1
|
Partanen I, Hsu CH, Shi EHC, Maisuls I, Eskelinen T, Karttunen AJ, Saarinen JJ, Strassert CA, Belyaev A, Chou PT, Koshevoy IO. Organic Room-Temperature near-IR Phosphorescence Harvested by Intramolecular Through-Space Sensitization in Composite Molecules. Angew Chem Int Ed Engl 2025; 64:e202503327. [PMID: 40073289 DOI: 10.1002/anie.202503327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
A family of coordination compounds with short intramolecular spatial separation between an organic chromophore and a metal center was studied. The specific geometry was realized by means of anthracene-functionalized tertiary aryl phosphanes. Their silver and gold complexes (1, 2) operate as conventional fluorophores, with photophysical behavior defined by anthracene-localized allowed transitions. In contrast, bichromophoric species, containing phenyl bipyridine- (3, 5, 6, 8) or terpyridine- (4, 7) derived platinum(II) fragments, demonstrate fast intersystem crossing to the triplet state associated with the pincer metal component. Theoretical results corroborated that the short intramolecular distance between the platinum constituent and the adjacent anthracene facilitates subsequent through-space triplet (T2, pincer fragment)→triplet (T1, anthracene) energy transfer. This process occurs at a rate of ∼1011 s-1, surpassing the rates of T2→S0 relaxation. This prevents visible phosphorescence from the platinum(II) motifs but enables near-IR organic phosphorescence in the solid state, including dyes with very inefficient intersystem-crossing (ISC). Thus, the composite molecules 3-8 illustrate a feasible approach to the tunable sensitization of organic dyes and the design of low-energy triplet emitters.
Collapse
Affiliation(s)
- Iida Partanen
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, Yliopistokatu 7, Joensuu, 80101, Finland
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, China
| | - Emily Hsue-Chi Shi
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, China
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Universität Münster, CiMIC, SoN, CeNTech, Heisenbergstraße 11, Münster, 48149, Germany
| | - Toni Eskelinen
- Department of Chemistry and Materials Science, Aalto University, Aalto, FI-00076, Finland
| | - Antti J Karttunen
- Department of Chemistry and Materials Science, Aalto University, Aalto, FI-00076, Finland
| | - Jarkko J Saarinen
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, Yliopistokatu 7, Joensuu, 80101, Finland
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, CiMIC, SoN, CeNTech, Heisenbergstraße 11, Münster, 48149, Germany
| | - Andrey Belyaev
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, Yliopistokatu 7, Joensuu, 80101, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, China
| | - Igor O Koshevoy
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, Yliopistokatu 7, Joensuu, 80101, Finland
| |
Collapse
|
2
|
Ju Z, Deng R. Cascade Lanthanide-Triplet Energy Transfer for Nanocrystal-Sensitized Organic Photon Upconversion. Angew Chem Int Ed Engl 2025; 64:e202422575. [PMID: 39967267 DOI: 10.1002/anie.202422575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Sensitized organic photon upconversion via triplet-triplet annihilation (TTA) shows significant potential for energy conversion and photocatalysis, but achieving efficient upconversion across multiple wavelengths with single-wavelength near-infrared (NIR) excitation remains a daunting challenge. Here, we report a strategy utilizing lanthanide-doped nanocrystals (LnNCs) to sensitize TTA upconversion in multiple organic emitters under NIR excitation, achieving an anti-Stokes shift of up to 1.1 eV. This approach leverages a cascade lanthanide-triplet energy transfer design, adopting an interfacial energy transfer pathway via lanthanide ions to surface energy relay molecules for extended triplet sensitization. It allows consecutive transfer of photon energy from LnNCs to TTA emitters, mitigating energy mismatch between the triplet levels of emitters and excitation photon energies. The use of LnNCs enhances energy transfer efficiency through the unique spin-orbital coupling and narrow-band absorption properties of lanthanide ions. Our approach offers tunable upconversion emission, minimized energy loss during sensitization, and improved chemical stability of LnNCs. Additionally, we demonstrate the utility of this system in NIR-induced photopolymerization, showcasing its potential for applications such as 3D printing and photocatalysis.
Collapse
Affiliation(s)
- Zhijie Ju
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Lee A, Teferi M, Hernandez FS, Jain A, Tran T, Wang K, Mani T, Schwartzberg AM, Tang ML, Niklas J, Poluektov OG, Olshansky JH. Tunable Spin Qubit Pairs in Quantum Dot-Molecule Conjugates. ACS NANO 2025; 19:12194-12207. [PMID: 40106502 PMCID: PMC11966761 DOI: 10.1021/acsnano.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Organic molecules and quantum dots (QDs) have both shown promise as materials that can host quantum bits (qubits). This is in part because of their synthetic tunability. The current work employs a combination of both materials to demonstrate a series of tunable quantum dot-organic molecule conjugates that can both host photogenerated spin-based qubit pairs (SQPs) and sensitize molecular triplet states. The photogenerated qubit pairs, composed of a spin-correlated radical pair (SCRP), are particularly intriguing since they can be initialized in well-defined, nonthermally populated, quantum states. Additionally, the radical pair enables charge recombination to a polarized molecular triplet state, also in a well-defined quantum state. The materials underlying this system are an organic molecular chromophore and electron donor, 9,10-bis(phenylethynyl)anthracene, and a quantum dot acceptor composed of ZnO. We prepare a series of quantum dot-molecule conjugates that possess variable quantum dot size and two different linker lengths connecting the two moieties. Optical spectroscopy revealed that the QD-molecule conjugates undergo photoexcited charge separation to generate long-lived charge-separated radical pairs. The resulting spin states are probed using light-induced time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy, revealing the presence of singlet-generated SCRPs and molecular triplet states. Notably, the EPR spectra of the radical pairs are dependent on the geometry of this highly tunable system. The g value of the ZnO QD anion is size tunable, and the line widths are influenced by radical pair separation. Overall, this work demonstrates the power of synthetic tunability in adjusting the spin specific addressability, satisfying a key requirement of functional qubit systems.
Collapse
Affiliation(s)
- Autumn
Y. Lee
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Mandefro Teferi
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Frida S. Hernandez
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Amisha Jain
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Tiffany Tran
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kefu Wang
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Tomoyasu Mani
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United
States
| | - Adam M. Schwartzberg
- The
Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ming Lee Tang
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jens Niklas
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Jacob H. Olshansky
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
4
|
Zhao Z, Wang S, Shi X, Fu H, Wang L. Multiple effects of aromatic substituents on excited-state properties and singlet fission process in azaquinodimethane systems. Chem Sci 2025; 16:5565-5572. [PMID: 40028621 PMCID: PMC11865949 DOI: 10.1039/d4sc06494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
Singlet fission (SF) could offset the thermalization loss of high-energy photons via multiexciton generations, thus holding great potential in improving the power conversion efficiency of solar cells. However, the development of SF-based devices has basically remained stagnant so far owing to the limited scope of practical SF materials. Therefore, designing and developing practical SF material systems have been imperative, yet challenging so far. In this work, we comprehensively investigated the effects of aromatic substituents on excited-state properties and SF process of azaquinodimethane systems. Results indicated that the aromatic substituents have a significant influence on molecular diradical characters, thereby determining the excited-state energetics of the SF material system, including optical band gaps and triplet energy. Moreover, the aromatic substituents influenced charge transfer coupling interactions by adjusting molecular packing in the aggregate state to shunt the excited-state population to exert SF process or trap in excimer species. These results not only offer a deep insight into the multiple regulatory effects of the aromatic substituents on excited-state properties and SF process but also provide a practical SF material system, which could lay the foundation for the discovery of new SF-active chromophores and practical applications of new-generation light-harvesting materials.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Senhao Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Xiaomei Shi
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology Taiyuan 030024 P. R. China
| |
Collapse
|
5
|
Sullivan CM, Nienhaus L. Spectro-Microscopy Methods To Gain a Multimodal Perspective. ACS NANO 2025; 19:10599-10608. [PMID: 40064198 DOI: 10.1021/acsnano.4c18626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Combining spectroscopic techniques with spatially-resolved microscopy capabilities creates an avenue for in-depth investigations into understanding the impact of specific regions and features across surfaces and their relevance for resulting device performance. For device optimization and development, these techniques can be utilized as a means to identify the impacts and roles of the underlying defects and charge extraction across interfaces. Here, we highlight the ways that (correlated) spectro-microscopy methods have been utilized within the field of materials science to understand materials properties and the underlying optoelectronic processes dictating device functionality. We also give a perspective on the importance of correlated morphological and spectro-microscopy methods for future device improvement.
