1
|
Kim G, Grams RJ, Hsu KL. Advancing Covalent Ligand and Drug Discovery beyond Cysteine. Chem Rev 2025. [PMID: 40404146 DOI: 10.1021/acs.chemrev.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Targeting intractable proteins remains a key challenge in drug discovery, as these proteins often lack well-defined binding pockets or possess shallow surfaces not readily addressed by traditional drug design. Covalent chemistry has emerged as a powerful solution for accessing protein sites in difficult to ligand regions. By leveraging activity-based protein profiling (ABPP) and LC-MS/MS technologies, academic groups and industry have identified cysteine-reactive ligands that enable selective targeting of challenging protein sites to modulate previously inaccessible biological pathways. Cysteines within a protein are rare, however, and developing covalent ligands that target additional residues hold great promise for further expanding the ligandable proteome. This review highlights recent advancements in targeting amino acids beyond cysteine binding with an emphasis on tyrosine- and lysine-directed covalent ligands and their applications in chemical biology and therapeutic development. We outline the process of developing covalent ligands using chemical proteomic methodology, highlighting recent successful examples and discuss considerations for future expansion to additional amino acid sites on proteins.
Collapse
Affiliation(s)
- Gibae Kim
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - R Justin Grams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Song N, Xu L, Ding S. Sulfur-Azide Exchange (SuAEx): A Click Reaction for Chemoselective Sulfonate Ester Formation. Org Lett 2025; 27:4921-4926. [PMID: 40331872 DOI: 10.1021/acs.orglett.5c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Here, we report sulfur-azide exchange (SuAEx), which facilitates the efficient synthesis of sulfonate esters via the reaction of sulfonyl azides with phenolic substrates under mild conditions. The reaction tolerates a wide range of functional groups. Notably, SuAEx displays a distinct preference for phenolic hydroxyls over aliphatic alcohols, providing orthogonality critical for complex molecular editing. Its utility is further demonstrated through iterative ligation strategies when combined with azide-alkyne cycloaddition reactions.
Collapse
Affiliation(s)
- Ningning Song
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linlin Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Zhang Y, Yu C, Wang L, Zhou L, Li C, Yuan C, Sun N, Hao G, Ma C, Lin Y, Li H, Hong J, Zhao J, Lou K, Zhang R, Xie C, Wang S. Synthesis and Anticancer Activity Evaluation of Novel Carborane-Containing Isoflavonoid Analogues. ACS OMEGA 2025; 10:18720-18732. [PMID: 40385218 PMCID: PMC12079591 DOI: 10.1021/acsomega.5c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 05/20/2025]
Abstract
Isoflavonoids represent a privileged structure derived from natural products with diverse bioactivities. Carborane has been utilized as a three-dimensional mimetic of phenyl rings in medicinal chemistry. Herein, we replaced the phenyl group of isoflavonoids with carborane and prepared a series of carborane-containing isoflavonoid analogues. Compounds 1d, 1g, and 1m showed significantly enhanced antiproliferative activities on a broad scope of cancer cell lines. Further studies indicated that both 1d and 1m inhibited JAK/STAT5, PI3K/AKT, and p38 MAPK pathways, leading to G1 cell cycle phase arrest. Additionally, both compounds reduced the expression of P-glycoprotein (P-gp), a key mediator in multidrug resistance, and reversed the resistance of chemotherapeutic agents in multidrug-resistant cells in vitro. The biodistribution of compounds 1d and 1m was evaluated through ICP-mass and positron emission tomography imaging studies. Taken together, these results suggested promising pharmaceutical properties for the carborane-containing isoflavonoid analogues.
Collapse
Affiliation(s)
- Yirong Zhang
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of
Pharmacy, East China University of Science
and Technology, Shanghai 200237, China
| | - Chuwei Yu
- Lingang
Laboratory, Shanghai 200031, China
| | - Linyuan Wang
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lina Zhou
- School of
Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Chaofan Li
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- College of
Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Changxian Yuan
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Nan Sun
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guanxiang Hao
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Chenyang Ma
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuzhe Lin
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongjing Li
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Jiali Hong
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of
Pharmacy, East China University of Science
and Technology, Shanghai 200237, China
| | - Jinhua Zhao
- Department
of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kaiyan Lou
- School of
Pharmacy, East China University of Science
and Technology, Shanghai 200237, China
| | - Rui Zhang
- Department
of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | | | - Sinan Wang
- School of
Biomedical Engineering & State Key Laboratory of Advanced Medical
Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Yang BW, Xu J, Pan J, Chu XQ, Chen JP, Xu H, Miao C, Rao W, Shen ZL. Synthesis of Polyfluorinated Biaryls via Palladium-Catalyzed Decarboxylative Cross-Coupling of Zinc Polyfluorobenzoates with Aryl Fluorosulfates. J Org Chem 2025; 90:5480-5486. [PMID: 40217569 DOI: 10.1021/acs.joc.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
A palladium-catalyzed decarboxylative cross-coupling of zinc polyfluorobenzoates with aryl fluorosulfates, which proceeded efficiently via C-O bond cleavage to afford the corresponding polyfluorinated biaryls in moderate-to-good yields, was developed. The reactions exhibited both good substrate scope and broad functional group compatibility, and it could be scaled-up easily. The synthetic simplicity and practicability of the reaction was further demonstrated by one-pot manipulation by directly mixing polyfluorobenzoic acid and Zn(OH)2 in the coexistence of aryl fluorosulfate and a palladium catalyst in one flask. Further studies showed that aryl fluorosulfate is more robust than other aryl halides and pseudohalides as a arylating reagent, and zinc polyfluorobenzoate is a more effective decarboxylative polyfluoroarylating agent than their magnesium and potassium counterparts.
Collapse
Affiliation(s)
- Bo-Wen Yang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jun Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Pan
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengping Miao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Wei Z, Zhang F, Zhang Q, Cai Z, He L, Du G. N-Heterocyclic carbene-catalyzed SuFEx reactions of fluoroalkylated secondary benzylic alcohols. Org Biomol Chem 2025; 23:3465-3469. [PMID: 40091808 DOI: 10.1039/d5ob00113g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
An organocatalytic sulfur(VI)-fluoride exchange (SuFEx) reaction of secondary benzylic alcohols is reported. Under the catalysis of 10 mol% NHC, trifluoromethyl, difluoromethyl, bromodifluoromethyl, iododifluoromethyl, and pentafluoroethyl substituted secondary benzylic alcohols reacted with aryl sulfonyl fluorides or fluorosulfates to produce the corresponding sulfonates and sulfates in 62-99% yields. In these reactions, 4 Å molecular sieves were used as highly efficient HF scavengers, avoiding the use of stoichiometric amounts of silicon reagents and excess amounts of bases.
