1
|
Zhang S, Wang X, Han J, Fan X, Liu K, Yang L, Yang H, Chen X, Ma X, Chen G. Precise Identification of Inhibitors for Coagulation Reactions from Complex Extracts through Monitoring of Biological Aggregates Combined with a Targeted Fishing Technique. Anal Chem 2025; 97:6211-6221. [PMID: 40073066 DOI: 10.1021/acs.analchem.4c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Biological aggregates play a crucial role in the pathogenesis of thrombotic diseases, especially thrombin-induced biological aggregates. Therefore, the efficient discovery of thrombin inhibitors is of great significance for the prevention and treatment of thrombotic diseases. In this study, the aggregation precursor protein fluorescent probe was successfully prepared for monitoring the production of biological aggregates induced by thrombin. In this program, the aggregation degree of biomolecules can be quickly monitored through a fluorescence sensing technology. To facilitate the modulation of the biological aggregation process, the application of this advanced fluorescence sensing technology was utilized for the screening of thrombin inhibitors, which are pivotal regulatory molecules in biological aggregation. In addition, by combining the target fishing technique, an integrated model for rapid screening of potential inhibitors in complex extracts was further established. This model not only swiftly detects the presence of inhibitory components within complex systems but also precisely captures and identifies active monomers. After positive drug validation of the screening model, three active monomers, namely, ginkgetin, isoginkgetin, and bilobetin, were accurately screened from 30 natural products. These results highlighted the immense potential of the proposed approach for screening active ingredients from a wide range of natural products.
Collapse
Affiliation(s)
- Shuxian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaofei Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Jili Han
- Center for Hybrid Nanostructures, Universität Hamburg, Hamburg 20457, Germany
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Keshuai Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Hao Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaofei Chen
- Naval Medical University, Shanghai 200433, China
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
2
|
Du Y, Chen YL, Zhang Y, Zhao YL, Huang Z, Jin P, Ji S, Tang DQ. Bio-affinity ultrafiltration combined with UPLC Q-Exactive Plus Orbitrap HRMS to screen potential COX-2 and 5-LOX inhibitors in mulberry (Morus alba L.) leaf. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119325. [PMID: 39761838 DOI: 10.1016/j.jep.2025.119325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry (Morus alba L.) leaf is a well-known herbal medicine in China for thousands of years. Mulberry leaf can regulate arachidonic acid (ARA) metabolism disorder in obesity and type 2 diabetes mellitus. However, the active ingredients involved in this process are still unclear. AIM OF STUDY To explore the potential active ingredients in mulberry leaf against ARA metabolism disorder. MATERIALS AND METHODS In this research, an efficient method combining affinity ultrafiltration, molecular docking, and network pharmacology was developed and applied to explore cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors from mulberry leaf. RESULTS A total 17 potential inhibitors were screened by affinity ultrafiltration assay and identified by high resolution mass spectrometry. In addition, 8 bioactive ingredients were obtained after re-evaluated by molecular docking and network pharmacology, and their inhibitory activities on COX-2 and 5-LOX were confirmed by in vitro inhibitory assays. The results of cell experiments showed that the expressions of COX-2 and 5-LOX were significantly suppressed by neochlorogenic acid, rutin, isoquercetin, and (-)-syringaresinol-4-O-glucoside. CONCLUSION Neochlorogenic acid, rutin, isoquercetin, and (-)-syringaresinol-4-O-glucoside may be the potential material basis of mulberry leaf in the regulation of ARA metabolism of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yu-Lang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Zhong Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Peng Jin
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China.
