1
|
Bulemo PM, Kim DH, Shin H, Cho HJ, Koo WT, Choi SJ, Park C, Ahn J, Güntner AT, Penner RM, Kim ID. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem Rev 2025; 125:4111-4183. [PMID: 40198852 DOI: 10.1021/acs.chemrev.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The demand for highly functional chemical gas sensors has surged due to the increasing awareness of human health to monitor metabolic disorders or noncommunicable diseases, safety measures against harmful greenhouse and/or explosive gases, and determination of food freshness. Over the years of dedicated research, several types of chemiresistive gas sensors have been realized with appreciable sensitivities toward various gases. However, critical issues such as poor selectivity and sluggish response/recovery speeds continue to impede their widespread commercialization. Specifically, the mechanisms behind the selective response of some chemiresistive materials toward specific gas analytes remain unclear. In this review, we discuss state-of-the-art strategies employed to attain gas-selective chemiresistive materials, with particular emphasis on materials design, surface modification or functionalization with catalysts, defect engineering, material structure control, and integration with physical/chemical gas filtration media. The nature of material surface-gas interactions and the supporting mechanisms are elucidated, opening opportunities for optimizing the materials design, fine-tuning the gas sensing performance, and guiding the selection of the most appropriate materials for the accurate detection of specific gases. This review concludes with recommendations for future research directions and potential opportunities for further selectivity improvements.
Collapse
Affiliation(s)
- Peresi Majura Bulemo
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania
| | - Dong-Ha Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Andreas T Güntner
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Xie Z, Yu XY, Zhang Z, Wang X, Xie T. Asymmetric Co-Ru Heterostructure Catalyst for Surface-Plasmon-Enhanced Photothermocatalytic CO Hydrogenation to Fuels. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19617-19628. [PMID: 40128191 DOI: 10.1021/acsami.4c21909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Photothermal Fischer-Tropsch synthesis (FTS) aims to convert carbon monoxide (CO) into value-added long-chain hydrocarbons (C5+) under milder conditions, but the efficient C-C coupling of C1 intermediates remains challenging. Herein, a carbon-supported plasmonic CoRu5@C catalyst has been successfully constructed for promoting C-C coupling. Experimental results demonstrate that under ambient pressure and photothermal conditions at 250 °C, CoRu5@C exhibits a C5+ selectivity of 98.9% and FTS activity of 321.4 mmol gcat-1 h-1. Structural characterizations and finite element method simulations indicate that Ru-induced lattice strain in the Co-Ru heterogeneous catalyst boosts energetic charge carrier migration, promoting CO adsorption and activation. A series of in situ experiments reveal that electron-rich Co sites in the Co-Ru heterogeneous catalyst diminish C1 intermediate repulsion, boosting C-C coupling efficiency in the FTS process. This research not only provides an innovative approach to overcoming the challenges in CO hydrogenation selectivity and the synthesis of high-value fuels but also offers significant contributions to the development of sustainable energy technologies.
Collapse
Affiliation(s)
- Zhaoda Xie
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Xi-Yang Yu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zelin Zhang
- College of Chemical Engineering and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050000, P. R. China
| | - Xinyuan Wang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Tao Xie
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
3
|
Colfer L, Neill H, Juska V, Nagle L, O’Riordan A, Petkov N, Long B, Collins G. Solid-State On-Substrate Synthesis of Size-Controlled CuPt@Cu 2O Core-Shell Nanocubes and Applications for Electrochemical Sensing and Electrocatalytic Methanol Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18243-18254. [PMID: 40077810 PMCID: PMC11956002 DOI: 10.1021/acsami.4c20674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The development of size- and shape-controlled nanomaterials is essential to tailor their properties and performance for wide-ranging applications from catalysis to sensing. Solid-state synthesis of nanostructures is attractive from a sustainability perspective, but they typically lack the desired size and shape control at small-scale dimensions. This work shows that colloidal precursors can be used in a solid-state route to form hybrid core-shell nanostructures with simultaneous size and morphology control. Encapsulation of PtNPs with a well-defined Cu2O shell produces CuPt@Cu2O core-shell nanocubes grown directly from the underlying substrate. The controlled formation of the nanostructures is facilitated by the diamine passivation layer on the Cu substrate. On-substrate growth of the nanocubes gives ease of postsynthesis processing for them to be used directly in electrochemical applications. We show that the synthesized nanostructured substrates have high sensitivity as an electrocatalyst for glucose sensing. We further demonstrate their potential for direct methanol fuel cells by assessing the methanol oxidation reaction (MOR). The mass activity is determined to be 1.656 A mgPt-1 for MOR, and initial studies indicate the substrates show high CO tolerance.
Collapse
Affiliation(s)
- Louise Colfer
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- Tyndall
National Institute, University College
Cork, Cork T12 R5CP, Ireland
| | - Hazel Neill
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- Tyndall
National Institute, University College
Cork, Cork T12 R5CP, Ireland
| | - Vuslat Juska
- Tyndall
National Institute, University College
Cork, Cork T12 R5CP, Ireland
| | - Lorraine Nagle
- Tyndall
National Institute, University College
Cork, Cork T12 R5CP, Ireland
| | - Alan O’Riordan
- Tyndall
National Institute, University College
Cork, Cork T12 R5CP, Ireland
| | - Nikolay Petkov
- Tyndall
National Institute, University College
Cork, Cork T12 R5CP, Ireland
- Centre
for Advanced Photonics & Process Analysis, Munster Technological University, Rossa Avenue, Bishopstown, Cork T12 P928, Ireland
| | - Brenda Long
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Gillian Collins
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| |
Collapse
|
4
|
Zhang HC, Xu HM, Huang CJ, Zhu HR, Li GR. Recent Progress in the Design and Application of Strong Metal-Support Interactions in Electrocatalysis. Inorg Chem 2025; 64:4713-4748. [PMID: 40036527 DOI: 10.1021/acs.inorgchem.4c05056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The strong metal-support interaction (SMSI) in supported metal catalysts represents a crucial factor in the design of highly efficient heterogeneous catalysts. This interaction can modify the surface adsorption state, electronic structure, and coordination environment of the supported metal, altering the interface structure of the catalyst. These changes serve to enhance the catalyst's activity, stability, and reaction selectivity. In recent years, a multitude of researchers have uncovered a range of novel SMSI types and induction methods including oxidized SMSI (O-SMSI), adsorbent-mediated SMSI (A-SMSI), and wet chemically induced SMSI (Wc-SMSI). Consequently, a systematic and critical review is highly desirable to illuminate the latest advancements in SMSI and to deliberate its application within heterogeneous catalysts. This article provides a review of the characteristics of various SMSI types and the most recent induction methods. It is concluded that SMSI significantly contributes to enhancing catalyst stability, altering reaction selectivity, and increasing catalytic activity. Furthermore, this paper offers a comprehensive review of the extensive application of SMSI in the electrocatalysis of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). Finally, the opportunities and challenges that SMSI faces in the future are discussed.
