1
|
Osawa A, Uemura K, Murakami S, Nakao Y. Photocatalytic Denitrative Alkenylation of Nitroalkanes. Org Lett 2024; 26:10218-10223. [PMID: 39587063 DOI: 10.1021/acs.orglett.4c03526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Reductive radical generation has become a cornerstone of modern photoredox chemistry. However, the synthesis of functionalized radical precursors remains a tedious multistep process. In this study, we focus on the potential of the nitro group as a redox-active functional group and present denitrative alkenylation of nitroalkanes, facilitated by photoreductive generation of alkyl radicals from nitroalkanes. By taking advantage of the facile α-functionalization of nitroalkanes, we successfully generate various functionalized alkyl radicals, which are subsequently used in the alkenylation reactions.
Collapse
Affiliation(s)
- Ayumi Osawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kento Uemura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shuji Murakami
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Chen L, Lv C, Meng Y, Yang Z, Xin W, Zhu Y, Wang X, Wang B, Ding X, Wang Z, Wei X, Zhang X, Fu X, Meng X, Zhang M, Huo M, Li Y, Yu H, Wei Y, Geng L. The Latest Progress in the Chemistry of Daphniphyllum Alkaloids. Molecules 2024; 29:5498. [PMID: 39683658 DOI: 10.3390/molecules29235498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing a reference for future studies.
Collapse
Affiliation(s)
- Lujuan Chen
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yinping Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhen Yang
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Wenbin Xin
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yuxue Zhu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuehan Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Baozhen Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuan Ding
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhaoxia Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuyue Wei
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinyue Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuexue Fu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangru Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Meimei Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Manyu Huo
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying Li
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Hui Yu
- Health and Medicine College, Dezhou University, Dezhou 253023, China
| | - Yuxia Wei
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
3
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
Liang C, Zheng K, Ding Y, Gao J, Wang Z, Cheng J. Pyridine-catalyzed ring-opening reaction of cyclopropenone with bromomethyl carbonyl compounds toward furan-2(5 H)-ones. Chem Commun (Camb) 2024. [PMID: 38258845 DOI: 10.1039/d3cc05888c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We developed a pyridine-catalyzed annulation of diaryl cyclopropenone with bromomethyl carbonyl compounds leading to 5-carbonyl furan-2(5H)-ones. Pyridinium, derived from the reaction of bromomethyl carbonyl and pyridine, triggered the reaction by the inter-molecular Michael addition to cyclopropenone. This procedure was sensitive neither to air nor moisture and proceeded at room temperature with broad substrate scopes and good functional group tolerance in moderate-to-good yields. As such, it represents a facile and practical pathway leading to 5-carbonyl furan-2(5H)-one derivatives.
Collapse
Affiliation(s)
- Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Kui Zheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Yifang Ding
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Junhang Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
5
|
Kiprova N, Desnoyers M, Narobe R, Klufts-Edel A, Chaud J, König B, Compain P, Kern N. Towards a General Access to 1-Azaspirocyclic Systems via Photoinduced, Reductive Decarboxylative Radical Cyclizations. Chemistry 2023:e202303841. [PMID: 38084823 DOI: 10.1002/chem.202303841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 01/13/2024]
Abstract
A convenient and versatile approach to important 1-azaspirocyclic systems relevant to medicinal chemistry and natural products is reported herein. The main strategy relies on a reductive decarboxylative cyclization of redox-active esters which can be rapidly assembled from abundant cyclic azaacids and tailored acceptor sidechains, with a focus on alkyne acceptors enabling the generation of useful exo-alkene moieties. Diastereoconvergent variants were studied and could be achieved either through remote stereocontrol or conformational restriction in bicyclic carbamate substrates. Two sets of metal-free photocatalytic conditions employing inexpensive eosin Y were disclosed and studied experimentally to highlight key mechanistic divergences.
