.1021/acs.biomac.2c00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Additive manufacturing is rapidly advancing tissue engineering, but the scope of its clinical translation is limited by a lack of materials designed to meet specific mechanical properties and resorption timelines. Materials that are printable via photochemical cross-linking, fully degradable, and elastomeric have proven to be particularly challenging to develop. Herein, we report the synthesis of a series of poly(propylene fumarate-b-γ-methyl-ε-caprolactone-b-propylene fumarate) ABA triblock polymers using sequential ring-opening polymerization and ring-opening copolymerization. When cross-linked photochemically using a continuous liquid interface production digital light processing Carbon M2 printer, these ABA-type triblock copolymers are durable elastomers with tunable degradation and elastic properties. The polymers are shown to undergo slow, hydrolytic degradation in vitro with minimal loss of mechanical performance during degradation.
Collapse
Affiliation(s)
- Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jiayi Yu
- 21MedTech, LLC, Durham, North Carolina 27703, United States
| | - Taylor R Yeazel
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Garrett Bass
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Aslan Alamdari
- 21MedTech, LLC, Durham, North Carolina 27703, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
30
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
31
|
Yang S, Yi S, Yun J, Li N, Jiang Y, Huang Z, Xu C, He C, Pan X. Carbene-Mediated Polymer Cross-Linking with Diazo Compounds by C–H Activation and Insertion. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Siyu Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Yun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
32
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra-Tough Elastomers from Stereochemistry-Directed Hydrogen Bonding in Isosorbide-Based Polymers. Angew Chem Int Ed Engl 2022; 61:e202115904. [PMID: 35167725 PMCID: PMC9311410 DOI: 10.1002/anie.202115904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 02/02/2023]
Abstract
The remarkable elasticity and tensile strength found in natural elastomers are challenging to mimic. Synthetic elastomers typically feature covalently cross-linked networks (rubbers), but this hinders their reprocessability. Physical cross-linking via hydrogen bonding or ordered crystallite domains can afford reprocessable elastomers, but often at the cost of performance. Herein, we report the synthesis of ultra-tough, reprocessable elastomers based on linear alternating polymers. The incorporation of a rigid isohexide adjacent to urethane moieties affords elastomers with exceptional strain hardening, strain rate dependent behavior, and high optical clarity. Distinct differences were observed between isomannide and isosorbide-based elastomers where the latter displays superior tensile strength and strain recovery. These phenomena are attributed to the regiochemical irregularities in the polymers arising from their distinct stereochemistry and respective inter-chain hydrogen bonding.
Collapse
Affiliation(s)
| | | | - Joshua C. Worch
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Zilu Wang
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Jiayi Yu
- Department of Polymer ScienceThe University of AkronAkronOH 44224USA
| | - Maria C. Arno
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Andrey V. Dobrynin
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials ScienceBiomedical Engineering and Orthopedic SurgeryDuke UniversityDurhamNC, 20899USA
| | - Andrew P. Dove
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
33
|
Wang Y, Wang M, Shi Y, Chen X, Song D, Li Y, Wang B. Switchable Copolymerization of Maleic Anhydride/Epoxides/Lactide Mixtures: A Straightforward Approach to Block Copolymers with Unsaturated Polyester Sequences. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu‐Bo Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Ming‐Qian Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Yi‐Bo Shi
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Xiao‐Lu Chen
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Dong‐Po Song
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Yue‐Sheng Li
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| |
Collapse
|
34
|
Yang X, Zhang W, Huang HY, Dai J, Wang MY, Fan HZ, Cai Z, Zhang Q, Zhu JB. Stereoselective Ring-Opening Polymerization of Lactones with a Fused Ring Leading to Semicrystalline Polyesters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Wei Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jiang Dai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Meng-Yuan Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