Collapse
Affiliation(s)
- Hong-Cheng Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Xie Y, Zhang X, Sang K, Chen W, Song Z, Qian G, Zhang J, Chen D, Zhou X, Yuan W, Duan X. Taming Strong Metal-Support Interactions to Generalize Gold-Zinc Oxide Catalysts in Oxidative Coupling. J Am Chem Soc 2025; 147:7829-7839. [PMID: 39993838 DOI: 10.1021/jacs.4c17968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Strong metal-support interactions (SMSI) are at the cutting edge of catalysis research, yet their size-dependent nature remains both widespread and subject to ongoing debate. Here, we report the discovery of bell-shaped size-dependent SMSI, and we establish its structure-SMSI-performance relationship in oxidative C-H/O-H coupling reactions. Using Au/ZnO as a prototypical catalyst, we develop a thermodynamic equilibrium model that quantitatively captures the size-dependent surface energy and tension disparities, identifying the particle size ratio as the descriptor for bell-shaped encapsulation dynamics. Larger Au particles with a higher surface energy are prone to wetting by smaller ZnO particles, triggering lattice oxygen spillover to form Au-O species that accelerate the rate-limiting hemiacetal β-H elimination. Simultaneously, residual oxygen vacancies serve as frustrated Lewis pairs, synergizing with Au-O to replenish hemiacetals and complete the catalytic cycle. This dual promotional mechanism overcomes the oxygen activation bottleneck in traditional Au catalysts, achieving state-of-the-art performance of 94.6% aldehyde conversion and 97.0% ester selectivity. The obtained structure-SMSI relationships are applicable to Ir/ZnO and Rh/ZnO catalysts, with similar SMSI-performance relationships extending to various aldehyde substrates, including saturated, unsaturated, and aromatic. These generalizable relationships lay a strong foundation for the strategic design and manipulation of SMSI states.
Collapse
Affiliation(s)
- Yongkai Xie
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangxue Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2025; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Peng M, Li C, Wang Z, Wang M, Zhang Q, Xu B, Li M, Ma D. Interfacial Catalysis at Atomic Level. Chem Rev 2025; 125:2371-2439. [PMID: 39818776 DOI: 10.1021/acs.chemrev.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Heterogeneous catalysts are pivotal to the chemical and energy industries, which are central to a multitude of industrial processes. Large-scale industrial catalytic processes rely on special structures at the nano- or atomic level, where reactions proceed on the so-called active sites of heterogeneous catalysts. The complexity of these catalysts and active sites often lies in the interfacial regions where different components in the catalysts come into contact. Recent advances in synthetic methods, characterization technologies, and reaction kinetics studies have provided atomic-scale insights into these critical interfaces. Achieving atomic precision in interfacial engineering allows for the manipulation of electronic profiles, adsorption patterns, and surface motifs, deepening our understanding of reaction mechanisms at the atomic or molecular level. This mechanistic understanding is indispensable not only for fundamental scientific inquiry but also for the design of the next generation of highly efficient industrial catalysts. This review examines the latest developments in atomic-scale interfacial engineering, covering fundamental concepts, catalyst design, mechanistic insights, and characterization techniques, and shares our perspective on the future trajectory of this dynamic research field.
Collapse
Affiliation(s)
- Mi Peng
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingxin Zhang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mufan Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
8
|
Clarke RJ, Nice IJ, Hicks JC. Plasma-Catalyst Dynamics: Nonthermal Activation of Strong Metal-Support Interactions. J Am Chem Soc 2025; 147:585-593. [PMID: 39680604 DOI: 10.1021/jacs.4c12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nonthermal plasma-surface interactions enable transformative advancements in green chemistry, healthcare, materials processing, pollution abatement, and the ever-growing area of plasma catalysis. In the context of plasma catalysis, the fate of the active sites during plasma treatment has remained enigmatic, and observation of low-temperature plasma-catalyst events has been challenging. The induction of strong metal-support interactions (SMSI) through high-temperature hydrogen treatment is a well-documented and established, yet limited, method to impact selectivity and stability of noble metal catalysts on reducible supports. Thermally driven SMSI occurs through reduction and subsequent migration of the support to the surface of exposed metal sites, thus affecting the catalyst both electronically and geometrically and serving as an ideal system to evaluate dynamic plasma-catalyst interactions. In this study, a dielectric barrier discharge of hydrogen was used to successfully induce a plasma-SMSI state (P-SMSI) in niobia-supported platinum particles at bulk-gas temperatures as low as -30 °C, which enhances the selectivity for propane dehydrogenation and offers conclusive evidence of plasma-catalyst interactions. Time-resolved spectroscopic evidence of this phenomenon was obtained in situ using a cryogenically cooled plasma IR transmission cell, which provided evidence of diffusion-controlled surface migration. Collectively, P-SMSI constitutes a promising, low-impact technology for synthesizing SMSI-enhanced catalysts with controllable active sites, and knowledge of the nonthermal plasma-catalyst dynamics is critical in designing materials for specific applications or selecting conditions of operation.