| |
Collapse
|
3
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
4
|
She W, Cheng A, Ye W, Zeng P, Wang H, Qian PY. Mode of action of antimicrobial agents albofungins in eradicating penicillin- and cephalosporin-resistant Vibrio parahaemolyticus biofilm. Microbiol Spectr 2023; 11:e0156323. [PMID: 37610246 PMCID: PMC10581126 DOI: 10.1128/spectrum.01563-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/28/2023] [Indexed: 08/24/2023] Open
Abstract
Albofungin is a promising broad-spectrum antimicrobial compound against multidrug-resistant bacteria. In the present study, we further investigated albofungin's biofilm eradication activity and its potential mode of action against drug-resistant Vibrio parahaemolyticus. Among all derivatives, albofungin exhibited the best antibiofilm and antibacterial activity with rapid killing effects at 0.12 µg mL-1. Confocal microscopy observation exhibited that albofungin disrupted V. parahaemolyticus biofilms by killing or dispersing biofilm cells. Meanwhile, scanning electron microscope and fluorescent staining experiments demonstrated that albofungin rapidly destroyed the integrity and permeability of the bacterial cell membrane. Moreover, this study revealed an antibiofilm mechanism of albofungin involving inhibition of peptidoglycan biosynthesis, flagella assembly pathways, and secretion system proteins in V. parahaemolyticus by quantitative proteomics and validation experiments. Our results highlighted albofungin's mechanism of action in planktonic cells and biofilms and suggested further development and potential applications of albofungin for treating infections caused by penicillins-and-cephalosporins-resistant V. parahaemolyticus. IMPORTANCE Infections caused by multidrug-resistant bacteria, as well as a scarcity of new antibiotics, have become a major health threat worldwide. To tackle the demand for new and effective treatments, we investigated the mechanism of action of albofungin, a natural product derived from Streptomyces, which exhibits potent antimicrobial activity against multidrug-resistant bacteria. Albofungin showed potent biofilm eradication activity against penicillins-and-cephalosporins-resistant Vibrio parahaemolyticus, which expresses a novel metallo-β-lactamase and, thus, reduces their sensitivity to various antibiotics. We observed membrane disruption and permeation mechanisms in planktonic cells and biofilms after albofungin treatment, while albofungin had a weak interaction with bacterial DNA. Moreover, the antibiofilm mechanism of albofungin included inhibition of peptidoglycan biosynthesis, flagellar assembly pathways, and secretion system proteins. Our finding suggested potential applications of albofungin as an antibacterial and antibiofilm therapeutic agent.
Collapse
Affiliation(s)
- Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
5
|
Park Y, Taguchi A, Baidin V, Kahne D, Walker S. A Time-Resolved FRET Assay Identifies a Small Molecule that Inhibits the Essential Bacterial Cell Wall Polymerase FtsW. Angew Chem Int Ed Engl 2023; 62:e202301522. [PMID: 37099323 PMCID: PMC10330507 DOI: 10.1002/anie.202301522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 04/27/2023]
Abstract
The peptidoglycan cell wall is essential for bacterial survival. To form the cell wall, peptidoglycan glycosyltransferases (PGTs) polymerize Lipid II to make glycan strands and then those strands are crosslinked by transpeptidases (TPs). Recently, the SEDS (for shape, elongation, division, and sporulation) proteins were identified as a new class of PGTs. The SEDS protein FtsW, which produces septal peptidoglycan during cell division, is an attractive target for novel antibiotics because it is essential in virtually all bacteria. Here, we developed a time-resolved Förster resonance energy transfer (TR-FRET) assay to monitor PGT activity and screened a Staphylococcus aureus lethal compound library for FtsW inhibitors. We identified a compound that inhibits S. aureus FtsW in vitro. Using a non-polymerizable Lipid II derivative, we showed that this compound competes with Lipid II for binding to FtsW. The assays described here will be useful for discovering and characterizing other PGT inhibitors.
Collapse
Affiliation(s)
- Youngseon Park
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Atsushi Taguchi
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
- (Current location) SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Vadim Baidin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Wang J, Huang X, Mei J, Chen X, Ma R, Li G, Jiang Z, Guo J. Screening of trypsin inhibitors in Cotinus coggygria Scop. extract using at-line nanofractionation coupled with semi-preparative reverse-phase liquid chromatography. J Chromatogr A 2023; 1691:463817. [PMID: 36738572 DOI: 10.1016/j.chroma.2023.463817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
In this study, an at-line nanofractionation (ANF) platform was successfully fabricated in parallel with mass spectrometry and trypsin inhibitory bioactivity assessment for rapid screening of trypsin inhibitors (TIs) from natural products for the first time. After systematic optimization, the ANF platform was applied to screen and identify TIs in the extract of a traditional Chinese herb, i.e., Cotinus coggygria Scop. The semi-preparative reverse-phase liquid chromatography was used subsequently to further simplify and enrich the insufficiently separated components. After comprehensive evaluation and validation, the ANF platform successfully identified 12 compounds as potential TIs, including 8 flavonoids and 2 organic acids. Additionally, a comparison study was conducted using two other ligand fishing approaches, i.e., capillary monolithic and magnetic beads-based trypsin-immobilized enzyme microreactors, which successfully identified 8 identical flavonoids as TIs. Importantly, the molecular docking study showed the molecular interactions between enzymes and inhibitors, thus strongly supporting the experimental results. Overall, this work has fully demonstrated the feasibility of the established ANF platform for screening TIs from Cotinus coggygria Scop., and proved its great prospects for screening bioactive components from natural products.
