1
|
Trunk F, Köhler L, Fischer T, Gärtner W, Song C, Slavov C, Wachtveitl J. Single GAF Domain Phytochrome Exhibits a pH-Dependent Shunt on the Millisecond Timescale. Chemphyschem 2025; 26:e202401022. [PMID: 39744913 PMCID: PMC11913468 DOI: 10.1002/cphc.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited. Here, we aim to close this gap by providing coherent experimental evidence of a shunt process using UV/Vis laser flash photolysis. We studied the Pfr to Pr dynamics of the single GAF domain (g1) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. We identified a shunt that can be switched on and off by ambient buffer conditions. In combination with H/D exchange and kinetic modeling, we propose a keto-enol tautomerism to allow for the thermal isomerization of the chromophore and act as the driver of the shunt transition.
Collapse
Affiliation(s)
- Florian Trunk
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt am MainMax-von-Laue-Straße 760438FrankfurtGermany
| | - Lisa Köhler
- Institute for Analytical ChemistryUniversity of LeipzigLinnéstraße 304103LeipzigGermany
| | - Tobias Fischer
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt am MainMax-von-Laue-Straße 760438FrankfurtGermany
| | - Wolfgang Gärtner
- Institute for Analytical ChemistryUniversity of LeipzigLinnéstraße 304103LeipzigGermany
| | - Chen Song
- Institute for Analytical ChemistryUniversity of LeipzigLinnéstraße 304103LeipzigGermany
| | - Chavdar Slavov
- Department of ChemistryUniversity of South Florida4202 E. Fowler Avenue, CHE 205TampaFL 33620USA
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt am MainMax-von-Laue-Straße 760438FrankfurtGermany
| |
Collapse
|
2
|
Bódizs S, Mészáros P, Grunewald L, Takala H, Westenhoff S. Cryo-EM structures of a bathy phytochrome histidine kinase reveal a unique light-dependent activation mechanism. Structure 2024; 32:1952-1962.e3. [PMID: 39216473 DOI: 10.1016/j.str.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein. Here, we present cryoelectron microscopy (cryo-EM) structures of the phytochrome from Pseudomonas aeruginosa (PaBphP) in its resting (Pfr) and photoactivated (Pr) state. The kinase-active Pr state has an asymmetric, dimeric structure, whereas the kinase-inactive Pfr state opens up. This behavior is different from other known phytochromes and we explain it with the unusually short connection between the photosensory and output modules. Multiple sequence alignment of this region suggests evolutionary optimization for different modes of signal transduction in sensor proteins. The results establish a new mechanism for light-sensing by phytochrome histidine kinases and provide input for the design of optogenetic phytochrome variants.
Collapse
Affiliation(s)
- Szabolcs Bódizs
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Petra Mészáros
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Lukas Grunewald
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Sebastian Westenhoff
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
3
|
Salvadori G, Mennucci B. Analogies and Differences in the Photoactivation Mechanism of Bathy and Canonical Bacteriophytochromes Revealed by Multiscale Modeling. J Phys Chem Lett 2024; 15:8078-8084. [PMID: 39087732 PMCID: PMC11376688 DOI: 10.1021/acs.jpclett.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Bacteriophytochromes are light-sensing biological machines that switch between two photoreversible states, Pr and Pfr. Their relative stability is opposite in canonical and bathy bacteriophytochromes, but in both cases the switch between them is triggered by the photoisomerization of an embedded bilin chromophore. We applied an integrated multiscale strategy of excited-state QM/MM nonadiabatic dynamics and (QM/)MM molecular dynamics simulations with enhanced sampling techniques to the Agrobacterium fabrum bathy phytochrome and compared the results with those obtained for the canonical phytochrome Deinococcus radiodurans. Contrary to what recently suggested, we found that photoactivation in both phytochromes is triggered by the same hula-twist motion of the bilin chromophore. However, only in the bathy phytochrome, the bilin reaches the final rotated structure already in the first intermediate. This allows a reorientation of the binding pocket in a microsecond time scale, which can propagate through the entire protein causing the spine to tilt.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Institute for Computational Biomedicine (INM-9/IAS-5), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
4
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
5
|
Schroeder L, Diepold N, Gäfe S, Niemann HH, Kottke T. Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy. J Biol Chem 2024; 300:107210. [PMID: 38519030 PMCID: PMC11021962 DOI: 10.1016/j.jbc.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and β-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.
Collapse
Affiliation(s)
- Lea Schroeder
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Niklas Diepold
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Simon Gäfe
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
6
|
Do TN, Menendez D, Bizhga D, Stojković EA, Kennis JTM. Two-photon Absorption and Photoionization of a Bacterial Phytochrome. J Mol Biol 2024; 436:168357. [PMID: 37944794 DOI: 10.1016/j.jmb.2023.168357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Phytochromes constitute a family of photosensory proteins that are utilized by various organisms to regulate several physiological processes. Phytochromes bind a bilin pigment that switches its isomeric state upon absorption of red or far-red photons, resulting in protein conformational changes that are sensed by the organism. Previously, the ultrafast dynamics in bacterial phytochrome was resolved to atomic resolution by time-resolved serial femtosecond X-ray diffraction (TR-SFX), showing extensive changes in its molecular conformation at 1 picosecond delay time. However, the large excitation fluence of mJ/mm2 used in TR-SFX questions the validity of the observed dynamics. In this work, we present an excitation-dependent ultrafast transient absorption study to test the response of a related bacterial phytochrome to excitation fluence. We observe excitation power-dependent sub-picosecond dynamics, assigned to the population of high-lying excited state Sn through resonantly enhanced two-photon absorption, followed by rapid internal conversion to the low-lying S1 state. Inspection of the long-lived spectrum under high fluence shows that in addition to the primary intermediate Lumi-R, spectroscopic signatures of solvated electrons and ionized chromophore radicals are observed. Supported by numerical modelling, we propose that under excitation fluences of tens of μJ/mm2 and higher, bacterial phytochrome partly undergoes photoionization from the Sn state in competition with internal conversion to the S1 state in 300 fs. We suggest that the extensive structural changes of related, shorter bacterial phytochrome, lacking the PHY domain, resolved from TR-SFX may have been affected by the ionized species. We propose approaches to minimize the two-photon absorption process by tuning the excitation spectrum away from the S1 absorption or using phytochromes exhibiting minimized or shifted S1 absorption.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - David Menendez
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, IL 60625, USA
| | - Dorina Bizhga
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, IL 60625, USA
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, IL 60625, USA
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Salvadori G, Mazzeo P, Accomasso D, Cupellini L, Mennucci B. Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. J Mol Biol 2024; 436:168358. [PMID: 37944793 DOI: 10.1016/j.jmb.2023.168358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this review, we discuss the successes and challenges of the atomistic modeling of photoreceptors. Throughout our presentation, we integrate explanations of the primary methodological approaches, ranging from quantum mechanical descriptions to classical enhanced sampling methods, all while providing illustrative examples of their practical application to specific systems. To enhance the effectiveness of our analysis, our primary focus has been directed towards the examination of applications across three distinct photoreceptors. These include an example of Blue Light-Using Flavin (BLUF) domains, a bacteriophytochrome, and the orange carotenoid protein (OCP) employed by cyanobacteria for photoprotection. Particular emphasis will be placed on the pivotal role played by the protein matrix in fine-tuning the initial photochemical event within the embedded chromophore. Furthermore, we will investigate how this localized perturbation initiates a cascade of events propagating from the binding pocket throughout the entire protein structure, thanks to the intricate network of interactions between the chromophore and the protein.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Patrizia Mazzeo
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
8
|
Le DPN, Hastings G, Gozem S. How Aqueous Solvation Impacts the Frequencies and Intensities of Infrared Absorption Bands in Flavin: The Quest for a Suitable Solvent Model. Molecules 2024; 29:520. [PMID: 38276598 PMCID: PMC10818357 DOI: 10.3390/molecules29020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
FTIR spectroscopy accompanied by quantum chemical simulations can reveal important information about molecular structure and intermolecular interactions in the condensed phase. Simulations typically account for the solvent either through cluster quantum mechanical (QM) models, polarizable continuum models (PCM), or hybrid quantum mechanical/molecular mechanical (QM/MM) models. Recently, we studied the effect of aqueous solvent interactions on the vibrational frequencies of lumiflavin, a minimal flavin model, using cluster QM and PCM models. Those models successfully reproduced the relative frequencies of four prominent stretching modes of flavin's isoalloxazine ring in the diagnostic 1450-1750 cm-1 range but poorly reproduced the relative band intensities. Here, we extend our studies on this system and account for solvation through a series of increasingly sophisticated models. Only by combining elements of QM clusters, QM/MM, and PCM approaches do we obtain an improved agreement with the experiment. The study sheds light more generally on factors that can impact the computed frequencies and intensities of IR bands in solution.