Collapse
Affiliation(s)
- Russell J Clarke
- Department of Chemical and Biomolecular Engineering, 250 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Isaac J Nice
- Department of Chemical and Biomolecular Engineering, 250 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jason C Hicks
- Department of Chemical and Biomolecular Engineering, 250 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Qi F, Peng J, Liang Z, Guo J, Liu J, Fang T, Mao H. Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100443. [PMID: 39157790 PMCID: PMC11327470 DOI: 10.1016/j.ese.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
11
|
Dai J, Sun Y, Liu Z, Zhang Y, Duan S, Wang R. Using In situ Transmission Electron Microscopy to Study Strong Metal-Support Interactions in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409673. [PMID: 39052276 DOI: 10.1002/anie.202409673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in situ TEM studies on the SMSI are also provided.
Collapse
Affiliation(s)
- Jie Dai
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhewei Liu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiyuan Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sibin Duan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
12
|
Miura H, Imoto K, Nishio H, Junkaew A, Tsunesada Y, Fukuta Y, Ehara M, Shishido T. Optimization of Metal-Support Cooperation for Boosting the Performance of Supported Gold Catalysts for the Borylation of C-O and C-N Bonds. J Am Chem Soc 2024; 146:27528-27541. [PMID: 39205646 DOI: 10.1021/jacs.4c08340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The cooperation of multiple catalytic components is a powerful tool for intermolecular bond formation, specifically, cross-coupling reactions. Supported metal catalysts have interfacial sites between metal nanoparticles and their supports where multiple catalytic elements can work in cooperation to efficiently promote intermolecular reactions. Hence, the establishment of novel guidelines for designing active interfacial sites of supported metal catalysts is indispensable for heterogeneous catalysts which enable efficient cross-coupling reactions. In this article, we performed kinetic and theoretical studies to elucidate the effect of metal-support cooperation for the borylation of C-O bonds by supported gold catalysts and revealed that the Lewis acid density of the supports determined the number of active sites at which metal nanoparticles (NPs) and Lewis acid at the surface of the supports work in cooperation. Furthermore, DFT calculations revealed that strong adsorption of diborons at the interface between Au NPs and supports and a decrease in the LUMO level of adsorbed diboron were responsible for efficient C-O bond borylation. Supported Au catalysts with the optimized metal-metal oxide cooperation sites, namely, Au/α-Fe2O3 catalyst, showed excellent activity for C-O bond borylation, and also enabled the synthesis of organoboron compounds by using continuous-flow reactions. Furthermore, Au/α-Fe2O3 showed high activity for direct C-N bond borylation without the transformation of amino groups to ammonium cations. The results described herein suggest that the optimization of metal-metal oxide cooperation is beneficial for taking full advantage of the potential performance of supported metal catalysts for intermolecular reactions.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kaoru Imoto
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Yunosuke Tsunesada
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yohei Fukuta
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
13
|
Ji J, Lin L, Hu Y, Xu J, Li Z. Thermally Stable Oxide-Capsulated Metal Nanoparticles Structure for Strong Metal-Support Interaction via Ultrafast Laser Plasmonic Nanowelding. SMALL METHODS 2024; 8:e2301612. [PMID: 39031877 DOI: 10.1002/smtd.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
Strong metal-support interaction (SMSI) has drawn much attention in heterogeneous catalysts due to its stable and excellent catalytic efficiency. However, construction of high-performance oxide-capsulated metal nanostructures meets great challenge in materials thermodynamic compatibility. In this work, dynamically controlled formation of oxide-capsulated metal nanoparticles (NPs) structures is demonstrated by ultrafast laser plasmonic nanowelding. Under the strong localized electromagnetic field interaction, metal (Au) NPs are dragged by an optical force toward oxide NPs (TiO2). Intense energy is simultaneously injected into this heterojunction area, where TiO2 is precisely ablated. With the embedding of metal into oxide, optical force on Au gradually turned from attractive to repulsive due to the varied metal-dielectric environment. Meanwhile, local ablated oxides are redeposited on Au NP. Upon the whole coverage of metal NP, the implantation behavior of metal NP is stopped, resulting in a controlled metal-oxide eccentric structure with capsulated oxide layer thickness ≈0.72-1.30 nm. These oxide-capsulated metal NPs structures can preserve their configurations even after thermal annealing in air at 600 °C for 10 min. This ultrafast laser plasmonic nanowelding can also extend to oxide-capsulated metal nanostructure fabrication with broad materials combinations (e.g., Au/ZnO, Au/MgO, etc.), which shows great potential in designing/constructing nanoscale high-performance catalysts.
Collapse
Affiliation(s)
- Junde Ji
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luchan Lin
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Hu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Xu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuguo Li
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Hou Z, Wu K, Wei H, Chi H, Xi Y, Ma L, Lin X. Strong metal-support interactions of TiO 2 interface-loaded Pt constructed under different atmospheres for adjusting the hydrogen storage reaction performance of N-ethylcarbazole. RSC Adv 2024; 14:27310-27322. [PMID: 39205933 PMCID: PMC11350403 DOI: 10.1039/d4ra03386h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, two series of samples (rT-Pt/TiO2 prepared with a hydrogen pretreatment and Tr-Pt/TiO2 prepared with an oxygen pretreatment) were prepared by treating commercial TiO2 supports in different atmospheres to establish different TiO2 interfacial structures, followed by the addition of platinum nanoparticles (NPs) for the catalyzed hydrogenation/dehydrogenation cycle of N-ethylcarbazole (NEC). The kinetic analysis and reaction mechanism were investigated by combining XRD, Raman, CO-DRIFT, HRTEM, XPS, H2-TPD and DFT calculations. It was found that the performance of the samples for the NEC system's cyclic hydrogen storage could be modulated by treating the TiO2 interfacial structure with different atmospheres varying the extent of strong metal-support interaction (SMSI). In addition, a turnover frequency (TOF) of 191.52 min-1 for dehydrogenation was achieved at 170 °C, which is better than the previously reported catalysts. Experimental studies (characterization and kinetic studies) and DFT calculations confirmed that the SMSI of the Tr-Pt/TiO2 series samples promoted the escape of H2 and enhanced the catalytic activity for 4H-NEC in the 12H-NEC dehydrogenation reaction. In the NEC hydrogenation reaction, the rT-Pt/TiO2 series samples were pretreated with H2 before loading platinum metal, which led to the early activation of Ti4+ in their carriers, and thus suppressed the SMSI effect of the reduction process after loading platinum. This process caused the interface formed by rT-Pt/TiO2 to have a higher energy barrier to 6H-NEC, which is an intermediate product of the NEC hydrogenation process, and this interrupted the hydrogenation process of 6H-NEC.
