1
|
Ji Y, Sun F, Zhu G, Han B, Zhao Y, Yang D, Deng X, Chen L, Zheng Y, Wei C, Wang D. Post-Synthesis of Donor-Acceptor Stenhouse Adducts into Photochromic Microparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30103-30114. [PMID: 40353595 DOI: 10.1021/acsami.5c04468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Encapsulating photoresponsive molecules into polymers is an effective strategy to achieve fast and efficient photochromism in the solid state. Water is often used as the dispersion phase for the formation of polymeric microparticles; however, it reacts with the photoresponsive molecules and induces irreversible structural degradation. In this work, we report a post-synthesis strategy to fabricate photochromic microparticles, where donor-acceptor Stenhouse adducts (DASAs) are applied as the photoresponsive molecules. Unlike direct loading, hydrostable precursors are loaded during the formation of polymeric microparticles, followed by synthesizing the DASAs inside the microparticles in a water-free environment. The photochromic microparticles are reversibly switched between colored and colorless states under the control of visible light irradiation and heat, while also exhibiting improved stability under hygrothermal conditions. Further applications of the photochromic microparticles as smart additives are demonstrated for controlling color-switching of bulk materials and rewritable photopatterning on surfaces. The post-synthesis approach is envisioned as a general strategy to fabricate microparticles with water-sensitive functional molecules.
Collapse
Affiliation(s)
- Yinghao Ji
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fanxi Sun
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gaolu Zhu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bo Han
- Chengdu University of Traditional Chinese Medicine, State Key Laboratory Southwestern Chinese Medicine Resources, Chengdu 611137, P. R. China
| | - Yuxuan Zhao
- The Experimental High School Attached to UESTC, Chengdu 611730, China
| | - Daisheng Yang
- The Experimental High School Attached to UESTC, Chengdu 611730, China
| | - Xu Deng
- Institute of Fundamental anFrontier Science, University of Electronic Science anTechnology of China, Chengdu 610054, China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yonghao Zheng
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chen Wei
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dongsheng Wang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
2
|
Reza MM, Reza‐González FA, Bravo‐Romero M, Orozco‐Barrera D, Jara‐Cortés J, Esturau‐Escofet N, Peon J. Excited-State Dynamics and Electron-Withdrawing Group Effects in Two-Photon Switchable Donor-Acceptor Stenhouse Adducts. Chemistry 2025; 31:e202500046. [PMID: 40025662 PMCID: PMC12015400 DOI: 10.1002/chem.202500046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Non-linear optical reactive systems have important applications which require highly localized effects. Recently, we reported for the first time that donor-acceptor Stenhouse adducts (DASAs) have important two-photon switching properties. Here, we report on the nature of the non-linear excitation event and the resulting dynamics through femtosecond-resolved measurements. From these experiments we directly show the central role of specific higher singlet states in the initial two-photon transition step. To test the generality of the involvement of such higher states, we synthesized new two-photon switchable DASAs with varying electron accepting groups. Specifically, we detected a rapid decaying emission from the initially formed higher singlets (Sn, n>1) which is followed by the indirect formation of the S1 state from Sn→S1 internal conversion which in turn leads to the switching reaction. Importantly, the new DASAs show up to a factor of three larger two-photon cross sections in comparison with our previously reported molecules. Computational results are consistent with the central role of specific higher singlets in the non-linear switching of DASAs at approximately 3 eV above the electronic ground state. The present results identify the key variables with respect to the non-linear photo-switching reactions of these compounds.
Collapse
Affiliation(s)
- Mariana M. Reza
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
- Current address: Chemistry DepartmentMassachusetts Institute of Technology77 Massachusetts Ave.CambridgeMA02139USA
| | | | - Melissa Bravo‐Romero
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Diego Orozco‐Barrera
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Jesús Jara‐Cortés
- Unidad Académica de Ciencias Básicas e IngenieríasUniversidad Autónoma de NayaritTepic63155México
| | | | - Jorge Peon
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
3
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025; 54:3681-3735. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
4
|
Zhang Q, He Y. Microcapsule-Containing Self-Reporting Materials Based on Donor-acceptor Stenhouse Adducts. ACS Macro Lett 2025; 14:114-119. [PMID: 39791963 DOI: 10.1021/acsmacrolett.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The microcapsule-containing self-reporting system has attracted attention for its excellent characteristics in visualizing microdamage. In this study, we developed self-reporting materials based on the formation of donor-acceptor Stenhouse adducts (DASA) from microcapsules containing Meldrum's acid furfural conjugate (MAFC). Under mechanical force, MAFC is released from broken microcapsules and forms highly colored DASA with secondary amines in the matrix to indicate the small cracks or deformations. Utilizing the photosensitive properties of DASA, highlighted regions fade under visible light, enabling indicator turn-off. The experimental results indicate that this convenient strategy can sensitively detect mechanical damage and optically control the indicator turn-off. These characteristics provide a means of distinguishing between different batches of damage and reusing self-reporting materials. Furthermore, this strategy exhibits compatibility with multiple types of matrix materials and can be extended to more complex systems by introducing a revealing agent.
Collapse
Affiliation(s)
- Qinguan Zhang
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Yaning He
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wang W, Dai J, Zhang Z, Zhang J, Tian H. Vintages for New Fashion: Red-Shifted Photoswitching via the Triplet-Photoreaction Channel with Charge-Transfer Complex Sensitizers. J Am Chem Soc 2025; 147:5486-5494. [PMID: 39879537 DOI: 10.1021/jacs.4c18682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Triplet-sensitization has been proven invaluable for creating photoswitches operated over a full visible-light spectrum. While designing efficient triplet-sensitizers is crucial for establishing visible-light photochromism, it remains an appealing yet challenging task. In this work, we propose a versatile strategy to fabricate triplet-sensitizers with intermolecular charge-transfer complexes (CTCs). Through fine-tuning interactions between various donor and acceptor units, a series of CTC sensitizers were prepared with intensified visible-light absorption and a distinctive narrow ΔEST feature. By virtue of this, a bidirectional visible-light photochromism (475 nm/605 nm) was achieved via integrating CTC sensitizers with classic diarylethene (DAE) photoswitches in various substrates upon triplet photoreaction pathways. Proof-of-concept applications, such as photoresponsive printing and mechanic-facilitated inkpad, were subsequently presented. The flexible accessibility and tunability of CTC sensitizers facilitate both generalized and customized production of photoresponsive systems that operate within the visible-light region.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Reyes C, Karr A, Ramsperger CA, K ATG, Lee HJ, Picazo E. Compartmentalizing Donor-Acceptor Stenhouse Adducts for Structure-Property Relationship Analysis. J Am Chem Soc 2025; 147:10-26. [PMID: 39729546 PMCID: PMC11726581 DOI: 10.1021/jacs.4c14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties. This Perspective focuses on the electronic and steric contributions at each compartment and how they influence photophysical properties through the adjustment of the isomerization energetic landscape. An emphasis on current synthetic strategies and their limitations highlights opportunities for DASA architecture, and thus photophysical property expansion.