Collapse
Affiliation(s)
- Natalia Kiprova
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marine Desnoyers
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Rok Narobe
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Arthur Klufts-Edel
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Juliane Chaud
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
6
|
Hayashi H, Maeda S, Mita T. Quantum chemical calculations for reaction prediction in the development of synthetic methodologies. Chem Sci 2023; 14:11601-11616. [PMID: 37920348 PMCID: PMC10619630 DOI: 10.1039/d3sc03319h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Quantum chemical calculations have been used in the development of synthetic methodologies to analyze the reaction mechanisms of the developed reactions. Their ability to estimate chemical reaction pathways, including transition state energies and connected equilibria, has led researchers to embrace their use in predicting unknown reactions. This perspective highlights strategies that leverage quantum chemical calculations for the prediction of reactions in the discovery of new methodologies. Selected examples demonstrate how computation has driven the development of unknown reactions, catalyst design, and the exploration of synthetic routes to complex molecules prior to often laborious, costly, and time-consuming experimental investigations.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Chemistry, Faculty of Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
7
|
Modern Photocatalytic Strategies in Natural Product Synthesis. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 120:1-104. [PMID: 36587307 DOI: 10.1007/978-3-031-11783-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Modern photocatalysis has proven its generality for the development and functionalization of native functionalities. To date, the field has found broad applications in diverse research areas, including the total synthesis of natural products. This contribution covers recent reports of total syntheses involving as a key step a photocatalytic reaction. Among the selected examples, the photocatalytic processes proceed in a highly chemo-, regio-, and stereoselective manner, thereby allowing the rapid access to structurally complex architectures under light-driven conditions.
Collapse
|
8
|
Jin S, Zhao X, Ma D. Divergent Total Syntheses of Napelline-Type C20-Diterpenoid Alkaloids: (-)-Napelline, (+)-Dehydronapelline, (-)-Songorine, (-)-Songoramine, (-)-Acoapetaldine D, and (-)-Liangshanone. J Am Chem Soc 2022; 144:15355-15362. [PMID: 35948501 DOI: 10.1021/jacs.2c06738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The napelline-type alkaloids possess an azabicyclo[3.2.1]octane moiety and an ent-kaurane-type tetracyclic skeleton (6/6/6/5) along with varied oxidation patterns embedded in the compact hexacyclic framework. Herein, we disclose a divergent entry to napelline-type alkaloids that hinges on convergent assembly of the ent-kaurane core using a diastereoselective intermolecular Cu-mediated conjugate addition and subsequent intramolecular Michael addition reaction as well as rapid construction of the azabicyclo[3.2.1]octane motif via an intramolecular Mannich cyclization. The power of this strategy has been demonstrated through efficient asymmetric total syntheses of eight napelline-type alkaloids, including (-)-napelline, (-)-12-epi-napelline, (+)-dehydronapelline, (+)-12-epi-dehydronapelline, (-)-songorine, (-)-songoramine, (-)-acoapetaldine D, and (-)-liangshanone.
Collapse
Affiliation(s)
- Shicheng Jin
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
9
|
Zhao Y, Liu X, Lu H, Zhu X, Wang T, Luo G, Zheng R, Luo Y. An optimized deep convolutional neural network for yield prediction of Buchwald-Hartwig amination. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
11
|
Pitre SP, Overman LE. Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chem Rev 2021; 122:1717-1751. [PMID: 34232019 DOI: 10.1021/acs.chemrev.1c00247] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent progress in the development of photocatalytic reactions promoted by visible light is leading to a renaissance in the use of photochemistry in the construction of structurally elaborate organic molecules. Because of the rich functionality found in natural products, studies in natural product total synthesis provide useful insights into functional group compatibility of these new photocatalytic methods as well as their impact on synthetic strategy. In this review, we examine total syntheses published through the end of 2020 that employ a visible-light photoredox catalytic step. To assist someone interested in employing the photocatalytic steps discussed, the review is organized largely by the nature of the bond formed in the photocatalytic step.
Collapse
Affiliation(s)
- Spencer P Pitre
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
12
|
Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Utilization of C(
sp
3
)‐Carboxylic Acids and Their Redox‐Active Esters in Decarboxylative Carbon−Carbon Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100314] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sukhen Karmakar
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Arundutt Silamkoti
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Nicholas A. Meanwell
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arvind Mathur
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arun Kumar Gupta
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| |
Collapse
|
13
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
14
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
15
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
16
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
17
|
Towards a converged strategy for including microsolvation in reaction mechanism calculations. J Comput Aided Mol Des 2021; 35:473-492. [PMID: 33420644 DOI: 10.1007/s10822-020-00366-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/28/2020] [Indexed: 01/27/2023]
Abstract
A major part of chemical conversions is carried out in the fluid phase, where an accurate modeling of the involved reactions requires to also take into account solvation effects. Implicit solvation models often cover these effects with sufficient accuracy but can fail drastically when specific solvent-solute interactions are important. In those cases, microsolvation, i.e., the explicit inclusion of one or more solvent molecules, is a commonly used strategy. Nevertheless, microsolvation also introduces new challenges-a consistent workflow as well as strategies how to systematically improve prediction performance are not evident. For the COSMO and COSMO-RS solvation models, this work proposes a simple protocol to decide if microsolvation is needed and how the corresponding molecular model has to look like. To demonstrate the improved accuracy of the approach, specific application examples are presented and discussed, i.e., the computation of aqueous pKa values and a mechanistic study of the methanol mediated Morita-Baylis-Hillman reaction.