35
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra‐Tough Elastomers from Stereochemistry‐Directed Hydrogen Bonding in Isosorbide‐Based Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hannah Prydderch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Joshua C. Worch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Connor J. Stubbs
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Zilu Wang
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Jiayi Yu
- Department of Polymer Science The University of Akron Akron OH 44224 USA
| | - Maria C. Arno
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Andrey V. Dobrynin
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials Science Biomedical Engineering and Orthopedic Surgery Duke University Durham NC, 20899 USA
| | - Andrew P. Dove
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
36
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Panja S, Siehr A, Sahoo A, Siegel RA, Shen W. Biodegradable Elastomers Enabling Thermoprocessing Below 100 °C. Biomacromolecules 2021; 23:163-173. [PMID: 34898190 DOI: 10.1021/acs.biomac.1c01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biodegradable and biocompatible elastomers are highly desirable for many biomedical applications. Here, we report synthesis and characterization of poly(ε-caprolactone)-co-poly(β-methyl-δ-valerolactone)-co-poly(ε-caprolactone) (PCL-PβMδVL-PCL) elastomers. These materials have strain to failure values greater than 1000%. Tensile set measurements according to an ASTM standard revealed a 98.24% strain recovery 10 min after the force was removed and complete strain recovery 40 min after the force was removed. The PβMδVL midblock is amorphous with a glass-transition temperature of -51 °C, and PCL end blocks are semicrystalline and have a melting temperature in the range of 52-55 °C. Due to their thermoplastic nature and the low melting temperature, these elastomers can be readily processed by printing, extrusion, or hot-pressing at 60 °C. Lysozyme, a model bioactive agent, was incorporated into a PCL-PβMδVL-PCL elastomer through melt blending in an extruder, and the blend was further hot-pressed into films; both processing steps were performed at 60 °C. No loss of lysozyme bioactivity was observed. PCL-PβMδVL-PCL elastomers are as cytocompatible as tissue culture polystyrene in supporting cell viability and cell growth, and they are degradable in aqueous environments through hydrolysis. The degradable, cytocompatible, elastomeric, and thermoplastic properties of PCL-PβMδVL-PCL polymers collectively render them potentially valuable for many applications in the biomedical field, such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Anasuya Sahoo
- Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Chang H, Kim MS, Huber GW, Dumesic JA. Design of closed-loop recycling production of a Diels-Alder polymer from a biomass-derived difuran as a functional additive for polyurethanes. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:9479-9488. [PMID: 35237099 PMCID: PMC8884468 DOI: 10.1039/d1gc02865k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Acetalization of biomass-derived 5-hydroxymethyl furfural (HMF) with pentaerythritol produced a difuran (HPH) monomer in the presence of an acid catalyst. A recyclable polymer was then synthesized by Diels-Alder reaction of bismaleimide and the HMF-derived difuran (HPH). A polyurethane, produced from the Diels-Alder polymer has a higher glass transition temperature than a polyurethane, produced from ethylene glycol. The polyurethane, containing Diels-Alder polymer also has a self-healing ability. The Diels-Alder polymer could be hydrolyzed under acidic acetate buffer at 60°C to produce the monomers for recycling. Each produced monomer was separated by solvent extraction, and the extracted monomers were recovered in different solvent fractions, such as aqueous, ethyl acetate, and acetone fractions. Techno economic analysis was used to assess the minimum selling price ($14.1 per kg) for the primary production of Diels-Alder polymer at a feed capacity of 400 tons per year. The economic viability of the primary recovery process for the most expensive recovered monomer, bismaleimide, was assessed by calculating the minimum selling price of the bismaleimide ($15.2 per kg). A circular closed-loop recycling production process for the Diels-Alder polymer was developed and this approach can produce the Diels-Alder polymer at $8.2 per kg when the feed capacity was 40 ktons per year.