Collapse
Affiliation(s)
- Cesar
A. Reyes
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Alexander Karr
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Chloe A. Ramsperger
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - A. Talim G. K
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Hye Joon Lee
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Elias Picazo
- Department
of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Dellai A, Krismer I, Prampolini G, Champagne B, Ramos TN, Castet F. Solvent effects on the second harmonic responses of donor-acceptor Stenhouse adducts: from implicit to hybrid solvation models. Phys Chem Chem Phys 2025; 27:672-686. [PMID: 39665533 DOI: 10.1039/d4cp03674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The effect of conformational dynamics and solvent interactions on the second-order nonlinear optical (NLO) responses of the open and closed forms of a donor-acceptor Stenhouse adduct (DASA) are investigated by a mixed quantum/classical computational approach, which couples molecular dynamics (MD) simulations and time-dependent density functional theory (TD-DFT) calculations. The latter are further combined with various solvation schemes, including polarizable continuum models, hybrid QM/MM approaches using either non polarizable or polarizable electrostatic embedding, and QM/QM' schemes with explicit treatment of a few molecules of the first solvation shell. The performances of the different solvation models are discussed in the context of comparisons with experimental data obtained from hyper-Rayleigh scattering measurements.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Isabella Krismer
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | | | - Benoît Champagne
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Tárcius N Ramos
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
8
|
Li Z, Wang Z, Chen X, Bao J, Zhang Y, Wang Z, Zhang L, Xiao J, Lan R, Yang H. Reconfigurable Visible Light-Driven Liquid Crystalline Network Showing Off-Equilibrium Motions Enabled by Mesogen-Grafted Donor-Acceptor Stenhouse Adducts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411530. [PMID: 39428948 DOI: 10.1002/adma.202411530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Liquid crystalline network (LCN)-based soft actuators have opened up great opportunities to fabricate emerging and intriguing smart materials, serving as potential building blocks for intelligent soft robotics. Endowing LCN actuators with complex responsive behaviors to enhance their intelligence is both challenging and highly demanded. Herein, Donor-Acceptor Stenhouse Adducts (DASAs) molecules with rod-like mesogen and the polymerizable group are judiciously designed and synthesized, which is strong-colored at linear form and de-coloration at cyclic form after visible light. In the colored state, the DASA presents a striking photothermal effect that is capable of driving the motions of LCN film. Upon visible light irradiation, the DASA becomes colorless, making the diminishing photothermal effect. The light-gated switching of the photothermal effect renders the LCN films to be reconfigurable and perform off-equilibrium motions. The varying glass transition temperature of LCN matrix endowing tunable isomerization rates of DASAs and the equilibrium balance of photo- and thermal-isomerization at different temperatures in LCN-P-DASA film mainly guiding the off-equilibrium or stable motions, providing high adjustability of the novel visible light-driven LCN actuators. The multiply modulated LCN-P-DASA film holds great potential in constructing complex visible light-driven soft actuators based on the synergetic effect and interactions of photochemical and photothermal effects.
Collapse
Affiliation(s)
- Zhaozhong Li
- Beijing Advanced Innovation Center for Materials Genome, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xinyu Chen
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuhan Zhang
- Beijing Advanced Innovation Center for Materials Genome, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zichen Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Jiumei Xiao
- Beijing Advanced Innovation Center for Materials Genome, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Ruochen Lan
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
9
|
Kulinich AV, Ishchenko AA. Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase. Chem Rev 2024; 124:12086-12144. [PMID: 39423353 DOI: 10.1021/acs.chemrev.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D-π-A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| |
Collapse
|
10
|
Sun F, Gao A, Yan B, Zhang J, Wang X, Zhang H, Dai D, Zheng Y, Deng X, Wei C, Wang D. Self-adaptive photochromism. SCIENCE ADVANCES 2024; 10:eads2217. [PMID: 39504369 PMCID: PMC11540023 DOI: 10.1126/sciadv.ads2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Organisms with active camouflage ability exhibit changeable appearance with the switching of environments. However, manmade active camouflage systems heavily rely on integrating electronic devices, which encounters problems including a complex structure, poor usability, and high cost . In the current work, we report active camouflage as an intrinsic function of materials by proposing self-adaptive photochromism (SAP). The SAP materials were fabricated using donor-acceptor Stenhouse adducts (DASAs) as the negative photochromic phases and organic dyes as the fixed phases (nonphotochromic). Incident light with a specific wavelength induces linear-to-cyclic isomerization of DASAs, which generates an absorption gap at the wavelength and accordingly switches the color. The SAP materials are in the primary black state under dark and spontaneously switch to another color upon triggering by transmitted and reflected light in the background. SAP films and coatings were fabricated by incorporating polycaprolactone and are applicable to a wide variety of surfaces.
Collapse
Affiliation(s)
- Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ang Gao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Boyun Yan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiangru Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hanjun Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chen Wei
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
11
|
Yao J, Yang C, Wen R, Liu T, Ding L, Yao Z, Fang Y. Integrated Sensing Platform Validated for the Efficient and On-Site Screening of Amine-Containing Illicit Drugs. ACS Sens 2024; 9:4608-4616. [PMID: 39116022 DOI: 10.1021/acssensors.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Efficient and reliable technologies for the on-site detection of illicit drugs are important in drug-facilitated crime investigations. However, the development of such technologies is challenging. Based on the synthetic optimization, introducing a boron ester functional group to the two furanic indicators endows the stimulus-responsive properties synergistically. The ring-opening reaction of the indicators in the presence of amine-containing illicit drugs generated well-known donor-acceptor Stenhouse adducts, accompanied by strong color changes. A small-size and lightweight laminated sensor was integrated based on the outstanding ratiometric variations of the two active furanic indicators. A prototype platform was fabricated equipped with a circuit control, a mini pump, and a signal processing system. A user-friendly detection and efficient screening of amine-containing illicit drugs, including phenethylamines, amphetamines, cathinones, and tryptamines in the liquid states were conducted. The ratiometric response of the sensor was linear in the concentration range of 2.1-10.6 μg·mL-1 for methamphetamine·HCl and methcathinone ·HCl. The detection limits for the two illicit drugs at the sublevel (ng·mL-1) were found to be 8.4 and 9.0 ng·mL-1, respectively. Double-blind field tests and different illicit drugs were evaluated with good screening capability. Successful trials showed the potential applications of the developed prototype platform for efficient and on-site analytical determination.
Collapse
Affiliation(s)
- Jiashuang Yao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chun Yang
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China
| | - Ruijuan Wen
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhen Yao
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
12
|
Guillen Campos J, Tobin C, Sandlass S, Park M, Wu Y, Gordon M, Read de Alaniz J. Photoactivation of Millimeters Thick Liquid Crystal Elastomers with Broadband Visible Light Using Donor-Acceptor Stenhouse Adducts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404932. [PMID: 38899577 DOI: 10.1002/adma.202404932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Light-responsive liquid crystal elastomers (LCEs) are stimuli-responsive materials that facilitate the conversion of light energy into a mechanical response. In this work, a novel polysiloxane-based LCE with donor-acceptor Stenhouse adduct (DASA) side-chains is synthesized using a late-stage functionalization strategy. It is demonstrated that this approach does not compromise the molecular alignment observed in the traditional Finkelmann method. This easy, single-batch process provides a robust platform to access well-aligned, light-responsive LCE films with thickness ranging from 400 µm to a 14-layer stack that is 5 mm thick. Upon irradiation with low-intensity broadband visible light (100-200 mW cm-2), these systems undergo 2D planar actuation and complete bleaching. Conversely, exposure to higher-intensity visible light induces bending followed by contraction (300 mW cm-2). These processes are repeatable over several cycles. Finally, it is demonstrated how light intensity and the resulting heat generation influences the photothermal stationary state equilibrium of DASA, thereby controlling its photoresponsive properties. This work establishes the groundwork for advancement of LCE-based actuators beyond thin film and UV-light reliant systems.