Collapse
Affiliation(s)
- Colette M Sullivan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Lea Nienhaus
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Gao Z, Sun J, Shi L, Yuan W, Yan H, Tian W. Precise Supramolecular Nanoarchitectonics for Simultaneous Enhanced Photoluminescence and Photocatalysis in a Co-Assembly by a Biomimetic Isolation-Conduction Strategy. Angew Chem Int Ed Engl 2025; 64:e202423174. [PMID: 39714439 DOI: 10.1002/anie.202423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions. The resultant co-assembly exhibits an enhanced monomeric green emission compared to the corresponding monocomponent self-assembly with weak red emission. Meanwhile, it also has an enhanced photocatalytic HER performance with a rate of 2.45 mmol g-1 h-1, which is 15.2 times more than the self-assembled one. On this basis, a sequential fluoric wastewater reuse system that includes real-time fluorescence detection/removal of perfluorooctanoic acids and photocatalytic HER device is constructed.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianxiang Sun
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3, Science Drive 3, Singapore, 117543, Singapore
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
7
|
Stuart AN, de la Perrelle JM, Huang DM, Kee TW. Photodegradation reveals that singlet energy transfer impedes energy-gradient-driven singlet fission in polyacene blends. Chem Sci 2025; 16:3246-3258. [PMID: 39840298 PMCID: PMC11744680 DOI: 10.1039/d4sc06702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Singlet fission (SF) is a process that is potentially beneficial for photovoltaics by producing two triplet excitons from a single photon, but its application is often hindered by the inability to effectively separate the resultant triplet excitons. It has been proposed that an energy gradient can assist in separating triplet excitons through triplet energy transfer between chromophores of different triplet energies, but this approach has only been studied in solution and the efficacy of this strategy in the solid state is under explored. Here, we investigate energy-gradient-driven SF in a disordered solid state, in the form of suspensions of 5,12-bis(triisopropylsilylethnyl)tetracene:6,13-bis(triisopropylsilylethnyl)pentance (TIPS-Tn:TIPS-Pn) blend nanoparticles (NPs). Rather than using more conventional techniques such as ultrafast (sub-nanosecond) spectroscopy, we study the photophysics in these NPs through monitoring their photodegradation. TIPS-Tn photodegrades rapidly in neat NPs, but this photodegradation is suppressed upon the addition of TIPS-Pn, indicating a decrease in the TIPS-Tn triplet population. By modeling the photodegradation over a timescale of minutes to hours, we are able to reveal details of processes on the ultrafast timescale. We show that triplet energy transfer occurs from TIPS-Tn to TIPS-Pn, leading to slower photodegradation for TIPS-Tn, and faster photodegradation for TIPS-Pn. However, modeling additionally indicates that singlet energy transfer from TIPS-Tn to TIPS-Pn also occurs, and in fact acts to reduce the efficiency of TIPS-Tn SF. Hence, in this particular system, the energy gradient impedes SF, rather than assisting it. These findings indicate that chromophore pairs must be carefully selected to switch off singlet energy transfer for the energy-gradient approach to be effective in enhancing SF.
Collapse
Affiliation(s)
- Alexandra N Stuart
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| | | | - David M Huang
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
8
|
Peinkofer KR, Williams ML, Mantel GC, Phelan BT, Young RM, Wasielewski MR. Polarity of Ordered Solvent Molecules in 9,9'-Bianthracene Single Crystals Selects between Singlet Fission or Symmetry-Breaking Charge Separation. J Am Chem Soc 2024; 146:34934-34942. [PMID: 39655818 DOI: 10.1021/jacs.4c14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Singlet exciton fission (SF) and symmetry-breaking charge separation (SB-CS) are both photophysical processes that can occur between two organic chromophores and are both of interest to improve solar energy conversion. Here, we tuned the photophysics of a 9,9'-bianthracene (BA) single crystal between SF and SB-CS using solvent intercalation to change the electric field within the crystal. Crystals of BA were grown in o-xylene, chlorobenzene, o-dichlorobenzene, and benzonitrile, as well as solvent-free from a melt. The crystals were studied by X-ray diffraction, steady-state optical spectroscopy, and transient absorption microscopy to elucidate the role of the intercalated solvent molecules. The crystals with no solvent in the structure undergo fast SF (<2 ps), while the crystals with intercalated moderately polar solvents o-xylene, chlorobenzene, and o-dichlorobenzene show evidence of charge-transfer-mediated SF. Finally, the crystals containing highly polar benzonitrile undergo SB-CS instead of SF. These results demonstrate that controlling solvation of BA in the crystal structure can tune its photophysics between SF and SB-CS.
Collapse
Affiliation(s)
- Kathryn R Peinkofer
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Georgia C Mantel
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T Phelan
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
9
|
Fukumitsu M, Fukui T, Shoji Y, Kajitani T, Khan R, Tkachenko NV, Sakai H, Hasobe T, Fukushima T. Supramolecular scaffold-directed two-dimensional assembly of pentacene into a configuration to facilitate singlet fission. SCIENCE ADVANCES 2024; 10:eadn7763. [PMID: 39270030 PMCID: PMC11397492 DOI: 10.1126/sciadv.adn7763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Molecular assemblies featuring two-dimensionality have attracted increasing attention, whereas such structures are difficult to construct simply relying on spontaneous molecular assembly. Here, we present two-dimensional assemblies of acene chromophores achieved using a tripodal triptycene supramolecular scaffold, which have been shown to exhibit a strong ability to assemble molecular and polymer motifs two-dimensionally. We designed pentacene and anthracene derivatives sandwiched by two triptycene units. These compounds assemble into expected two-dimensional structures, with the pentacene chromophores having both sufficient overlap to cause singlet fission and space for conformational change to facilitate the dissociation of a triplet pair into free triplets, which is not the case for the anthracene analog. Detailed spectroscopic analysis revealed that the pentacene chromophore in the assembly undergoes singlet fission with a quantum yield of 88 ± 5%, giving rise to triplet pairs, from which free triplets are efficiently generated (ΦT = 130 ± 8.8%). This demonstrates the utility of the triptycene-based scaffold to design functional π-electronic molecular assemblies.
Collapse
Affiliation(s)
- Masato Fukumitsu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Ramsha Khan
- Chemistry and Advanced Material Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Nikolai V Tkachenko
- Chemistry and Advanced Material Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
10
|
van Turnhout L, Congrave DG, Yu Z, Arul R, Dowland SA, Sebastian E, Jiang Z, Bronstein H, Rao A. Distance-Independent Efficiency of Triplet Energy Transfer from π-Conjugated Organic Ligands to Lanthanide-Doped Nanoparticles. J Am Chem Soc 2024; 146:22612-22621. [PMID: 39101932 PMCID: PMC11328174 DOI: 10.1021/jacs.4c07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Lanthanide-doped nanoparticles (LnNPs) possess unique optical properties and are employed in various optoelectronic and bioimaging applications. One fundamental limitation of LnNPs is their low absorption cross-section. This hurdle can be overcome through surface modification with organic chromophores with large absorption cross-sections. Controlling energy transfer from organic molecules to LnNPs is crucial for creating optically bright systems, yet the mechanisms are not well understood. Using pump-probe spectroscopy, we follow singlet energy transfer (SET) and triplet energy transfer (TET) in systems comprising different length 9,10-bis(phenylethynyl)anthracene (BPEA) derivatives coordinated onto ytterbium and neodymium-doped nanoparticles. Photoexcitation of the ligands forms singlet excitons, some of which convert to triplet excitons via intersystem crossing when coordinated to the LnNPs. The triplet generation rate and yield are strongly distance-dependent. Following their generation, TET occurs from the ligands to the LnNPs, exhibiting an exponential distance dependence, independent of solvent polarity, suggesting a concerted Dexter-type process with a damping coefficient of 0.60 Å-1. Nevertheless, TET occurs with near-unity efficiency for all BPEA derivatives due to the lack of other triplet deactivation pathways and long intrinsic triplet lifetimes. Thus, we find that close coupling is primarily important to ensure efficient triplet generation rather than efficient TET. Although SET is faster, we find its efficiency to be lower and more strongly distance-dependent than the TET efficiency. Our results present the first direct distance-dependent energy transfer measurements in LnNP@organic nanohybrids and establish the advantage of using the triplet manifold to achieve the most efficient energy transfer and best sensitization of LnNPs with π-conjugated ligands.