Collapse
Affiliation(s)
- Jincai Wang
- School of Medicine, Foshan University, Foshan 528000, China; Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoling Huang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jie Mei
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinwei Chen
- School of Medicine, Foshan University, Foshan 528000, China
| | - Rong Ma
- School of Medicine, Foshan University, Foshan 528000, China
| | - Guowei Li
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan 528244, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528000, China; Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Gao J, Zhou C, Zhong Y, Shi L, Luo X, Su H, Li M, Xu Y, Zhang N, Zhou H. Dipyridamole interacts with the N-terminal domain of HSP90 and antagonizes the function of the chaperone in multiple cancer cell lines. Biochem Pharmacol 2023; 207:115376. [PMID: 36513142 DOI: 10.1016/j.bcp.2022.115376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Molecular chaperone HSP90 has been considered as a promising target for anti-cancer drug development for years. However, due to the heat shock response induced by the ATP competitive inhibitors against HSP90, the therapeutic efficacies of the compounds are compromised, which consequently restricts the clinical use of HSP90-targeted inhibitors. Therefore, there is a need to discover novel HSP90-targeted modulators which exhibit acceptable inhibition activity against the chaperone and do not induce significant heat shock response in the meantime. Here in this study, we firstly developed a tip-based affinity selection-mass spectrometry platform with optimized experimental conditions/parameters for HSP90-targeted active compound screening, and then applied it to fish out inhibitors against HSP90 from a collection of 2,395 compounds composed of FDA-approved drugs and drug candidates. Dipyridamole, which acts as an anti-thrombotic agent by modulating multiple targets and has a long history of safe use, was identified to interact with HSP90's N-terminal domain. The following conducted biophysical and biochemical experiments demonstrated that Dipyridamole could bind to HSP90's ATP binding pocket and function as an ATP competitive inhibitor of the chaperone. Finally, cellular-based assays including CESTA, cell viability assessment and proteomic analysis etc. were performed to evaluate whether the interaction between HSP90 and Dipyridamole contributes to the anti-tumor effects of the compound. We then found that Dipyridamole inhibits the growth and proliferation of human cancer cells by downregulating cell cycle regulators and upregulating apoptotic cell signaling, which are potentially mediated by the binding of Dipyridamole to HSP90 and to PDEs (phosphodiesterases), respectively.
Collapse
Affiliation(s)
- Jing Gao
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yan Zhong
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xuanyang Luo
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
8
|
Genetic and Biochemical Characterization of Halogenation and Drug Transportation Genes Encoded in the Albofungin Biosynthetic Gene Cluster. Appl Environ Microbiol 2022; 88:e0080622. [PMID: 36000868 PMCID: PMC9469721 DOI: 10.1128/aem.00806-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Albofungin, a hexacyclic aromatic natural product, exhibits broad-spectrum antimicrobial activity. Its biosynthesis, regulation, and resistance remain elusive. Here, we report the albofungin (abf) biosynthetic gene cluster (BGC) from its producing strain Streptomyces tumemacerans JCM5050. The nascent abf BGC encodes 70 putative genes, including regulators, transporters, type II polyketide synthases (PKSs), oxidoreductase, and tailoring enzymes. To validate the intactness and functionality of the BGC, we developed an Escherichia coli-Streptomyces shuttle bacterial artificial chromosome system, whereby the abf BGC was integrated into the genome of a nonproducing host via heterologous conjugation, wherefrom albofungin can be produced, confirming that the BGC is in effect. We then delimited the boundaries of the BGC by means of in vitro CRISPR-Cas9 DNA editing, concluding a minimal but essential 60-kb abf BGC ranging from orfL to abf58. The orfA gene encoding a reduced flavin adenine dinucleotide (FADH2)-dependent halogenase was examined and is capable of transforming albofungin to halogen-substituted congeners in vivo and in vitro. The orfL gene encoding a transporter was examined in vivo. The presence/absence of orfA or orfL demonstrated that the MIC of albofungin is subject to alteration when an extracellular polysaccharide intercellular adhesin was formed. Despite that halogenation of albofungin somewhat increases binding affinity to transglycosylase (TGase), albofungin with/without a halogen substituent manifests similar in vitro antimicrobial activity. Halogenation, however, limits overall dissemination and effectiveness given a high secretion rate, weak membrane permeability, and high