Collapse
Affiliation(s)
- Zhengjian Hou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China +86-532-86984695
| | - Ke Wu
- Changqing Engineering Design Co. Ltd, PetroChina Changqing Oilfield Company Xi'an 710000 Shanxi China
| | - Huijie Wei
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China +86-532-86984695
| | - Hua Chi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China +86-532-86984695
| | - Yanyan Xi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China +86-532-86984695
- Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Lishuang Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China +86-532-86984695
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Xufeng Lin
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China +86-532-86984695
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
15
|
Luo Z, Han X, Ma Z, Zhang B, Zheng X, Liu Y, Gao M, Zhao G, Lin Y, Pan H, Sun W. Unraveling the Unique Strong Metal-Support Interaction in Titanium Dioxide Supported Platinum Clusters for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202406728. [PMID: 38770895 DOI: 10.1002/anie.202406728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Strong metal-support interaction (SMSI) is crucial to modulating the nature of metal species, yet the SMSI behaviors of sub-nanometer metal clusters remain unknown due to the difficulties in constructing SMSI at cluster scale. Herein, we achieve the successful construction of the SMSI between Pt clusters and amorphous TiO2 nanosheets by vacuum annealing, which requires a relatively low temperature that avoids the aggregation of small clusters. In situ scanning transmission electron microscopy observation is employed to explore the SMSI behaviors, and the results reveal the dynamic rearrangement of Pt atoms upon annealing for the first time. The originally disordered Pt atoms become ordered as the crystallizing of the amorphous TiO2 support, forming an epitaxial interface between Pt and TiO2. Such a SMSI state can remain stable in oxidation environment even at 400 °C. Further investigations prove that the electron transfer from TiO2 to Pt occupies the Pt 5d orbitals, which is responsible for the disappeared CO adsorption ability of Pt/TiO2 after forming SMSI. This work not only opens a new avenue for constructing SMSI at cluster scale but also provides in-depth understanding on the unique SMSI behavior, which would stimulate the development of supported metal clusters for catalysis applications.
Collapse
Affiliation(s)
- Zhouxin Luo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiao Han
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yongfeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Mingxia Gao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
16
|
Peng R, Wen S, Zhang H, Zhang Y, Sun Y, Liang Z, Ye D. Catalytic Oxidation of Toluene over Pt/CeO 2 Catalysts: A Double-Edged Sword Effect of Strong Metal-Support Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13984-13994. [PMID: 38913777 DOI: 10.1021/acs.langmuir.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Strong metal-support interaction (SMSI), which has drawn widespread attention in heterogeneous catalysis, is thought to significantly affect the catalytic performance for volatile organic chemical (VOC) abatement. In the present study, strong interactions between platinum and ceria are constructed by modulating the oxygen vacancy concentration of CeO2 through a NaBH4 reduction method. For a catalyst with higher content of oxygen vacancy, more electrons would transfer from ceria to Pt, which is attributed to the stronger effect of SMSI. The obtained electron-richer Pt sites exhibit higher ability for toluene activation, contributing to better performance for toluene oxidation. On the other hand, the stronger metal-support interaction would facilitate CeOx species migrating to the Pt nanoparticle surface and forming an encapsulated structure. Smaller Pt dispersion leads to fewer sites for toluene adsorption and activation, which is to the disadvantage of the reaction. Therefore, taking the negative and positive effects together, the Pt/CeO2-0.5 catalyst has the highest catalytic performance for toluene abatement. Our study provides new insights into strong metal-support interaction on toluene oxidation and contributes to designing noble metal catalysts for VOC abatement.
Collapse
Affiliation(s)
- Ruosi Peng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuxian Wen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haozhi Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - You Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zheng Liang
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
17
|
Li S, Wang G, Lv H, Lin Z, Liang J, Liu X, Wang YG, Huang Y, Wang G, Li Q. Constructing Gradient Orbital Coupling to Induce Reactive Metal-Support Interaction in Pt-Carbide Electrocatalysts for Efficient Methanol Oxidation. J Am Chem Soc 2024; 146:17659-17668. [PMID: 38904433 DOI: 10.1021/jacs.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Reactive metal-support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L12-PtxM-MCy (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts. Density functional theory (DFT) calculations suggest that the gradient coupling of the d(M)-2p(C)-5d(Pt) orbital would induce the electron transfer from M to C covalent bonds to Pt NPs, which facilitates the formation of C vacancy (Cv) and the subsequent M migration (occurrence of RMSI). Moreover, the good correlation between the formation energy of Cv and the onset temperature of RMSI in Pt-MCx systems proves the key role of nonmetallic atomic vacancy formation for inducing RMSI. The developed L12-Pt3Ti-TiC catalyst exhibits excellent acidic methanol oxidation reaction activity, with mass activity of 2.36 A mgPt-1 in half-cell and a peak power density of 187.9 mW mgPt-1 in a direct methanol fuel cell, which is one of the best catalysts ever reported. DFT calculations reveal that L12-Pt3Ti-TiC favorably weakens *CO absorption compared to Pt-TiC due to the change of the absorption site from Pt to Ti, which accounts for the enhanced MOR performance.