Collapse
Affiliation(s)
- Jesus Guillen Campos
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Cassidy Tobin
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Minwook Park
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yuhang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Michael Gordon
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
13
|
Hung KL, Cheung LH, Ren Y, Chau MH, Lam YY, Kajitani T, Leung FKC. Supramolecular assemblies of amphiphilic donor-acceptor Stenhouse adducts as macroscopic soft scaffolds. Beilstein J Org Chem 2024; 20:1590-1603. [PMID: 39076292 PMCID: PMC11285068 DOI: 10.3762/bjoc.20.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
In the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor-acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety. The excellent photoswitchability in organic medium and the photoresponsiveness in aqueous medium, driven by visible light, were investigated by UV-vis absorption spectroscopy. The assembled supramolecular nanostructures were confirmed by electron microscopy, while the supramolecular packing was revealed by X-ray diffraction analysis. Upon visible-light irradiation, significant transformations of the DA geometry enabled transformations of the supramolecular assemblies on a microscopic scale, subsequently disassembling macroscopic soft scaffolds of DAs. The current work shows promising use for the fabrication of visible-light-controlled macroscopic scaffolds, offering the next generation of biomedical materials with visible-light-controlled microenvironments and future soft-robotic systems.
Collapse
Affiliation(s)
- Ka-Lung Hung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yikun Ren
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ming-Hin Chau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yan-Yi Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Franco King-Chi Leung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
14
|
Zeußel L, Chowdhary S, Wu H, Kumar V, Singh S. Sustainable Harnessing of Waste Polycarbonate for Synthesizing Activated Furans to Generate Stenhouse Adducts on Polymer Surface. Chem Asian J 2024; 19:e202400369. [PMID: 38595045 DOI: 10.1002/asia.202400369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Plastics are versatile materials, offering lightweight, durable, and affordable solutions across various industries. However, their non-degradable nature poses challenges by end of their life. This study presented an innovative carbonyl extraction method to utilize waste poly(bisphenol A carbonate) (PC) as reaction precursor to synthesis of activated furan as precursor for photoswitchable Stenhouse adducts. This innovative chemical strategy not only generated N,N'-functionalized barbiturates but also provided an eco-friendly and cost-effective alternative to traditional synthesis methods. The method presented hereby not only promotes sustainability by repurposing waste polycarbonate as carbonyl equivalent under green conditions but also yielded reusable bisphenol A (BPA). Furthermore, the derived activated furans exhibited their functionality by forming colored donor-acceptor Stenhouse adducts (DASAs) on aminated polymer surfaces. This work demonstrated a transition from a linear plastics economy toward a circular one, highlighting the potential of plastic waste as a resource for creating materials with improved properties.
Collapse
Affiliation(s)
- Lisa Zeußel
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693, Ilmenau, Germany
- Department of Nanobiosystem Technology, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof-Schmidt-Straße 26, 98693, Ilmenau, Germany
| | | | - Haocheng Wu
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693, Ilmenau, Germany
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Sukhdeep Singh
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693, Ilmenau, Germany
| |
Collapse
|
15
|
Reyes CA, Lee HJ, Karanovic C, Picazo E. Development and characterization of amino donor-acceptor Stenhouse adducts. Nat Commun 2024; 15:5533. [PMID: 38951197 PMCID: PMC11217284 DOI: 10.1038/s41467-024-49808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches spurring wide interest because of their dynamic photophysical properties, complex photoswitching mechanism, and diverse applications. Despite breakthroughs in modularity for the donor, acceptor, and triene compartments, the backbone heteroatom remains static due to synthetic challenges. We provide a predictive tool and sought-after strategy to vary the heteroatom, introduce amino DASA photoswitches, and analyze backbone heteroatom effects on photophysical properties. Amino DASA synthesis is enabled by aza-Piancatelli rearrangements on pyrrole substrates, imparting an aromaticity-breaking rearrangement that capitalizes on nitrogen's additional bonding orbital and the inductive properties of sulfonyl groups. Amino DASA structure is confirmed by single crystal X-ray diffraction, the photochromic properties are characterized, and the photoswitch isomerization is investigated. Overall, the discovered pyrrole rearrangement enables the study of the DASA backbone heteroatom compartment and furthers our insight into the structure-property relationship of this complex photoswitch.
Collapse
Affiliation(s)
- Cesar A Reyes
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Hye Joon Lee
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Connie Karanovic
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Elias Picazo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Philip AM, Krogh ME, Laursen BW. Robust Red-Absorbing Donor-Acceptor Stenhouse Adduct Photoswitches. Chemistry 2024; 30:e202400621. [PMID: 38536207 DOI: 10.1002/chem.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 04/25/2024]
Abstract
Donor-Acceptor Stenhouse Adduct (DASA), a class of push-pull negative photochrome, has received large interest lately owing to its versatile synthesis, modularity and excellent photoswitching in solutions. From a technological perspective, it is imperative for this class of photoswitches to work robustly in solid state, e. g. thin films. We feature a molecular framework for the optimized design of DASAs by introducing a new thioindoline donor (D3) and assessing its performance against known 2nd generation indoline-based donors. The systematic structure-function investigations suggest that to achieve robust reversible photoswitching, a ground state with low charge separation is desired. DASAs with stronger electron donors and a larger charge separation in the ground state result in a low population of the photothermalstationary state (PTSS) and reduced photostability. The DASA with thioindoline donor (D3A3) seems to be a special case among the donor series as it causes a red shift (ca. 15 nm), however with less polarization of the ground state and marginally better photostability as compared to the unsubstituted 2-methyl indoline (D1A3). We also emphasize the consideration of the key additional factors that can modulate the red-light photoswitching properties of DASA chromophores in polymer thin films, which might not be dominant in homogenous solution state.
Collapse
Affiliation(s)
- Abbey M Philip
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Marie E Krogh
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
17
|
Dellai A, Naim C, Cerezo J, Prampolini G, Castet F. Dynamic effects on the nonlinear optical properties of donor acceptor stenhouse adducts: insights from combined MD + QM simulations. Phys Chem Chem Phys 2024; 26:13639-13654. [PMID: 38511505 DOI: 10.1039/d4cp00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The second-order nonlinear optical (NLO) responses of a donor-acceptor stenhouse adduct (DASA) are investigated by using a computational approach combining molecular dynamics simulations and density functional theory (DFT) calculations. Specific force fields for the open and closed photoswitching forms are first parameterized and validated according to the Joyce protocol, in order to finely reproduce the geometrical features and potential energy surfaces of both isomers in chloroform solution. Then, DFT calculations are performed on structural snapshots extracted at regular time steps of the MD trajectories to address the influence of the thermalized conformational dynamics on the NLO responses related to hyper-Rayleigh scattering (HRS) experiments. We show that accounting for the structural dynamics largely enhances the HRS hyperpolarizability (βHRS) compared to DFT calculations considering solely equilibrium geometries, and greatly improves the agreement with experimental measurements. Furthermore, we show that the NLO responses of the NLO-active open form are correlated with the bond order alternation along the triene bridge connecting the donor and acceptor moieties, which is rationalized using simple essential state models.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
18
|
Fang L, Lin Z, Zhang Y, Ye B, Li J, Ran Q, Wang X, Yang M, Yuan Z, Lin X, Yu D, Chen X, Li Q. Robust, Ultrafast and Reversible Photoswitching in Bulk Polymers Enabled by Octupolar Molecule Design. Angew Chem Int Ed Engl 2024; 63:e202402349. [PMID: 38349340 DOI: 10.1002/anie.202402349] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Improving the photoswitching rate and robustness of photochromic molecules in bulk solids is paramount for practical applications but remains an on-going challenge. Here, we introduce an octupolar design paradigm to develop a new family of visible light organic photoswitches, namely multi-branched octupolar Stenhouse Adducts (MOPSAs) featuring a C3-symmetrical A3-(D-core) architecture with a dipolar donor-acceptor (D-A) photochrome in each branch. Our design couples multi-dimensional geometric and electronic effects of MOPSAs to enable robust ultrafast reversible photoswitching in bulk polymers. Specifically, the optimal MOPSA (4 wt %) in commercial polyurethane films accomplishes nearly 100 % discoloration in 6 s under visible light with ∼ 100 % thermal-recovery in 17.4 s at 60 °C, while the acquired kinetics constants are 3∼7 times that of dipolar DASA counterpart and 1∼2 orders of magnitude higher than those of reported DASAs in polymers. Importantly, the MOPSA-doped polymer films sustain 500 discoloration/recovery cycles with slow degradation, superior to the existing DASAs in polymers (≤30 cycles). We discover that multi-dipolar coupling in MOPSA enables enhanced polarization and electron delocalization, promoting the rate-determining thermal cyclization, while the branched and non-planar geometry of MOPSA induces large free volume to facilitate the isomerization. This design can be extended to develop spiropyran or azobenzene-based ultrafast photochromic films. The superior photoswitching performance of MOPSAs together with their high-yield and scalable synthesis and facile film processing inspires us to explore their versatile uses as smart inks or labels for time-temperature indicators, optical logic encryption and multi-levelled data encryption.