hydrophobicity of the resulting products, whereby the functions of orfA and orfL are correlated with drug detoxification/resistance for the first time. IMPORTANCE Albofungin, a natural product produced from Streptomycetes, exhibits bioactivities against bacteria, fungi, and tumor cells. The biosynthetic logic, regulations, and resistance of albofungin remain yet to be addressed. Herein, the minimal albofungin (abf) biosynthetic gene cluster (BGC) from the producing strain Streptomyces tumemacerans JCM5050 was precisely delimited using the Escherichia coli-Streptomyces shuttle bacterial artificial chromosome system, of which the gene essentiality was established in vivo and in vitro. Next, we characterized two genes orfA and orfL encoded in the abf BGC, which act as a reduced flavin adenine dinucleotide (FADH2)-dependent halogenase and an albofungin-congeners transporter, respectively. While each testing microorganism exhibited different sensitivities to albofungins, the MIC values of albofungins against testing strains with/without orfA and/or orfL were subject to considerable changes. Halogen-substituted albofungins mediated by OrfA manifested overall compromised dissemination and effectiveness, revealing for the first time that two functionally distinct proteins OrfA and OrfL are associated together, exerting a novel “belt and braces” mechanism in antimicrobial detoxification/resistance.
Collapse
|
9
|
She W, Ye W, Cheng A, Ye W, Ma C, Wang R, Cheng J, Liu X, Yuan Y, Chik SY, Limlingan Malit JJ, Lu Y, Chen F, Qian PY. Discovery, Yield Improvement, and Application in Marine Coatings of Potent Antifouling Compounds Albofungins Targeting Multiple Fouling Organisms. Front Microbiol 2022; 13:906345. [PMID: 35875539 PMCID: PMC9300314 DOI: 10.3389/fmicb.2022.906345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Marine biofouling caused huge economic losses of maritime industries. We aim to develop high-efficient, less-toxic, and cost-effective antifoulants to solve the problems of biofouling. In this study, we described the antifouling compounds albofungin and its derivatives (albofungin A, chrestoxanthone A, and chloroalbofungin) isolated from the metabolites of bacterium Streptomyces chrestomyceticus BCC 24770, the construction of high-yield strains for albofungin production, and application of albofungin-based antifouling coatings. Results showed that these albofungins have potent antibiofilm activities against Gram-positive and Gram-negative bacteria and anti-macrofouling activities against larval settlement of major fouling organisms with low cytotoxicity. With the best antifouling activity and highest yield in bacterial culture, albofungin was subsequently incorporated with hydrolyzable and degradable copolymer to form antifouling coatings, which altered biofilm structures and prevented the settlement of macrofouling organisms in marine environments. Our results suggested that albofungins were promising antifouling compounds with potential application in marine environments.
Collapse
Affiliation(s)
- Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
| | - Wei Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ruojun Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinping Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Xuan Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Yujing Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Sin Yu Chik
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanhong Lu
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
10
|
Li S, Wang R, Hu X, Li C, Wang L. Bio-affinity ultra-filtration combined with HPLC-ESI-qTOF-MS/MS for screening potential α-glucosidase inhibitors from Cerasus humilis (Bge.) Sok. leaf-tea and in silico analysis. Food Chem 2022; 373:131528. [PMID: 34774376 DOI: 10.1016/j.foodchem.2021.131528] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Cerasus humilis(Bge.) Sok. leaf-tea (CLT) has a potential anti-α-glucosidase effect. However, its anti-α-glucosidase functional compositions remain unclear. Results showed that 70% methanol extract of CLT (IC50 = 36.57 μg/mL) with the highest total phenolic/flavonoid contents exhibited significantly higher α-glucosidase inhibitory activity (α-GIA) than acarbose (IC50 = 189.57 μg/mL). Additionally, phenolic constituents of the CLT extract were analyzed for the first time in this work. Ten major potential α-glucosidase inhibitors (α-GIs) with high bio-affinity degree in the CLT extract were recognized using a bio-affinity ultra-filtration and HPLC-ESI-qTOF-MS/MS method. In vitro α-GIA assay confirmed that myricetin (IC50 = 36.17 μg/mL), avicularin (IC50 = 69.84 μg/mL), quercitrin, isoquercitrin, prunin and guajavarin were responsible for the α-GIA of the CLT extract. More importantly, the interaction mechanism between α-GIs and α-glucosidase was investigated via in silico analysis. This study provides a high-throughput screening platform for identification of the potential α-GIs from natural products.