Collapse
Affiliation(s)
- Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Houfu Lv
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China
- Suzhou Laboratory, Suzhou 215000, China
| | - Zijie Lin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Guo M, Li X, Wang L, Xue Z, Xu J. Redispersing Ir Nanoparticles via a Carbon-Assisted Pyrolysis Process to Break the Activity-Stability Trade-Off of H 2 Sensors. ACS Sens 2024; 9:3327-3337. [PMID: 38863381 DOI: 10.1021/acssensors.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Oxide semiconductor-supported metal nanoparticles often suffer from a high-temperature gas sensing process, resulting in agglomeration and coalescence, which significantly decrease their surface activity and stability. Here, we develop an in situ pyrolysis strategy to redisperse commercial Ir particles (∼15.6 nm) into monodisperse Ir species (∼5.4 nm) on ZnO supports, exhibiting excellent sintering-resistant properties and H2 sensing. We find that large-size Ir nanoparticles can undergo an unexpected splitting decomposition process and spontaneously migrate along the encapsulated carbon layer surface during high-temperature pyrolysis of ZIF-8. This resultant monodisperse status can be integrally reserved, accompanying further oxidation sintering. The final Irred/ZnO-450-based sensor exhibits outstanding stability, H2 response (10-2000 ppm), fast response/recovery capability (7/9.7 s@100 ppm), and good moisture resistance. In situ Raman and ex situ XPS further experimentally verify that highly dispersive Ir species can promote the electron transfer process during the gas sensing process. Our strategy thus provides important insights into the design of agglomeration-resistant gas sensing materials for highly effective H2 detection.
Collapse
Affiliation(s)
- Mengmeng Guo
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaojie Li
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lingli Wang
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Zhenggang Xue
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaqiang Xu
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
19
|
He B, Cao Y, Lin K, Wang Y, Li Z, Yang Y, Zhao Y, Liu X. Strong Interactions between Au Nanoparticles and BiVO 4 Photoanode Boosts Hole Extraction for Photoelectrochemical Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202402435. [PMID: 38566410 DOI: 10.1002/anie.202402435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Strong metal-support interaction (SMSI) is widely proposed as a key factor in tuning catalytic performances. Herein, the classical SMSI between Au nanoparticles (NPs) and BiVO4 (BVO) supports (Au/BVO-SMSI) is discovered and used innovatively for photoelectrochemical (PEC) water splitting. Owing to the SMSI, the electrons transfer from V4+ to Au NPs, leading to the formation of electron-rich Au species (Auδ-) and strong electronic interaction (i.e., Auδ--Ov-V4+), which readily contributes to extract photogenerated holes and promote charge separation. Benefitted from the SMSI effect, the as-prepared Au/BVO-SMSI photoanode exhibits a superior photocurrent density of 6.25 mA cm-2 at 1.23 V versus the reversible hydrogen electrode after the deposition of FeOOH/NiOOH cocatalysts. This work provides a pioneering view for extending SMSI effect to bimetal oxide supports for PEC water splitting, and guides the interfacial electronic and geometric structure modulation of photoanodes consisting of metal NPs and reducible oxides for improved solar energy conversion efficiency.
Collapse
Affiliation(s)
- Bing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200, Wuhan, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yu Cao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200, Wuhan, P. R. China
| | - Kaijie Lin
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, P. R. China
| | - Yang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, P. R. China
| | - Zhen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, P. R. China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200, Wuhan, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200, Wuhan, P. R. China
| |
Collapse
|
20
|
Mondal SK, Aina P, Rownaghi AA, Rezaei F. Cooperative and Bifunctional Adsorbent-Catalyst Materials for In-situ VOCs Capture-Conversion. Chempluschem 2024; 89:e202300419. [PMID: 38116915 DOI: 10.1002/cplu.202300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Volatile organic compounds (VOCs) are gases that are emitted into the air from products or processes and are major components of air pollution that significantly deteriorate air quality and seriously affect human health. Different types of metals, metal oxides, mixed-metal oxides, polymers, activated carbons, zeolites, metal-organic frameworks (MOFs) and mixed-matrixed materials have been developed and used as adsorbent or catalyst for diversified VOCs detection, removal, and destruction. In this comprehensive review, we first discuss the general classification of VOCs removal materials and processes and outline the historical development of bifunctional and cooperative adsorbent-catalyst materials for the removal of VOCs from air. Subsequently, particular attention is devoted to design of strategies for cooperative adsorbent-catalyst materials, along with detailed discussions on the latest advances on these bifunctional materials, reaction mechanisms, long-term stability, and regeneration for VOCs removal processes. Finally, challenges and future opportunities for the environmental implementation of these bifunctional materials are identified and outlined with the intent of providing insightful guidance on the design and fabrication of more efficient materials and systems for VOCs removal in the future.