Collapse
|
18
|
Urabe D, Fukaya K. Systematic Search for Transition States in Complex Molecules: Computational Analyses of Regio- and Stereoselective Interflavan Bond Formation in Flavan-3-ols. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Zhang W, Zhang Z, Tang JC, Che JT, Zhang HY, Chen JH, Yang Z. Total Synthesis of (+)-Haperforin G. J Am Chem Soc 2020; 142:19487-19492. [DOI: 10.1021/jacs.0c10122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wei Zhang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhenyu Zhang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jun-Chen Tang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Teng Che
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hao-Yu Zhang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Hua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
20
|
Wang B, Perea MA, Sarpong R. Transition Metal-Mediated C-C Single Bond Cleavage: Making the Cut in Total Synthesis. Angew Chem Int Ed Engl 2020; 59:18898-18919. [PMID: 31984640 PMCID: PMC7772057 DOI: 10.1002/anie.201915657] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Transition-metal-mediated cleavage of C-C single bonds can enable entirely new retrosynthetic disconnections in the total synthesis of natural products. Given that C-C bond cleavage inherently alters the carbon framework of a compound, and that, under transition-metal catalysis, the generated organometallic or radical intermediate is primed for further complexity-building reactivity, C-C bond-cleavage events have the potential to drastically and rapidly remodel skeletal frameworks. The recent acceleration of the use of transition-metal-mediated cleavage of C-C single bonds in total synthesis can be ascribed to a communal recognition of this fact. In this Review, we highlight ten selected total syntheses from 2014 to 2019 that illustrate how transition-metal-mediated cleavage of C-C single bonds at either the core or the periphery of synthetic intermediates can streamline synthetic efforts.
Collapse
Affiliation(s)
| | | | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (USA)
| |
Collapse
|
21
|
Wang C, Zhao W, Wu X, Qu J, Chen Y. Palladium‐Catalyzed Regioselective Domino Spirocyclization of Carbamoyl Chlorides with Alkynes and Benzynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
22
|
Merging single-electron transfer and energy transfer processes of photocatalyst: An atom economical strategy for the synthesis of 1-trifluoroethylated isoquinolines from cis and trans vinyl isocyanides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Wang B, Perea MA, Sarpong R. Übergangsmetallvermittelte Spaltung von C‐C‐Einfachbindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brian Wang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Melecio A. Perea
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Richmond Sarpong
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
24
|
Cai X, Liang W, Liu M, Li X, Dai M. Catalytic Hydroxycyclopropanol Ring-Opening Carbonylative Lactonization to Fused Bicyclic Lactones. J Am Chem Soc 2020; 142:13677-13682. [PMID: 32687339 PMCID: PMC8232350 DOI: 10.1021/jacs.0c06179] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel palladium-catalyzed ring opening carbonylative lactonization of readily available hydroxycyclopropanols was developed to efficiently synthesize tetrahydrofuran (THF) or tetrahydropyran (THP)-fused bicyclic γ-lactones, two privileged scaffolds often found in natural products. The reaction features mild reaction conditions, good functional group tolerability, and scalability. Its application was demonstrated in a short total synthesis of (±)-paeonilide. The fused bicyclic γ-lactone products can be easily diversified to other medicinally important scaffolds, which further broadens the application of this new carbonylation method.
Collapse
Affiliation(s)
- Xinpei Cai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Weida Liang
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mingxin Liu
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiating Li
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Qiao T, Wang Y, Zheng S, Kang H, Liang G. Total Syntheses of Norrisolide‐Type
Spongian
Diterpenes Cheloviolene C, Seconorrisolide B, and Seconorrisolide C. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tianjiao Qiao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yicheng Wang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Huiying Kang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Guangxin Liang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
26
|
Qiao T, Wang Y, Zheng S, Kang H, Liang G. Total Syntheses of Norrisolide-Type Spongian Diterpenes Cheloviolene C, Seconorrisolide B, and Seconorrisolide C. Angew Chem Int Ed Engl 2020; 59:14111-14114. [PMID: 32374067 DOI: 10.1002/anie.202005600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/12/2022]
Abstract
The first total syntheses of three unusual norrisolide-type rearranged spongian diterpenes, cheloviolene C, seconorrisolide B, and seconorrisolide C, have been accomplished via a common intermediate through late-stage ring-scissoring. The synthesis features a Wolff ring contraction for the synthesis of the trans-hydrindane system, and a crucial retro Diels-Alder reaction/intramolecular ene cyclization for the rapid stereoselective construction of the furo[2,3-b]furan system, which is commonly seen in rearranged spongian diterpenes.