Collapse
Affiliation(s)
- Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
11
|
Hsieh PY, Meng FC, Guo CW, Hu KH, Shih YL, Cheng WC. Harnessing Fluorescent Moenomycin A Antibiotics for Bacterial Cell Wall Imaging Studies. Chembiochem 2021; 22:3462-3468. [PMID: 34606179 DOI: 10.1002/cbic.202100433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Indexed: 11/11/2022]
Abstract
The imaging of peptidoglycan (PGN) dynamics in living bacteria facilitates the understanding of PGN biosynthesis and wall-targeting antibiotics. The main tools for imaging bacterial PGN are fluorescent probes, such as the well-known PGN metabolic labeling probes. However, fluorescent small-molecule probes for labeling key PGN-synthesizing enzymes, especially for transglycosylases (TGases), remain to be explored. In this work, the first imaging probe for labeling TGase in bacterial cell wall studies is reported. We synthesized various fluorescent MoeA-based molecules by derivatizing the natural antibiotic moenomycin A (MoeA), and used them to label TGases in living bacteria, monitor bacterial growth and division cycles by time-lapse imaging, and study cell wall growth in the mecA-carrying methicillin-resistant Staphylococcus aureus (MRSA) strains when the β-lactam-based probes were unsuitable.
Collapse
Affiliation(s)
- Pei-Yu Hsieh
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan
| | - Fan-Chun Meng
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan
| | - Chih-Wei Guo
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan
| | - Kung-Hsiang Hu
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.,Department of Microbiology, College of Medicine, National Taiwan University, No.1, Sec 1. Jen Ai Rd., Taipei, 100, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan.,Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi, 600, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Kaohsiung, 807, Taiwan
| |
Collapse
|
12
|
Abstract
Nontuberculous mycobacteria infections are a growing concern, and their incidence has been increasing worldwide in recent years. Current treatments are not necessarily useful because many were initially designed to work against other bacteria, such as Mycobacterium tuberculosis. In addition, inadequate treatment means that resistant strains are increasingly appearing, particularly for Mycobacterium abscessus, one of the most virulent nontuberculous mycobacteria. There is an urgent need to develop new antibiotics specifically directed against these nontuberculous mycobacteria. To help in this fight against the emergence of these pathogens, this review describes the most promising heterocyclic antibiotics under development, with particular attention paid to their structure-activity relationships.