Collapse
Affiliation(s)
- D. P. Ngan Le
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| | - Gary Hastings
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| |
Collapse
|
9
|
Fischer T, Köhler L, Engel PD, Song C, Gärtner W, Wachtveitl J, Slavov C. Conserved tyrosine in phytochromes controls the photodynamics through steric demand and hydrogen bonding capabilities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148996. [PMID: 37437858 DOI: 10.1016/j.bbabio.2023.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Using ultrafast spectroscopy and site-specific mutagenesis, we demonstrate the central role of a conserved tyrosine within the chromophore binding pocket in the forward (Pr → Pfr) photoconversion of phytochromes. Taking GAF1 of the knotless phytochrome All2699g1 from Nostoc as representative member of phytochromes, it was found that the mutations have no influence on the early (<30 ps) dynamics associated with conformational changes of the chromophore in the excited state. Conversely, they drastically impact the extended protein-controlled excited state decay (>100 ps). Thus, the steric demand, position and H-bonding capabilities of the identified tyrosine control the chromophore photoisomerization while leaving the excited state chromophore dynamics unaffected. In effect, this residue operates as an isomerization-steric-gate that tunes the excited state lifetime and the photoreaction efficiency by modulating the available space of the chromophore and by stabilizing the primary intermediate Lumi-R. Understanding the role of such a conserved structural element sheds light on a key aspect of phytochrome functionality and provides a basis for rational design of optimized photoreceptors for biotechnological applications.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Lisa Köhler
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Philipp D Engel
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chen Song
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany; Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, 33620 Tampa, United States of America.
| |
Collapse
|
10
|
Kurttila M, Rumfeldt J, Takala H, Ihalainen JA. The interconnecting hairpin extension "arm": An essential allosteric element of phytochrome activity. Structure 2023; 31:1100-1108.e4. [PMID: 37392739 DOI: 10.1016/j.str.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
In red-light sensing phytochromes, isomerization of the bilin chromophore triggers structural and dynamic changes across multiple domains, ultimately leading to control of the output module (OPM) activity. In between, a hairpin structure, "arm", extends from an interconnecting domain to the chromophore region. Here, by removing this protein segment in a bacteriophytochrome from Deinococcus radiodurans (DrBphP), we show that the arm is crucial for signal transduction. Crystallographic, spectroscopic, and biochemical data indicate that this variant maintains the properties of DrBphP in the resting state. Spectroscopic data also reveal that the armless systems maintain the ability to respond to light. However, there is no subsequent regulation of OPM activity without the arms. Thermal denaturation reveals that the arms stabilize the DrBphP structure. Our results underline the importance of the structurally flexible interconnecting hairpin extensions and describe their central role in the allosteric coupling of phytochromes.
Collapse
Affiliation(s)
- Moona Kurttila
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland
| | - Jessica Rumfeldt
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland
| | - Heikki Takala
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland.
| | - Janne A Ihalainen
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland.
| |
Collapse
|
11
|
Hildebrandt P. Vibrational Spectroscopy of Phytochromes. Biomolecules 2023; 13:1007. [PMID: 37371587 DOI: 10.3390/biom13061007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochromes are biological photoswitches that translate light into physiological functions. Spectroscopic techniques are essential tools for molecular research into these photoreceptors. This review is directed at summarizing how resonance Raman and IR spectroscopy contributed to an understanding of the structure, dynamics, and reaction mechanism of phytochromes, outlining the substantial experimental and theoretical challenges and describing the strategies to master them. It is shown that the potential of the various vibrational spectroscopic techniques can be most efficiently exploited using integral approaches via a combination of theoretical methods as well as other experimental techniques.
Collapse
Affiliation(s)
- Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
12
|
Chenchiliyan M, Kübel J, Ooi SA, Salvadori G, Mennucci B, Westenhoff S, Maj M. Ground-state heterogeneity and vibrational energy redistribution in bacterial phytochrome observed with femtosecond 2D IR spectroscopy. J Chem Phys 2023; 158:085103. [PMID: 36859103 DOI: 10.1063/5.0135268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Phytochromes belong to a group of photoreceptor proteins containing a covalently bound biliverdin chromophore that inter-converts between two isomeric forms upon photoexcitation. The existence and stability of the photocycle products are largely determined by the protein sequence and the presence of conserved hydrogen-bonding interactions in the vicinity of the chromophore. The vibrational signatures of biliverdin, however, are often weak and obscured under more intense protein bands, limiting spectroscopic studies of its non-transient signals. In this study, we apply isotope-labeling techniques to isolate the vibrational bands from the protein-bound chromophore of the bacterial phytochrome from Deinococcus radiodurans. We elucidate the structure and ultrafast dynamics of the chromophore with 2D infra-red (IR) spectroscopy and molecular dynamics simulations. The carbonyl stretch vibrations of the pyrrole rings show the heterogeneous distribution of hydrogen-bonding structures, which exhibit distinct ultrafast relaxation dynamics. Moreover, we resolve a previously undetected 1678 cm-1 band that is strongly coupled to the A- and D-ring of biliverdin and demonstrate the presence of complex vibrational redistribution pathways between the biliverdin modes with relaxation-assisted measurements of 2D IR cross peaks. In summary, we expect 2D IR spectroscopy to be useful in explaining how point mutations in the protein sequence affect the hydrogen-bonding structure around the chromophore and consequently its ability to photoisomerize to the light-activated states.