Collapse
Affiliation(s)
- Sukanta K Mondal
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
| | - Peter Aina
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| | - Ali A Rownaghi
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| |
Collapse
|
21
|
Zhou R, Wu D, Ma J, Ruan L, Feng Y, Ban C, Zhou K, Cai S, Gan LY, Zhou X. Boosting CO 2 piezo-reduction via metal-support interactions in Au/ZnO based catalysts. J Colloid Interface Sci 2024; 661:512-519. [PMID: 38308891 DOI: 10.1016/j.jcis.2024.01.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Confronting the challenge of climate change necessitates innovative approaches for the reduction of CO2 emissions. Metal-support interaction has been widely demonstrated to enable greatly improved performances in thermal-catalytic, photocatalytic and electrocatalytic CO2 reduction. However, its applicability and specifically its role in the emerging piezo-electrocatalytic CO2 reduction are unknown, severely hampering the utilizations of piezo-electrocatalysis in CO2 conversion. Herein, by adopting Au particles supported on ZnO (Au/ZnO) as a paradigm, it is found that the metal-support interaction can remarkably improve the separation and transfer of piezo-carriers and enhance CO2 adsorption. As a result, Au/ZnO demonstrates a substantially boosted activity for piezo-electrocatalytic CO2 reduction and the optimal sample exhibits a 37.3% increase in CO yield compared to the pristine ZnO. The integration of metal-support interactions opens a new avenue to the design of advanced piezo-electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rundong Zhou
- Corpus Christi College, University of Cambridge, Cambridgeshire CB2 1RH, United Kingdom
| | - Di Wu
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Jiangping Ma
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Lujie Ruan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Yajie Feng
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Kai Zhou
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Songjiang Cai
- Chongqing DEPU Foreign Language School, Chongqing 401320, China
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Xiaoyuan Zhou
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China; Analytical and Testing Center, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
22
|
Zhang J, Wang W, Chen X, Jin J, Yan X, Huang J. Single-Atom Ni Supported on TiO 2 for Catalyzing Hydrogen Storage in MgH 2. J Am Chem Soc 2024; 146:10432-10442. [PMID: 38498436 DOI: 10.1021/jacs.3c13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As an efficient and clean energy carrier, hydrogen is expected to play a key role in future energy systems. However, hydrogen-storage technology must be safe with a high hydrogen-storage density, which is difficult to achieve. MgH2 is a promising solid-state hydrogen-storage material owing to its large hydrogen-storage capacity (7.6 wt %) and excellent reversibility, but its large-scale utilization is restricted by slow hydrogen-desorption kinetics. Although catalysts can improve the hydrogen-storage kinetics of MgH2, they reduce the hydrogen-storage capacity. Single-atom catalysts maximize the atom utilization ratio and the number of interfacial sites to boost the catalytic activity, while easy aggregation at high temperatures limits further application. Herein, we designed a single-atom Ni-loaded TiO2 catalyst with superior thermal stability and catalytic activity. The optimized 15wt%-Ni0.034@TiO2 catalyst reduced the onset dehydrogenation temperature of MgH2 to 200 °C. At 300 °C, the H2 released and absorbed 4.6 wt % within 5 min and 6.53 wt % within 10 s, respectively. The apparent activation energies of MgH2 dehydrogenation and hydrogenation were reduced to 64.35 and 35.17 kJ/mol of H2, respectively. Even after 100 cycles of hydrogenation and dehydrogenation, there was still a capacity retention rate of 97.26%. The superior catalytic effect is attributed to the highly synergistic catalytic activity of single-atom Ni, numerous oxygen vacancies, and multivalent Tix+ in the TiO2 support, in which the single-atom Ni plays the dominant role, accelerating electron transfer between Mg2+ and H- and weakening the Mg-H bonds. This work paves the way for superior hydrogen-storage materials for practical unitization and also extends the application of single-atom catalysis in high-temperature solid-state reactions.
Collapse
Affiliation(s)
- Jiyue Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Wenda Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiaowei Chen
- School of Science, Jimei University, Xiamen 361021, China
| | - Jinlong Jin
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiaojun Yan
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191, China
- Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
| | - Jianmei Huang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191, China
- Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
| |
Collapse
|
23
|
Robatjazi H, Battsengel T, Finzel J, Tieu P, Xu M, Hoffman AS, Qi J, Bare SR, Pan X, Chmelka BF, Halas NJ, Christopher P. Dynamic Behavior of Platinum Atoms and Clusters in the Native Oxide Layer of Aluminum Nanocrystals. ACS NANO 2024; 18:6638-6649. [PMID: 38350032 DOI: 10.1021/acsnano.3c12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Strong metal-support interactions (SMSIs) are well-known in the field of heterogeneous catalysis to induce the encapsulation of platinum (Pt) group metals by oxide supports through high temperature H2 reduction. However, demonstrations of SMSI overlayers have largely been limited to reducible oxides, such as TiO2 and Nb2O5. Here, we show that the amorphous native surface oxide of plasmonic aluminum nanocrystals (AlNCs) exhibits SMSI-induced encapsulation of Pt following reduction in H2 in a Pt structure dependent manner. Reductive treatment in H2 at 300 °C induces the formation of an AlOx SMSI overlayer on Pt clusters, leaving Pt single-atom sites (Ptiso) exposed available for catalysis. The remaining exposed Ptiso species possess a more uniform local coordination environment than has been observed on other forms of Al2O3, suggesting that the AlOx native oxide of AlNCs presents well-defined anchoring sites for individual Pt atoms. This observation extends our understanding of SMSIs by providing evidence that H2-induced encapsulation can occur for a wider variety of materials and should stimulate expanded studies of this effect to include nonreducible oxides with oxygen defects and the presence of disorder. It also suggests that the single-atom sites created in this manner, when combined with the plasmonic properties of the Al nanocrystal core, may allow for site-specific single-atom plasmonic photocatalysis, providing dynamic control over the light-driven reactivity in these systems.
Collapse
Affiliation(s)
- Hossein Robatjazi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Syzygy Plasmonics Inc., Houston, Texas 77054, United States
| | - Tsatsral Battsengel
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jordan Finzel
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mingjie Xu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ji Qi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, Irvine, California 92697, United States
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Okayama K, Nakayama A, Murayama T, Sakaguchi N, Hong F, Qiao B, Wang J, Shimada T, Takagi S, Ishida T. Decoration of Gold and Platinum Nanoparticle Catalysts by 1 nm Thick Metal Oxide Overlayer and Its Effect on the CO Oxidation Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4570-4580. [PMID: 38239175 DOI: 10.1021/acsami.3c14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Exfoliated M-Al layered double hydroxide (M-Al LDH; M = Mg, Co, Ni, and Zn) nanosheets were adsorbed on Au/SiO2 and calcined to transform LDH into mixed metal oxides (MMOs) and yield Au/SiO2 coated with a thin MMO overlayer. These catalysts showed a higher catalytic activity than pristine Au/SiO2. In particular, the 50% CO conversion temperature decreased by more than 250 °C for Co-Al MMO-coated Au/SiO2. In contrast, the deposition of CoAlOx on Au/SiO2 by impregnation or the deposition of Au on Co-Al MMO-coated SiO2 resulted in a worse catalytic activity. Moreover, the presence of a thick MMO overlayer decreased the catalytic activity, suggesting that the control of the overlayer thickness to less than 1 nm is a requisite for obtaining a high catalytic activity. Moreover, the thin Co-Al MMO overlayer on Au/SiO2 possessed abundant oxygen vacancies, which would play an important role in O2 activation, resulting in a highly active interface between Au and the defect-rich MMO on the Au NP surface. Finally, this can be applied to Pt/SiO2, and the obtained Co-Al MMO-coated Pt/SiO2 also exhibited a much improved catalytic activity for CO oxidation.