Collapse
Affiliation(s)
- Long Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziwei Lin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yang Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bin Ye
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jing Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Qishan Ran
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meijia Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhongke Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 515200, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xudong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 515200, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
19
|
Hashim PK, Sahu S, Takahashi K, Thazhathethil S, Nakamura T, Tamaoki N. Geometry-Induced Oligomerization of Fluorine-Substituted Phenylazothiazole Photoswitches. Chemistry 2024; 30:e202400047. [PMID: 38278760 DOI: 10.1002/chem.202400047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Photoswitches are molecules that can absorb light of specific wavelengths and undergo a reversible transformation between their trans and cis isomeric forms. In phenylazo photoswitches, it is common for the less stable cis (Z) isomer to convert back to the more stable trans (E) isomer either through photochemical or thermal means. In this research, we designed new derivatives of phenylazothiazole (PAT) photoswitches, PAT-Fn, which feature fluorine substituents on their phenyl component. These derivatives can reversibly isomerize under visible light exposure with the enrichment of E and Z isomers at photostationary state (PSS). Surprisingly, we observed an unconventional phenomenon when these PAT-Fn (n≧2) photoswitches were in their cis isomeric state in the absence of light. Instead of the anticipated transformation from cis to trans isomer, these compounds converted to an oligomeric compound. Our detailed experimental investigation and theoretical calculations, indicated the crucial role of fluorine substituents and the distinctive geometric arrangement of the cis isomer in driving the unexpected oligomerization process originating from the cis isomeric state.
Collapse
Affiliation(s)
- P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Saugata Sahu
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Kiyonori Takahashi
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Shakkeeb Thazhathethil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Takayoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
20
|
Taruno K, Ikariko I, Taniguchi T, Kim S, Fukaminato T. Internal Heavy-Atom Effect on Visible-Light-Induced Cyclization Reaction in Diarylethene-Perylenebisimide Dyads. J Phys Chem B 2024; 128:273-279. [PMID: 38118147 DOI: 10.1021/acs.jpcb.3c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
All-visible-light switchable diarylethene-perylenebisimide (DAE-PBI) dyads having bromine heavy atoms in the molecule were designed and synthesized. Very recently, we found a unique visible-light-induced cyclization reaction in a DAE-PBI dyad. The dyad exhibited reversible cyclization and cycloreversion reactions upon alternate irradiation with green (500-550 nm) and red (>600 nm) light. From the experimental results, it was suggested that the triplet state of DAE unit was generated via multiplicity conversion based on intramolecular energy transfer from the singlet excited state of PBI unit and that the cyclization reaction of DAE unit proceeded from the triplet state. In addition, it was revealed that the reactivity remarkably increased in a solvent containing heavy atoms such as carbon tetrachloride and iodoethane (i.e., external heavy-atom effect). Based on such results, in this study, we attempted to design and synthesize novel DAE-PBI dyads introducing bromine heavy atoms at different positions in the molecule. The synthesized dyads exhibited higher quantum yields of photocyclization reaction under visible-light irradiation even in a heavy-atom-free solvent compared to the previous dyad having no heavy atoms. The magnitude of enhancement well correlated to the contribution ratio of atomic orbital of bromine to the molecular orbital in LUMOs. These results indicated that the internal heavy atom effectively contributed to the visible-light-induced cyclization reaction in DAE-PBI dyads. Such an internal heavy-atom effect will pave the way for new molecular design to develop all-visible-light-activatable molecular switches.
Collapse
Affiliation(s)
- Koya Taruno
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Issei Ikariko
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Taku Taniguchi
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tsuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
21
|
Li R, Mou B, Yamada M, Li W, Nakashima T, Kawai T. From Visible to Near-Infrared Light-Triggered Photochromism: Negative Photochromism. Molecules 2023; 29:155. [PMID: 38202738 PMCID: PMC10780068 DOI: 10.3390/molecules29010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Photochromic compounds, whose key molecular properties can be effectively modulated by light irradiation, have attracted significant attention for their potential applications in various research fields. The restriction of photoisomerization coloration induced by ultraviolet light limits their applications in the biomedical field and some other fields. Negative photochromism, wherein a relatively stable colored isomer transforms to a colorless metastable isomer under low-energy light irradiation, offers advantages in applications within materials science and life science. This review provides a summary of negatively photochromic compounds based on different molecular skeletons. Their corresponding design strategies and photochromic properties are presented to provide practical guidelines for future investigations. Negatively photochromic compounds can effectively expand the range of photochromic switches for future applications, offering unique properties such as responsiveness to visible to near-infrared light.
Collapse
Affiliation(s)
- Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (B.M.); (W.L.)
| | - Bingzhao Mou
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (B.M.); (W.L.)
| | - Mihoko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Wei Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (B.M.); (W.L.)
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Tsuyoshi Kawai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| |
Collapse
|
22
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
23
|
Peterson JA, Neris NM, Read de Alaniz J. Tethered together: DASA design towards aqueous compatibility. Chem Sci 2023; 14:13025-13030. [PMID: 38023491 PMCID: PMC10664598 DOI: 10.1039/d3sc02835f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are an exciting class of photoswitches due to their facile tunability, visible light absorbance, and negative photochromism. While they have shown use in a variety of applications, to date all reported DASA derivatives have low equilibrium and/or poor photoswitching in polar protic solvents, which is vital for moving towards applications in biological systems. We demonstrate a strategy to introduce a substitution on the DASA triene that results in derivatives that are stable and have high dark equilibrium of the open form in polar protic solvents. Decreasing the charge separation of these new derivatives also allows for reversible switching in polar and protic solvents including THF : water mixtures.