Collapse
Affiliation(s)
- Zhihang Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Fang Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Qichao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Guangfen Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| |
Collapse
|
6
|
Pei G, Wang P, Lin L, Zhang H, Wei R, Liao S. Photocatalytic Radical Azido/Fluorosulfonylation of Unactivated Alkenes: Accessing Hubs Bridging CuAAC and SuFEx Click Chemistry. Org Lett 2025; 27:2467-2474. [PMID: 40017314 DOI: 10.1021/acs.orglett.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Herein, we describe the successful development of an azido-fluorosulfonylation reaction of alkenes under photoredox catalysis, which could allow the installation of the two "clickable" groups, -N3 and -SO2F, on a C-C double bond, with TMSN3 as the azide source. The utilization of the difunctionalization products is also demonstrated in the construction of a library of 1,2,3-triazolesulfonyl fluoride compounds as well as drug molecule ligation by merging copper-catalyzed azide-alkyne cycloaddition (CuAAC) and sulfur(VI) fluoride exchange (SuFEx), the two generations of click reactions. Mechanistic studies suggest a radical fluorosulfonylation/azidation mechanism and unveil FSO2N3 as a new and potential fluorosulfonyl radical precursor.
Collapse
Affiliation(s)
- Guanhua Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peng Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei, Normal University, Huaibei, Anhui 235000, China
| | - Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Honghai Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rongbiao Wei
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Bedewy WA, Mulawka JW, Adler MJ. Classifying covalent protein binders by their targeted binding site. Bioorg Med Chem Lett 2025; 117:130067. [PMID: 39667507 DOI: 10.1016/j.bmcl.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Covalent protein targeting represents a powerful tool for protein characterization, identification, and activity modulation. The safety of covalent therapeutics was questioned for many years due to the possibility of off-target binding and subsequent potential toxicity. Researchers have recently, however, demonstrated many covalent binders as safe, potent, and long-acting therapeutics. Moreover, they have achieved selective targeting among proteins with high structural similarities, overcome mutation-induced resistance, and obtained higher potency compared to non-covalent binders. In this review, we highlight the different classes of binding sites on a target protein that could be addressed by a covalent binder. Upon folding, proteins generate various concavities available for covalent modifications. Selective targeting to a specific site is driven by differences in the geometry and physicochemical properties of the binding pocket residues as well as the geometry and reactivity of the covalent modifier "warhead". According to the warhead reactivity and the nature of the binding region, covalent binders can alter or lock a targeted protein conformation and inhibit or enhance its activity. We survey these various modification sites using case studies of recently discovered covalent binders, bringing to the fore the versatile application of covalent protein binders with respect to drug discovery approaches.
Collapse
Affiliation(s)
- Walaa A Bedewy
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt.
| | - John W Mulawka
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Marc J Adler
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
8
|
Yan ZM, Zhang CF, Li H, Yang JH, Qi L, Ma YX, Dong YC, Li W, Wang LJ. Photoredox-Catalyzed Allylic C-H Fluorosulfonylation of Alkenes: Accessing Allyl Sulfonyl Fluorides. Org Lett 2025; 27:1656-1661. [PMID: 39913310 DOI: 10.1021/acs.orglett.5c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
This study reported a novel and unprecedented photoredox-catalyzed protocol for direct allylic C-H fluorosulfonylation of alkenes with FABI. This mild protocol exhibited excellent compatibility with various functional groups, broad substrate scope, and promising scalability, enabling convenient access to a wide range of allyl sulfonyl fluorides with exceptional regioselectivity. The synthetic robustness of this strategy was further demonstrated by the late-stage functionalization of natural products and their ligation with other drugs via SuFEx chemistry.
Collapse
Affiliation(s)
- Zhi-Min Yan
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Chun-Fang Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Hua Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Jia-Hua Yang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yu-Xue Ma
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yi-Chen Dong
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
9
|
Wang S, Wang L, Cui J, Zhang L, Zhang Q, Ke C, Huang S. Recent progress in C-S bond formation via electron donor-acceptor photoactivation. Org Biomol Chem 2025; 23:1794-1808. [PMID: 39831472 DOI: 10.1039/d4ob01951b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent advancements in C-S bond formation via electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date. These reactions offer novel, environmentally friendly pathways for the synthesis of sulfur-containing compounds.
Collapse
Affiliation(s)
- Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Liting Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Jin Cui
- Low Permeability Oil and Gas Field Exploration and Development of the National Engineering Laboratory, Xi'an Changqing Chemical Group Co. Ltd of Changqing Oilfield Company, Xi'An, Shaanxi, 710021, China
| | - Liying Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Qunzheng Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Xie Y, Lin M, Wei Z, Cai Z, He L, Du G. Organocatalytic SuFEx click reactions of SO 2F 2. Org Biomol Chem 2025; 23:1354-1358. [PMID: 39714122 DOI: 10.1039/d4ob01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An organocatalytic method for the SuFEx click reaction of gaseous SO2F2 is described. Different organic bases such as DBU, TBD, triethylamine and Hünig's base can efficiently catalyze the SuFEx of SO2F2 with various phenols to produce aryl fluorosulfates in 61-97% yields. Under the same conditions, pyridone, pyrazolone and amines can also react with SO2F2 to afford the corresponding heteroaryl fluorosulfates or sulfamoyl fluorides in good yields. In this process, molecular sieves absorb the acidic HF efficiently, avoiding the use of stoichiometric amounts of organosilicon reagents and excess bases.
Collapse
Affiliation(s)
- Yu Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Muze Lin
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihang Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Guangfen Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| |
Collapse
|
11
|
Wang QD, Ren JA, Cao XR, Zhou X, Yang JM, Shen ZL. Palladium-catalyzed α-arylation of sulfoxonium ylides with aryl fluorosulfates. Org Biomol Chem 2025; 23:1412-1417. [PMID: 39745244 DOI: 10.1039/d4ob01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A variety of α-arylated sulfoxonium ylides could be facilely synthesized in modest to high yields through α-arylation of sulfoxonium ylides with aryl fluorosulfates via C-O bond functionalization under palladium catalysis. Reactions using readily available and bench-stable aryl fluorosulfates as effective and appealing arylating agents showed both good substrate scope and broad functionality tolerance. Important functional groups such as nitro, cyano, formyl, acetyl, methoxycarbonyl, trifluoromethoxy, fluoro, and chloro embedded in substrates remained intact during the course of the reaction, and could be subjected to downstream modification. In addition, the reaction could be readily scalable and applied in the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Jing-Ao Ren
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xu-Rong Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Huang HS, Yuan Y, Wang W, Zhang SQ, Nie XK, Yang WT, Cui X, Tang Z, Li GX. Enantioselective Synthesis of Chiral Sulfonimidoyl Fluorides Facilitates Stereospecific SuFEx Click Chemistry. Angew Chem Int Ed Engl 2025; 64:e202415873. [PMID: 39496565 DOI: 10.1002/anie.202415873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Sulfur-centered electrophilic 'warheads' have emerged as key components for chemical proteomic probes through sulfur-exchange chemistry (SuFEx) with protein nucleophiles. Among these functional groups, sulfonimidoyl fluorides (SIFs) stand out for their modifiable sites, tunable electrophilicities, and chiral sulfur-center, presenting exciting possibilities for new covalent chemical probes. However, the synthetic access to chiral SIFs has been a challenge, limiting their exploration and applications. In this study, we describe a convenient route to obtain chiral SIFs from readily available sulfenamides via a series of one-pot tandem reactions with high enantiomeric excess (ees). The resulting chiral SIFs were further converted into a diverse array of chiral S(VI) derivatives under mild conditions or in buffer solutions. Most significantly, the specificity of the chiral SIFs in protein ligation experiments underscored the critical role of sulfur-center chirality in the design and screening of more-selective covalent probes and therapeutics.