Collapse
Affiliation(s)
- Lars van Turnhout
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Daniel G Congrave
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Rakesh Arul
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Simon A Dowland
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ebin Sebastian
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Zhao Jiang
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Hugo Bronstein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
11
|
Sasaki Y, Georgiou K, Wang S, Bossanyi DG, Jayaprakash R, Yanai N, Kimizuka N, Lidzey DG, Musser AJ, Clark J. Radiative pumping in a strongly coupled microcavity filled with a neat molecular film showing excimer emission. Phys Chem Chem Phys 2024; 26:14745-14753. [PMID: 38716658 DOI: 10.1039/d4cp00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Strong light-matter interactions have attracted much attention as a means to control the physical/chemical properties of organic semiconducting materials with light-matter hybrids called polaritons. To unveil the processes under strong coupling, studies on the dynamics of polaritons are of particular importance. While highly condensed molecular materials with large dipole density are ideal to achieve strong coupling, the emission properties of such films often become a mixture of monomeric and excimeric components, making the role of excimers unclear. Here, we use amorphous neat films of a new bis(phenylethynyl anthracene) derivative showing only excimer emission and investigate the excited-state dynamics of a series of strongly coupled microcavities, with each cavity being characterised by a different exciton-photon detuning. A time-resolved photoluminescence study shows that the excimer radiatively pumps the lower polariton in the relaxation process and the decay profile reflects the density of states. The delayed emission derived from triplet-triplet annihilation is not sensitive to the cavity environment, possibly due to the rapid excimer formation. Our results highlight the importance of controlling intermolecular interactions towards rational design of organic exciton-polariton devices, whose performance depends on efficient polariton relaxation pathways.
Collapse
Affiliation(s)
- Yoichi Sasaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Kyriacos Georgiou
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Shuangqing Wang
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - David G Bossanyi
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Rahul Jayaprakash
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - David G Lidzey
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jenny Clark
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| |
Collapse
|
12
|
de Clercq DM, Collins MI, Sloane NP, Feng J, McCamey DR, Tayebjee MJY, Nielsen MP, Schmidt TW. Singlet fission in TIPS-anthracene thin films. Chem Sci 2024; 15:6402-6409. [PMID: 38699250 PMCID: PMC11062091 DOI: 10.1039/d3sc06774b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/24/2024] [Indexed: 05/05/2024] Open
Abstract
Singlet fission is an exciton multiplication process that allows for the conversion of one singlet exciton into two triplet excitons. Organic semiconductors, such as acenes and their soluble bis(triisopropylsilylethynyl) (TIPS) substituted counterparts, have played a major role in elucidating the understanding of the underlying mechanisms of singlet fission. Despite this, one prominent member of the acene family that has received little experimental attention to date is TIPS-anthracene, even with computational studies suggesting potential high singlet fission yields in the solid state. Here, time-resolved spectroscopic and magneto-photoluminescence measurements were performed on spin-cast films of TIPS-anthracene, showing evidence for singlet fission. A singlet fission yield of 19% (out of 200%) is estimated from transient absorption spectroscopy. Kinetic modeling of the magnetic field effect on photoluminescence suggests that fast rates of triplet dissociation lead to a low magnetic photoluminescence effect and that non-radiative decay of both the S1 and 1(TT) states is the cause for the low triplet yield.
Collapse
Affiliation(s)
- Damon M de Clercq
- School of Chemistry, ARC Centre of Excellence in Exciton Science, UNSW Sydney NSW 2052 Australia
| | - Miles I Collins
- School of Physics, ARC Centre of Excellence in Exciton Science, UNSW Sydney NSW 2052 Australia
| | - Nicholas P Sloane
- School of Physics, ARC Centre of Excellence in Exciton Science, UNSW Sydney NSW 2052 Australia
| | - Jiale Feng
- School of Chemistry, ARC Centre of Excellence in Exciton Science, UNSW Sydney NSW 2052 Australia
| | - Dane R McCamey
- School of Physics, ARC Centre of Excellence in Exciton Science, UNSW Sydney NSW 2052 Australia
| | - Murad J Y Tayebjee
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney NSW 2052 Australia
| | - Michael P Nielsen
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney NSW 2052 Australia
| | - Timothy W Schmidt
- School of Chemistry, ARC Centre of Excellence in Exciton Science, UNSW Sydney NSW 2052 Australia
| |
Collapse
|
13
|
Song X, Liu H, Liu S, Li T, Lv L, Cui B, Wang T, Chen W, Chen Y, Li X. Enhancing Triplet-Triplet Annihilation Upconversion of Pyrene Derivatives for Photoredox Catalysis via Molecular Engineering. Chemistry 2024; 30:e202302520. [PMID: 37877456 DOI: 10.1002/chem.202302520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has the potential to enhance photoredox catalysis yield. It includes a sensitizer and an annihilator. Efficient and stable annihilators are essential for photoredox catalysis, yet only a few examples are reported. Herein, we designed four novel pyrene annihilators (1, 2, 3 and 4) via introducing aryl-alkynyl groups onto pyrene to systematically modulate their singlet and triplet energies. Coupled with platinum octaethylporphyrin (PtOEP), the TTA-UC efficiency is enhanced gradually as the number of aryl-alkynyl group increases. When combining 4 with palladium tetraphenyl-tetrabenzoporphyrin (PdTPTBP), we achieved the highest red-to-green upconversion efficiency (22.4±0.3 %) (out of a 50 % maximum) so far. Then, this pair was used to activate photooxidation of aryl boronic acid under red light (630 nm), which achieved a great improved reaction yield compared to that activated by green light directly. The results not only provide a design strategy for efficient annihilators, but also show the advantage of applying TTA-UC into improving the photoredox catalysis yield.
Collapse
Affiliation(s)
- Xiaojuan Song
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Shanshan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
- Institute for Smart Materials & Engineering, University of Jinan, 250022, Jinan, China
| | - Tianyu Li
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Liping Lv
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Boce Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Tianying Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Wenmiao Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, 77842, Doha, Qatar
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| |
Collapse
|
14
|
Wang K, Chen X, Xu J, Peng S, Wu D, Xia J. Recent Advance in the Development of Singlet-Fission-Capable Polymeric Materials. Macromol Rapid Commun 2024; 45:e2300241. [PMID: 37548255 DOI: 10.1002/marc.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
15
|
Wu YY, Wu YL, Lin CL, Chen HC, Chuang YY, Chen CH, Chou CM. Butterfly-Shaped Dibenz[ a, j]anthracenes: Synthesis and Photophysical Properties. Org Lett 2023; 25:7763-7768. [PMID: 37622587 PMCID: PMC10630963 DOI: 10.1021/acs.orglett.3c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/26/2023]
Abstract
A strategy for the synthesis of dibenz[a,j]anthracenes (DBAs) from cyclohexa-2,5-diene-1-carboxylic acids is presented. Our approach involves sequential C-H olefination, cycloaddition, and decarboxylative aromatization. In the key step for DBA skeleton construction, the bis-C-H olefination products, 1,3-dienes, are utilized as substrates for [4 + 2] cycloaddition with benzyne. This concise synthetic route allows for regioselective ring formation and functional group introduction. The structural features and photophysical properties of the resulting DBA molecules are discussed.
Collapse
Affiliation(s)
- Yan-Ying Wu
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yi-Lin Wu
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Cheng-Lan Lin
- Department
of Chemical and Materials Engineering, Tamkang
University, New Taipei City 251301, Taiwan
| | - Hung-Cheng Chen
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yao-Yuan Chuang
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Chih-Hsien Chen
- Department
of Chemical Engineering, Feng Chia University, Taichung 407, Taiwan
| | - Chih-Ming Chou
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| |
Collapse
|
16
|
Surendran Rajasree S, Yu J, Fry HC, Anderson R, Xu W, Krishnan R, Duan J, Goswami S, A Gómez-Gualdrón D, Deria P. Triplet Generation Through Singlet Fission in Metal-Organic Framework: An Alternative Route to Inefficient Singlet-Triplet Intersystem Crossing. Angew Chem Int Ed Engl 2023; 62:e202305323. [PMID: 37524654 DOI: 10.1002/anie.202305323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super-exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC ) butE S 1 ≥ 2 E T 1 ${{E}_{{S}_{1}}\ge {2E}_{{T}_{1}}}$ form triplets in MOF in contrast to the frameworks that are built from linkers with sizable kISC butE S 1 ≤ 2 E T 1 ${{E}_{{S}_{1}}\le {2E}_{{T}_{1}}}$ . This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.
Collapse
Affiliation(s)
- Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., 62901, Carbondale, IL, USA
| | - Jierui Yu
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., 62901, Carbondale, IL, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave, 60439, Lemont, IL, USA
| | - Ryther Anderson
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, 80401, Golden, CO, USA
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Ave, 60439, Lemont, IL, USA
| | - Riya Krishnan
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., 62901, Carbondale, IL, USA
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, IL, USA
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, 60208, Evanston, IL, USA
| | - Diego A Gómez-Gualdrón
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, 80401, Golden, CO, USA
| | - Pravas Deria
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., 62901, Carbondale, IL, USA
| |
Collapse
|
17
|
Ringström R, Schroeder ZW, Mencaroni L, Chabera P, Tykwinski RR, Albinsson B. Triplet Formation in a 9,10-Bis(phenylethynyl)anthracene Dimer and Trimer Occurs by Charge Recombination Rather than Singlet Fission. J Phys Chem Lett 2023; 14:7897-7902. [PMID: 37642563 PMCID: PMC10494225 DOI: 10.1021/acs.jpclett.3c02050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
We present an experimental study investigating the solvent-dependent dynamics of a 9,10-bis(phenylethynyl)anthracene monomer, dimer, and trimer. Using transient absorption spectroscopy, we have discovered that triplet excited state formation in the dimer and trimer molecules in polar solvents is a consequence of charge recombination subsequent to symmetry-breaking charge separation rather than singlet fission. Total internal reflection emission measurements of the monomer demonstrate that excimer formation serves as the primary decay pathway at a high concentration. In the case of highly concentrated solutions of the trimer, we observe evidence of triplet formation without the prior formation of a charge-separated state. We postulate that this is attributed to the formation of small aggregates, suggesting that oligomers mimicking the larger chromophore counts in crystals could potentially facilitate singlet fission. Our experimental study sheds light on the intricate dynamics of the 9,10-bis(phenylethynyl)anthracene system, elucidating the role of solvent- and concentration-dependent factors for triplet formation and charge separation.