Collapse
Affiliation(s)
- Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara Santa Barbara 93106 CA USA
| | - Natalia M Neris
- Department of Chemistry and Biochemistry, University of California, Santa Barbara Santa Barbara 93106 CA USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara Santa Barbara 93106 CA USA
| |
Collapse
|
24
|
Qiu Q, Qi Q, Usuba J, Lee K, Aprahamian I, Han GGD. Visible light activated energy storage in solid-state Azo-BF 2 switches. Chem Sci 2023; 14:11359-11364. [PMID: 37886079 PMCID: PMC10599475 DOI: 10.1039/d3sc03465h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
We present here a group of Azo-BF2 photoswitches that store and release energy in response to visible light irradiation. Unmodified Azo-BF2 switches have a planar structure with a large π-conjugation system, which hinders E-Z isomerization when in a compacted state. To address this challenge, we modified the switches with one or two aliphatic groups, which altered the intermolecular interactions and arrangement of the photochromes in the solid state. The derivative with two substituents exhibited a non-planar configuration that provided particularly large conformational freedom, allowing for efficient isomerization in the solid phase. Our discovery highlights the potential of using double aliphatic functionalization as a promising approach to facilitate solid-state switching of large aromatic photoswitches. This finding opens up new possibilities for exploring various photoswitch candidates for molecular solar thermal energy storage applications.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qingkai Qi
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Karina Lee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
25
|
Dubuis S, Dellai A, Courdurié C, Owona J, Kalafatis A, Vellutini L, Genin E, Rodriguez V, Castet F. Nonlinear Optical Responses of Photoswitchable Donor-Acceptor Stenhouse Adducts. J Am Chem Soc 2023; 145:10861-10871. [PMID: 37141624 DOI: 10.1021/jacs.3c02778] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This work combines hyper-Rayleigh scattering (HRS) experiments performed in the NIR range (1.30 and 1.60 μm) and quantum chemical calculations to provide a comprehensive description of the second harmonic generation (SHG) responses of donor-acceptor Stenhouse adducts (DASAs). Representative derivatives of the three generations of DASAs, which differ by the nature of their electron-donating and withdrawing moieties and also include clickable species, have been synthesized and their photoswitching behavior fully characterized. The HRS measurements allow us to establish relationships between the magnitude of the SHG response of open forms and the nature of the donor and acceptor groups. The largest SHG responses are obtained for derivatives incorporating either a barbituric acid or an indanedione acceptor unit, while N-methylaniline appears as the most efficient donor group. The calculations support well the experimental data and show that high hyperpolarizabilities are associated to low excitation energies and large extent of the photoinduced intramolecular charge transfer, which enhances the dipole moment variation between the ground and first dipole-allowed electronic excited state. In addition, a complete investigation of the photoswitching kinetics of DASAs in chloroform solution shows important differences, highlighting in particular the role of the donor group on the photoswitching efficiency.
Collapse
Affiliation(s)
- Simon Dubuis
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Chloé Courdurié
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Josianne Owona
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Apostolos Kalafatis
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Emilie Genin
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Vincent Rodriguez
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| |
Collapse
|
26
|
Duan Y, Song M, Sun F, Xu Y, Shi F, Wang H, Zheng Y, He C, Liu X, Wei C, Deng X, Chen L, Liu F, Wang D. Controlling Isomerization of Photoswitches to Modulate 2D Logic-in-Memory Devices by Organic-Inorganic Interfacial Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207443. [PMID: 36905234 PMCID: PMC10161064 DOI: 10.1002/advs.202207443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Indexed: 05/06/2023]
Abstract
Logic-in-memory devices are a promising and powerful approach to realize data processing and storage driven by electrical bias. Here, an innovative strategy is reported to achieve the multistage photomodulation of 2D logic-in-memory devices, which is realized by controlling the photoisomerization of donor-acceptor Stenhouse adducts (DASAs) on the surface of graphene. Alkyl chains with various carbon spacer lengths (n = 1, 5, 11, and 17) are introduced onto DASAs to optimize the organic-inorganic interfaces: 1) Prolonging the carbon spacers weakens the intermolecular aggregation and promotes isomerization in the solid state. 2) Too long alkyl chains induce crystallization on the surface and hinder the photoisomerization. Density functional theory calculation indicates that the photoisomerization of DASAs on the graphene surface is thermodynamically promoted by increasing the carbon spacer lengths. The 2D logic-in-memory devices are fabricated by assembling DASAs onto the surface. Green light irradiation increases the drain-source current (Ids ) of the devices, while heat triggers a reversed transfer. The multistage photomodulation is achieved by well-controlling the irradiation time and intensity. The strategy based on the dynamic control of 2D electronics by light integrates molecular programmability into the next generation of nanoelectronics.
Collapse
Affiliation(s)
- Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Miaomiao Song
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yi Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fanfan Shi
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Wang
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Department of Orthopedic, Sichuan Provincial People's Hospital and Sichuan Academy of Medical Science and Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Chao He
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xilin Liu
- Department of Orthopedic, Sichuan Provincial People's Hospital and Sichuan Academy of Medical Science and Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Chen Wei
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
27
|
Mechanically gated formation of donor-acceptor Stenhouse adducts enabling mechanochemical multicolour soft lithography. Nat Chem 2023; 15:332-338. [PMID: 36690834 DOI: 10.1038/s41557-022-01126-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023]
Abstract
Stress-sensitive molecules called mechanophores undergo productive chemical transformations in response to mechanical force. A variety of mechanochromic mechanophores, which change colour in response to stress, have been developed, but modulating the properties of the dyes generally requires the independent preparation of discrete derivatives. Here we introduce a mechanophore platform enabling mechanically gated multicolour chromogenic reactivity. The mechanophore is based on an activated furan precursor to donor-acceptor Stenhouse adducts (DASAs) masked as a hetero-Diels-Alder adduct. Mechanochemical activation of the mechanophore unveils the DASA precursor, and subsequent reaction with a secondary amine generates an intensely coloured DASA. Critically, the properties of the DASA are controlled by the amine, and thus a single mechanophore can be differentiated post-activation to produce a wide range of functionally diverse DASAs. We highlight this system by establishing the concept of mechanochemical multicolour soft lithography whereby a complex multicolour composite image is printed into a mechanochemically active elastomer through an iterative process of localized compression followed by reaction with different amines.
Collapse
|
28
|
Rifaie-Graham O, Yeow J, Najer A, Wang R, Sun R, Zhou K, Dell TN, Adrianus C, Thanapongpibul C, Chami M, Mann S, de Alaniz JR, Stevens MM. Photoswitchable gating of non-equilibrium enzymatic feedback in chemically communicating polymersome nanoreactors. Nat Chem 2023; 15:110-118. [PMID: 36344820 PMCID: PMC9836937 DOI: 10.1038/s41557-022-01062-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022]
Abstract
The circadian rhythm generates out-of-equilibrium metabolite oscillations that are controlled by feedback loops under light/dark cycles. Here we describe a non-equilibrium nanosystem comprising a binary population of enzyme-containing polymersomes capable of light-gated chemical communication, controllable feedback and coupling to macroscopic oscillations. The populations consist of esterase-containing polymersomes functionalized with photo-responsive donor-acceptor Stenhouse adducts (DASA) and light-insensitive semipermeable urease-loaded polymersomes. The DASA-polymersome membrane becomes permeable under green light, switching on esterase activity and decreasing the pH, which in turn initiates the production of alkali in the urease-containing population. A pH-sensitive pigment that absorbs green light when protonated provides a negative feedback loop for deactivating the DASA-polymersomes. Simultaneously, increased alkali production deprotonates the pigment, reactivating esterase activity by opening the membrane gate. We utilize light-mediated fluctuations of pH to perform non-equilibrium communication between the nanoreactors and use the feedback loops to induce work as chemomechanical swelling/deswelling oscillations in a crosslinked hydrogel. We envision possible applications in artificial organelles, protocells and soft robotics.