Collapse
Affiliation(s)
- He-Sen Huang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Yi Yuan
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wei Wang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xiao-Kang Nie
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wan-Ting Yang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| |
Collapse
|
13
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
14
|
Yassa T, Fang Y, Ravelo LK, Anand S, Arora S, Ball ND. Lewis Acid-Catalyzed Sulfur Fluoride Exchange. Org Lett 2024; 26:9897-9902. [PMID: 39520369 PMCID: PMC11590097 DOI: 10.1021/acs.orglett.4c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
A new method uses metal Lewis acids as catalysts to convert sulfonyl fluorides, fluorosulfates, and sulfamoyl fluorides with silyl amines into S-N bond-containing compounds via sulfur fluoride exchange. The reaction successfully employs Ca(NTf2)2 as a catalyst to form sulfonamides, sulfamates, and sulfamides using in situ-generated or commercially available silyl amines in 35-99% yields. Other metal Lewis acids are also demonstrated to be catalysts in SuFEx, forming sulfonamides and sulfamates in yields comparable to those of Ca(NTf2)2.
Collapse
Affiliation(s)
- Theodore
D. Yassa
- Department of Chemistry, Pomona College, Claremont, California 91711, United States
| | - Yuxin Fang
- Department of Chemistry, Pomona College, Claremont, California 91711, United States
| | - Lana K. Ravelo
- Department of Chemistry, Pomona College, Claremont, California 91711, United States
| | | | | | - Nicholas D. Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, United States
| |
Collapse
|
15
|
Shu D, Fayad E, Abu Ali OA, Qin HL. Discovery of A Synthetic Hub for Regio- and Stereoselective Construction of Triazolyl Vinyl Sulfonyl Fluorides. J Org Chem 2024; 89:16969-16974. [PMID: 39482943 DOI: 10.1021/acs.joc.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A new sulfonyl fluoride reagent 1-bromobut-3-ene-1,3-disulfonyl difluoride (BEDF) was developed. This unique reagent possesses two clickable functionalities to be used for both azide-alkyne cycloaddition click and SuFEx click reactions. This new reagent was applied for the regioselective construction of a class of novel triazolyl vinyl sulfonyl fluorides in which the C-4 position 1H-1,2,3-triazoles were functionalized with vinyl sulfonyl fluorides of exclusively E-configuration.
Collapse
Affiliation(s)
- Dengfeng Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
16
|
Aseeva NV, Danilenko NV, Plotnikov EV, Korotkova EI, Lipskikh OI, Solomonenko AN, Erkovich AV, Eskova DD, Khlebnikov AI. Synthesis of New 1,4-Naphthoquinone Fluorosulfate Derivatives and the Study of Their Biological and Electrochemical Properties. Int J Mol Sci 2024; 25:12245. [PMID: 39596326 PMCID: PMC11595164 DOI: 10.3390/ijms252212245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
This study presents the synthesis of new fluorosulfate derivatives of 1,4-naphthoquinone by the SuFEx reaction. Anticancer properties of obtained compounds were studied on PC-3 (prostate adenocarcinoma), SKOV-3 (ovarian cancer), MCF-7 (breast cancer), and Jurkat cell lines. All the studied compounds showed higher cytotoxic effects than Cisplatin. The DFT method was applied to determine the electronic structure characteristics of 1,4-naphthoquinone derivatives associated with cytotoxicity. A method of determination of 2,3-dichloro-1,4-naphthoquinone (NQ), 3-chloro-2-((4-hydroxyphenylamino)-1,4-naphthoquinone (NQ1), and 4-((3-chloro-1,4-naphthoquinon-2-yl)amino)phenyl fluorosulfate (NQS) in a pharmaceutical substance using an impregnated graphite electrode (IMGE) was developed. The morphology of the IMGE surface was studied using scanning electron microscopy (SEM). The electrochemical behavior of NQ, NQ1, and NQS was studied by cyclic voltammetry (CV) in 0.1 M NaClO4 (96% ethanol solution) at pH 4.0 in a potential range from -1 to +1.2 V. Electrochemical redox mechanisms for the investigated compounds were proposed based on the determining main features of the electrochemical processes. Calibration curves were obtained by linear scan voltammetry in the first derivative mode (LSVFD) with the detection limit (LOD) 7.2 × 10-6 mol·L-1 for NQ, 8 × 10-7 mol·L-1 for NQ1, and 8.6 × 10-8 mol·L-1 for NQS, respectively.
Collapse
Affiliation(s)
- Natalia V. Aseeva
- Engineering School of Natural Resources, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia; (E.I.K.); (O.I.L.); (A.N.S.); (A.V.E.)
| | - Nadezhda V. Danilenko
- The School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia;
| | - Evgenii V. Plotnikov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia; (E.V.P.); (D.D.E.)
| | - Elena I. Korotkova
- Engineering School of Natural Resources, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia; (E.I.K.); (O.I.L.); (A.N.S.); (A.V.E.)
| | - Olga I. Lipskikh
- Engineering School of Natural Resources, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia; (E.I.K.); (O.I.L.); (A.N.S.); (A.V.E.)
| | - Anna N. Solomonenko
- Engineering School of Natural Resources, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia; (E.I.K.); (O.I.L.); (A.N.S.); (A.V.E.)
| | - Alina V. Erkovich
- Engineering School of Natural Resources, Department of Chemical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia; (E.I.K.); (O.I.L.); (A.N.S.); (A.V.E.)
| | - Daria D. Eskova
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia; (E.V.P.); (D.D.E.)
| | - Andrei I. Khlebnikov
- The School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk 634034, Russia;
| |
Collapse
|
17
|
Du S, Hu X, Lindsley CW, Zhan P. New Applications of Sulfonyl Fluorides: A Microcosm of the Deep Integration of Chemistry and Biology in Drug Design. J Med Chem 2024; 67:16925-16927. [PMID: 39315939 DOI: 10.1021/acs.jmedchem.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Craig W Lindsley
- Vanderbilt University School of Medicine, Basic Sciences, Franklin, Tennessee 37027, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
18
|
Du HJ, Qi L, Yan ZM, Liu JL, Li W, Wang LJ. Copper-Catalyzed Oxyfluorosulfonylation of β,γ-Unsaturated Oximes with Sulfur Dioxide and Selectfluor for Isoxazoline-Functionalized Aliphatic Sulfonyl Fluorides. J Org Chem 2024; 89:13847-13852. [PMID: 39297778 DOI: 10.1021/acs.joc.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this report, we describe a copper-catalyzed cascade reaction involving oxygen radical-induced cyclization/SO2 insertion/fluorination of β,γ-unsaturated oximes with sulfur dioxide and Selectfluor under mild conditions for the synthesis of isoxazoline-functionalized aliphatic sulfonyl fluorides. The synthetic potential of these compounds has been evaluated through diverse SuFEx reactions.