Collapse
|
13
|
Wang Y, Liang Z, Zheng Y, Leung ASL, Yan SC, So PK, Leung YC, Wong WL, Wong KY. Rational structural modification of the isatin scaffold to develop new and potent antimicrobial agents targeting bacterial peptidoglycan glycosyltransferase. RSC Adv 2021; 11:18122-18130. [PMID: 35480164 PMCID: PMC9033243 DOI: 10.1039/d1ra02119b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
A series of isatin derivatives bearing three different substituent groups at the N-1, C-3 and C-5 positions of the isatin scaffold were systematically designed and synthesized to study the structure-activity relationship of their inhibition of bacterial peptidoglycan glycosyltransferase (PGT) activity and antimicrobial susceptibility against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA (BAA41)) strains. The substituents at these sites are pointing towards three different directions from the isatin scaffold to interact with the amino acid residues in the binding pocket of PGT. Comparative studies of their structure-activity relationship allow us to gain better understanding of the direction of the substituents that contribute critical interactions leading to inhibition activity against the bacterial enzyme. Our results indicate that the modification of these sites is able to maximize the antimicrobial potency and inhibitory action against the bacterial enzyme. Two compounds show good antimicrobial potency (MIC = 3 μg mL-1 against S. aureus and MRSA; 12-24 μg mL-1 against E. coli). Results of the inhibition study against the bacterial enzyme (E. coli PBP 1b) reveal that some compounds are able to achieve excellent in vitro inhibitions of bacterial enzymatic activity (up to 100%). The best half maximal inhibitory concentration (IC50) observed among the new compounds is 8.9 μM.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Zhiguang Liang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Yuanyuan Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Siu-Cheong Yan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| |
Collapse
|
14
|
Soldatou S, Eldjárn GH, Ramsay A, van der Hooft JJJ, Hughes AH, Rogers S, Duncan KR. Comparative Metabologenomics Analysis of Polar Actinomycetes. Mar Drugs 2021; 19:103. [PMID: 33578887 PMCID: PMC7916644 DOI: 10.3390/md19020103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Biosynthetic and chemical datasets are the two major pillars for microbial drug discovery in the omics era. Despite the advancement of analysis tools and platforms for multi-strain metabolomics and genomics, linking these information sources remains a considerable bottleneck in strain prioritisation and natural product discovery. In this study, molecular networking of the 100 metabolite extracts derived from applying the OSMAC approach to 25 Polar bacterial strains, showed growth media specificity and potential chemical novelty was suggested. Moreover, the metabolite extracts were screened for antibacterial activity and promising selective bioactivity against drug-persistent pathogens such as Klebsiella pneumoniae and Acinetobacter baumannii was observed. Genome sequencing data were combined with metabolomics experiments in the recently developed computational approach, NPLinker, which was used to link BGC and molecular features to prioritise strains for further investigation based on biosynthetic and chemical information. Herein, we putatively identified the known metabolites ectoine and chrloramphenicol which, through NPLinker, were linked to their associated BGCs. The metabologenomics approach followed in this study can potentially be applied to any large microbial datasets for accelerating the discovery of new (bioactive) specialised metabolites.
Collapse
Affiliation(s)
- Sylvia Soldatou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | | | - Andrew Ramsay
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | | | - Alison H. Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | - Katherine R. Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| |
Collapse
|
15
|
She W, Ye W, Cheng A, Liu X, Tang J, Lan Y, Chen F, Qian PY. Discovery, Bioactivity Evaluation, Biosynthetic Gene Cluster Identification, and Heterologous Expression of Novel Albofungin Derivatives. Front Microbiol 2021; 12:635268. [PMID: 33633715 PMCID: PMC7902042 DOI: 10.3389/fmicb.2021.635268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 01/07/2023] Open
Abstract
The crude extract of Streptomyces chrestomyceticus exhibited strong and broad activities against most “ESKAPE pathogens.” We conducted a comprehensive chemical investigation for secondary metabolites from the S. chrestomyceticus strain and identified two novel albofungin (alb) derivatives, i.e., albofungins A (1) and B (2), along with two known compounds, i.e., albofungin (3) and chloroalbofungin (4). The chemical structures of the novel compounds were elucidated using HRMS, 1D and 2D NMR, and electronic circular dichroism spectroscopy. The draft genome of S. chrestomyceticus was sequenced, and a 72 kb albofungin (alb) gene cluster with 72 open reading frames encoding type II polyketide synthases (PKSs), regulators, and transporters, and tailoring enzymes were identified using bioinformatics analysis. The alb gene cluster was confirmed using the heterologous expression in Streptomyces coelicolor, which successfully produced the compounds 3 and 4. Furthermore, compounds 1–4 displayed remarkable activities against Gram-positive bacteria and antitumor activities toward various cancer cells. Notably, compounds 1 and 3 showed potent activities against Gram-negative pathogenic bacteria. The terminal deoxynucleotidyl transferase (dUTP) nick-end labeling and flow cytometry analysis verified that compound 1 inhibited cancer cell proliferation by inducing cellular apoptosis. These results indicated that albofungins might be potential candidates for the development of antibiotics and antitumor drugs.