Collapse
Affiliation(s)
- Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Min Soo Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Rapid synthesis of sustainable poly(ethylene 2,5-furandicarboxylate)-block-poly(tetramethylene oxide) multiblock copolymers with tailor-made properties via a cascade polymerization route. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Siehr A, Flory C, Callaway T, Schumacher RJ, Siegel RA, Shen W. Implantable and Degradable Thermoplastic Elastomer. ACS Biomater Sci Eng 2021; 7:5598-5610. [PMID: 34788004 DOI: 10.1021/acsbiomaterials.1c01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biodegradable and implantable materials having elastomeric properties are highly desirable for many biomedical applications. Here, we report that poly(lactide)-co-poly(β-methyl-δ-valerolactone)-co-poly(lactide) (PLA-PβMδVL-PLA), a thermoplastic triblock poly(α-ester), has combined favorable properties of elasticity, biodegradability, and biocompatibility. This material exhibits excellent elastomeric properties in both dry and aqueous environments. The elongation at break is approximately 1000%, and stretched specimens completely recover to their original shape after force is removed. The material is degradable both in vitro and in vivo; it degrades more slowly than poly(glycerol sebacate) and more rapidly than poly(caprolactone) in vivo. Both the polymer and its degradation product show high cytocompatibility in vitro. The histopathological analysis of PLA-PβMδVL-PLA specimens implanted in the gluteal muscle of rats for 1, 4, and 8 weeks revealed similar tissue responses as compared with poly(glycerol sebacate) and poly(caprolactone) controls, two widely accepted implantable polymers, suggesting that PLA-PβMδVL-PLA can potentially be used as an implantable material with favorable in vivo biocompatibility. The thermoplastic nature allows this elastomer to be readily processed, as demonstrated by the facile fabrication of the substrates with topographical cues to enhance muscle cell alignment. These properties collectively make this polymer potentially highly valuable for applications such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Craig Flory
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States
| | - Trenton Callaway
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States.,Experimental and Clinical Pharmacology, University of Minnesota, 7-115 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
41
|
Liu G, Jin C, Huo S, Kong Z, Chu F. Preparation and properties of novel bio-based epoxy resin thermosets from lignin oligomers and cardanol. Int J Biol Macromol 2021; 193:1400-1408. [PMID: 34740690 DOI: 10.1016/j.ijbiomac.2021.10.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
A series of lignin-based epoxy resins (LEPs) were prepared by the reaction of epichlorohydrin with lignin oligomers derived from partial reductive depolymerization of lignin. To overcome the high viscosity and brittleness defects in practical applications, the LEPs were blended with renewable epoxied cardanol glycidyl ether (ECGE) and then cured with methyltetrahydrophthalic anhydride (MeTHPA) to form high-performance epoxy thermosets. The effects of degree of lignin depolymerization, chemical composition of lignin oligomers and dosage of ECGE on thermal and mechanical properties of the cured products were investigated. The LEP/MeTHPA thermosets exhibited good thermal and mechanical properties. Especially, by separating monomer-rich fractions from lignin oligomers, the thermal and mechanical properties of the cured product were improved obviously. Notably, the incorporation of ECGE also possessed a positive effect on reinforcing and toughening the cured products. With 20 wt% ECGE loadings, the tensile, flexural and impact strength of the cured product reached the maximum value of 77 MPa, 115 MPa and 14 kJ/m2, respectively, which were equivalent to the commercial bisphenol A epoxy resins thermosets. These findings indicated that the novel bio-based epoxy resins from lignin oligomers and cardanol could be utilized as renewable alternatives for BPA epoxy resins.
Collapse
Affiliation(s)
- Guifeng Liu
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Key Lab. of Chemical Engineering of forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Key Lab. of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Key Lab. of Chemical Engineering of forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Key Lab. of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Key Lab. of Chemical Engineering of forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Key Lab. of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Key Lab. of Chemical Engineering of forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Key Lab. of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China.
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Key Lab. of Chemical Engineering of forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Key Lab. of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China.
| |
Collapse
|
42
|
Davis BJ, Thapa K, Hartline MC, Fuchs WK, Blanton MD, Wiggins JS, Simon YC. Enhanced photodegradation of
TiO
2
‐containing poly(ε‐caprolactone)/poly(lactic acid) blends. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Brad J. Davis
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Kundu Thapa
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Matthew C. Hartline
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Witold K. Fuchs
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Michael D. Blanton
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Jeffrey S. Wiggins
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
43
|