Collapse
Affiliation(s)
- Rasmus Ringström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Zachary W. Schroeder
- Department
of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Letizia Mencaroni
- Department
of Chemistry Biology and Biotechnology, University of Perugia, via elce di sotto n. 8, 06123 Perugia, Italy
| | - Pavel Chabera
- The
Division of Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden
| | - Rik R. Tykwinski
- Department
of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Bo Albinsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
18
|
Rajasree SS, Yu J, Fajardo-Rojas F, Fry HC, Anderson R, Li X, Xu W, Duan J, Goswami S, Maindan K, Gómez-Gualdrón DA, Deria P. Framework-Topology-Controlled Singlet Fission in Metal-Organic Frameworks. J Am Chem Soc 2023; 145:17678-17688. [PMID: 37527433 DOI: 10.1021/jacs.3c03918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Singlet fission (SF) has been explored as a viable route to improve photovoltaic performance by producing more excitons. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron superexchange to generate triplet pairs. However, strongly coupled chromophores often form excimers that can serve as an SF intermediate or a low-energy trap site. The succeeding decoherence process, however, requires an optimum electronic coupling to facilitate the isolation of triplet production from the initially prepared correlated triplet pair. Conformational flexibility and dielectric modulation can provide a means to tune the SF mechanism and efficiency by modulating the interchromophoric electronic interaction. Such a strategy cannot be easily adopted in densely stacked traditional organic solids. Here, we show that the assembly of the SF-active chromophores around well-defined pores of solution-stable metal-organic frameworks (MOFs) can be a great platform for a modular SF process. A series of three new MOFs, built out from 9,10-bis(ethynylenephenyl)anthracene-derived struts, show a topology-defined packing density and conformational flexibility of the anthracene core to dictate the SF mechanism. Various steady-state and transient spectroscopic data suggest that the initially prepared singlet population can prefer either an excimer-mediated SF or a direct SF (both through a virtual charge-transfer (CT) state). These solution-stable frameworks offer the tunability of the dielectric environment to facilitate the SF process by stabilizing the CT state. Given that MOFs are a great platform for various photophysical and photochemical developments, generating a large population of long-lived triplets can expand their utilities in various photon energy conversion schemes.
Collapse
Affiliation(s)
- Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Jierui Yu
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Fernando Fajardo-Rojas
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Ryther Anderson
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Xinlin Li
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karan Maindan
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Diego A Gómez-Gualdrón
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
19
|
Knorr ES, Basquill CT, Bertini IA, Arcidiacono A, Beery D, Wheeler JP, Winfred JSRV, Strouse GF, Hanson K. Influence of Al 2O 3 Overlayers on Intermolecular Interactions between Metal Oxide Bound Molecules. Molecules 2023; 28:4835. [PMID: 37375390 DOI: 10.3390/molecules28124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Intermolecular interactions on inorganic substrates can have a critical impact on the electrochemical and photophysical properties of the materials and subsequent performance in hybrid electronics. Critical to the intentional formation or inhibition of these processes is controlling interactions between molecules on a surface. In this report, we investigated the impact of surface loading and atomic-layer-deposited Al2O3 overlayers on the intermolecular interactions of a ZrO2-bound anthracene derivative as probed by the photophysical properties of the interface. While surface loading density had no impact on the absorption spectra of the films, there was an increase in excimer features with surface loading as observed by both emission and transient absorption. The addition of ALD overlayers of Al2O3 resulted in a decrease in excimer formation, but the emission and transient absorption spectra were still dominated by excimer features. These results suggest that ALD may provide a post-surface loading means of influencing such intermolecular interactions.
Collapse
Affiliation(s)
- Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Cody T Basquill
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Isabella A Bertini
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Ashley Arcidiacono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Drake Beery
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Jonathan P Wheeler
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - J S Raaj Vellore Winfred
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
20
|
Huang CH, Wu CC, Li EY, Chou PT. Quest for singlet fission of organic sulfur-containing systems in the higher lying singlet excited state: application prospects of anti-Kasha's rule. Phys Chem Chem Phys 2023; 25:9115-9122. [PMID: 36928330 DOI: 10.1039/d3cp00298e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In this study, we explore the possibilities of the deactivating pathways of organic thione containing systems through first-principles calculations. We particularly pay attention to the second lying singlet excited state, S2, due to its large energy difference from the lowest lying S1 state in the sulfur-containing systems. Several theoretical models including the previously synthesized thiones and the strategically designed molecules are investigated to search for the basic conjugation unit that exhibits the prospect of S2 fission. Various molecular motifs and different substituents are combined to maneuver the relative alignment of the relevant low excited energy states. The results lead us to conclude that the thione derivatives, under rational and delicate molecular designs, may be engineered to possess a sufficiently high S2-S1 energy gap as high as 2 eV and that these systems may exhibit S2 fission to triplet excitons in the red to near infrared region.
Collapse
Affiliation(s)
- Chun-Hao Huang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Elise Y Li
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
21
|
Lin C, Qi Y, Brown PJ, Williams ML, Palmer JR, Myong M, Zhao X, Young RM, Wasielewski MR. Singlet Fission in Perylene Monoimide Single Crystals and Polycrystalline Films. J Phys Chem Lett 2023; 14:2573-2579. [PMID: 36880847 DOI: 10.1021/acs.jpclett.2c03621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Singlet fission (SF) is a spin-allowed process in which a photogenerated singlet exciton down-converts into two triplet excitons. Perylene-3,4-dicarboximide (PMI) has singlet and triplet state energies of 2.4 and 1.1 eV, respectively; thus making SF slightly exoergic and providing triplet excitons that have sufficient energy to raise the efficiency of single-junction solar cells by reducing thermalization losses from hot excitons formed when absorbed photons have energies higher than the semiconductor bandgap. However, PMI SF in the solid state has not been studied previously. Here, we show that 2,5-diphenyl-N-(2-ethylhexyl)perylene-3,4-dicarboximide (dp-PMI) crystallizes into a slip-stacked intermolecular morphology favorable for SF. Transient absorption microscopy and spectroscopy show that dp-PMI SF occurs in ≤50 ps in both single crystals and polycrystalline thin films with a triplet yield of 150 ± 20%. Ultrafast SF in the solid state, the high triplet yield, and its photostability make dp-PMI an attractive candidate for SF-enhanced solar cells.
Collapse
Affiliation(s)
- Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Yue Qi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paige J Brown
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jonathan R Palmer
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Michele Myong
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Xingang Zhao
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| |
Collapse
|
22
|
Goudarzi H, Koutsokeras L, Balawi AH, Sun C, Manolis GK, Gasparini N, Peisen Y, Antoniou G, Athanasopoulos S, Tselios CC, Falaras P, Varotsis C, Laquai F, Cabanillas-González J, Keivanidis PE. Microstructure-driven annihilation effects and dispersive excited state dynamics in solid-state films of a model sensitizer for photon energy up-conversion applications. Chem Sci 2023; 14:2009-2023. [PMID: 36845913 PMCID: PMC9945257 DOI: 10.1039/d2sc06426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Bimolecular processes involving exciton spin-state interactions gain attention for their deployment as wavelength-shifting tools. Particularly triplet-triplet annihilation induced photon energy up-conversion (TTA-UC) holds promise to enhance the performance of solar cell and photodetection technologies. Despite the progress noted, a correlation between the solid-state microstructure of photoactuating TTA-UC organic composites and their photophysical properties is missing. This lack of knowledge impedes the effective integration of functional TTA-UC interlayers as ancillary components in operating devices. We here investigate a solution-processed model green-to-blue TTA-UC binary composite. Solid-state films of a 9,10 diphenyl anthracene (DPA) blue-emitting activator blended with a (2,3,7,8,12,13,17,18-octaethyl-porphyrinato) PtII (PtOEP) green-absorbing sensitizer are prepared with a range of compositions and examined by a set of complementary characterization techniques. Grazing incidence X-ray diffractometry (GIXRD) measurements identify three PtOEP composition regions wherein the DPA:PtOEP composite microstructure varies due to changes in the packing motifs of the DPA and PtOEP phases. In Region 1 (≤2 wt%) DPA is semicrystalline and PtOEP is amorphous, in Region 2 (between 2 and 10 wt%) both DPA and PtOEP phases are amorphous, and in Region 3 (≥10 wt%) DPA remains amorphous and PtOEP is semicrystalline. GIXRD further reveals the metastable DPA-β polymorph species as the dominant DPA phase in Region 1. Composition dependent UV-vis and FT-IR measurements identify physical PtOEP dimers, irrespective of the structural order in the PtOEP phase. Time-gated photoluminescence (PL) spectroscopy and scanning electron microscopy imaging confirm the presence of PtOEP aggregates, even after dispersing DPA:PtOEP in amorphous poly(styrene). When arrested in Regions 1 and 2, DPA:PtOEP exhibits delayed PtOEP fluorescence at 580 nm that follows a power-law decay on the ns time scale. The origin of PtOEP delayed fluorescence is unraveled by temperature- and fluence-dependent PL experiments. Triplet PtOEP excitations undergo dispersive diffusion and enable TTA reactions that activate the first singlet-excited (S1) PtOEP state. The effect is reproduced when PtOEP is mixed with a poly(fluorene-2-octyl) (PFO) derivative. Transient absorption measurements on PFO:PtOEP films find that selective PtOEP photoexcitation activates the S1 of PFO within ∼100 fs through an up-converted 3(d, d*) PtII-centered state.