Collapse
Affiliation(s)
- Omar Rifaie-Graham
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Richard Wang
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Kun Zhou
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Tristan N Dell
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Christopher Adrianus
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
29
|
Jia S, Sletten EM. Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS Chem Biol 2022; 17:3255-3269. [PMID: 34516095 PMCID: PMC8918031 DOI: 10.1021/acschembio.1c00518] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex network of naturally occurring biological pathways motivates the development of new synthetic molecules to perturb and/or detect these processes for fundamental research and clinical applications. In this context, photochemical tools have emerged as an approach to control the activity of drug or probe molecules at high temporal and spatial resolutions. Traditional photochemical tools, particularly photolabile protecting groups (photocages) and photoswitches, rely on high-energy UV light that is only applicable to cells or transparent model animals. More recently, such designs have evolved into the visible and near-infrared regions with deeper tissue penetration, enabling photocontrol to study biology in tissue and model animal contexts. This Review highlights recent developments in synthetic far-red and near-infrared photocages and photoswitches and their current and potential applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Dong Y, Ling Y, Wang D, Liu Y, Chen X, Zheng S, Wu X, Shen J, Feng S, Zhang J, Huang W. Harnessing molecular isomerization in polymer gels for sequential logic encryption and anticounterfeiting. SCIENCE ADVANCES 2022; 8:eadd1980. [PMID: 36322650 PMCID: PMC9629717 DOI: 10.1126/sciadv.add1980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Using smart photochromic and luminescent tissues in camouflage/cloaking of natural creatures has inspired efforts to develop synthetic stimuli-responsive materials for data encryption and anticounterfeiting. Although many optical data-encryption materials have been reported, they generally require only one or a simple combination of few stimuli for decryptions and rarely offer output corruptibility that prevents trial-and-error attacks. Here, we report a series of multiresponsive donor-acceptor Stenhouse adducts (DASAs) with unprecedented switching behavior and controlled reversibility via diamine conformational locking and substrate free-volume engineering and their capability of sequential logic encryption (SLE). Being analogous to the digital circuits, the output of DASA gel-based data-encryption system depends not only on the present input stimulus but also on the sequence of past inputs. Incorrect inputs/sequences generate substantial fake information and lead attackers to the point of no return. This work offers new design concepts for advanced data-encryption materials that operate via SLE, paving the path toward advanced encryptions beyond digital circuit approaches.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiya Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, USA
- Corresponding author. (W.H.); (J.Z.)
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
- Corresponding author. (W.H.); (J.Z.)
| |
Collapse
|
31
|
Raucci U, Sanchez DM, Martínez TJ, Parrinello M. Enhanced Sampling Aided Design of Molecular Photoswitches. J Am Chem Soc 2022; 144:19265-19271. [PMID: 36222799 DOI: 10.1021/jacs.2c04419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in the evolving field of atomistic simulations promise important insights for the design and fundamental understanding of novel molecular photoswitches. Here, we use state-of-the-art enhanced simulation techniques to unravel the complex, multistep chemistry of donor-acceptor Stenhouse adducts (DASAs). Our reaction discovery workflow consists of enhanced sampling for efficient chemical space exploration, refinement of newly observed pathways with more accurate ab initio electronic structure calculations, and structural modifications to introduce design principles within future generations of DASAs. We showcase our discovery workflow by not only recovering the full photoswitching mechanism of DASA but also predicting a plethora of new plausible thermal pathways and suggesting a way for their experimental validation. Furthermore, we illustrate the tunability of these newly discovered reactions, leading to a potential avenue for controlling DASA dynamics through multiple external stimuli. Overall, these insights could offer alternative routes to increase the efficiency and control of DASA's photoswitching mechanism, providing new elements to design more complex light-responsive materials.
Collapse
Affiliation(s)
| | - David M Sanchez
- Department of Chemistry, Stanford University, Stanford, California94305, United States.,SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, California94025, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California94305, United States.,SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, California94025, United States
| | | |
Collapse
|
32
|
Ikariko I, Kim S, Hiroyasu Y, Higashiguchi K, Matsuda K, Hirose T, Sotome H, Miyasaka H, Yokojima S, Irie M, Kurihara S, Fukaminato T. All-Visible (>500 nm)-Light-Induced Diarylethene Photochromism Based on Multiplicity Conversion via Intramolecular Energy Transfer. J Phys Chem Lett 2022; 13:7429-7436. [PMID: 35929722 DOI: 10.1021/acs.jpclett.2c01903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoswitching molecules that reversibly switch upon visible-light irradiation are some of the most attractive targets for biological and imaging applications. In this study, we found a diarylethene (DAE) derivative having a covalently attached perylenebisimide (PBI) unit (DAE-PBI dyad) underwent an unexpected cyclization reaction upon irradiation with green (500-550 nm) light, where the DAE unit has no absorbance. The photoreactivity was enhanced in solvents containing heavy atoms and in the presence of oxygen. As inferred from the solvent dependence and the calculated excited-state energies of DAE and PBI units, it was suggested that the probable mechanism for this unique visible-light-induced cyclization reaction is multiplicity conversion based on intramolecular energy transfer from the excited singlet state of the PBI unit to the triplet state of DAE units (i.e., DAE-1[PBI]* → 3[DAE]*-PBI). Such a unique photoreaction mechanism with the assistance of oxygen will pave the way for new molecular design for the development of visible-light switching molecules.
Collapse
Affiliation(s)
- Issei Ikariko
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yae Hiroyasu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Irie
- Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Seiji Kurihara
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
33
|
Castagna R, Maleeva G, Pirovano D, Matera C, Gorostiza P. Donor-Acceptor Stenhouse Adduct Displaying Reversible Photoswitching in Water and Neuronal Activity. J Am Chem Soc 2022; 144:15595-15602. [PMID: 35976640 DOI: 10.1021/jacs.2c04920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interest in the photochromism and functional applications of donor-acceptor Stenhouse adducts (DASAs) soared in recent years owing to their outstanding advantages and flexible design. However, their low solubility and irreversible conversion in aqueous solutions hampered exploring DASAs for biology and medicine. It is notably unknown whether the barbiturate electron acceptor group retains the pharmacological activity of drugs such as phenobarbital, which targets γ-aminobutyric acid (GABA)-type A receptors (GABAARs) in the brain. Here, we have developed the model compound DASA-barbital based on a scaffold of red-switching second-generation DASAs, and we demonstrate that it is active in GABAARs and alters the neuronal firing rate in a physiological medium at neutral pH. DASA-barbital can also be reversibly photoswitched in acidic aqueous solutions using cyclodextrin, an approved ingredient of drug formulations. These findings clarify the path toward the biological applications of DASAs and to exploit the versatility displayed in polymers and materials science.
Collapse
Affiliation(s)
- Rossella Castagna
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Deborah Pirovano
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
34
|
Fiorentino A, Sachini B, Corra S, Credi A, Femoni C, Fraix A, Silvi S. Acidochromism of donor-acceptor Stenhouse adducts in organic solvent. Chem Commun (Camb) 2022; 58:11236-11239. [PMID: 35968687 DOI: 10.1039/d2cc03761k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First generation DASA derivatives can be reversibly isomerized from the coloured, open form to the colourless, closed isomer upon protonation, thus behaving as acidochromic compounds in halogenated organic solvent.