Collapse
Affiliation(s)
- Manoop Chenchiliyan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
13
|
Yang Y, Stensitzki T, Lang C, Hughes J, Mroginski MA, Heyne K. Ultrafast protein response in the Pfr state of Cph1 phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:919-930. [PMID: 36653574 DOI: 10.1007/s43630-023-00362-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state. Cph1 phytochrome shows a photoisomerization of its phycocyanobilin (PCB) chromophore in the Pfr state with a time constant of 0.7 ps. The dynamics of the PCB chromophore has been described, but whether or not the apoprotein exhibits an ultrafast response too, is not known. Here, we compare the photoreaction of 13C/15N labeled apoprotein with unlabeled apoprotein to unravel ultrafast apoprotein dynamics in Cph1. In the spectral range from 1750 to 1620 cm-1 we assigned several signals due to ultrafast apoprotein dynamics. A bleaching signal at 1724 cm-1 is tentatively assigned to deprotonation of a carboxylic acid, probably Asp207, and signals around 1670 cm-1 are assigned to amide I vibrations of the capping helix close to the chromophore. These signals remain after photoisomerization. The apoprotein dynamics appear upon photoexcitation or concomitant with chromophore isomerization. Thus, apoprotein dynamics occur prior to and after photoisomerization on an ultrafast time-scale. We discuss the origin of the ultrafast apoprotein response with the 'Coulomb hammer' mechanism, i.e. an impulsive change of electric field and Coulombic force around the chromophore upon excitation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Maria Andrea Mroginski
- Institut Für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Karsten Heyne
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
14
|
Sadeghi M, Balke J, Rafaluk-Mohr T, Alexiev U. Long-Distance Protonation-Conformation Coupling in Phytochrome Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238395. [PMID: 36500486 PMCID: PMC9737838 DOI: 10.3390/molecules27238395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Phytochromes are biological red/far-red light sensors found in many organisms. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY, PGP) and the C-terminal transmitter (output) module. We recently showed a direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains of the prototypical phytochrome Cph1 PGP. These results suggested that the transient phycocyanobilin (PCB) chromophore deprotonation is closely associated with a higher protein mobility both in proximal and distal protein sites, implying a causal relationship that might be important for the global large-scale protein rearrangements. Here, we investigate the prototypical biliverdin (BV)-binding phytochrome Agp1. The structural changes at various positions in Agp1 PGP were investigated as a function of pH using picosecond time-resolved fluorescence anisotropy and site-directed fluorescence labeling of cysteine variants of Agp1 PGP. We show that the direct correlation of chromophore deprotonation with pH-dependent conformational changes does not occur in Agp1. Together with the absence of long-range effects between the PHY domain and chromophore pKa, in contrast to the findings in Cph1, our results imply phytochrome species-specific correlations between transient chromophore deprotonation and intramolecular signal transduction.
Collapse
|
15
|
Protein control of photochemistry and transient intermediates in phytochromes. Nat Commun 2022; 13:6838. [PMID: 36369284 PMCID: PMC9652276 DOI: 10.1038/s41467-022-34640-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Phytochromes are ubiquitous photoreceptors responsible for sensing light in plants, fungi and bacteria. Their photoactivation is initiated by the photoisomerization of the embedded chromophore, triggering large conformational changes in the protein. Despite numerous experimental and computational studies, the role of chromophore-protein interactions in controlling the mechanism and timescale of the process remains elusive. Here, we combine nonadiabatic surface hopping trajectories and adiabatic molecular dynamics simulations to reveal the molecular details of such control for the Deinococcus radiodurans bacteriophytochrome. Our simulations reveal that chromophore photoisomerization proceeds through a hula-twist mechanism whose kinetics is mainly determined by the hydrogen bond of the chromophore with a close-by histidine. The resulting photoproduct relaxes to an early intermediate stabilized by a tyrosine, and finally evolves into a late intermediate, featuring a more disordered binding pocket and a weakening of the aspartate-to-arginine salt-bridge interaction, whose cleavage is essential to interconvert the phytochrome to the active state.
Collapse
|
16
|
Fang Y, Huang H, Lin K, Xu C, Gu FL, Lan Z. The impact of different geometrical restrictions on the nonadiabatic photoisomerization of biliverdin chromophores. Phys Chem Chem Phys 2022; 24:26190-26199. [PMID: 36278817 DOI: 10.1039/d2cp02941c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The photoisomerization mechanism of the chromophore of bacterial biliverdin (BV) phytochromes is explored via nonadiabatic dynamics simulation by using the on-the-fly trajectory surface-hopping method at the semi-empirical OM2/MRCI level. Particularly, the current study focuses on the influence of geometrical constrains on the nonadiabatic photoisomerization dynamics of the BV chromophore. Here a rather simplified approach is employed in the nonadiabatic dynamics to capture the features of geometrical constrains, which adds mechanical restrictions to the specific moieties of the BV chromophore. This simplified method provides a rather quick approach to examine the influence of geometrical restrictions on photoisomerization. As expected, different constrains bring distinctive influences on the photoisomerization mechanism of the BV chromophore, giving either strong or minor modification of both involved reaction channels and excited-state lifetimes after the constrains are added in different ring moieties. These observations not only contribute to the primary understanding of the role of the spatial restriction caused by biological environments in photoinduced dynamics of the BV chromophore, but also provide useful ideas for the artificial regulation of the photoisomerization reaction channels of phytochrome proteins.
Collapse
Affiliation(s)
- Yuan Fang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Haiyi Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
17
|
Kurttila M, Etzl S, Rumfeldt J, Takala H, Galler N, Winkler A, Ihalainen JA. The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension. Photochem Photobiol Sci 2022; 21:1881-1894. [PMID: 35984631 PMCID: PMC9630206 DOI: 10.1007/s43630-022-00265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
Abstract
Signal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stability of the hairpin extension. The hairpin, often referred as the PHY tongue, is one of the central structural elements for signal transduction. It extends from a distinct domain establishing close contacts with the chromophore binding site. If the coupling between these interactions is disrupted, the dynamic range of the enzymatic regulation is reduced. Our study highlights the complex conformational properties of the hairpin extension as a bidirectional link between the chromophore-binding site and the output module, as well as functional properties of diverse output modules.