Collapse
Affiliation(s)
- Hui-Jie Du
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Lin Qi
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Zhi-Min Yan
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jia-Li Liu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, PR China
| | - Li-Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, PR China
| |
Collapse
|
19
|
Qin GQ, Wang J, Cao XR, Chu XQ, Zhou X, Rao W, Zhai LX, Miao C, Shen ZL. Nickel-Catalyzed Reductive Amidation of Aryl Fluorosulfates with Isocyanates: Synthesis of Amides via C-O Bond Cleavage. J Org Chem 2024; 89:13735-13743. [PMID: 39213645 DOI: 10.1021/acs.joc.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
With the assistance of nickel as catalyst, 2,2'-bipyridine (bpy) as ligand, and manganese as reducing metal, the reductive amidation of isocyanates with readily accessible aryl fluorosulfates could be successfully accomplished. The reactions proceeded effectively via C-O bond activation in DMF at room temperature, enabling the facile synthesis of a range of structurally diverse amides in moderate to high yields with broad functionality compatibility. In addition, the synthetic usefulness of the method was further demonstrated by applying the reaction in scale-up synthesis and the late-stage functionalization of complex molecules with biological activities.
Collapse
Affiliation(s)
- Gan-Qi Qin
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiao Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Rong Cao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Xin Zhai
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Liu MJ, Fayad E, Abu Ali OA, Tao XF, Qin HL. Synthesis of α-Bromo Arylethyl Sulfonyl Fluorides and β-Arylethenesulfonyl Fluorides via Copper-Catalyzed Meerwein Arylation. J Org Chem 2024; 89:13709-13718. [PMID: 39151070 DOI: 10.1021/acs.joc.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A practical copper-catalyzed process for the synthesis of the β-arylethenesulfonyl fluorides is described. A series of α-bromo arylethyl sulfonyl fluorides was prepared via Meerwein reaction from arenediazonium tetrafluoroborates and ethenesulfonyl fluoride (ESF) under mild conditions. The following β-arylethenesulfonyl fluorides were further obtained through a β-elimination reaction. This protocol features excellent regio- and stereoselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Ming-Jian Liu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Xiang-Feng Tao
- School of Chemistry, Chemical Engineering and Life Sciences,Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
21
|
Huang W, Fayad E, Abu Ali OA, Qin HL. A portal to highly valuable indole-functionalized vinyl sulfonyl fluorides and allylic sulfonyl fluorides. Org Biomol Chem 2024; 22:7117-7120. [PMID: 39150283 DOI: 10.1039/d4ob01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A practical and efficient method for the C-3 site selective alkenylation of indoles was developed for constructing novel indole-functionalized vinyl sulfonyl fluorides and indolyl allylic sulfonyl fluorides. The reaction is accomplished with exclusive regio- and stereoselectivity without using transition metal catalysts, providing novel products of great potential value in medicinal chemistry, chemical biology, and drug discovery.
Collapse
Affiliation(s)
- Wenzhuo Huang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia.
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
22
|
de Oliveira JC, Abreu BU, Paz ERS, Almeida RG, Honorato J, Souza CP, Fantuzzi F, Ramos VFS, Menna-Barreto RFS, Araujo MH, Jardim GAM, da Silva Júnior EN. SuFEx-Functionalized Quinones via Ruthenium-Catalyzed C-H Alkenylation: A Potential Building Block for Bioactivity Valorization. Chem Asian J 2024:e202400757. [PMID: 39136413 DOI: 10.1002/asia.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Herein, we describe the Ru-catalyzed C-H alkenylation of 1,4-naphthoquinones (1,4-NQs), resulting in 1,4-naphthoquinoidal/SuFEx hybrids with moderate to good yields. This method provides a novel route for direct access to ethenesulfonyl-fluorinated quinone structures. We conducted mechanistic studies to gain an in-depth understanding of the elementary steps of the reaction. Additionally, we evaluated the prototypes against trypomastigote forms of T. cruzi, leading to the identification of compounds with potent trypanocidal activity.
Collapse
Affiliation(s)
- Joyce C de Oliveira
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Breno U Abreu
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Esther R S Paz
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Renata G Almeida
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - João Honorato
- São Carlos Institute of Physics, Physics and Interdisciplinary Sciences Department, Universidade de São Paulo, USP, São Carlos, 13560-970, Brazil
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Victor F S Ramos
- Laboratory of Cellular Biology, IOC, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme A M Jardim
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
23
|
He T, Liang C, Jiang P, Liang H, Liao S, Huang S. Radical Ring-Opening Fluorosulfonylation of Methylenecyclobutanols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:5577-5581. [PMID: 38912598 DOI: 10.1021/acs.orglett.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A visible-light-mediated catalyst- and additive-free method for radical ring-opening fluorosulfonylation of methylenecyclobutanols is reported. Sulfuryl chlorofluoride acts as a FSO2 radical precursor as well as an electron acceptor to form electron donor-acceptor complexes with various methylenecyclobutanol substrates. This method shows fully regioselective and (E)-stereoselective ring-opening processes, providing a variety of FSO2-functionalized γ,δ-unsaturated carbonyls in 38-77% yields. A selection of product diversifications has been studied to demonstrate the versatility of these sulfonyl fluoride products.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
24
|
Cui XY, Li Z, Kong Z, Liu Y, Meng H, Wen Z, Wang C, Chen J, Xu M, Li Y, Gao J, Zhu W, Hao Z, Huo L, Liu S, Yang Z, Liu Z. Covalent targeted radioligands potentiate radionuclide therapy. Nature 2024; 630:206-213. [PMID: 38778111 DOI: 10.1038/s41586-024-07461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted β- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.