Collapse
Affiliation(s)
- Tianjiao Qiao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yicheng Wang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiying Kang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangxin Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
27
|
Wang Q, Zhang C, Yang J. Synthesis of ACE tricyclic systems of daphnicyclidin A and dehy-droxymacropodumine A. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Correia JTM, Piva da Silva G, Kisukuri CM, André E, Pires B, Carneiro PS, Paixão MW. Metal-Free Photoinduced Hydroalkylation Cascade Enabled by an Electron-Donor–Acceptor Complex. J Org Chem 2020; 85:9820-9834. [DOI: 10.1021/acs.joc.0c01130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- José Tiago M. Correia
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil 13565-905
| | - Gustavo Piva da Silva
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil 13565-905
| | - Camila M. Kisukuri
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil 13565-905
| | - Elias André
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil 13565-905
| | - Bruno Pires
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil 13565-905
| | - Pablo S. Carneiro
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil 13565-905
| | - Márcio W. Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil 13565-905
| |
Collapse
|
29
|
Li C, Quan T, Xue Y, Cao Y, Chen SC, Luo T. Synthesis of 17-Deacetoxyl Chromodorolide B Based on a Gold-Catalyzed Alkoxycyclization Reaction. Org Lett 2020; 22:1655-1658. [DOI: 10.1021/acs.orglett.0c00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianfei Quan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yibin Xue
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhui Cao
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Guo JY, Zhang ZY, Guan T, Mao LW, Ban Q, Zhao K, Loh TP. Photoredox-catalyzed stereoselective alkylation of enamides with N-hydroxyphthalimide esters via decarboxylative cross-coupling reactions. Chem Sci 2019; 10:8792-8798. [PMID: 31803451 PMCID: PMC6849636 DOI: 10.1039/c9sc03070k] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023] Open
Abstract
Stereoselective β-C(sp2)-H alkylation of enamides with redox-active N-hydroxyphthalimide esters via a photoredox-catalyzed decarboxylative cross-coupling reaction is demonstrated. This methodology features operational simplicity, broad substrate scopes, and excellent stereoselectivities and functional group tolerance, affording a diverse array of geometrically defined and synthetically valuable enamides bearing primary, secondary or tertiary alkyl groups in satisfactory yields.
Collapse
Affiliation(s)
- Jing-Yu Guo
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ting Guan
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Lei-Wen Mao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Qian Ban
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Kai Zhao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Teck-Peng Loh
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| |
Collapse
|
31
|
Wan IC, Witte MD, Minnaard AJ. From d- to l-Monosaccharide Derivatives via Photodecarboxylation-Alkylation. Org Lett 2019; 21:7669-7673. [PMID: 31512472 PMCID: PMC6759743 DOI: 10.1021/acs.orglett.9b03016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 11/28/2022]
Abstract
Photodecarboxylation-alkylation of conformationally locked monosaccharides leads to inversion of stereochemistry at C5. This allows the synthesis of l-sugars from their readily available d-counterparts. Via this strategy, methyl l-guloside was synthesized from methyl d-mannoside in 21% yield over six steps.
Collapse
Affiliation(s)
- I. C.