Collapse
Affiliation(s)
- Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nadine Galler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
18
|
Vibrational couplings between protein and cofactor in bacterial phytochrome Agp1 revealed by 2D-IR spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2206400119. [PMID: 35905324 PMCID: PMC9351469 DOI: 10.1073/pnas.2206400119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phytochromes are ubiquitous photoreceptor proteins that undergo a significant refolding of secondary structure in response to initial photoisomerization of the chromophoric group. This process is important for the signal transduction through the protein and thus its regulatory function in different organisms. Here, we employ two-dimensional infrared absorption (2D-IR) spectroscopy, an ultrafast spectroscopic technique that is sensitive to vibrational couplings, to study the photoreaction of bacterial phytochrome Agp1. By calculating difference spectra with respect to the photoactivation, we are able to isolate sharp difference cross-peaks that report on local changes in vibrational couplings between different sites of the chromophore and the protein. These results indicate inter alia that a dipole coupling between the chromophore and the so-called tongue region plays a role in stabilizing the protein in the light-activated state.
Collapse
|
19
|
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1975-1989. [PMID: 35906527 DOI: 10.1007/s43630-022-00272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.
Collapse
|
20
|
Influence of the PHY domain on the ms-photoconversion dynamics of a knotless phytochrome. Photochem Photobiol Sci 2022; 21:1627-1636. [PMID: 35687310 DOI: 10.1007/s43630-022-00245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
The ability of some knotless phytochromes to photoconvert without the PHY domain allows evaluation of the distinct effect of the PHY domain on their photodynamics. Here, we compare the ms dynamics of the single GAF domain (g1) and the GAF-PHY (g1g2) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. While the spectral signatures and occurrence of the intermediates are mostly unchanged by the domain composition, the presence of the PHY domain slows down the early forward and reverse dynamics involving chromophore and protein binding pocket relaxation. We assign this effect to a more restricted binding pocket imprinted by the PHY domain. The photoproduct formation is also slowed down by the presence of the PHY domain but to a lesser extent than the early dynamics. This indicates a rate limiting step within the GAF and not the PHY domain. We further identify a pH dependence of the biphasic photoproduct formation hinting towards a pKa dependent tuning mechanism. Our findings add to the understanding of the role of the individual domains in the photocycle dynamics and provide a basis for engineering of phytochromes towards biotechnological applications.
Collapse
|
21
|
Morozov D, Modi V, Mironov V, Groenhof G. The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization. J Phys Chem Lett 2022; 13:4538-4542. [PMID: 35576453 PMCID: PMC9150100 DOI: 10.1021/acs.jpclett.2c00899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photoactivation of bacteriophytochrome involves a cis-trans photoisomerization of a biliverdin chromophore, but neither the precise sequence of events nor the direction of the isomerization is known. Here, we used nonadiabatic molecular dynamics simulations on the photosensory protein dimer to resolve the isomerization mechanism in atomic detail. In our simulations the photoisomerization of the D ring occurs in the counterclockwise direction. On a subpicosecond time scale, the photoexcited chromophore adopts a short-lived intermediate with a highly twisted configuration stabilized by an extended hydrogen-bonding network. Within tens of picoseconds, these hydrogen bonds break, allowing the chromophore to adopt a more planar configuration, which we assign to the early Lumi-R state. The isomerization process is completed via helix inversion of the biliverdin chromophore to form the late Lumi-R state. The mechanistic insights into the photoisomerization process are essential to understand how bacteriophytochrome has evolved to mediate photoactivation and to engineer this protein for new applications.
Collapse
Affiliation(s)
- Dmitry Morozov
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Vaibhav Modi
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Vladimir Mironov
- Department
of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Gerrit Groenhof
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
22
|
López MF, Dahl M, Escobar FV, Bonomi HR, Kraskov A, Michael N, Mroginski MA, Scheerer P, Hildebrandt P. Photoinduced reaction mechanisms in prototypical and bathy phytochromes. Phys Chem Chem Phys 2022; 24:11967-11978. [PMID: 35527718 DOI: 10.1039/d2cp00020b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochromes, found in plants, fungi, and bacteria, exploit light as a source of information to control physiological processes via photoswitching between two states of different physiological activity, i.e. a red-absorbing Pr and a far-red-absorbing Pfr state. Depending on the relative stability in the dark, bacterial phytochromes are divided into prototypical and bathy phytochromes, where the stable state is Pr and Pfr, respectively. In this work we studied representatives of these groups (prototypical Agp1 and bathy Agp2 from Agrobacterium fabrum) together with the bathy-like phytochrome XccBphP from Xanthomonas campestris by resonance Raman and IR difference spectroscopy. In all three phytochromes, the photoinduced conversions display the same mechanistic pattern as reflected by the chromophore structures in the various intermediate states. We also observed in each case the secondary structure transition of the tongue, which is presumably crucial for the function of phytochrome. The three phytochromes differ in details of the chromophore conformation in the various intermediates and the energetic barrier of their respective decay reactions. The specific protein environment in the chromophore pocket, which is most likely the origin for these small differences, also controls the proton transfer processes concomitant to the photoconversions. These proton translocations, which are tightly coupled to the structural transition of the tongue, presumably proceed via the same mechanism along the Pr → Pfr conversion whereas the reverse Pfr → Pr photoconversion includes different proton transfer pathways. Finally, classification of phytochromes in prototypical and bathy (or bathy-like) phytochromes is discussed in terms of molecular structure and mechanistic properties.
Collapse
Affiliation(s)
- María Fernández López
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Margarethe Dahl
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Francisco Velázquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Hernán Ruy Bonomi
- Leloir Institute Foundation, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
23
|
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat Chem 2022; 14:823-830. [PMID: 35577919 PMCID: PMC9252900 DOI: 10.1038/s41557-022-00944-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.
Collapse
|
24
|
Rydzewski J, Walczewska-Szewc K, Czach S, Nowak W, Kuczera K. Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome. J Phys Chem B 2022; 126:2647-2657. [PMID: 35357137 PMCID: PMC9014414 DOI: 10.1021/acs.jpcb.2c00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of phytochromes
to act as photoswitches in plants and
microorganisms depends on interactions between a bilin-like chromophore
and a host protein. The interconversion occurs between the spectrally
distinct red (Pr) and far-red (Pfr) conformers. This conformational
change is triggered by the photoisomerization of the chromophore D-ring
pyrrole. In this study, as a representative example of a phytochrome-bilin
system, we consider biliverdin IXα (BV) bound to bacteriophytochrome
(BphP) from Deinococcus radiodurans. In the absence
of light, we use an enhanced sampling molecular dynamics (MD) method
to overcome the photoisomerization energy barrier. We find that the
calculated free energy (FE) barriers between essential metastable
states agree with spectroscopic results. We show that the enhanced
dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale
conformational movements that propagate by two experimentally determined
signal transduction pathways. Most importantly, we describe how the
metastable states enable a thermal transition known as the dark reversion
between Pfr and Pr, through a previously unknown intermediate state
of Pfr. We present the heterogeneity of temperature-dependent Pfr
states at the atomistic level. This work paves a way toward understanding
the complete mechanism of the photoisomerization of a bilin-like chromophore
in phytochromes.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Krzysztof Kuczera
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
25
|
Cong Y, Zhai Y, Yang J, Grofe A, Gao J, Li H. Quantum vibration perturbation approach with polyatomic probe in simulating infrared spectra. Phys Chem Chem Phys 2021; 24:1174-1182. [PMID: 34932049 DOI: 10.1039/d1cp04490g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The quantitative prediction of vibrational spectra of chromophore molecules in solution is challenging and numerous methods have been developed. In this work, we present a quantum vibration perturbation (QVP) approach, which is a procedure that combines molecular quantum vibration and molecular dynamics with perturbation theory. In this framework, an initial Newtonian molecular dynamics simulation is performed, followed by a substitution process to embed molecular quantum vibrational wave functions into the trajectory. The instantaneous vibrational frequency shift at each time step is calculated using the Rayleigh-Schrödinger perturbation theory, where the perturbation operator is the difference in the vibrational potential between the reference chromophore and the perturbed chromophore in the environment. Semi-classical statistical mechanics is employed to obtain the spectral lineshape function. We validated our method using HCOOH·nH2O (n = 1-2) clusters and HCOOH aqueous solution as examples. The QVP method can be employed for rapid prediction of the vibrational spectrum of a specific mode in solution.