Collapse
Affiliation(s)
- Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yu Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Hao Meng
- Changping Laboratory, Beijing, P. R. China
| | - Zihao Wen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Changlun Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Yiyan Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jingyue Gao
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wenjia Zhu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhixin Hao
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, P. R. China.
| |
Collapse
|
25
|
Gutiérrez-González A, Karlsson S, Leonori D, Plesniak MP. Mild Strategy for the Preparation of Alkyl Sulfonyl Fluorides from Alkyl Bromides and Alcohols Using Photoredox Catalysis and Flow Chemistry. Org Lett 2024; 26:3972-3976. [PMID: 38663015 DOI: 10.1021/acs.orglett.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Facile access to sp3-rich scaffolds containing a sulfonyl fluoride group is still limited. Herein, we describe a mild and scalable strategy for the preparation of alkyl sulfonyl fluorides from readily available alkyl bromides and alcohols using photoredox catalysis. This approach is based on halogen atom transfer (XAT), followed by SO2 capture and fluorination. The method features mild conditions enabling fast access to high-value derivatives and has been scaled up to 5 g using a continuous stirred tank reactor cascade.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-González
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Mateusz P Plesniak
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| |
Collapse
|
26
|
Forma A, Grunwald A, Zembala P, Januszewski J, Brachet A, Zembala R, Świątek K, Baj J. Micronutrient Status and Breast Cancer: A Narrative Review. Int J Mol Sci 2024; 25:4968. [PMID: 38732186 PMCID: PMC11084730 DOI: 10.3390/ijms25094968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer is one of the most common cancers worldwide, at the same time being one of the most prevalent causes of women's death. Many factors such as alcohol, weight fluctuations, or hormonal replacement therapy can potentially contribute to breast cancer development and progression. Another important factor in breast cancer onset includes micronutrient status. In this narrative review, we analyzed 23 micronutrients and their possible influence on breast cancer onset and progression. Further, the aim of this study was to investigate the impact of micronutrient status on the prevention of breast cancer and its possible influence on various therapeutic pathways. We researched meta-analyses, systemic and narrative reviews, retrospective studies, as well as original studies on human and animal models. The results of these studies indicate a possible correlation between the different levels of micronutrients and a decreased risk of breast cancer as well as a better survival rate. However, further studies are necessary to establish adequate doses of supplementation of the chosen micronutrients and the exact mechanisms of micronutrient impact on breast cancer therapy.
Collapse
Affiliation(s)
- Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Arkadiusz Grunwald
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Kamila Świątek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| |
Collapse
|
27
|
Chen X, Liang Y, Wang WW, Miao C, Chu XQ, Rao W, Xu H, Zhou X, Shen ZL. Palladium-Catalyzed Esterification of Aryl Fluorosulfates with Aryl Formates. Molecules 2024; 29:1991. [PMID: 38731482 PMCID: PMC11085239 DOI: 10.3390/molecules29091991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
An efficient palladium-catalyzed carbonylation of aryl fluorosulfates with aryl formates for the facile synthesis of esters was developed. The cross-coupling reactions proceeded effectively in the presence of a palladium catalyst, phosphine ligand, and triethylamine in DMF to produce the corresponding esters in moderate to good yields. Of note, functionalities or substituents, such as nitro, cyano, methoxycarbonyl, trifluoromethyl, methylsulfonyl, trifluoromethoxy, fluoro, chloro, bromo, methyl, methoxy, N,N-dimethyl, and [1,3]dioxolyl, were well-tolerated in the reactions, which could be kept for late-stage modification. The reactions employing readily available and relatively robust aryl fluorosulfates as coupling electrophiles could potentially serve as an attractive alternative to traditional cross-couplings with the use of aryl halides and pseudohalides as substrates.
Collapse
Affiliation(s)
- Xue Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Yuan Liang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Wen-Wen Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China;
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China;
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| |
Collapse
|
28
|
Kim MP, Kayal S, Hwang C, Bae J, Kim H, Hwang DG, Jeon MH, Seo JK, Ahn D, Lee W, Seo S, Chun JH, Yu Y, Hong SY. Iterative SuFEx approach for sequence-regulated oligosulfates and its extension to periodic copolymers. Nat Commun 2024; 15:3381. [PMID: 38643182 PMCID: PMC11032359 DOI: 10.1038/s41467-024-47567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The synthesis of sequence-regulated oligosulfates has not yet been established due to the difficulties in precise reactivity control. In this work, we report an example of a multi-directional divergent iterative method to furnish oligosulfates based on a chain homologation approach, in which the fluorosulfate unit is regenerated. The oligosulfate sequences are determined by high resolution mass spectrometry of the hydrolyzed fragments, and polysulfate periodic copolymers are synthesized by using oligomeric bisfluorosulfates in a bi-directional fashion. The synthetic utility of this iterative ligation is demonstrated by preparing crosslinked network polymers as synthetic adhesive materials.
Collapse
Affiliation(s)
- Min Pyeong Kim
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Swatilekha Kayal
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chiwon Hwang
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Jonghoon Bae
- UNIST Central Research Facility (UCRF), UNIST, Ulsan, 44919, Republic of Korea
| | - Hyunseok Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Dong Gyu Hwang
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ho Jeon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility (UCRF), UNIST, Ulsan, 44919, Republic of Korea
| | - Dowon Ahn
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sangwon Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Youngchang Yu
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea.
| | - Sung You Hong
- Department of Chemistry, Department of Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
29
|
Wang W, Li J, Xu L, Dong J. N-Fluorosulfonyl Guanidine: An Entry to N-Guanyl Sulfamides and Sulfamates. Org Lett 2024; 26:3202-3207. [PMID: 38578703 DOI: 10.1021/acs.orglett.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Here, we present the straightforward synthesis of N-fluorosulfonyl guanidine (1) from two industrial feedstocks, guanidine hydrochloride and sulfuryl fluoride (SO2F2), using SuFEx chemistry. Compound 1 exhibits excellent stability under ambient conditions and displays unique SuFEx reactivity toward amines and phenols to generate N-guanyl sulfamides and sulfamates that have rarely been accessed. Notably, water serves as an effective solvent in this process. Our protocol provides a reliable pathway for the synthesis and investigation of these novel guanidine-containing molecules.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jingyuan Li
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Xu
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Hou W, Zhang Y, Huang F, Chen W, Gu Y, Wang Y, Pang J, Dong H, Pan K, Zhang S, Ma P, Xu H. Bioinspired Selenium-Nitrogen Exchange (SeNEx) Click Chemistry Suitable for Nanomole-Scale Medicinal Chemistry and Bioconjugation. Angew Chem Int Ed Engl 2024; 63:e202318534. [PMID: 38343199 DOI: 10.1002/anie.202318534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Fuchao Huang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Jiacheng Pang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
31
|
Hong J, Li C, Zhao K, Wang X, Feng R, Chen X, Wei C, Gong X, Zheng F, Zheng C. Stereoselective Fluorosulfonylation of Vinylboronic Acids for ( E)-Vinyl Sulfonyl Fluorides with Copper Participation. Org Lett 2024; 26:2332-2337. [PMID: 38478713 DOI: 10.1021/acs.orglett.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A practical synthetic method for the synthesis of vinyl sulfonyl fluorides through copper-promoted direct fluorosulfonylation has been developed. The reaction of the vinylboronic acids with DABSO and then NFSI is performed under mild reaction conditions. This transformation efficiently affords aryl or alkyl vinyl sulfonyl fluorides with good reaction yields, exclusive E-configuration, broad substrate scope, excellent compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
32
|
McFadden WM, Casey-Moore MC, Bare GAL, Kirby KA, Wen X, Li G, Wang H, Slack RL, Snyder AA, Lorson ZC, Kaufman IL, Cilento ME, Tedbury PR, Gembicky M, Olson AJ, Torbett BE, Sharpless KB, Sarafianos SG. Identification of clickable HIV-1 capsid-targeting probes for viral replication inhibition. Cell Chem Biol 2024; 31:477-486.e7. [PMID: 38518746 PMCID: PMC11257216 DOI: 10.1016/j.chembiol.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.