Rosetto G, Deacy AC, Williams CK. Mg(ii) heterodinuclear catalysts delivering carbon dioxide derived multi-block polymers. Chem Sci 2021; 12:12315-12325. [PMID: 34603661 PMCID: PMC8480424 DOI: 10.1039/d1sc03856g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon dioxide derived polymers are emerging as useful materials for applications spanning packaging, construction, house-hold goods and automotive components. To accelerate and broaden their uptake requires both more active and selective catalysts and greater structural diversity for the carbon dioxide derived polymers. Here, highly active catalysts show controllable selectivity for the enchainment of mixtures of epoxide, anhydride, carbon dioxide and lactone. Firstly, metal dependent selectivity differences are uncovered using a series of dinuclear catalysts, Mg(ii)Mg(ii), Zn(ii)Zn(ii), Mg(ii)Zn(ii), and Mg(ii)Co(ii), each exposed to mixtures of bio-derived tricyclic anhydride, cyclohexene oxide and carbon dioxide (1 bar). Depending upon the metal combinations, different block structures are possible with Zn(ii)Zn(ii) yielding poly(ester-b-carbonate); Mg(ii)Mg(ii) or Mg(ii)Co(ii) catalysts delivering poly(carbonate-b-ester); and Mg(ii)Zn(ii) furnishing a random copolymer. These results indicate that carbon dioxide insertion reactions follow the order Co(ii) > Mg(ii) > Zn(ii). Using the most active and selective catalyst, Mg(ii)Co(ii), and exploiting reversible on/off switches between carbon dioxide/nitrogen at 1 bar delivers precision triblock (ABA), pentablock (BABAB) and heptablock (ABABABA) polymers (where A = poly(cyclohexylene oxide-alt-tricyclic anhydride), PE; B = poly(cyclohexene carbonate), PCHC). The Mg(ii)Co(ii) catalyst also selectively polymerizes a mixture of anhydride, carbon dioxide, cyclohexene oxide and ε-caprolactone to deliver a CBABC pentablock copolymer (A = PE, B = PCHC C = poly(caprolactone), PCL). The catalysts combine high activity and selectivity to deliver new polymers featuring regularly placed carbon dioxide and biomass derived linkages.
Collapse
Affiliation(s)
- Gloria Rosetto
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| |
Collapse
|
44
|
Chiong JA, Tran H, Lin Y, Zheng Y, Bao Z. Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101233. [PMID: 34014619 PMCID: PMC8292855 DOI: 10.1002/advs.202101233] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 05/02/2023]
Abstract
Through advances in molecular design, understanding of processing parameters, and development of non-traditional device fabrication techniques, the field of wearable and implantable skin-inspired devices is rapidly growing interest in the consumer market. Like previous technological advances, economic growth and efficiency is anticipated, as these devices will enable an augmented level of interaction between humans and the environment. However, the parallel growing electronic waste that is yet to be addressed has already left an adverse impact on the environment and human health. Looking forward, it is imperative to develop both human- and environmentally-friendly electronics, which are contingent on emerging recyclable, biodegradable, and biocompatible polymer technologies. This review provides definitions for recyclable, biodegradable, and biocompatible polymers based on reported literature, an overview of the analytical techniques used to characterize mechanical and chemical property changes, and standard policies for real-life applications. Then, various strategies in designing the next-generation of polymers to be recyclable, biodegradable, or biocompatible with enhanced functionalities relative to traditional or commercial polymers are discussed. Finally, electronics that exhibit an element of recyclability, biodegradability, or biocompatibility with new molecular design are highlighted with the anticipation of integrating emerging polymer chemistries into future electronic devices.
Collapse
Affiliation(s)
- Jerika A. Chiong
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Helen Tran
- Department of ChemistryUniversity of TorontoTorontoONM5S 3H6Canada
| | - Yangju Lin
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| | - Yu Zheng
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Zhenan Bao
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| |
Collapse
|
45
|
Chang H, Gilcher EB, Huber GW, Dumesic JA. Synthesis of performance-advantaged polyurethanes and polyesters from biomass-derived monomers by aldol-condensation of 5-hydroxymethyl furfural and hydrogenation. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:4355-4364. [PMID: 36275196 PMCID: PMC9585942 DOI: 10.1039/d1gc00899d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Functional polyurethanes and polyesters with tunable properties were synthesized from biomass-derived 5-hydroxymethyl furfural (HMF)-Acetone-HMF (HAH) monomers. HAH can be selectively hydrogenated over Cu and Ru catalysts to produce partially-hydrogenated (PHAH) and fully-hydrogenated (FHAH). The HAH units in these polymers improve the thermal stability and stiffness of the polymers compared to polyurethanes produced with ethylene glycol. Polyurethanes produced from PHAH provide diene binding sites for electron deficient C=C double bonds, such as in maleimide compounds, that can participate in Diels-Alder reactions. Such sites can function to create crosslinking by Diels-Alder coupling with bismaleimides and can be used to impart functionality to PHAH (giving rise to anti-microbial activity or controlled drug delivery). The symmetric triol structure of FHAH leads to energy-dissipating rubbers with branched structures. Accordingly, the properties of these biomass-derived polymers can be tuned by controlling the blending ratio of HAH-derived monomers or the degree of Diels-Alder reaction. The polyester produced from HAH can be used in packaging applications.