Collapse
Affiliation(s)
- Hossein Goudarzi
- Centre for Nano Science and Technology @PoliMi, Fondazione Istituto Italiano di Tecnologia 20133 Milano Italy
| | - Loukas Koutsokeras
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Ahmed H Balawi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Chen Sun
- IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco Calle Faraday 9 ES 28049 Madrid Spain
| | - Giorgos K Manolis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Nicola Gasparini
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Department of Chemistry, Centre for Processable Electronics, Imperial College London W120BZ UK
| | - Yuan Peisen
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Giannis Antoniou
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | | | - Charalampos C Tselios
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Constantinos Varotsis
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | | | - Panagiotis E Keivanidis
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| |
Collapse
|
23
|
Sullivan CM, Nienhaus L. Generating spin-triplet states at the bulk perovskite/organic interface for photon upconversion. NANOSCALE 2023; 15:998-1013. [PMID: 36594272 DOI: 10.1039/d2nr05767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskite-sensitized triplet-triplet annihilation (TTA) upconversion (UC) holds potential for practical applications of solid-state UC ranging from photovoltaics to sensing and imaging technologies. As the triplet sensitizer, the underlying perovskite properties heavily influence the generation of spin-triplet states once interfaced with the organic annihilator molecule, typically polyacene derivatives. Presently, most reported perovskite TTA-UC systems have utilized rubrene doped with ∼1% dibenzotetraphenylperiflanthene (RubDBP) as the annihilator/emitter species. However, practical applications require a larger apparent anti-Stokes than is currently achievable with this system due to the inherent 0.4 eV energy loss during triplet generation. In this minireview, we present the current understanding of the triplet sensitization process at the perovskite/organic semiconductor interface and introduce additional promising annihilators based on anthracene derivatives into the discussion of future directions in perovskite-sensitized TTA-UC.
Collapse
Affiliation(s)
- Colette M Sullivan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Lea Nienhaus
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
24
|
Sahu S, Parthasarathy V, Mishra AK. Phenylethynylanthracene based push-pull molecular systems: tuning the photophysics through para-substituents on the phenyl ring. Phys Chem Chem Phys 2023; 25:1957-1969. [PMID: 36541448 DOI: 10.1039/d2cp05074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organic push-pull molecules contain donor and acceptor moieties connected via π-linkages through which intramolecular electron charge transfer (ICT) can occur in the ground and excited states; giving these molecules interesting photophysical properties. The molecules chosen in this work are some basic phenylethynylanthracene derivatives to show that with just a change of substituents this class of small molecules can show dramatic changes in their photophysical properties. The emission properties and ICT abilities of these molecules are compared with regards to various electron donating and withdrawing substituents. Substituents such as cyano and methoxycarbonyl groups do not induce any ICT character whereas substituents like aldehyde, N,N-dimethylamino and nitro groups cause appreciable ICT character in this class of molecules and their emission spectra extend almost throughout the whole visible region. The comparative ICT character was correlated with the results of electron density difference calculations. Computational studies show that the molecules are planar in their ground as well as excited states; except the nitro group containing molecule, which has an orthogonally twisted structure in the excited state. The emission properties of this molecule led to its inclusion into a class of nitroaromatics which shows maximum emission intensity in moderately polar solvents and the emission is quenched drastically by either decreasing or increasing solvent polarity. Fluorescence anisotropy studies show very good sensitivity of these compounds towards microviscosity of their immediate molecular environment. A white light emitting (WLE) gel was prepared using 4-(anthracen-9-ylethynyl)benzonitrile (AnPCN) and 4-(anthracen-9-ylethynyl)-N,N-dimethylaniline (AnPNMe2) by taking polyvinyl alcohol (PVA) as the gelator and the resulting gel exhibited very good CIE (0.31, 0.33) with CCT (6598 K) and CRI (87). As an example, the use of the gel was also demonstrated by applying it to a commercial UV LED which showed satisfactory results. AnPNMe2 was used to sense polar solvent vapors in TLC plates and Whatman paper due to its good solvatochromic behavior.
Collapse
Affiliation(s)
- Sonali Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | | | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
25
|
Fallon K, Sawhney N, Toolan DTW, Sharma A, Zeng W, Montanaro S, Leventis A, Dowland S, Millington O, Congrave D, Bond A, Friend R, Rao A, Bronstein H. Quantitative Singlet Fission in Solution-Processable Dithienohexatrienes. J Am Chem Soc 2022; 144:23516-23521. [PMID: 36575926 PMCID: PMC9801381 DOI: 10.1021/jacs.2c10254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 12/29/2022]
Abstract
Singlet fission (SF) is a promising strategy to overcome thermalization losses and enhance the efficiency of single junction photovoltaics (PVs). The development of this field has been strongly material-limited, with a paucity of materials able to undergo SF. Rarer still are examples that can produce excitons of sufficient energy to be coupled to silicon PVs (>1.1 eV). Herein, we examine a series of a short-chain polyene, dithienohexatriene (DTH), with tailored material properties and triplet (T1) energy levels greater than 1.1 eV. We find that these highly soluble materials can be easily spin-cast to create thin films of high crystallinity that exhibit ultrafast singlet fission with near perfect triplet yields of up to 192%. We believe that these materials are the first solution-processable singlet fission materials with quantitative triplet formation and energy levels appropriate for use in conjunction with silicon PVs.
Collapse
Affiliation(s)
- Kealan
J. Fallon
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Nipun Sawhney
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Daniel T. W. Toolan
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Ashish Sharma
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Weixuan Zeng
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Anastasia Leventis
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Simon Dowland
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Oliver Millington
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Daniel Congrave
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Andrew Bond
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Richard Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
26
|
Sullivan CM, Nienhaus L. Recharging upconversion: revealing rubrene's replacement. NANOSCALE 2022; 14:17254-17261. [PMID: 36374134 DOI: 10.1039/d2nr05309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
One of the major limitations of solid-state perovskite-sensitized photon upconversion to date is that the only annihilator successfully paired with the perovskite sensitizer has been rubrene, raising the question of whether this appraoch of triplet sensitization is universal or limited in scope. Additionally, the inherent energetic mismatch between the perovskite bandgap and the rubrene triplet energy has restricted the apparent anti-Stokes shift achievable in the upconversion process. To increase the apparent anti-Stokes shift for upconversion processes, anthracene derivates are of particular interest due to their higher triplet energies. Here, we demonstrate successful sensitization of the triplet state of 1-chloro-9,10-bis(phenylethynyl)anthracene using the established formamidinium methylammonium lead triiodide perovskite FA0.85MA0.15PbI3, resulting in upconverted emission at 550 nm under 780 nm excitation. We draw a direct comparison to rubrene to unravel the underlying differences in the upconversion processes.