Collapse
Affiliation(s)
- Yang Cong
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Jitai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Adam Grofe
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN 55455, USA. .,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| |
Collapse
|
26
|
Kübel J, Westenhoff S, Maj M. Giving voice to the weak: Application of active noise reduction in transient infrared spectroscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Merga G, Lopez MF, Fischer P, Piwowarski P, Nogacz Ż, Kraskov A, Buhrke D, Escobar FV, Michael N, Siebert F, Scheerer P, Bartl F, Hildebrandt P. Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2. Phys Chem Chem Phys 2021; 23:18197-18205. [PMID: 34612283 DOI: 10.1039/d1cp02494a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.
Collapse
Affiliation(s)
- Galaan Merga
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstr. 42, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rumfeldt J, Kurttila M, Takala H, Ihalainen JA. The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome: a UV-vis absorption spectroscopy study. Photochem Photobiol Sci 2021; 20:1173-1181. [PMID: 34460093 DOI: 10.1007/s43630-021-00090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.
Collapse
Affiliation(s)
- Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
29
|
Böhm C, Todorović N, Balasso M, Gourinchas G, Winkler A. The PHY Domain Dimer Interface of Bacteriophytochromes Mediates Cross-talk between Photosensory Modules and Output Domains. J Mol Biol 2021; 433:167092. [PMID: 34116122 PMCID: PMC7615318 DOI: 10.1016/j.jmb.2021.167092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Protein dynamics play a major role for the catalytic function of enzymes, the interaction of protein complexes or signal integration in regulatory proteins. In the context of multi-domain proteins involved in light-regulation of enzymatic effectors, the central role of conformational dynamics is well established. Light activation of sensory modules is followed by long-range signal transduction to different effectors; rather than domino-style structural rearrangements, a complex interplay of functional elements is required to maintain functionality. One family of such sensor-effector systems are red-light-regulated phytochromes that control diguanylate cyclases involved in cyclic-dimeric-GMP formation. Based on structural and functional studies of one prototypic family member, the central role of the coiled-coil sensor-effector linker was established. Interestingly, subfamilies with different linker lengths feature strongly varying biochemical characteristics. The dynamic interplay of the domains involved, however, is presently not understood. Here we show that the PHY domain dimer interface plays an essential role in signal integration, and that a functional coupling with the coiled-coil linker element is crucial. Chimaeras of two biochemically different family members highlight the phytochrome-spanning helical spine as an essential structural element involved in light-dependent upregulation of enzymatic turnover. However, isolated structural elements can frequently not be assigned to individual characteristics, which further emphasises the importance of global conformational dynamics. Our results provide insights into the intricate processes at play during light signal integration and transduction in these photosensory systems and thus provide additional guidelines for a more directed design of novel sensor-effector combinations with potential applications as optogenetic tools.
Collapse
Affiliation(s)
- Cornelia Böhm
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Nikolina Todorović
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Marco Balasso
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
30
|
Kurttila M, Stucki-Buchli B, Rumfeldt J, Schroeder L, Häkkänen H, Liukkonen A, Takala H, Kottke T, Ihalainen JA. Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy. Phys Chem Chem Phys 2021; 23:5615-5628. [PMID: 33656023 DOI: 10.1039/d0cp06553f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in prime protein locations and running two-color step-scan FTIR spectroscopy on the Deinococcus radiodurans bacteriophytochrome, we track the signal propagation at three specific sites in the photosensory unit. We show that a structurally switchable hairpin extension, a so-called tongue region, responds to the photoconversion already in microseconds and finalizes its structural changes concomitant with the chromophore, in milliseconds. In contrast, kinetics from the other two label positions indicate that the site-specific changes deviate from the chromophore actions, even though the labels locate in the chromophore vicinity. Several other sites for labeling resulted in impaired photoswitching, low structural stability, or no changes in the difference spectrum, which provides additional information on the inner dynamics of the photosensory unit. Our work enlightens the multidimensionality of the structural changes of proteins under action. The study also shows that the signaling mechanism of phytochromes is accessible in a time-resolved and site-specific approach by azido probes and demonstrates challenges in using these labels.
Collapse
Affiliation(s)
- Moona Kurttila
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Brigitte Stucki-Buchli
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Jessica Rumfeldt
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Lea Schroeder
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Heikki Häkkänen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Alli Liukkonen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Heikki Takala
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Janne A Ihalainen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| |
Collapse
|
31
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
32
|
Krishnan-Schmieden M, Konold PE, Kennis JTM, Pandit A. The molecular pH-response mechanism of the plant light-stress sensor PsbS. Nat Commun 2021; 12:2291. [PMID: 33863895 PMCID: PMC8052336 DOI: 10.1038/s41467-021-22530-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Plants need to protect themselves from excess light, which causes photo-oxidative damage and lowers the efficiency of photosynthesis. Photosystem II subunit S (PsbS) is a pH sensor protein that plays a crucial role in plant photoprotection by detecting thylakoid lumen acidification in excess light conditions via two lumen-faced glutamates. However, how PsbS is activated under low-pH conditions is unknown. To reveal the molecular response of PsbS to low pH, here we perform an NMR, FTIR and 2DIR spectroscopic analysis of Physcomitrella patens PsbS and of the E176Q mutant in which an active glutamate has been replaced. The PsbS response mechanism at low pH involves the concerted action of repositioning of a short amphipathic helix containing E176 facing the lumen and folding of the luminal loop fragment adjacent to E71 to a 310-helix, providing clear evidence of a conformational pH switch. We propose that this concerted mechanism is a shared motif of proteins of the light-harvesting family that may control thylakoid inter-protein interactions driving photoregulatory responses.