Collapse
Affiliation(s)
- Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - Elise B. Gilcher
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
46
|
Functionalized chitosan as a novel support for stabilizing palladium in Suzuki reactions. Carbohydr Polym 2021; 260:117815. [DOI: 10.1016/j.carbpol.2021.117815] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
|
47
|
Zhang J, Lu J, Wang D, Han B. INTRODUCING BIOBASED NONPOLAR BOTTLEBRUSH β-MYRCENE SEGMENTS TO IMPROVE SILICA DISPERSION FOR SUSTAINABLE SSBR/SILICA NANOCOMPOSITES. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
To overcome the problem of fossil fuel depletion and associated environmental issues arising from the use of tire tread elastomers, a convenient, environmentally friendly, and highly efficient strategy was developed to prepare high-performance green solution polymerized styrene–butadiene rubber (SSBR)/silica nanocomposites by improving silica dispersion in the nonpolar polymer matrix via the introduction of a biobased nonpolar bottlebrush segment with two double bonds. Various elastomers containing biobased nonpolar bottlebrush β-myrcene segments were synthesized using an industrially robust anionic polymerization method. Results of rubber process analysis, small-angle X-ray scattering, scanning electron microscopy, and transmission electron microscopy revealed that rubber with myrcene could significantly improve silica dispersibility and inhibit the strong filler–filler interactions, which are due to the formation of hydrogen bonding between the double bonds in the myrcene block and silanol groups on the silica surface and possibly to the spreading or infiltrating of myrcene bottlebrush segments onto silica. Furthermore, for the modified rubber, rolling resistance decreased by 41.7%, tear strength increased by 20.78%, and tensile strength increased by 77.8% with the elongation at break remained practically unchanged as compared with the unmodified silica/SSBR composite. On the basis of aforementioned assessment, we believe that silica-reinforced β-myrcene–based styrene–butadiene integrated rubber is a versatile and promising candidate for future tire tread elastomers.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianmin Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dongfang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bingyong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
48
|
Closed-loop recycling of polyethylene-like materials. Nature 2021; 590:423-427. [DOI: 10.1038/s41586-020-03149-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022]
|
49
|
Wan X, Jiang J, Tu Y, Xu S, Li J, Lu H, Li Z, Xiong L, Li X, Zhao Y, Tu Y. A cascade strategy towards the direct synthesis of green polyesters with versatile functional groups. Polym Chem 2021. [DOI: 10.1039/d1py01124c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cascade coupling of ROP and CP enables the facile synthesis of high functional group content biodegradable polyesters.
Collapse
Affiliation(s)
- Xueting Wan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yanyan Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyuan Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhikai Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lianhu Xiong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingfeng Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
50
|
Mitchell SM, Niradha Sachinthani KA, Pulukkody R, Pentzer EB. 100th Anniversary of Macromolecular Science Viewpoint: Polymerization of Cumulated Bonds: Isocyanates, Allenes, and Ketenes as Monomers. ACS Macro Lett 2020; 9:1046-1059. [PMID: 35648600 DOI: 10.1021/acsmacrolett.0c00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymer chemistry offers exciting opportunities to tailor the properties of soft materials through control of the composition of the polymers and their interaction with each other, additives, and surfaces. Ongoing advances in the synthesis of polymeric materials demonstrate the drive for materials with tailored properties for enhanced performance in the next generation of materials and devices. One class of small molecules that can serve as monomers in chain growth polymerization are cumulated double bonds of the general form X═Y═Z. The three most common classes of these molecules are isocyanates (N═C═O), allenes (C═C═C), and ketenes (C═C═O), each of which has been explored as monomers under a variety of conditions. The orthogonality of the two pi bonds of the cumulated double bonds (i.e., lack of conjugation) enables the formation of different polymer backbones from a single monomer, provided the regioreactivity is controlled. This Viewpoint outlines the use of these three cumulated double bonds as monomers, illustrating success and current limitations to established polymerization methods. We then provide an outlook to the future of cumulated double bonds as monomers for the generation of tailored polymer compositions.
Collapse
Affiliation(s)
- Sarah M. Mitchell
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - K. A. Niradha Sachinthani
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Randinu Pulukkody
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Emily B. Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|