Collapse
Affiliation(s)
- Colette M Sullivan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Lea Nienhaus
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
27
|
Influence of core-twisted structure on singlet fission in perylenediimide film. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Wang L, Jiang W, Guo S, Wang S, Zhang M, Liu Z, Wang G, Miao Y, Yan L, Shao JY, Zhong YW, Liu Z, Zhang D, Fu H, Yao J. Robust singlet fission process in strong absorption π-expanded diketopyrrolopyrroles. Chem Sci 2022; 13:13907-13913. [PMID: 36544745 PMCID: PMC9710207 DOI: 10.1039/d2sc05580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Singlet fission (SF) has drawn tremendous attention as a multiexciton generation process that could mitigate the thermal loss and boost the efficiency of solar energy conversion. Although a SF-based solar cell with an EQE above 100% has already been fabricated successfully, the practical efficiency of the corresponding devices is plagued by the limited scope of SF materials. Therefore, it is of great importance to design and develop new SF-capable compounds aiming at practical device application. In the current contribution, via a π-expanded strategy, we presented a new series of robust SF chromophores based on polycyclic DPP derivatives, Ex-DPPs. Compared to conventional DPP molecules, Ex-DPPs feature strong absorption with a fivefold extinction coefficient, good molecular rigidity to effectively restrain non-radiative deactivation, and an expanded π-skeleton which endow them with well-suited intermolecular packing geometries for achieving efficient SF process. These results not only provide a new type of high-efficiency SF chromophore but also address some basic guidelines for the design of potential SF materials targeting practical light harvesting applications.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China
| | - Shaoting Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Senhao Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Mengfan Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Zuyuan Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Guoliang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou UniversityLanzhou 730000China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal UniversityBeijing 100048China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| |
Collapse
|
29
|
Fureraj I, Budkina DS, Vauthey E. Torsional disorder and planarization dynamics: 9,10-bis(phenylethynyl)anthracene as a case study. Phys Chem Chem Phys 2022; 24:25979-25989. [PMID: 36263805 PMCID: PMC9627944 DOI: 10.1039/d2cp03909e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 06/14/2023]
Abstract
Conjugated molecules with phenylethynyl building blocks are usually characterised by torsional disorder at room temperature. They are much more rigid in the electronic excited state due to conjugation. As a consequence, the electronic absorption and emission spectra do not present a mirror-image relationship. Here, we investigate how torsional disorder affects the excited state dynamics of 9,10-bis(phenylethynyl)anthracene in solvents of different viscosities and in polymers, using both stationary and ultrafast electronic spectroscopies. Temperature-dependent measurements reveal inhomogeneous broadening of the absorption spectrum at room temperature. This is confirmed by ultrafast spectroscopic measurements at different excitation wavelengths. Red-edge irradiation excites planar molecules that return to the ground state without significant structural dynamics. In this case, however, re-equilibration of the torsional disorder in the ground state can be observed. Higher-energy irradiation excites torsionally disordered molecules, which then planarise, leading to important spectral dynamics. The latter is found to occur partially via viscosity-independent inertial motion, whereas it is purely diffusive in the ground state. This dissimilarity is explained in terms of the steepness of the potential along the torsional coordinate.
Collapse
Affiliation(s)
- Ina Fureraj
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Darya S Budkina
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
30
|
Pensack RD, Purdum GE, Mazza SM, Grieco C, Asbury JB, Anthony JE, Loo YL, Scholes GD. Excited-State Dynamics of 5,14- vs 6,13-Bis(trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:9784-9793. [PMID: 35756579 PMCID: PMC9210346 DOI: 10.1021/acs.jpcc.2c00897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/20/2022] [Indexed: 05/16/2023]
Abstract
Singlet fission is a process in conjugated organic materials that has the potential to considerably improve the performance of devices in many applications, including solar energy conversion. In any application involving singlet fission, efficient triplet harvesting is essential. At present, not much is known about molecular packing arrangements detrimental to singlet fission. In this work, we report a molecular packing arrangement in crystalline films of 5,14-bis(triisopropylsilylethynyl)-substituted pentacene, specifically a local (pairwise) packing arrangement, responsible for complete quenching of triplet pairs generated via singlet fission. We first demonstrate that the energetic condition necessary for singlet fission is satisfied in amorphous films of the 5,14-substituted pentacene derivative. However, while triplet pairs form highly efficiently in the amorphous films, only a modest yield of independent triplets is observed. In crystalline films, triplet pairs also form highly efficiently, although independent triplets are not observed because triplet pairs decay rapidly and are quenched completely. We assign the quenching to a rapid nonadiabatic transition directly to the ground state. Detrimental quenching is observed in crystalline films of two additional 5,14-bis(trialkylsilylethynyl)-substituted pentacenes with either ethyl or isobutyl substituents. Developing a better understanding of the losses identified in this work, and associated molecular packing, may benefit overcoming losses in solids of other singlet fission materials.
Collapse
Affiliation(s)
- Ryan D. Pensack
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Geoffrey E. Purdum
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Samuel M. Mazza
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Christopher Grieco
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B. Asbury
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John E. Anthony
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yueh-Lin Loo
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Murayama N, Jorolan JH, Minoura M, Nakano H, Ikoma T, Matano Y. 9‐(Diphenylphosphoryl)‐10‐(phenylethynyl)anthracene Derivatives: Synthesis and Implications for the Substituent and Solvent Effects on the Light‐Emitting Properties. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nina Murayama
- Niigata University Faculty of Science: Niigata Daigaku Rigakubu Department of Fundamental Sciences Nishi-ku 950-2181 Niigata JAPAN
| | - Joel Hao Jorolan
- Niigata University Faculty of Science: Niigata Daigaku Rigakubu Department of Chemistry Nishi-ku 950-2181 Niigata JAPAN
| | - Mao Minoura
- Rikkyo University College of Science: Rikkyo Daigaku Rigakubu Daigakuin Rigaku Kekyuka Department of Chemistry Toshima-ku 171-8501 Tokyo JAPAN
| | - Haruyuki Nakano
- Kyushu University Faculty of Sciences Graduate School of Sciences: Kyushu Daigaku Rigaku Kenkyuin Rigakufu Rigakubu Department of Chemistry Nishi-ku 819-0395 Fukuoka JAPAN
| | - Tadaaki Ikoma
- Niigata University Faculty of Science: Niigata Daigaku Rigakubu Department of Chemistry Nishi-ku 950-2181 Niigata JAPAN
| | - Yoshihiro Matano
- Niigata University Department of Chemistry Nishi-ku 950-2181 Niigata JAPAN
| |
Collapse
|
32
|
Fan S, Li W, Li T, Gao F, Hu W, Liu S, Wang X, Liu H, Liu Z, Li Z, Chen Y, Li X. Singlet fission in colloid nanoparticles of amphipathic 9,10-bis(phenylethynyl)anthracene derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Van der Zee B, Li Y, Wetzelaer GJAH, Blom PWM. Efficiency of Polymer Light-Emitting Diodes: A Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108887. [PMID: 34786784 DOI: 10.1002/adma.202108887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The various contributions to the external quantum efficiency (EQE) of polymer light-emitting diodes (PLEDs) are discussed. The EQE of an organic light-emitting diode is governed by a number of parameters, such as the electrical efficiency, the photoluminescence quantum yield (PLQY), the optical outcoupling efficiency and the spin statistics for singlet exciton generation. In the last decade, the electrical efficiency has been determined from a numerical PLED device model. More recently, an optical model to simulate the fraction of photons outcoupled to air for PLEDs with a broad recombination zone has been developed. Together with the directly measured PLQY, the EQE of a PLED can then be estimated. However, it has been observed that the measured EQEs of fluorescent PLEDs, including the model system super-yellow poly(p-phenylene vinylene) (SY-PPV) often exceed the expected values. To solve this discrepancy, it is demonstrate that the electrical PLED model has to be expanded by the inclusion of triplet-triplet annihilation (TTA), which is shown to be responsible for a substantial EQE enhancement. Experimentally, it is obtained that TTA contributes to a singlet-exciton generation efficiency of ≈40% in SY-PPV PLEDs, giving rise to an EQE of ≈4% instead of the expected value of 2.5%.
Collapse
Affiliation(s)
- Bas Van der Zee
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Yungui Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | | | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
34
|
Liu E, Liu X, Jin Z, Jian F. Study on the relationship between structure and fluorescence properties of anthracene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Manna B, Nandi A. Singlet fission in nanoaggregate of bis(phenylethynyl) derivative of benzene (BPEB): High energy triplet exciton generation with >100 % yield. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Wang L, Zhang TS, Fu L, Xie S, Wu Y, Cui G, Fang WH, Yao J, Fu H. High-Lying 3 1A g Dark-State-Mediated Singlet Fission. J Am Chem Soc 2021; 143:5691-5697. [PMID: 33843229 DOI: 10.1021/jacs.0c11681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF), the conversion of one high-energy singlet to two low-energy triplets, provides the potential to increase the efficiency of photovoltaic devices. In the SF chromophores with C2h symmetry, exemplified by polyenes, singlet-to-triplet conversion generally involves a low-lying 21Ag dark state, which serves as either a multiexciton (ME) intermediate to promote the SF process or a parasitic trap state to shunt excited-state populations via internal conversion. This controversial behavior calls for a deep understanding of dark-state-related photophysics involving the higher-lying singlet state. However, the optical "dark" and "transient" nature of these dark states and strong correlation feature of double exciton species make their characterization and interpretation challenging from both experimental and computational perspectives. In the present work combining transient spectroscopy and multireference electronic structure calculations (XDW-CASPT2), we addressed a new photophysical model, i.e., a high-lying 31Ag dark-state-mediated ultrafast SF process in the benzodipyrrolidone (BDPP) skeleton. Such a 31Ag dark state with distinctive double excitation character, described as the ME state, could be populated from the initial 11Bu bright state on an ultrafast time scale given the quasi-degeneracy and intersection of the two electronic states. Furthermore, the suitable optical band gap and triplet energy, high triplet yield, and excellent photostability render BDPP a promising SF candidate for photovoltaic devices. These results not only enrich the arsenal of SF materials but also shed new insights into the understanding of dark-state-related photophysics, which could promote the development of new SF-active materials.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Liyuan Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shaohua Xie
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
37
|
Congrave DG, Drummond BH, Gray V, Bond AD, Rao A, Friend RH, Bronstein H. Suppressing aggregation induced quenching in anthracene based conjugated polymers. Polym Chem 2021. [DOI: 10.1039/d1py00118c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate an anthracene based conjugated polymer with a solid state PLQY that is effectively unchanged compared to solution measurements, alongside an identical PL 0–0 transition wavelength in solution and thin film.