Collapse
Affiliation(s)
| | - Patrick E Konold
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Anjali Pandit
- Dept. of Solid-State NMR, Leiden Inst. of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
33
|
Macaluso V, Salvadori G, Cupellini L, Mennucci B. The structural changes in the signaling mechanism of bacteriophytochromes in solution revealed by a multiscale computational investigation. Chem Sci 2021; 12:5555-5565. [PMID: 34168792 PMCID: PMC8179611 DOI: 10.1039/d1sc00186h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
Phytochromes are red-light sensing proteins, with important light-regulatory roles in different organisms, which are capturing an increasing interest in bioimaging and optogenetics. Upon absorption of light by the embedded bilin chromophore, they undergo structural changes that extend from the chromophore to the protein and finally drive the biological function. Up to now, the underlying mechanism still has to be characterized fully. Here we investigate the Pfr activated form of a bacterial phytochrome, by combining extensive molecular dynamics simulations with a polarizable QM/MM description of the spectroscopic properties, revealing a large structure relaxation in solution, compared to the crystal structure, both in the chromophore-binding pocket and in the overall structure of the phytochrome. Our results indicate that the final opening of the dimeric structure is preceded by an important internal reorganization of the phytochrome specific (PHY) domain involving a bend of the helical spine connecting the PHY domain with the chromophore-binding domain, opening the way to a new understanding of the activation pathway.
Collapse
Affiliation(s)
- Veronica Macaluso
- Department of Chemistry and Industrial Chemistry, University of Pisa 56124 Pisa Italy
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa 56124 Pisa Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa 56124 Pisa Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa 56124 Pisa Italy
| |
Collapse
|
34
|
Boden P, Di Martino-Fumo P, Niedner-Schatteburg G, Seidel W, Heinze K, Gerhards M. Transient FTIR spectroscopy after one- and two-colour excitation on a highly luminescent chromium(III) complex. Phys Chem Chem Phys 2021; 23:13808-13818. [PMID: 34139001 DOI: 10.1039/d1cp01077h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of photoactive transition metal complexes with Earth-abundant metals is a rapidly growing research field, where a deeper understanding of the underlying photophysical processes is of great importance. A multitude of potential applications in the fields of photosensitizing, optical sensing, photoluminescence and photoredox catalysis motivates demanding spectroscopic studies. We applied a series of high-level spectroscopic methods on the previously reported highly luminescent chromium(iii) complex [Cr(ddpd)2](BF4)3 (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine) possessing two near-IR emissive doublet states with microsecond lifetimes. Luminescence measurements were performed at temperatures down to about 10 K, showing a remarkable rise of the integrated emission intensity by more than a factor of three. The emissive doublet states were structurally characterized by transient FTIR spectroscopy at 290 K and 20 K, supplemented by ground state FTIR and Raman spectroscopy in combination with density functional theory. According to emission and step-scan FT-IR spectroscopy, the stronger luminescence at lower temperature arises from decreased non-radiative decay via energy transfer to CH vibrational overtones and increased radiative decay based on lowered symmetry. Pump/pump/probe (FTIR) and pump/dump/probe (FTIR) schemes were developed to modulate the excited doublet state populations at 290 and 20 K as a function of specific near-IR pump vs. dump wavelengths. The effect of the second near-IR pulse can be explained by combinations of excited state absorption, ground state absorption and stimulated emission. The successful establishment of these two-colour step-scan FTIR experiments is an important step towards profound studies on further transition metal complexes with energetically close-lying excited states in the near future.
Collapse
Affiliation(s)
- Pit Boden
- Department of Chemistry and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Patrick Di Martino-Fumo
- Department of Chemistry and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Wolfram Seidel
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Markus Gerhards
- Department of Chemistry and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
35
|
Klocke JL, Kottke T. A quantum cascade laser setup for studying irreversible photoreactions in H 2O with nanosecond resolution and microlitre consumption. Phys Chem Chem Phys 2020; 22:26459-26467. [PMID: 33185227 DOI: 10.1039/d0cp03164j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved infrared spectroscopy on irreversible reactions requires in general an exchange of sample for thousands of acquisitions leading to high sample consumption. Here, we present a setup employing a modern quantum cascade laser (QCL) as a probe light source to record time-resolved difference spectra of irreversible photoreactions in H2O. The combination of the focused QCL with a pressure-tolerant flow cell and a micrometre stage orthogonal to the flow allowed us to drastically reduce the sample consumption. We investigated the irreversible photoreduction of the cofactor flavin mononucleotide (FMN) in H2O, which is a common reaction taking place in biological photoreceptors. A broad time range from 20 nanoseconds to 1 second was accessible, because the approach minimized any signal drift by the flow. Kinetics were recorded at 46 selected wavenumbers consuming 12 microlitres for a complete dataset. The tuning range of 1490-1740 cm-1 included relevant carbonyl vibrations and the region of strong water absorption at around 1650 cm-1. A continuous dataset in the spectral dimension was generated by applying a fit with a sum of Lorentzians. Subsequent global analysis allowed us to resolve reference spectra and kinetics of the photoreaction proceeding from the triplet excited state via the intermediate flavin anion radical to the product, the fully reduced state of FMN. Accordingly, the neutral radical state is not populated in the disproportionation. The approach strongly facilitates the spectroscopic access to irreversible reactions of flavin-containing photoreceptors and photoenzymes with high time resolution and small sample consumption.