Steven Wan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
32
|
Correia JTM, Piva da Silva G, André E, Paixão MW. Photoredox Decarboxylative Alkylation/(2+2+1) Cycloaddition of 1,7‐Enynes: A Cascade Approach Towards Polycyclic Heterocycles Using
N
‐(Acyloxy)phthalimides as Radical Source. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900657] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- José Tiago Menezes Correia
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of ChemistryFederal University of São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos – São Paulo – Brazil 13565-905
| | - Gustavo Piva da Silva
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of ChemistryFederal University of São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos – São Paulo – Brazil 13565-905
| | - Elias André
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of ChemistryFederal University of São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos – São Paulo – Brazil 13565-905
| | - Márcio Weber Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of ChemistryFederal University of São Carlos – UFSCar Rodovia Washington Luís, km 235 – SP-310 São Carlos – São Paulo – Brazil 13565-905
| |
Collapse
|
33
|
Liu XY, Qin Y. Indole Alkaloid Synthesis Facilitated by Photoredox Catalytic Radical Cascade Reactions. Acc Chem Res 2019; 52:1877-1891. [PMID: 31264824 DOI: 10.1021/acs.accounts.9b00246] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The monoterpene indole alkaloids, containing over 3000 known members and more than 40 structural types, represent one of the largest natural product families that have proven to be an important drug source. Their complex chemical structures and significant biological activities have rendered these alkaloids attractive targets in the synthetic community for decades. While chemists have developed many synthetic methodologies and tactics toward this end, general strategies allowing divergent access to a large variety of structural types and members of monoterpene indole alkaloids are still limited and highly desirable. Photoredox catalysis has emerged in recent years as a powerful tool to realize chemical transformations via single electron transfer (SET) processes that would otherwise be inaccessible. In particular, when the radical species generated by the visible light photoinduced approach is involved in well-designed cascade reactions, the formation of multiple chemical bonds and the assembly of structurally complex molecules would be secured in a green and economic manner. This protocol might serve to remodel the way of thinking for the preparation of useful pharmaceuticals and complex natural products. Due to a long-standing interest in the synthesis of diverse indole alkaloids, our group previously developed a cyclopropanation strategy ( Qin , Y. Acc. Chem. Res. 2011 , 44 , 447 ) that was versatile to access several intriguing indole alkaloid molecules. With an idea of developing more general synthetic approaches to as many members of various indole alkaloids as possible, we recently disclosed new radical cascade reactions enabled by photoredox catalysis, leading to the collective asymmetric total synthesis of 42 monoterpene indole alkaloids belonging to 7 structural types. Several important discoveries deserve to be highlighted. First, the use of photocatalytic technology allowed us to achieve an unusual reaction pathway that reversed the conventional reactivity between two nucleophilic amine and enamine groups. Second, a crucial nitrogen-centered radical, directly generated from a sulfonamide N-H bond, triggered three types of cascade reactions to deliver indole alkaloid cores with manifold functionalities and controllable diastereoselectivities. Moreover, expansion of this catalytic, scalable, and general methodology permitted the total synthesis of a large collection of indole alkaloids. In this Account, we wish to provide a complete picture of our studies concerning the original synthetic design, method development, and applications in total synthesis. It is anticipated that the visible-light-driven cascade strategy will find further utility in the realm of natural product synthesis.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Wei Z, Zhang J, Yang H, Jiang G. Catalytic Asymmetric Cascade Cyclization for Constructing Three Contiguous Stereocenters in Pyrrolobenzodiazepine-Based Cyclopentanones. Org Lett 2019; 21:2790-2794. [DOI: 10.1021/acs.orglett.9b00749] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao Wei
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinlong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Huameng Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Gaoxi Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
35
|
Fukaya K, Saito A, Nakajima N, Urabe D. A Computational Study on the Stereo- and Regioselective Formation of the C4α-C6' Bond of Tethered Catechin Moieties by an Exhaustive Search of the Transition States. J Org Chem 2019; 84:2840-2849. [PMID: 30701979 DOI: 10.1021/acs.joc.8b03263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously reported the total synthesis of procyanidin B6 by using the stereo- and regioselective C-C bond formation of tethered catechin moieties as the key step. The reaction afforded the product bearing a new C4α-C6' bond linkage instead of the inherently preferable C4α-C8' bond. However, the origin of this selectivity remained unclear due to the complex structure of the substrate. Here we report the results of computational exploration of this C-C bond formation to gain mechanistic insights into the selectivity. The computational study of highly flexible compounds was realized by an exhaustive search of transition states. A large library of candidate transition states was generated by a conformational search of constrained models using molecular mechanics simulations and semiempirical molecular orbital calculations. Subsequent DFT-based transition state calculations provided 367 transition states for C4-C6' and C4-C8' bond formations. Comparison of the geometries and energies showed that the C4α-C6' linkage is preferentially formed via two competing transition states, leading to a C6'-diastereomeric mixture. Interactive atomic distances and visualization of the nonbonding interactions suggest the importance of nonclassical hydrogen bonding and CH-π, π-π, and lone pair-π interactions in stabilizing the two transition states. The present study supports preferential C4α-C6' bond formation of the tethered catechins.