Collapse
Affiliation(s)
- William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mary C Casey-Moore
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Grant A L Bare
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gencheng Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hua Wang
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan L Slack
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Alexa A Snyder
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Zachary C Lorson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Isabella L Kaufman
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Maria E Cilento
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Philip R Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92521, United States
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
33
|
Tang G, Wang W, Zhu C, Huang H, Chen P, Wang X, Xu M, Sun J, Zhang CJ, Xiao Q, Gao L, Zhang ZM, Yao SQ. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development. Angew Chem Int Ed Engl 2024; 63:e202316394. [PMID: 38248139 DOI: 10.1002/anie.202316394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/23/2024]
Abstract
Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
34
|
Homer JA, Koelln RA, Barrow AS, Gialelis TL, Boiarska Z, Steinohrt NS, Lee EF, Yang WH, Johnson RM, Chung T, Habowski AN, Vishwakarma DS, Bhunia D, Avanzi C, Moorhouse AD, Jackson M, Tuveson DA, Lyons SK, Lukey MJ, Fairlie WD, Haider SM, Steinmetz MO, Prota AE, Moses JE. Modular synthesis of functional libraries by accelerated SuFEx click chemistry. Chem Sci 2024; 15:3879-3892. [PMID: 38487227 PMCID: PMC10935723 DOI: 10.1039/d3sc05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.
Collapse
Affiliation(s)
- Joshua A Homer
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Rebecca A Koelln
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Zlata Boiarska
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Department of Chemistry, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Wen-Hsuan Yang
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Robert M Johnson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Taemoon Chung
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Amber N Habowski
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | | | - Debmalya Bhunia
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - Adam D Moorhouse
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - David A Tuveson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Scott K Lyons
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Shozeb M Haider
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Biozentrum, University of Basel 4056 Basel Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
| | - John E Moses
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| |
Collapse
|
35
|
Amorim AC, Burke AJ. What is the future of click chemistry in drug discovery and development? Expert Opin Drug Discov 2024; 19:267-280. [PMID: 38214914 DOI: 10.1080/17460441.2024.2302151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell. AREAS COVERED The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry. EXPERT OPINION Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.
Collapse
Affiliation(s)
- Ana C Amorim
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
| | - Anthony J Burke
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, Universidade de Évora, Évora, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Coimbra, Portugal
| |
Collapse
|
36
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
37
|
Wei J, Chai Y, Zhou J, Pan Y, Jia T, Xiong L, Yao G, Zhang Z, Xu H, Zhao C. Discovery of Arylfluorosulfates as Novel Fungicidal Agents against Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3456-3468. [PMID: 38331710 DOI: 10.1021/acs.jafc.3c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A series of arylfluorosulfates were synthesized as fungicide candidates through a highly efficient sulfur fluoride exchange (SuFEx) reaction. A total of 32 arylfluorosulfate derivatives with simple structures have been synthesized, and most of them exhibited fungal activities in vitro against five agricultural pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Pyricularia oryzae, and Phytophthora infestans). Among the target compounds, compound 31 exhibited great antifungal activity against Rhizoctonia solani (EC50 = 1.51 μg/mL), which was comparable to commercial fungicides carbendazim and thiabendazole (EC50 = 0.53 and 0.70 μg/mL, respectively); compounds 17 and 30 exhibited antifungal activities against Pyricularia oryzae (EC50 = 1.64 and 1.73 μg/mL, respectively) comparable to carbendazim (EC50 = 1.02 μg/mL). The in vitro antifungal effect of compound 31 was also evaluated on rice plants against Rhizoctonia solani. Significant preventive and curative efficacies were observed (89.2% and 91.8%, respectively, at 200 μg/mL), exceeding that of thiabendazole. Primary study on the mechanism of action indicated that compound 31 could suppress the sclerotia formation of Rhizoctonia solani even at a very low concentration (1.00 μg/mL), destroy the cell membrane and mitochondria, trigger the release of cellular contents, produce excessive reactive oxygen species (ROS), and suppress the activity of several related enzymes. This work could bring new insights into the development of arylfluorosulfates as novel fungicides.
Collapse
Affiliation(s)
- Junjie Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yunlong Chai
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiarun Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaxin Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Tianhao Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lantu Xiong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
38
|
Huang Y, Chen H, Zhang L, Xie Y, Li C, Yu Z, Jiang Z, Zheng W, Li Z, Ge X, Liang Y, Wu Z. Design of Novel 18F-Labeled Amino Acid Tracers Using Sulfur 18F-Fluoride Exchange Click Chemistry. ACS Med Chem Lett 2024; 15:294-301. [PMID: 38352831 PMCID: PMC10860173 DOI: 10.1021/acsmedchemlett.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
[18F]Gln-OSO2F, [18F]Arg-OSO2F, and [18F]FSY-OSO2F were designed by introducing sulfonyl 18F-fluoride onto glutamine, arginine, and tyrosine, respectively. [18F]FSY-OSO2F can be prepared directly by sulfur 18F-fluoride exchange, while [18F]Gln-OSO2F and [18F]Arg-OSO2F require a two-step labeling method. Those tracers retain their typical transport characteristics for unmodified amino acids. Both PET imaging and biodistribution confirmed that [18F]FSY-OSO2F visualized MCF-7 and 22Rv1 subcutaneous tumors with high contrast, and its tumor-to-muscle ratio was better than that of [18F]FET. However, [18F]Gln-OSO2F and [18F]Arg-OSO2F poorly image MCF-7 subcutaneous tumors, possibly due to differences in the types and amounts of transporters expressed in tumors. All three tracers can visualize the U87MG glioma. According to our biological evaluation, none of the tracers evaluated in this study exhibited obvious defluorination, and subtle structural changes led to different imaging characteristics, indicating that the application of sulfur 18F-fluoride exchange click chemistry in the design of radioactive sulfonyl fluoride amino acids is feasible and offers significant advantages.