Collapse
Affiliation(s)
- Jessica L Klocke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | | |
Collapse
|
36
|
Xu QZ, Goett-Zink L, Gärtner W, Zhao KH, Kottke T. Tongue Refolding in the Knotless Cyanobacterial Phytochrome All2699. Biochemistry 2020; 59:2047-2054. [DOI: 10.1021/acs.biochem.0c00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qian-Zhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04109 Leipzig, Germany
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lukas Goett-Zink
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04109 Leipzig, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
37
|
Velazquez Escobar F, Kneip C, Michael N, Hildebrandt T, Tavraz N, Gärtner W, Hughes J, Friedrich T, Scheerer P, Mroginski MA, Hildebrandt P. The Lumi-R Intermediates of Prototypical Phytochromes. J Phys Chem B 2020; 124:4044-4055. [PMID: 32330037 DOI: 10.1021/acs.jpcb.0c01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are photoreceptors that upon light absorption initiate a physiological reaction cascade. The starting point is the photoisomerization of the tetrapyrrole cofactor in the parent Pr state, followed by thermal relaxation steps culminating in activation of the physiological signal. Here we have employed resonance Raman (RR) spectroscopy to study the chromophore structure in the primary photoproduct Lumi-R, trapped between 130 and 200 K. The investigations covered phytochromes from plants (phyA) and prokaryotes (Cph1, Agp1, CphB, and RpBphP2) including phytochromobilin (PΦB), phycocyanobilin (PCB), and biliverdin (BV). In PΦB- and PCB-binding phyA and Cph1, two Lumi-R states (Lumi-R1, Lumi-R2) were identified and discussed in terms of sequential and parallel reaction models. In Lumi-R1, the chromophore structural changes are restricted to the C-D methine bridge isomerization site but extended throughout the chromophore in Lumi-R2. Formation and decay kinetics as well as photochemical activity depend on the specific protein-chromophore interactions and thus account for the different distribution between Lumi-R1 and Lumi-R2 in the photostationary mixtures of the various PΦB(PCB)-binding phytochromes. For BV-binding bacteriophytochromes, only a single Lumi-R(BV) state was found. In this state, which is similar for Agp1, CphB, and RpBphP2, the chromophore structural changes comprise major torsions of the C-D methine bridge but also perturbations at the A-B methine bridge remote from the isomerization site. The different structures of the photoproducts in PΦB(PCB)-binding phytochromes and BV-binding bacteriophytochromes are attributed to the different disposition of ring D upon isomerization, which leads to distinct protein-chromophore interactions in the Lumi-R states of these two classes of phytochromes.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Christa Kneip
- Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Thomas Hildebrandt
- Universitätsklinikum Düsseldorf, Klinik für Neurologie, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Neslihan Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Universität Leipzig, Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Jon Hughes
- Plant Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
38
|
Nagano S, Guan K, Shenkutie SM, Feiler C, Weiss M, Kraskov A, Buhrke D, Hildebrandt P, Hughes J. Structural insights into photoactivation and signalling in plant phytochromes. NATURE PLANTS 2020; 6:581-588. [PMID: 32366982 DOI: 10.1038/s41477-020-0638-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/16/2020] [Indexed: 05/11/2023]
Abstract
Plant phytochromes are red/far-red photochromic photoreceptors that act as master regulators of development, controlling the expression of thousands of genes. Here, we describe the crystal structures of four plant phytochrome sensory modules, three at about 2 Å resolution or better, including the first of an A-type phytochrome. Together with extensive spectral data, these structures provide detailed insight into the structure and function of plant phytochromes. In the Pr state, the substitution of phycocyanobilin and phytochromobilin cofactors has no structural effect, nor does the amino-terminal extension play a significant functional role. Our data suggest that the chromophore propionates and especially the phytochrome-specific domain tongue act differently in plant and prokaryotic phytochromes. We find that the photoproduct in period-ARNT-single-minded (PAS)-cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA (GAF) bidomains might represent a novel intermediate between MetaRc and Pfr. We also discuss the possible role of a likely nuclear localization signal specific to and conserved in the phytochrome A lineage.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | - Kaoling Guan
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | | | - Christian Feiler
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Manfred Weiss
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Anastasia Kraskov
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - David Buhrke
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany.
| |
Collapse
|
39
|
Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, Kuznetsova V, Henry L, Panman M, Carrillo M, Kübel J, Nanekar R, Isaksson L, Nimmrich A, Cellini A, Morozov D, Maj M, Kurttila M, Bosman R, Nango E, Tanaka R, Tanaka T, Fangjia L, Iwata S, Owada S, Moffat K, Groenhof G, Stojković EA, Ihalainen JA, Schmidt M, Westenhoff S. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. eLife 2020; 9:53514. [PMID: 32228856 PMCID: PMC7164956 DOI: 10.7554/elife.53514] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/13/2020] [Indexed: 01/27/2023] Open
Abstract
Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light. Plants adapt to the availability of light throughout their lives because it regulates so many aspects of their growth and reproduction. To detect the level of light, plant cells use proteins called phytochromes, which are also found in some bacteria and fungi. Phytochrome proteins change shape when they are exposed to red light, and this change alters the behaviour of the cell. The red light is absorbed by a molecule known as chromophore, which is connected to a region of the phytochrome called the PHY-tongue. This region undergoes one of the key structural changes that occur when the phytochrome protein absorbs light, turning from a flat sheet into a helix. Claesson, Wahlgren, Takala et al. studied the structure of a bacterial phytochrome protein almost immediately after shining a very brief flash of red light using a laser. The experiments revealed that the structure of the protein begins to change within a trillionth of a second: specifically, the chromophore twists, which disrupts its attachment to the protein, freeing the protein to change shape. Claesson, Wahlgren, Takala et al. note that this structure is likely a very short-lived intermediate state, which however triggers more changes in the overall shape change of the protein. One feature of the rearrangement is the disappearance of a particular water molecule. This molecule can be found at the core of many different phytochrome structures and interacts with several parts of the chromophore and the phytochrome protein. It is unclear why the water molecule is lost, but given how quickly this happens after the red light is applied it is likely that this disappearance is an integral part of the reshaping process. Together these events disrupt the interactions between the chromophore and the PHY-tongue, enabling the PHY-tongue to change shape and alter the structure of the phytochrome protein. Understanding and controlling this process could allow scientists to alter growth patterns in plants, such as crops or weeds.
Collapse
Affiliation(s)
- Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Valentyna Kuznetsova
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Melissa Carrillo
- Department of Biology, Northeastern Illinois University, Chicago, United States
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rahul Nanekar
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dmitry Morozov
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Moona Kurttila
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Gerrit Groenhof
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, United States
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
41
|
Sadeghi M, Balke J, Schneider C, Nagano S, Stellmacher J, Lochnit G, Lang C, Weise C, Hughes J, Alexiev U. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Biochemistry 2020; 59:1051-1062. [PMID: 32069394 DOI: 10.1021/acs.biochem.9b00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium Synechocystis 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1. The chromophore deprotonates transiently during the Pr → Pfr photoconversion in association with extensive global structural changes required for signal transmission. Here, we performed equilibrium studies in the Pr state, involving pH titration of the linear tetrapyrrole chromophore in different Cph1 constructs, and measurement of pH-dependent structural changes at various positions in the protein using picosecond time-resolved fluorescence anisotropy. The fluorescent reporter group was attached at positions 371 (PHY domain), 305 (GAF domain), and 120 (PAS domain), as well as at sites in the PAS-GAF bidomain. We show direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains. Our results suggest that chromophore deprotonation is closely associated with a higher protein mobility (conformational space) both in proximal and in distal protein sites, implying a causal relationship that might be important for the global large protein arrangements and thus intramolecular signal transduction.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Jens Balke
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Constantin Schneider
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Soshichiro Nagano
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Johannes Stellmacher
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Günter Lochnit
- Justus-Liebig-Universität, Institut für Medizinische Biochemie, D-35390 Giessen, Germany
| | - Christina Lang
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Chris Weise
- Freie Universität Berlin, Institut für Chemie und Biochemie, D-14195 Berlin, Germany
| | - Jon Hughes
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| |
Collapse
|
42
|
Macaluso V, Cupellini L, Salvadori G, Lipparini F, Mennucci B. Elucidating the role of structural fluctuations, and intermolecular and vibronic interactions in the spectroscopic response of a bacteriophytochrome. Phys Chem Chem Phys 2020; 22:8585-8594. [DOI: 10.1039/d0cp00372g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular dynamics and a multiscale polarizable QM/MM strategy allow reproducing absorption, circular dichroism, and resonance Raman spectra of a bacteriophytochrome.