Collapse
Affiliation(s)
| | | | - Victor Gray
- Cavendish Laboratory
- University of Cambridge
- Cambridge
- UK
- Department of Chemistry – Ångström Laboratory
| | - Andrew D. Bond
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Akshay Rao
- Cavendish Laboratory
- University of Cambridge
- Cambridge
- UK
| | | | - Hugo Bronstein
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
- Cavendish Laboratory
| |
Collapse
|
38
|
Bae YJ, Shimizu D, Schultz JD, Kang G, Zhou J, Schatz GC, Osuka A, Wasielewski MR. Balancing Charge Transfer and Frenkel Exciton Coupling Leads to Excimer Formation in Molecular Dimers: Implications for Singlet Fission. J Phys Chem A 2020; 124:8478-8487. [DOI: 10.1021/acs.jpca.0c07646] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Daiki Shimizu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jonathan D. Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Gyeongwon Kang
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jiawang Zhou
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - George C. Schatz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
39
|
Young RM, Wasielewski MR. Mixed Electronic States in Molecular Dimers: Connecting Singlet Fission, Excimer Formation, and Symmetry-Breaking Charge Transfer. Acc Chem Res 2020; 53:1957-1968. [PMID: 32786248 DOI: 10.1021/acs.accounts.0c00397] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ConspectusChromophore aggregates are capable of a wide variety of excited-state dynamics that are potentially of great use in optoelectronic devices based on organic molecules. For example, singlet fission, the process by which a singlet exciton is down converted into two triplet excitons, holds promise for extending the efficiency of solar cells, while other processes, such as excimer formation, are commonly regarded as parasitic pathways or traps. Other processes, such as symmetry-breaking charge transfer, where the excited dimer charge separates into a radical ion pair, can be both a trap and potentially useful in devices, depending on the context. Thus, an understanding of the precise mechanisms of each of these processes is vital to designing tailor-made organic chromophores for molecular optoelectronics.These excited-state phenomena have each been well-studied in recent years and show tantalizing connections as the molecular systems and environments are subtly changed. These seemingly disparate phenomena can be described within the same unifying framework, where each case can be represented as one point in continuum of mixed states. The coherent mixed state is observed experimentally, and it collapses to each of the limiting cases under well-defined conditions. This framework is especially useful in demonstrating the connections between these different states so that we can determine the factors that control their evolution and may ultimately guide the state mixtures to the product state of choice. The emerging picture shows that tuning the electronic coupling through proper arrangement of the chromophores must accompany environmental tuning of the chromophore energies to produce a fully mixed state. Changes in either of these quantities leads to evolution of the admixture and ultimately collapsing the superposition onto a given state, producing one of the photophysical pathways discussed above.In our laboratory, we are utilizing covalent dimers to precisely arrange the chromophores in rigid, well-defined geometries to systematically study the factors that determine the degree of state mixing and its fate. We interrogate these dynamics with transient absorption spectroscopy from the UV continuously into the mid-infrared, along with time-resolved Raman and emission and magnetic resonance spectroscopies to build a complete and detailed molecular level picture of the dynamics of these dimers. The knowledge gained from dimer studies can also be applied to the understanding the dynamics in extended molecular solids. The insight afforded by these studies will help guide the creation of new designer chromophores with control over the fate of the excited state.
Collapse
Affiliation(s)
- Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
40
|
Goto M, Yajima T, Minami M, Sogawa H, Sanda F. Synthesis and Cross-Linking of a Benzoxazine-Containing Anthracene Moiety: Thermally Stable Photoluminescent Benzoxazine Resin. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahide Goto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tatsuo Yajima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Masaki Minami
- Chemicals R&D Group, HPM Research and Development Department, High Performance Materials Company, JXTG Nippon Oil and Energy Corporation, 8 Chidori-cho, Naka-ku, Yokohama, Kanagawa 231-0815, Japan
| | - Hiromitsu Sogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
41
|
Singlet Fission in Self-assembled Amphipathic Tetracene Nanoparticles: Probing the Role of Charge-transfer State. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Wang L, Lin L, Yang J, Wu Y, Wang H, Zhu J, Yao J, Fu H. Singlet Fission in a Pyrrole-Fused Cross-Conjugated Skeleton with Adaptive Aromaticity. J Am Chem Soc 2020; 142:10235-10239. [PMID: 32437140 DOI: 10.1021/jacs.0c00089] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Singlet fission (SF) materials hold the potential to increase the power conversion efficiency of solar cells by reducing the thermalization of high-energy excited states. The major hurdle in realizing this potential is the limited scope of SF-active materials with high fission efficiency, suitable energy levels, and sufficient chemical stability. Herein, using theoretical calculation and time-resolved spectroscopy, we developed a highly stable SF material based on dipyrrolonaphthyridinedione (DPND), a pyrrole-fused cross-conjugated skeleton with a distinctive adaptive aromaticity (dual aromaticity) character. The embedded pyrrole ring with 4n+2 π-electron features aromaticity in the ground state, while the dipole resonance of the amide bonds promotes a 4n π-electron Baird's aromaticity in the triplet state. Such an adaptive aromaticity renders the molecule efficient for the SF process [E(S1) ≥ 2E(T1)] without compromising its stability. Up to 173% triplet yield, strong blue-green light absorption, and suitable triplet energy of 1.2 eV, as well as excellent stability, make DPND a promising SF sensitizer toward practical applications.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingjing Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiannian Yao
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.,Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
43
|
Manna B, Nandi A. Exploration of photophysics and presence of Long singlet exciton diffusion length in dibenz[a,h]anthracene nanoaggregates. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Wu G, Bae YJ, Olesińska M, Antón-García D, Szabó I, Rosta E, Wasielewski MR, Scherman OA. Controlling the structure and photophysics of fluorophore dimers using multiple cucurbit[8]uril clampings. Chem Sci 2019; 11:812-825. [PMID: 34123057 PMCID: PMC8146025 DOI: 10.1039/c9sc04587b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A modular strategy has been employed to develop a new class of fluorescent molecules, which generates discrete, dimeric stacked fluorophores upon complexation with multiple cucurbit[8]uril macrocycles. The multiple constraints result in a “static” complex (remaining as a single entity for more than 30 ms) and facilitate fluorophore coupling in the ground state, showing a significant bathochromic shift in absorption and emission. This modular design is surprisingly applicable and flexible and has been validated through an investigation of nine different fluorophore cores ranging in size, shape, and geometric variation of their clamping modules. All fluorescent dimers evaluated can be photo-excited to atypical excimer-like states with elongated excited lifetimes (up to 37 ns) and substantially high quantum yields (up to 1). This strategy offers a straightforward preparation of discrete fluorophore dimers, providing promising model systems with explicitly stable dimeric structures and tunable photophysical features, which can be utilized to study various intermolecular processes. Dimerisation of a wide range of fluorophores through multiple CB[8] clampings leads to constrained intracomplex motion and distinct photophysical properties.![]()
Collapse
Affiliation(s)
- Guanglu Wu
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Youn Jue Bae
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Magdalena Olesińska
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Daniel Antón-García
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - István Szabó
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Edina Rosta
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Michael R Wasielewski
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
45
|
Blunt NS. A hybrid approach to extending selected configuration interaction and full configuration interaction quantum Monte Carlo. J Chem Phys 2019; 151:174103. [DOI: 10.1063/1.5123146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Nick S. Blunt
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
46
|
Zaykov A, Felkel P, Buchanan EA, Jovanovic M, Havenith RWA, Kathir RK, Broer R, Havlas Z, Michl J. Singlet Fission Rate: Optimized Packing of a Molecular Pair. Ethylene as a Model. J Am Chem Soc 2019; 141:17729-17743. [PMID: 31509712 DOI: 10.1021/jacs.9b08173] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A procedure is described for unbiased identification of all π-electron chromophore pair geometry choices that locally maximize the rate of conversion of a singlet exciton into a singlet biexciton (triplet pair), using a simplified version of the diabatic frontier orbital model of singlet fission (SF). The resulting approximate optimal geometries provide insight and are expected to represent useful starting points for searches by more advanced methods. The general procedure is illustrated on a pair of ethylenes as the simplest model of a π-electron system, but it is applicable to pairs of much larger molecules, with dozens of non-hydrogen atoms, and not necessarily planar. We first examine the value of |TA|2, the square of the electronic matrix element for SF with initial excitation fully localized on partner A, on a grid of several billion geometries within the six-dimensional space of physically realizable possibilities. Several of the optimized pair geometries are somewhat unexpected, but all are found to follow the qualitative guidance proposed earlier. In the neighborhood of each local maximum of |TA|2, consideration of mixing with charge-transfer configurations and of excitonic interaction between partners A and B determines the SF energy balance and yields squared matrix elements |T*|2 and |T**|2 for the lower and upper excitonic states S* and S**, respectively. Assuming Boltzmann populations of these states, the geometry is further optimized to maximize k, the sum of the SF rates obtained from Marcus theory, and this reorders the suitable geometries substantially. At 87 pair geometries, the |T*|2 and |T**|2 values are compared with those obtained from high-level ab initio nonorthogonal configuration interaction calculations and found to follow the same trend. Finally, the biexciton binding energy at the optimized geometries is calculated. Altogether, 13 significant local maxima of SF rate for a pair of ethylenes are identified in the physically relevant part of space that avoids molecular interpenetration in the hard-sphere approximation. The three best geometries are twist-stacked, slip-stacked, and L-shaped. The maxima occur at the (five-dimensional) surfaces of seven six-dimensional "parent" regions of space centered at physically inaccessible geometries at which the calculated SF rate is very large but the two ethylenes interpenetrate. The results are displayed in interactive graphics. The computer code ("Simple") written for these calculations is flexible in that it permits a choice of performing the search for local maxima in six dimensions on |TA|2, |T*|2, or k. It is available as freeware at https://cloud.uochb.cas.cz/simple .