Collapse
Affiliation(s)
- Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| | - Akiko Saito
- Graduate School of Engineering , Osaka Electro-Communication University , 18-8 Hatsu-cho , Neyagawa , Osaka 572-8530 , Japan
| | - Noriyuki Nakajima
- Biotechnology Research Center and Department of Pharmaceutical Engineering , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| |
Collapse
|
36
|
Tan K, Yan H, Lu P, Liu Y, Ji R, Liu Z, Li YM, Yu FC, Shen Y. Access to Multisubstituted 2(5H)-Furanones Using Hydrogen Bonding-Promoted Ring-Closing Metathesis and Polyamine Workup. J Org Chem 2019; 84:3419-3430. [DOI: 10.1021/acs.joc.8b03293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Pengbo Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuehui Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruigeng Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhongxian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fu-Chao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuehai Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
37
|
Pitre SP, Weires NA, Overman LE. Forging C(sp 3)-C(sp 3) Bonds with Carbon-Centered Radicals in the Synthesis of Complex Molecules. J Am Chem Soc 2019; 141:2800-2813. [PMID: 30566838 DOI: 10.1021/jacs.8b11790] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radical fragment coupling reactions that unite intricate subunits have become an important class of transformations within the arena of complex molecule synthesis. This Perspective highlights some of the early contributions in this area, as well as more modern applications of radical fragment couplings in the preparation of natural products. Additionally, emphasis is placed on contemporary advances that allow for radical generation under mild conditions as a driving force for the implementation of radical fragment couplings in total synthesis.
Collapse
Affiliation(s)
- Spencer P Pitre
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Nicholas A Weires
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Larry E Overman
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| |
Collapse
|
38
|
Zhou RJ, Dai GY, Zhou XH, Zhang MJ, Wu PZ, Zhang D, Song H, Liu XY, Qin Y. Progress towards the synthesis of aconitine: construction of the AE fragment and attempts to access the pentacyclic core. Org Chem Front 2019. [DOI: 10.1039/c8qo01228h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported the first successful preparation of fully functionalized aconitine AE fragment and attempts to access the pentacyclic skeleton of aconitine via radical cascade.
Collapse
Affiliation(s)
- Rui-Jie Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Gui-Ying Dai
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Xiao-Han Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Min-Jie Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Ping-Zhou Wu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Dan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Hao Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Xiao-Yu Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| |
Collapse
|
39
|
Elkin M, Newhouse TR. Computational chemistry strategies in natural product synthesis. Chem Soc Rev 2018; 47:7830-7844. [PMID: 30083692 DOI: 10.1039/c8cs00351c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The synthesis of natural products increasingly uses computational chemistry approaches to model and understand molecular phenomena. Calculations are employed to rationalize reaction outcomes, predict how a new system will perform, and inform synthetic design. As a result, new insights into the interactions of fundamental chemical forces have emerged that advance the field of complex small molecule synthesis. This review presents ten examples of computational techniques used in the synthesis of natural products, and discusses the unique perspectives afforded by these quantitative analyses.
Collapse
Affiliation(s)
- Masha Elkin
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, USA.
| | | |
Collapse
|
40
|
Tantillo DJ. Questions in natural products synthesis research that can (and cannot) be answered using computational chemistry. Chem Soc Rev 2018; 47:7845-7850. [PMID: 29900461 PMCID: PMC6205925 DOI: 10.1039/c8cs00298c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Questions of relevance to those working in the field of natural products synthesis that can be answered, at least in part, using computational chemistry approaches are described. Illustrative examples are provided, as are descriptions of limitations.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Wu H, Luo S, Cao L, Shi H, Wang B, Wang Z. DABCO‐Mediated C−O Bond Formation from C
sp2
‐Halogen Bond‐Containing Compounds and Alkyl Alcohols. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Han‐Qing Wu
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Shi‐He Luo
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Liang Cao
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Hao‐Nan Shi
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Bo‐Wen Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Zhao‐Yang Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| |
Collapse
|
42
|
Liu J, Li L, Yu L, Tang L, Chen Q, Shi M. Visible-Light-Induced Trifluoromethylation of Isonitrile-Substituted Indole Derivatives: Access to 1-(Trifluoromethyl)-4,9-dihydro-3H-pyrido[3,4-b]indole andβ-Carboline Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Longhai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Liuzhu Yu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Lisha Tang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry; Fudan University; 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Qin Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry; Fudan University; 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|