Collapse
Affiliation(s)
- Yong Huang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yi Xie
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Ziyue Yu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Wei Zheng
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Xuan Ge
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
39
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
40
|
Chen A, Re RN, Davis TD, Tran K, Moriuchi YW, Wu S, La Clair JJ, Louie GV, Bowman ME, Clarke DJ, Mackay CL, Campopiano DJ, Noel JP, Burkart MD. Visualizing the Interface of Biotin and Fatty Acid Biosynthesis through SuFEx Probes. J Am Chem Soc 2024; 146:1388-1395. [PMID: 38176024 DOI: 10.1021/jacs.3c10181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Rebecca N Re
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Kelley Tran
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Sitong Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Gordon V Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - David J Clarke
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - C Logan Mackay
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Dominic J Campopiano
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
41
|
Chao Y, Subramaniam M, Namitharan K, Zhu Y, Koolma V, Hao Z, Li S, Wang Y, Hudoynazarov I, Miloserdov FM, Zuilhof H. Synthesis of Large Macrocycles with Chiral Sulfur Centers via Enantiospecific SuFEx and SuPhenEx Click Reactions. J Org Chem 2023; 88:15658-15665. [PMID: 37903243 PMCID: PMC10660663 DOI: 10.1021/acs.joc.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Here we report the first asymmetric synthesis of large chiral macrocycles with chiral sulfur atoms. Building on stereospecific SuFEx and SuPhenEx click chemistries, this approach utilizes disulfonimidoyl fluorides and disulfonimidoyl p-nitrophenolates─which are efficient building blocks with two chiral sulfur centers, and diphenols to efficiently form novel S-O bonds. Characteristic results include the enantiospecific one-step synthesis of rings consisting of 21-58 members and characterization of both enantiomers (R,R and S,S) by e.g. X-ray crystallography.
Collapse
Affiliation(s)
- Yang Chao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Muthusamy Subramaniam
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Kayambu Namitharan
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Yumei Zhu
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Victor Koolma
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Zitong Hao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shikang Li
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yaxin Wang
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ilyos Hudoynazarov
- Division
of Organic Synthesis and Applied Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Fedor M. Miloserdov
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Han Zuilhof
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
42
|
Tang G, Wang W, Wang X, Ding K, Ngan SC, Chen JY, Sze SK, Gao L, Yuan P, Lu X, Yao SQ. Cell-active, irreversible covalent inhibitors that selectively target the catalytic lysine of EGFR by using fluorosulfate-based SuFEx chemistry. Eur J Med Chem 2023; 259:115671. [PMID: 37499291 DOI: 10.1016/j.ejmech.2023.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
EGFR signaling is involved in multiple cellular processes including cell proliferation, differentiation and development, making this protein kinase one of the most valuable drug targets for the treatment of non-small cell lung carcinomas (NSCLC). Herein, we describe the design and synthesis of a series of potential covalent inhibitors targeting the catalytically conserved lysine (K745) of EGFR on the basis of Erlotinib, an FDA-approved first-generation EGFR drug. Different amine-reactive electrophiles were introduced at positions on the Erlotinib scaffold proximal to K745 in EGFR. The optimized compound 26 (as well as its close analog 30), possessing a novel arylfluorosulfate group (ArOSO2F), showed excellent in vitro potency (as low as 0.19 nM in independent IC50 determination) and selectivity against EGFR and many of its drug-resistant mutants. Both intact protein mass spectrometry (MS) and site-mapping analysis revealed that compound 26 covalently bound to EGFR at K745 through the formation of a sulfamate. In addition, compound 26 displayed good anti-proliferative potency against EGFR-overexpressing HCC827 cells by inhibiting endogenous EGFR autophosphorylation. The pharmacokinetic studies of compound 26 demonstrated the druggable potential of other ArOSO2F-containing compounds. Finally, competitive activity-based protein profiling (ABPP), cellular thermal shift assay (CETSA), as well as cellular wash-out experiments, all showed compound 26 to be the first cell-active, fluorosulfate-based targeted covalent inhibitor (TCI) of protein kinases capable of covalently engaging the catalytically conserved lysine of its target in live mammalian cells.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jiao-Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China.
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
43
|
Pasieka A, Diamanti E, Uliassi E, Laura Bolognesi M. Click Chemistry and Targeted Degradation: A Winning Combination for Medicinal Chemists? ChemMedChem 2023; 18:e202300422. [PMID: 37706617 DOI: 10.1002/cmdc.202300422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Click chemistry is universally recognized as a powerful strategy for the fast and precise assembly of diverse building blocks. Targeted Protein Degradation (TPD) is a new therapeutic modality based on heterobifunctional small-molecule degraders that provides new opportunities to medicinal chemists dealing with undruggable targets and incurable diseases. Here, we highlight how very recently the TPD field and that of click chemistry have merged, opening up the possibility for fine-tuning the properties of a degrader, chemically assembled through a "click" synthesis. By reviewing concrete examples, we want to provide the reader with the insight that the application of click and bioorthogonal chemistry in the TDP field may be a winning combination.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
44
|
Yan ZM, Qi L, Du HJ, Zhao ZQ, Liu JL, Dong YC, Li W, Wang LJ. Photocatalytic C-C Bond Cleavage and Fluorosulfonylation of Strained Cycloalkanols for Carbonyl-Containing Aliphatic Sulfonyl Fluorides. Org Lett 2023; 25:7051-7056. [PMID: 37728878 DOI: 10.1021/acs.orglett.3c02727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
In this report, we present a photocatalytic ring-opening fluorosulfonylation of strained cycloalkanols with sulfur dioxide and NFSI under mild conditions for the synthesis of carbonyl-containing aliphatic sulfonyl fluorides. The synthetic potential of the carbonyl-containing aliphatic sulfonyl fluoride products has been examined by diverse transformations, including SuFEx reactions and Baeyer-Villiger oxidation reactions. Mechanistic studies demonstrate that the reaction operates through a radical C-C bond cleavage/SO2 insertion/fluorination cascade process.
Collapse
Affiliation(s)
- Zhi-Min Yan
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Hui-Jie Du
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zi-Qiang Zhao
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Jia-Li Liu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Yi-Chen Dong
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
45
|
Carson Ii WP, Sarver PJ, Goudy NS, MacMillan DWC. Photoredox Catalysis-Enabled Sulfination of Alcohols and Bromides. J Am Chem Soc 2023; 145:20767-20774. [PMID: 37721547 PMCID: PMC10680125 DOI: 10.1021/jacs.3c08216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Sulfinates are important lynchpin intermediates in pharmaceutical production; however, their synthesis via photoredox catalysis is challenging because of their facile oxidation. We herein disclose a photocatalytic strategy for the direct conversion of alcohols and alkyl bromides into alkyl sulfinates. These transformations are enabled by the utilization of easily oxidized radical precursors─namely, alcohol N-heterocyclic carbene adducts and N-adamantyl aminosupersilane─that facilitate efficient synthesis of the oxidatively labile sulfinate products. A broad range of functional groups are amenable to the reported transformations, providing rapid access to sulfonamides, sulfonyl halides, sulfones, and sulfonic acids. The utility of these methods is further demonstrated via the late-stage diversification of natural products and drugs into pharmaceutically relevant sulfonamides and "clickable" sulfonyl fluorides. In summary, this work illustrates the potential of novel radical precursors to expand the breadth of photoredox transformations.