Collapse
Affiliation(s)
- Antonio Fiorentino
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy.
| | - Brian Sachini
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Stefano Corra
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy. .,CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
35
|
Cheung LH, Kajitani T, Leung FKC. Visible-light controlled supramolecular transformations of donor-acceptor Stenhouse adducts amphiphiles at multiple length-scale. J Colloid Interface Sci 2022; 628:984-993. [PMID: 35970131 DOI: 10.1016/j.jcis.2022.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022]
Abstract
Designing responsive, adaptive, and dynamic supramolecular systems in water, the incorporation of photoresponsive units in amphiphilic molecular structures enables functional responses in a non-invasive way by using light. However, in aqueous media, vast majority of reported synthetic photoresponsive molecular amphiphiles are commonly driven by high energy and bio-damaging UV-light for supramolecular transformation at multiple length-scale. Herein, we present newly designed visible-light controlled supramolecular assembly of donor-acceptor Stenhouse adducts amphiphiles (DA) with excellent stability and solubility in aqueous media. The excellent photoswitchability in organic media and photoresponsiveness in aqueous media driven by visible-light are found, as confirmed with UV-vis absorption and NMR spectroscopies. Supramolecular assembly at multiple length-scale of DAs is investigated with electron microscopies and X-ray diffraction to show large aspect-ratio of nanostructures assembled into macroscopic soft scaffolds. Upon visible-light irradiation, the large geometrical transformation of DAs enables supramolecular transformations, and subsequently destabilizes the macroscopic soft scaffold to release fluorophores from the scaffolds. These results provide the feasibility in developing the next generation of visible-light controlled macroscopic soft functional scaffold from supramolecular assembly across multiple length-scale without and offer ample opportunity to design future soft robotic materials and functional biomaterials.
Collapse
Affiliation(s)
- Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
36
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
37
|
A. Gomes RF, Ravasco JMJM, Andrade KHS, Coelho JAS, Moreira R, Oliveira R, Nogueira F, Afonso CAM. Tandem Thio-Michael Addition/Remote Lactone Activation of 5-Hydroxymethylfurfural-Derived δ-Lactone-Fused Cyclopentenones. CHEMSUSCHEM 2022; 15:e202102204. [PMID: 35040553 PMCID: PMC9401029 DOI: 10.1002/cssc.202102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Indexed: 06/14/2023]
Abstract
The creation of structurally diverse chemical entities from fairly simple biorefinery products remains a challenge. In this work 5-hydroxymethylfurfural (HMF) was identified as a key synthon for preparing highly complex cyclopentenones (CP) via tandem 1,4-addition/elimination/remote lactone activation to external O- and N-nucleophiles in δ-lactone-fused-CPs hotspots. This scaffold was also reactive enough to be incorporated into model cysteine-peptides in low concentrations, paving the way to a potential translation generating complexity in the synthesis of small peptides. The new enones also exhibited activity against intraerythrocytic Plasmodium falciparum (IC50 =1.32 μm).
Collapse
Affiliation(s)
- Rafael F. A. Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Joao M. J. M. Ravasco
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Késsia H. S. Andrade
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Jaime A. S. Coelho
- Centro de Química Estrutural, Institute of Molecular SciencesFaculdade de CiênciasUniversidade de LisboaCampo Grande1749-016LisboaPortugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Rafael Oliveira
- Global Health and Tropical MedicineGHTMInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLRua da Junqueira, 101349-008LisboaPortugal
- Institute of Tropical Medicine and International HealthCharité – Charité-Universitätsmedizin BerlinAugustenburger Platz 1 (Campus Adress: Südring 2–3)13353BerlinGermany
| | - Fátima Nogueira
- Global Health and Tropical MedicineGHTMInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLRua da Junqueira, 101349-008LisboaPortugal
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| |
Collapse
|
38
|
Peñín B, Sanosa N, Sampedro D, Funes-Ardoiz I. Mechanism of the Aza-Piancatelli Reaction: Scope and Limitations of Furan Substitution in Donor-Acceptor Stenhouse Adduct Synthesis. ACS OMEGA 2022; 7:22811-22817. [PMID: 35811875 PMCID: PMC9261078 DOI: 10.1021/acsomega.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The aza-Piancatelli reaction has been widely used to synthesize donor-acceptor Stenhouse adducts (DASAs), a new class of molecular photoswitches with unique properties. However, the substitution pattern of furan cores has been limited to position 3, as 3,4-disubstituted furans remain unreactive. Herein, we explore the aza-Piancatelli reaction mechanism using density functional theory (DFT) calculations to understand the influence of the different substituents on the reactivity. We found that all the reaction pathways are kinetically accessible, but the driving force of the reaction is lost in disubstituted furans due to the loss of conjugation in the DASA products. Finally, a simple model is proposed to guide the design of synthetic routes using this reaction.
Collapse
|
39
|
A multi-stage single photochrome system for controlled photoswitching responses. Nat Chem 2022; 14:942-948. [PMID: 35681046 DOI: 10.1038/s41557-022-00947-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
The ability of molecular photoswitches to convert on/off responses into large macroscale property change is fundamental to light-responsive materials. However, moving beyond simple binary responses necessitates the introduction of new elements that control the chemistry of the photoswitching process at the molecular scale. To achieve this goal, we designed, synthesized and developed a single photochrome, based on a modified donor-acceptor Stenhouse adduct (DASA), capable of independently addressing multiple molecular states. The multi-stage photoswitch enables complex switching phenomena. To demonstrate this, we show spatial control of the transformation of a three-stage photoswitch by tuning the population of intermediates along the multi-step reaction pathway of the DASAs without interfering with either the first or final stage. This allows for a photonic three-stage logic gate where the secondary wavelength solely negates the input of the primary wavelength. These results provide a new strategy to move beyond traditional on/off binary photochromic systems and enable the design of future molecular logic systems.
Collapse
|
40
|
Shpinov Y, Schlichter A, Pelupessy P, Le Saux T, Jullien L, Adelizzi B. Unexpected Acid-Triggered Formation of Reversibly Photoswitchable Stenhouse Salts from Donor-Acceptor Stenhouse Adducts. Chemistry 2022; 28:e202200497. [PMID: 35218266 DOI: 10.1002/chem.202200497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 01/12/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are reversibly photoswitchable dyes, which are able to interconvert between a red/NIR absorbing triene-like state and a colorless cyclic state. Although optically attractive for multiple applications, their low solubility and lack of photoswitching in water impede their use in aqueous environments. We developed water-soluble DASAs based on indoline as donor and methyl, or trifluoromethyl, pyrazolone-based acceptors. In acetonitrile, photophysical analysis and photochemical studies, accounted with a three-state kinetic model, confirmed the reversible photoswitching mechanism previously proposed. In water, the colorless cyclic state is a thermodynamic sink at neutral pH values. In contrast, in acidic conditions, we observed a fast scrambling of DASAs' end-group resulting in the in situ formation of Stenhouse salts (StS), which are in turn capable of reversible photoswitching. We believe that this unexpected result is of interest not only for the future design of DASAs with improved stability, but also for further development and applications of StS as photoswitchable probes.
Collapse
Affiliation(s)
- Yuriy Shpinov
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Antoine Schlichter
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Philippe Pelupessy
- Laboratoire de biomolécules (LBM), Département de chimie, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Beatrice Adelizzi
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
41
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
42
|
Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C. Wavelength Orthogonal Photodynamic Networks. Chemistry 2022; 28:e202104466. [PMID: 35213069 PMCID: PMC9310740 DOI: 10.1002/chem.202104466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light‐induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light‐driven adaptation of 3D printed structures on the macro‐ and micro‐scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non‐conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non‐fluorescent, and cell adhesive vs. cell repellent properties.