Collapse
Affiliation(s)
- Veronica Macaluso
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Filippo Lipparini
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- Pisa
- Italy
| |
Collapse
|
43
|
Kübel J, Chenchiliyan M, Ooi SA, Gustavsson E, Isaksson L, Kuznetsova V, Ihalainen JA, Westenhoff S, Maj M. Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome. Phys Chem Chem Phys 2020; 22:9195-9203. [DOI: 10.1039/c9cp06995j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infra-red spectroscopy advances our understanding of how photosensory proteins carry their function.
Collapse
Affiliation(s)
- Joachim Kübel
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Manoop Chenchiliyan
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Valentyna Kuznetsova
- Nanoscience Center
- Department of Biological and Environmental Science
- University of Jyväskylä
- Jyväskylä 40014
- Finland
| | - Janne A. Ihalainen
- Nanoscience Center
- Department of Biological and Environmental Science
- University of Jyväskylä
- Jyväskylä 40014
- Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Michał Maj
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg 40530
- Sweden
| |
Collapse
|
44
|
Gustavsson E, Isaksson L, Persson C, Mayzel M, Brath U, Vrhovac L, Ihalainen JA, Karlsson BG, Orekhov V, Westenhoff S. Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching. Biophys J 2019; 118:415-421. [PMID: 31839260 DOI: 10.1016/j.bpj.2019.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although the crystal structures of dark- and light-adapted states have been determined, the molecular mechanisms underlying photoactivation remain elusive. Here, we demonstrate that the conserved tongue region of the PHY domain of a 57-kDa photosensory module of Deinococcus radiodurans phytochrome changes from a structurally heterogeneous dark state to an ordered, light-activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phytochromes relies on careful modulation of structural heterogeneity of the PHY tongue.
Collapse
Affiliation(s)
- Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Maxim Mayzel
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - B Göran Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
45
|
Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol 2019; 57:72-83. [PMID: 30878713 PMCID: PMC6625962 DOI: 10.1016/j.sbi.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
46
|
MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc. Int J Mol Sci 2019; 20:ijms20153656. [PMID: 31357417 PMCID: PMC6696110 DOI: 10.3390/ijms20153656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes. Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699, showing a greater precision in the chromophore-protein interactions in the GAF1-2 construct. A 3D Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophore.
Collapse
|
47
|
QM/MM Benchmarking of Cyanobacteriochrome Slr1393g3 Absorption Spectra. Molecules 2019; 24:molecules24091720. [PMID: 31058803 PMCID: PMC6540152 DOI: 10.3390/molecules24091720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that are promising candidates for biotechnological applications. Computational studies can contribute to an understanding at a molecular level of their wide spectral tuning and diversity. In this contribution, we benchmark methods to model a 110 nm shift in the UV/Vis absorption spectrum from a red- to a green-absorbing form of the cyanobacteriochrome Slr1393g3. Based on an assessment of semiempirical methods to describe the chromophore geometries of both forms in vacuo, we find that DFTB2+D leads to structures that are the closest to the reference method. The benchmark of the excited state calculations is based on snapshots from quantum mechanics/molecular mechanics molecular dynamics simulations. In our case, the methods RI-ADC(2) and sTD-DFT based on CAM-B3LYP ground state calculations perform the best, whereas no functional can be recommended to simulate the absorption spectra of both forms with time-dependent density functional theory. Furthermore, the difference in absorption for the lowest energy absorption maxima of both forms can already be modelled with optimized structures, but sampling is required to improve the shape of the absorption bands of both forms, in particular for the second band. This benchmark study can guide further computational studies, as it assesses essential components of a protocol to model the spectral tuning of both cyanobacteriochromes and the related phytochromes.
Collapse
|
48
|
Rumfeldt JA, Takala H, Liukkonen A, Ihalainen JA. UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes. Photochem Photobiol 2019; 95:969-979. [DOI: 10.1111/php.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica A. Rumfeldt
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| | - Heikki Takala
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
- Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| | - Alli Liukkonen
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| | - Janne A. Ihalainen
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
49
|
Modi V, Donnini S, Groenhof G, Morozov D. Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome. J Phys Chem B 2019; 123:2325-2334. [PMID: 30762368 PMCID: PMC6727380 DOI: 10.1021/acs.jpcb.9b01117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The
tetrapyrrole chromophore biliverdin IXα (BV) in the bacteriophytochrome
from Deinococcus radiodurans (DrBphP)
is usually assumed to be fully protonated, but this assumption has
not been systematically validated by experiments or extensive computations.
Here, we use force field molecular dynamics simulations and quantum
mechanics/molecular mechanics calculations with density functional
theory and XMCQDPT2 methods to investigate the effect of the five
most probable protonation forms of BV on structural stability, binding
pocket interactions, and absorption spectra in the two photochromic
states of DrBphP. While agreement with X-ray structural data and measured
UV/vis spectra suggest that in both states the protonated form of
the chromophore dominates, we also find that a minor population with
a deprotonated D-ring could contribute to the red-shifted tail in
the absorption spectra.
Collapse
|
50
|
Gourinchas G, Vide U, Winkler A. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. J Biol Chem 2019; 294:4498-4510. [PMID: 30683693 PMCID: PMC6433076 DOI: 10.1074/jbc.ra118.007260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
Photoreceptors enable the integration of ambient light stimuli to trigger lifestyle adaptations via modulation of central metabolite levels involved in diverse regulatory processes. Red light–sensing bacteriophytochromes are attractive targets for the development of innovative optogenetic tools because of their natural modularity of coupling with diverse functionalities and the natural availability of the light-absorbing biliverdin chromophore in animal tissues. However, a rational design of such tools is complicated by the poor understanding of molecular mechanisms of light signal transduction over long distances—from the site of photon absorption to the active site of downstream enzymatic effectors. Here we show how swapping structural elements between two bacteriophytochrome homologs provides additional insight into light signal integration and effector regulation, involving a fine-tuned interplay of important structural elements of the sensor, as well as the sensor–effector linker. Facilitated by the availability of structural information of inhibited and activated full-length structures of one of the two homologs (Idiomarina species A28L phytochrome-activated diguanylyl cyclase (IsPadC)) and characteristic differences in photoresponses of the two homologs, we identify an important cross-talk between the N-terminal segment, containing the covalent attachment site of the chromophore, and the PHY-tongue region. Moreover, we highlight how these elements influence the dynamic range of photoactivation and how activation can be improved to light/dark ratios of ∼800-fold by reducing basal dark-state activities at the same time as increasing conversion in the light state. This will enable future optimization of optogenetic tools aiming at a direct allosteric regulation of enzymatic effectors.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Uršula Vide
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Andreas Winkler
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and .,BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|