Collapse
Affiliation(s)
- Kaho Okayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Akihiro Nakayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (AU-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Norihito Sakaguchi
- Laboratory of Integrated Function Materials, Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Feng Hong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Junhu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Tetsuya Shimada
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shinsuke Takagi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
25
|
Xu M, Peng M, Tang H, Zhou W, Qiao B, Ma D. Renaissance of Strong Metal-Support Interactions. J Am Chem Soc 2024; 146:2290-2307. [PMID: 38236140 DOI: 10.1021/jacs.3c09102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Strong metal-support interactions (SMSIs) have emerged as a significant and cutting-edge area of research in heterogeneous catalysis. They play crucial roles in modifying the chemisorption properties, interfacial structure, and electronic characteristics of supported metals, thereby exerting a profound influence on the catalytic properties. This Perspective aims to provide a comprehensive summary of the latest advancements and insights into SMSIs, with a focus on state-of-the-art in situ/operando characterization techniques. This overview also identifies innovative designs and applications of new types of SMSI systems in catalytic chemistry and highlights their pivotal role in enhancing catalytic performance, selectivity, and stability in specific cases. Particularly notable is the discovery of SMSI between active metals and metal carbides, which opens up a new era in the field of SMSI. Additionally, the strong interactions between atomically dispersed metals and supports are discussed, with an emphasis on the electronic effects of the support. The chemical nature of SMSI and its underlying catalytic mechanisms are also elaborated upon. It is evident that SMSI modification has become a powerful tool for enhancing catalytic performance in various catalytic applications.
Collapse
Affiliation(s)
- Ming Xu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hailian Tang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
26
|
Zhao Q, Geng Q, Huang G. Manganese-oxide-supported gold catalyst derived from metal-organic frameworks for trace PCl 3 oxidation in an organic system. RSC Adv 2024; 14:4230-4243. [PMID: 38292266 PMCID: PMC10826286 DOI: 10.1039/d3ra08566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Polysilicon is widely used in the field of semiconductors and solar energy. Trichlorosilane feedstocks that are used to produce polysilicon in the mainstream production process contain PCl3 impurities that have adverse effects on the quality of the polysilicon. Traditional methods for dephosphorization cannot achieve the effect of complete removal, whereas oxidizing PCl3 to POCl3 in the presence of oxygen for removal via adsorption is a promising and appealing route for establishing a dephosphorization process; it has a high phosphorous removal rate due to the strong Lewis-base property of POCl3 in comparison with PCl3. In this work, we synthesized an active catalyst with an active interface between Au nanoparticles (NPs) and a manganese-oxide support (Mn3O4) by calcination of a corresponding composite, where Au NPs were embedded uniformly in a metal-organic framework (MOF). The catalyst shows a significantly active catalytic performance for trace PCl3 oxidation in an organic system that is an imitation of a trichlorosilane system, with a 99.13% yield of POCl3 in an 80 °C and 0.6 MPa reaction environment. The structure-performance-mechanism analysis shows that the possible reaction and catalytic mechanism is PCl3 oxidation by interface lattice oxygens, which bridge the Au NPs and the support, in a Mars van Krevelen (MvK) process; this process was promoted by the interaction between the Au NPs and Mn3O4 in terms of charge transfer and chemical potential changes. This work provides an effective way to dephosphorize trichlorosilane feedstocks in the polysilicon industry and gives guidance for constructing an efficient catalyst via the study of the structure and mechanism.
Collapse
Affiliation(s)
- Qianyi Zhao
- School of Chemical Engineering and Technology, Tianjin University China
| | - Qiang Geng
- School of Chemical Engineering and Technology, Tianjin University China
| | - Guoqiang Huang
- School of Chemical Engineering and Technology, Tianjin University China
| |
Collapse
|
27
|
Yu J, Qin X, Yang Y, Lv M, Yin P, Wang L, Ren Z, Song B, Li Q, Zheng L, Hong S, Xing X, Ma D, Wei M, Duan X. Highly Stable Pt/CeO 2 Catalyst with Embedding Structure toward Water-Gas Shift Reaction. J Am Chem Soc 2024; 146:1071-1080. [PMID: 38157430 DOI: 10.1021/jacs.3c12061] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Strong metal-support interaction (SMSI) has been extensively studied in heterogeneous catalysis because of its significance in stabilizing active metals and tuning catalytic performance, but the origin of SMSI is not fully revealed. Herein, by using Pt/CeO2 as a model catalyst, we report an embedding structure at the interface between Pt and (110) plane of CeO2, where Pt clusters (∼1.6 nm) are embedded into the lattice of ceria within 3-4 atomic layers. In contrast, this phenomenon is absent in the CeO2(100) support. This unique geometric structure, as an effective motivator, triggers more significant electron transfer from Pt clusters to CeO2(110) support accompanied by the formation of interfacial structure (Ptδ+-Ov-Ce3+), which plays a crucial role in stabilizing Pt nanoclusters. A comprehensive investigation based on experimental studies and theoretical calculations substantiates that the interfacial sites serve as the intrinsic active center toward water-gas shift reaction (WGSR), featuring a moderate strength CO activation adsorption and largely decreased energy barrier of H2O dissociation, accounting for the prominent catalytic activity of Pt/CeO2(110) (a reaction rate of 15.76 molCO gPt-1 h-1 and a turnover frequency value of 2.19 s-1 at 250 °C). In addition, the Pt/CeO2(110) catalyst shows a prominent durability within a 120 h time-on-stream test, far outperforming the Pt/CeO2(100) one, which demonstrates the advantages of this embedding structure for improving catalyst stability.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xuetao Qin
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Mingxin Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Boyu Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Song Hong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| |
Collapse
|
28
|
Wang Z, Hu R, Wang L, Zhou S. Enhanced Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Silica-Coated Pt-Co xO y Hybrid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:924-932. [PMID: 38145368 DOI: 10.1021/acsami.3c16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) is difficult due to the intrinsic difficulty with thermodynamically easier hydrogenation of C═C bonds. In this work, Pt-CoxOy hybrid nanoparticles encapsulated in mesoporous silica nanospheres (Pt-CoxOy@mSiO2) were synthesized by a sol-gel method, which showed greatly improved COL selectivity for hydrogenation of CAL. At 80 °C and 1.0 MPa of H2, Pt-CoxOy@mSiO2 achieved a CAL conversion of 98.7% with a COL selectivity of 93.5%. In contrast, Pt@mSiO2 yields 3-phenylpropanol (HCOL) as the major product with HCOL selectivity of 67.2%, while PtCo@mSiO2 yields 3-phenylpropionaldehyde with selectivity of 51.8% under the same conditions. The enhanced catalytic performance of Pt-CoxOy@mSiO2 for hydrogenation of CAL to COL is ascribed to the Pt surface electron deficiency induced by metal-oxide interaction, and the protection of active NPs by silica shells results in good catalytic stability.