Collapse
Affiliation(s)
- Weiyi She
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenkang Ye
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianwei Tang
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Pei-Yuan Qian
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
16
|
Tao Y, Yan J, Cai B. LABEL-FREE BIO-AFFINITY MASS SPECTROMETRY FOR SCREENING AND LOCATING BIOACTIVE MOLECULES. MASS SPECTROMETRY REVIEWS 2021; 40:53-71. [PMID: 31755145 DOI: 10.1002/mas.21613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Despite the recent increase in the development of bioactive molecules in the drug industry, the enormous chemical space and lack of productivity are still important issues. Additional alternative approaches to screen and locate bioactive molecules are urgently needed. Label-free bio-affinity mass spectrometry (BA-MS) provides opportunities for the discovery and development of innovative drugs. This review provides a comprehensive portrayal of BA-MS techniques and of their applications in screening and locating bioactive molecules. After introducing the basic principles, alongside some application notes, the current state-of-the-art of BA-MS-assisted drug discovery is discussed, including native MS, size-exclusion chromatography-MS, ultrafiltration-MS, solid-phase micro-extraction-MS, and cell membrane chromatography-MS. Finally, several challenges and limitations of the current methods are summarized, with a view to potential future directions for BA-MS-assisted drug discovery. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Baochang Cai
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| |
Collapse
|
17
|
Hou X, Sun M, Bao T, Xie X, Wei F, Wang S. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharm Sin B 2020; 10:1800-1813. [PMID: 33163336 PMCID: PMC7606101 DOI: 10.1016/j.apsb.2020.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
Natural products have provided numerous lead compounds for drug discovery. However, the traditional analytical methods cannot detect most of these active components, especially at their usual low concentrations, from complex natural products. Herein, we reviewed the recent technological advances (2015–2019) related to the separation and screening bioactive components from natural resources, especially the emerging screening methods based on the bioaffinity techniques, including biological chromatography, affinity electrophoresis, affinity mass spectroscopy, and the latest magnetic and optical methods. These screening methods are uniquely advanced compared to other traditional methods, and they can fish out the active components from complex natural products because of the affinity between target and components, without tedious separation works. Therefore, these new tools can reduce the time and cost of the drug discovery process and accelerate the development of more effective and better-targeted therapeutic agents.
Collapse
Key Words
- AAs, amaryllidaceous alkaloids
- ABCA1, ATP-binding cassette transporter A1
- ACE, affinity capillary electrophoresis
- APTES, 3-aminopropyl-triethoxysilane
- ASMS, affinity selection mass spectrometry
- Active components
- Bioaffinity techniques
- CMC, Cell membrane chromatography
- CMMCNTs, Cell membrane magnetic carbon nanotube
- CMSP, Cell membrane stationary phase
- CNT, carbon nanotubes
- ChE, cholesterol efflux
- EGFR, epidermal growth factor receptor
- FP, fluorescence polarization
- Fe3O4–NH2, aminated magnetic nanoparticles
- HCS, high content screen
- HTS, high throughout screen
- HUVEC, human umbilical vein endothelial cells
- IMER, immobilized enzyme microreactor
- MAO-B, monoamine oxidases B
- MNP, immobilized on nanoparticles
- MPTS, 3-mercaptopropyl-trimethoxysilane
- MS, mass spectrometry
- MSPE, magnetic solid-phase extraction
- Natural products
- PD, Parkinson's disease
- PMG, physcion-8-O-β-d-monoglucoside
- RGD, arginine-glycine-aspartic acid
- SPR, surface plasmon resonance
- STAT3, signal transducer and activator of transcription 3
- Screening
- TCMs, traditional Chinese medicines
- TYR, tyrosinase
- TYR-MNPs, tyrosinase-immobilized magnetic nanoparticles
- Topo I, topoisomerase I
- UF, affinity ultrafiltration
- XOD, xanthine oxidase
- α1A-AR, α1A-adrenergic receptor
Collapse
|
18
|
Multitargeting Compounds: A Promising Strategy to Overcome Multi-Drug Resistant Tuberculosis. Molecules 2020; 25:molecules25051239. [PMID: 32182964 PMCID: PMC7179463 DOI: 10.3390/molecules25051239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis is still an urgent global health problem, mainly due to the spread of multi-drug resistant M. tuberculosis strains, which lead to the need of new more efficient drugs. A strategy to overcome the problem of the resistance insurgence could be the polypharmacology approach, to develop single molecules that act on different targets. Polypharmacology could have features that make it an approach more effective than the classical polypharmacy, in which different drugs with high affinity for one target are taken together. Firstly, for a compound that has multiple targets, the probability of development of resistance should be considerably reduced. Moreover, such compounds should have higher efficacy, and could show synergic effects. Lastly, the use of a single molecule should be conceivably associated with a lower risk of side effects, and problems of drug–drug interaction. Indeed, the multitargeting approach for the development of novel antitubercular drugs have gained great interest in recent years. This review article aims to provide an overview of the most recent and promising multitargeting antitubercular drug candidates.