Collapse
Affiliation(s)
- Alexandr Zaykov
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 16610 Prague 6, Czech Republic.,Department of Physical Chemistry , University of Chemistry and Technology , 16628 Prague 6, Czech Republic
| | - Petr Felkel
- Faculty of Electrical Engineering , Czech Technical University in Prague , 16627 Prague 6, Czech Republic
| | - Eric A Buchanan
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Milena Jovanovic
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Remco W A Havenith
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands.,Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands.,Department of Inorganic and Physical Chemistry , Ghent University , Krijgslaan 281 (S3) , B-9000 Gent , Belgium
| | - R K Kathir
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands
| | - Ria Broer
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands
| | - Zdeněk Havlas
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 16610 Prague 6, Czech Republic
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 16610 Prague 6, Czech Republic.,Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| |
Collapse
|
47
|
Kaneko T, Araki Y, Shinohara KI, Teraguchi M, Aoki T. Antiparallel Arrangement of 2,7-Substituted 9,10-Bis(phenylethynyl)anthracene Assisted by Hydrogen Bonding of Terminal Units. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Kaneko
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Yosuke Araki
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Ken-ichi Shinohara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Teraguchi
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Toshiki Aoki
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| |
Collapse
|
48
|
Perkinson CF, Tabor DP, Einzinger M, Sheberla D, Utzat H, Lin TA, Congreve DN, Bawendi MG, Aspuru-Guzik A, Baldo MA. Discovery of blue singlet exciton fission molecules via a high-throughput virtual screening and experimental approach. J Chem Phys 2019; 151:121102. [PMID: 31575171 DOI: 10.1063/1.5114789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Singlet exciton fission is a mechanism that could potentially enable solar cells to surpass the Shockley-Queisser efficiency limit by converting single high-energy photons into two lower-energy triplet excitons with minimal thermalization loss. The ability to make use of singlet exciton fission to enhance solar cell efficiencies has been limited, however, by the sparsity of singlet fission materials with triplet energies above the bandgaps of common semiconductors such as Si and GaAs. Here, we employ a high-throughput virtual screening procedure to discover new organic singlet exciton fission candidate materials with high-energy (>1.4 eV) triplet excitons. After exploring a search space of 4482 molecules and screening them using time-dependent density functional theory, we identify 88 novel singlet exciton fission candidate materials based on anthracene derivatives. Subsequent purification and characterization of several of these candidates yield two new singlet exciton fission materials: 9,10-dicyanoanthracene (DCA) and 9,10-dichlorooctafluoroanthracene (DCOFA), with triplet energies of 1.54 eV and 1.51 eV, respectively. These materials are readily available and low-cost, making them interesting candidates for exothermic singlet exciton fission sensitization of solar cells. However, formation of triplet excitons in DCA and DCOFA is found to occur via hot singlet exciton fission with excitation energies above ∼3.64 eV, and prominent excimer formation in the solid state will need to be overcome in order to make DCA and DCOFA viable candidates for use in a practical device.
Collapse
Affiliation(s)
- Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel P Tabor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Markus Einzinger
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dennis Sheberla
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hendrik Utzat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ting-An Lin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel N Congreve
- Rowland Institute at Harvard University, Cambridge, Massachusetts 02142, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Marc A Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
49
|
Buchanan EA, Michl J. Optimal arrangements of 1,3-diphenylisobenzofuran molecule pairs for fast singlet fission. Photochem Photobiol Sci 2019; 18:2112-2124. [PMID: 31463501 DOI: 10.1039/c9pp00283a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simplified version of the frontier orbital model has been applied to pairs of C2, C2v, Cs, and C1 symmetry 1,3-diphenylisobenzofuran rotamers to determine their best packing for fast singlet fission (SF). For each rotamer the square of the electronic matrix element for SF was calculated at 2.2 × 109 pair geometries and a few thousand most significant physically accessible local maxima were identified in the six-dimensional space of mutual arrangements. At these pair geometries, SF energy balance was evaluated, relative SF rate constants were approximated using Marcus theory, and the SF rate constant kSF was maximized by further optimization of the geometry of the molecular pair. The process resulted in 142, 67, 214, and 291 unique geometries for the C2, C2v, Cs, and C1 symmetry molecular pairs, respectively, predicted to be superior to the C2 symmetrized known crystal pair structure. These optimized pair geometries and their triplet biexciton binding energies are reported as targets for crystal engineering and/or covalent dimer synthesis, and as possible starting points for high-level pair geometry optimizations.
Collapse
Affiliation(s)
- Eric A Buchanan
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA.
| | - Josef Michl
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA. and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
50
|
Jue Bae Y, Krzyaniak MD, Majewski MB, Desroches M, Morin JF, Wu YL, Wasielewski MR. Competition between Singlet Fission and Spin-Orbit-Induced Intersystem Crossing in Anthanthrene and Anthanthrone Derivatives. Chempluschem 2019; 84:1432-1438. [PMID: 31944060 DOI: 10.1002/cplu.201900410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022]
Abstract
Singlet and triplet excited-state dynamics of anthanthrene and anthanthrone derivatives in solution are studied. Triisopropylsilyl- (TIPS) or H-terminated ethynyl groups are used to tune the singlet and triplet energies to enable their potential applications in singlet fission and triplet fusion processes. Time-resolved optical and electron paramagnetic resonance (EPR) spectroscopies are used to obtain a mechanistic understanding of triplet formation. The anthanthrene derivatives form triplet states efficiently at a rate (ca. 107 s-1 ) comparable to radiative singlet fluorescence processes with approximately 30 % triplet yields, despite their large S1 -T1 energy gap (>1 eV) and the lack of carbonyl groups. In contrast, anthanthrone has a higher triplet yield (50±10 %) with a faster intersystem crossing rate (2.7 × 108 s-1 ) because of the n-π* character of the S1 ←S0 transition. Analysis of time-resolved spin-polarized EPR spectra of these compounds reveals that the triplet states are primarily generated by the spin-orbit-induced intersystem crossing mechanism. However, at high concentrations, the EPR spectrum of the 4,6,10,14-tetrakis(TIPS-ethynyl)anthanthrene triplet state shows a significant contribution from a non-Boltzmann population of the ms =0 spin sublevel, which is characteristic of triplet formation by singlet fission.
Collapse
Affiliation(s)
- Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston IL, 60208-3113, USA
| | - Matthew D Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston IL, 60208-3113, USA
| | - Marek B Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University Montréal, Québec, H4B 1R6, Canada
| | - Maude Desroches
- Department of Chemistry, Université Laval Québec, Québec, G1 V 0 A6, Canada
| | | | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston IL, 60208-3113, USA.,School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston IL, 60208-3113, USA
| |
Collapse
|