Collapse
Affiliation(s)
- Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Maximilian Seifermann
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
43
|
Zhang J, Zhang J, Teng X, Liu X, Jiao X, Li Y, Xie X, Yan Q, Wang X, Tang B. Fabricating and Modulating Robust Multi-Photoaddressable Systems with the Derivatives of Diarylethylene and Donor-Acceptor Stenhouse Adducts. J Phys Chem Lett 2022; 13:3611-3620. [PMID: 35427145 DOI: 10.1021/acs.jpclett.2c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multi-photoaddressable systems (MPSs) belong to complex systems, which are comprised of more than one photoswitching molecule and can respond to different wavelengths of light simultaneously. While MPSs have been extensively applied in various fields, there are also some challenges, such as the deficiency of the wavelength-selective control and the interference from the poor thermodynamic stability of used photoswitching molecules. Herein, we reported two robust MPSs (MPS1/2) consisting of diarylethylene derivative (DAE) and different donor-acceptor Stenhouse adducts (DASAs), in which both opened and closed forms of DAE and opened forms of DASAs are thermodynamically stable. MPS1/2 enable fully reversible cyclic photoswitching with improved thermal interference resistance. Moreover, MPS2 also shows a favorable property in PMMA films and has been applied in multicolor display. It is expected that the prepared MPSs could be used in more fields such as information storage and reading and encoding light.
Collapse
Affiliation(s)
- Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xudong Teng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
44
|
McDonough R, Rudgley N, Majewski O, Perkins MV, Evans RA, Lewis DA. Photochromic performance of Donor‐Acceptor‐Stenhouse‐Adducts in Polymer Binders and Solution. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rowan McDonough
- Flinders University College of Science and Engineering AUSTRALIA
| | - Nick Rudgley
- Flinders University College of Science and Engineering AUSTRALIA
| | - Oskar Majewski
- DST Group: Defence Science and Technology Group Land Division AUSTRALIA
| | | | | | - David Andrew Lewis
- Flinders University School of Chemical and Physical Sciences Sturt Rd 5042 Adelaide AUSTRALIA
| |
Collapse
|
45
|
Duan Y, Zhao H, Xue G, Sun F, Stricker F, Wang Z, Mao L, He C, de Alaniz JR, Zheng Y, Wang D. Controlling the Isomerization of Photoresponsive Molecules through a Limiting Tautomerization Strategy. J Phys Chem B 2022; 126:3347-3354. [PMID: 35471969 DOI: 10.1021/acs.jpcb.2c02005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Controlling the multistage photoresponsivity remains a challenge, in part, due to the spontaneous tautomerization between isomers. Herein, we present a strategy to access three independent states (linear, cyclic keto, and cyclic enolate) of crown ether (CE)-substituted donor-acceptor Stenhouse adducts (DASAs) by limiting the tautomerization of the closed isomers. The linear-cyclic keto isomerization is reversibly triggered by treatment with metal ions (Na+ or K+) and CE, while the linear-cyclic enolate isomerization is induced by green light and heat. Density functional theory and molecular dynamics calculation results suggest that the steric effect and supramolecular interaction between the electron-donating and electron-withdrawing moieties play an important role in hindering the tautomerization between cyclic keto and cyclic enolate DASA-CE. The strategy to influence key steps in the photoswitching process inspires well-controlled multistage isomerization of photoresponsive molecules.
Collapse
Affiliation(s)
- Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haiquan Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guodong Xue
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Friedrich Stricker
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-5050, United States
| | - Zhen Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lijun Mao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chao He
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610054, China
| | - Javier Read de Alaniz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-5050, United States
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguang 523808, China
| |
Collapse
|
46
|
Clerc M, Tekin C, Ulrich S, Freire RVM, Salentinig S, Bruns N, Boesel LF. Donor-Acceptor Stenhouse Adduct-Polydimethylsiloxane-Conjugates for Enhanced Photoswitching in Bulk Polymers. Macromol Rapid Commun 2022; 43:e2200120. [PMID: 35396766 DOI: 10.1002/marc.202200120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are a rapidly emerging class of visible light-activated photochromes and DASA-functionalized polymers hold great promise as biocompatible photoresponsive materials. However, the photoswitching performance of DASAs in solid polymer matrices is often low, particularly in polymeric materials below their glass transition temperature. To overcome this limitation, DASAs are conjugated to polydimethylsiloxanes which have a glass transition temperature far below room temperature and which can create a mobile molecular environment around the DASAs for achieving more solution-like photoswitching kinetics in bulk polymers. The dispersion of DASAs conjugated to such flexible oligomers into solid polymer matrices allows for more effective and tunable DASA photoswitching in stiff polymers, such as poly(methyl methacrylate), without requiring modifications of the matrix. The photoswitching of conjugates with varying polymer molecular weight, linker type and architecture is characterized via time-dependent UV-Vis spectroscopy in organic solvents and blended into polymethacrylate films. In addition, DASA-functionalized polydimethylsiloxane networks that are accessible by the same synthetic route provide an alternative solution for achieving fast and efficient DASA photoswitching in the bulk owing to their intrinsic softness and flexibility. These findings may contribute to the development of DASA-functionalized materials with better tunable, more effective, and more reversible modulation of their optical properties. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.,University of Fribourg, Department of Chemistry, Chemin du Musée 9, Fribourg, 1700, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | - Cem Tekin
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Rafael V M Freire
- University of Fribourg, Department of Chemistry, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Stefan Salentinig
- University of Fribourg, Department of Chemistry, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
47
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
48
|
Peterson JA, Stricker F, Read de Alaniz J. Improving the kinetics and dark equilibrium of donor-acceptor Stenhouse adduct by triene backbone design. Chem Commun (Camb) 2022; 58:2303-2306. [PMID: 35075464 DOI: 10.1039/d1cc06235b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DFT calculations were used to find an optimal substitution site on the triene backbone of a donor-acceptor Stenhouse adduct photoswitch to tune the equillibrium and switching kinetics of DASA without modifying the donor and acceptor groups. Using this approach we demonstrate a new means to tuning DASA based photoswitches by increasing the energy of the closed form relative to the open form. To highlight the potential of this approach a new DASA derivative bearing a methyl substituent on the 5-position of the triene was synthesized and the effect of this substitution was studied using 1H NMR spectroscopy, time-dependent UV-Vis and solvatochromic analysis. The new DASA derivative shows a higher dark equillibrium, favoring the open form, and drastically faster thermal recovery than the unsubstituted derivative with the same donor and acceptor.
Collapse
Affiliation(s)
- Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
49
|
Kiyani H, Daroughezadeh Z. Efficient and Aqoues Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-one Derivatives Using Piperazine under Green Conditions. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Fu P, Yan Q, Wang S, Wu H, Cao D. A visible-light-gated donor–acceptor Stenhouse adduct chemosensor: synthesis, photochromism and naked-eye colorimetric/fluorometric sensing of Al 3+ and Zn 2+. NEW J CHEM 2022. [DOI: 10.1039/d2nj00969b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-gated donor–acceptor Stenhouse adduct chemosensor is designed for the colorimetric/fluorometric sensing of Al3+ and Zn2+.
Collapse
Affiliation(s)
- Peng Fu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Research Center for West Guangdong biomedical Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang, 524048, China
| | - Qing Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Research Center for West Guangdong biomedical Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang, 524048, China
| | - Sheng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Research Center for West Guangdong biomedical Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang, 524048, China
| | - Hanlun Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Derong Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|