Collapse
Affiliation(s)
- William P Carson Ii
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Patrick J Sarver
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noelle S Goudy
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
46
|
Ma Y, Pan Q, Ou C, Cai Y, Ma X, Liu C. Aryl sulfonyl fluoride synthesis via organophotocatalytic fluorosulfonylation of diaryliodonium salts. Org Biomol Chem 2023; 21:7597-7601. [PMID: 37676649 DOI: 10.1039/d3ob01200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A mild and efficient synthesis of various aryl sulfonyl fluorides from diaryliodonium salts under organophotocatalysis via a radical sulfur dioxide insertion and fluorination strategy is presented. Diaryliodonium salts are used as aryl radical precursors, the 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO) as a sulfonyl source and cheap KHF2 as a desirable fluorine source, respectively. Notably, the electronic properties of substituents on the aromatic rings in diaryliodonium salts have a significant influence on the reaction yields.
Collapse
Affiliation(s)
- Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Qijun Pan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
47
|
Ou C, Cai Y, Ma Y, Zhang H, Ma X, Liu C. Aliphatic Sulfonyl Fluoride Synthesis via Decarboxylative Fluorosulfonylation of Hypervalent Iodine(III) Carboxylates. Org Lett 2023; 25:6751-6756. [PMID: 37656922 DOI: 10.1021/acs.orglett.3c02652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
We disclose herein a photocatalytic decarboxylative fluorosulfonylation reaction of various hypervalent iodine(III) carboxylates in combination with 1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct as a sulfonyl source and KHF2 as a desirable fluorine source via a radical sulfur dioxide insertion and fluorination strategy. A one-pot photocatalytic decarboxylative fluorosulfonylation reaction of various carboxylic acids mediated by PhI(OAc)2 was realized, as well. Notably, this transformation can be performed under heating conditions without the need for catalysts.
Collapse
Affiliation(s)
- Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Haozhen Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
48
|
Xia Y, Sun Y, Liu Z, Zhang C, Zhang X. Modular Alcohol Click Chemistry Enables Facile Synthesis of Recyclable Polymers with Tunable Structure. Angew Chem Int Ed Engl 2023; 62:e202306731. [PMID: 37490022 DOI: 10.1002/anie.202306731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
The facile synthesis of chemically recyclable polymers derived from sustainable feedstocks presents enormous challenges. Here, we develop a novel, modular, and efficient click reaction for connecting primary, secondary, or tertiary alcohols with activated alkenes via a bridge molecule of carbonyl sulfide (COS). The click reaction is successfully applied to synthesize a series of recyclable polymers by the step polyaddition of diols, diacrylates, and COS. Diols and diacrylates are common chemicals and can be produced from biorenewable sources, and COS is released as the industrial waste. In addition to sustainable monomers, the approach is atom-economical, wide in scope, metal-free, and performed under mild conditions, affording unprecedented polymers with nearly quantitative yields. The produced polymers also possess predesigned and widely tunable structure owing to the versatility of our method and the broad variety of monomers. The in-chain thiocarbonate and ester polar groups can play as breakpoints, allowing these polymers to be easily recycled. Overall, the polymers have broad prospects for green materials given their facile synthesis, readily available feedstocks, desirable performance, and chemical recyclability.
Collapse
Affiliation(s)
- Yanni Xia
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziheng Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
49
|
Abstract
The impact of click chemistry was recently recognized with the 2022 Nobel Prize in Chemistry. The breadth of areas where click chemistry has accelerated discovery is prodigal. In one of the most written about subjects in chemistry over recent years, this short perspective zones in on a small fragment of what we, the authors, consider are some of the most critical developments in synthetic chemistry, which have expanded access to the click chemistry toolbox. In addition, we touch upon areas within medicinal chemistry and novel approaches to drug discovery enabled by click chemistry, where we believe there is untapped potential for biological function to be found and exploited.
Collapse
Affiliation(s)
- Adam D Moorhouse
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
| | - Joshua A Homer
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
| | - John E Moses
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
- Lead Contact
| |
Collapse
|
50
|
Hu X, Lv G, Hua D, Zhang N, Liu Q, Qin S, Zhang L, Xi H, Qiu L, Lin J. Preparation and Bioevaluation of 18F-Labeled Small-Molecular Radiotracers via Sulfur(VI) Fluoride Exchange Chemistry for Imaging of Programmed Cell Death Protein Ligand 1 Expression in Tumors. Mol Pharm 2023; 20:4228-4235. [PMID: 37409670 DOI: 10.1021/acs.molpharmaceut.3c00355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Nowadays, one of the most effective methods of tumor immunotherapy is blocking programmed cell death protein 1/programmed cell death protein ligand 1 (PD-1/PD-L1) immune checkpoints. However, there is still a significant challenge in selecting patients to benefit from immune checkpoint therapies. Positron emission tomography (PET), a noninvasive molecular imaging technique, offers a new approach to accurately detect PD-L1 expression and allows for a better prediction of response to PD-1/PD-L1 target immunotherapy. Here, we designed and synthesized a novel group of aryl fluorosulfate-containing small-molecule compounds (LGSu-1, LGSu-2, LGSu-3, and LGSu-4) based on the phenoxymethyl-biphenyl scaffold. After screening by the time-resolved fluorescence resonance energy transfer (TR-FRET) assay, the most potent compound LGSu-1 (half maximal inhibitory concentration (IC50): 15.53 nM) and the low-affinity compound LGSu-2 (IC50: 189.70 nM) as a control were selected for 18F-radiolabeling by sulfur(VI) fluoride exchange chemistry (SuFEx) to use for PET imaging. [18F]LGSu-1 and [18F]LGSu-2 were prepared by a one-step radiofluorination reaction in over 85% radioconversion and nearly 30% radiochemical yield. In B16-F10 melanoma cell assays, [18F]LGSu-1 (5.00 ± 0.06%AD) showed higher cellular uptake than [18F]LGSu-2 (2.55 ± 0.04%AD), in which cell uptake could be significantly blocked by the nonradioactivity LGSu-1. In vivo experiments, micro-PET imaging of B16-F10 tumor-bearing mice and radiographic autoradiography of tumor sections showed that [18F]LGSu-1 was more effectively accumulated in the tumor due to the higher binding affinity with PD-L1. The above experimental results confirmed the potential of the small-molecule probe LGSu-1 as a targeting PD-L1 imaging tracer in tumor tissues.
Collapse
Affiliation(s)
- Xin Hu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Gaochao Lv
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Di Hua
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Nan Zhang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shuai Qin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lixia Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongjie Xi
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|