Collapse
|
19
|
Arai MA, Morita K, Kawano H, Makita Y, Hashimoto M, Suganami A, Tamura Y, Sadhu SK, Ahmed F, Ishibashi M. Target protein-oriented isolation of Hes1 dimer inhibitors using protein based methods. Sci Rep 2020; 10:1381. [PMID: 31992824 PMCID: PMC6987128 DOI: 10.1038/s41598-020-58451-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products isolation using protein based methods is an attractive for obtaining bioactive compounds. To discover neural stem cell (NSC) differentiation activators, we isolated eight inhibitors of Hes1 dimer formation from Psidium guajava using the Hes1-Hes1 interaction fluorescent plate assay and one inhibitor from Terminalia chebula using the Hes1-immobilized beads method. Of the isolated compounds, gallic acid (8) and 4-O-(4”-O-galloyl-α-L-rhamnopyranosyl)ellagic acid (11) showed potent Hes1 dimer formation inhibitory activity, with IC50 values of 10.3 and 2.53 μM, respectively. Compound 11 accelerated the differentiation activity of C17.2 NSC cells dose dependently, increasing the number of neurons with a 125% increase (5 μM) compared to the control.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Kaori Morita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Haruka Kawano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuna Makita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Manami Hashimoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Akiko Suganami
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yutaka Tamura
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Samir K Sadhu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
20
|
Phenolic N-monosubstituted carbamates: Antitubercular and toxicity evaluation of multi-targeting compounds. Eur J Med Chem 2019; 181:111578. [DOI: 10.1016/j.ejmech.2019.111578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022]
|
21
|
Chen X, Wong CH, Ma C. Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective. ACS Infect Dis 2019; 5:1493-1504. [PMID: 31283163 DOI: 10.1021/acsinfecdis.9b00118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One of the major threats to human life nowadays is widespread antibiotic resistance. Antibiotics are used to treat bacterial infections by targeting their essential pathways, such as the biosynthesis of bacterial cell walls. Bacterial transglycosylase, particularly glycosyltransferase family 51 (GT51), is one critical player in the cell wall biosynthesis and has long been known as a promising yet challenging target for antibiotic development. Here, we review the structural studies of this protein and summarize recent progress in developing its specific inhibitors, including synthetic substrate analogs and novel compounds identified from high-throughput screens. A detailed analysis of the protein-ligand interface has also provided us with valuable insights into the future antibiotic development against the bacterial transglycosylase.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nangang District, Taipei 115, Taiwan
| |
Collapse
|
22
|
Miyachiro MM, Contreras-Martel C, Dessen A. Penicillin-Binding Proteins (PBPs) and Bacterial Cell Wall Elongation Complexes. Subcell Biochem 2019; 93:273-289. [PMID: 31939154 DOI: 10.1007/978-3-030-28151-9_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial cell wall is the validated target of mainstream antimicrobials such as penicillin and vancomycin. Penicillin and other β-lactams act by targeting Penicillin-Binding Proteins (PBPs), enzymes that play key roles in the biosynthesis of the main component of the cell wall, the peptidoglycan. Despite the spread of resistance towards these drugs, the bacterial cell wall continues to be a major Achilles' heel for microbial survival, and the exploration of the cell wall formation machinery is a vast field of work that can lead to the development of novel exciting therapies. The sheer complexity of the cell wall formation process, however, has created a significant challenge for the study of the macromolecular interactions that regulate peptidoglycan biosynthesis. New developments in genetic and biochemical screens, as well as different aspects of structural biology, have shed new light on the importance of complexes formed by PBPs, notably within the cell wall elongation machinery. This chapter summarizes structural and functional details of PBP complexes involved in the periplasmic and membrane steps of peptidoglycan biosynthesis with a focus on cell wall elongation. These assemblies could represent interesting new targets for the eventual development of original antibacterials.
Collapse
Affiliation(s)
- Mayara M Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil
| | - Carlos Contreras-Martel
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil. .,Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France.
| |
Collapse
|