Collapse
Affiliation(s)
- Zizhu Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ru Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lei Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shenghu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
29
|
Han J, Yang J, Zhang Z, Jiang X, Liu W, Qiao B, Mu J, Wang F. Strong Metal-Support Interaction Facilitated Multicomponent Alloy Formation on Metal Oxide Support. J Am Chem Soc 2023; 145:22671-22684. [PMID: 37814206 DOI: 10.1021/jacs.3c07915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports. PtPdCoFe MA is readily synthesized on anatase TiO2 with the help of SMSI, which exhibits good catalytic activity and stability for methane combustion. This strategy demonstrates excellent universality on various supports and multicomponent alloy compositions. Our work not only reports a holistic synthesis strategy for MA synthesis by synergizing unique properties of reducible oxides and the mixing entropy of alloy but also offers a new insight that SMSI plays a vigorous role in the formation of alloy NPs on reducible oxides.
Collapse
Affiliation(s)
- Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| |
Collapse
|
30
|
He Y, Zhou X, Jia Y, Li H, Wang Y, Liu Y, Tan Q. Advances in Transition-Metal-Based Dual-Atom Oxygen Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206477. [PMID: 37147778 DOI: 10.1002/smll.202206477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/31/2023] [Indexed: 05/07/2023]
Abstract
Oxygen electrocatalysis has aroused considerable interest over the past years because of the new energy technologies boom in hydrogen energy and metal-air battery. However, due to the sluggish kinetic of the four-electron transfer process in oxygen reduction reaction and oxygen evolution reaction, the electro-catalysts are urgently needed to accelerate the oxygen electrocatalysis. Benefit from the high atom utilization efficiency, unprecedentedly high catalytic activity, and selectivity, single-atom catalysts (SACs) are considered the most promising candidate to replace the traditional Pt-group-metal catalysts. Compared with SACs, the dual-atom catalysts (DACs) are attracting more attraction including higher metal loading, more versatile active sites, and excellent catalytic activity. Therefore, it is essential to explore the new universal methods approaching to the preparation, characterization, and to elucidate the catalytic mechanisms of the DACs. In this review, several general synthetic strategies and structural characterization methods of DACs are introduced and the involved oxygen catalytic mechanisms are discussed. Moreover, the state-of-the-art electrocatalytic applications including fuel cells, metal-air batteries, and water splitting have been sorted out at present. The authors hope this review has given some insights and inspiration to the researches about DACs in electro-catalysis.
Collapse
Affiliation(s)
- Yuting He
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xingchen Zhou
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yufei Jia
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Hongtao Li
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yi Wang
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
31
|
Meng H, Yang Y, Shen T, Liu W, Wang L, Yin P, Ren Z, Niu Y, Zhang B, Zheng L, Yan H, Zhang J, Xiao FS, Wei M, Duan X. A strong bimetal-support interaction in ethanol steam reforming. Nat Commun 2023; 14:3189. [PMID: 37268617 DOI: 10.1038/s41467-023-38883-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The metal-support interaction (MSI) in heterogeneous catalysts plays a crucial role in reforming reaction to produce renewable hydrogen, but conventional objects are limited to single metal and support. Herein, we report a type of RhNi/TiO2 catalysts with tunable RhNi-TiO2 strong bimetal-support interaction (SBMSI) derived from structure topological transformation of RhNiTi-layered double hydroxides (RhNiTi-LDHs) precursors. The resulting 0.5RhNi/TiO2 catalyst (with 0.5 wt.% Rh) exhibits extraordinary catalytic performance toward ethanol steam reforming (ESR) reaction with a H2 yield of 61.7%, a H2 production rate of 12.2 L h-1 gcat-1 and a high operational stability (300 h), which is preponderant to the state-of-the-art catalysts. By virtue of synergistic catalysis of multifunctional interface structure (Rh-Niδ--Ov-Ti3+; Ov denotes oxygen vacancy), the generation of formate intermediate (the rate-determining step in ESR reaction) from steam reforming of CO and CHx is significantly promoted on 0.5RhNi/TiO2 catalyst, accounting for its ultra-high H2 production.
Collapse
Affiliation(s)
- Hao Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Tianyao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng-Shou Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
32
|
Bootharaju MS, Lee CW, Deng G, Kim H, Lee K, Lee S, Chang H, Lee S, Sung YE, Yoo JS, Zheng N, Hyeon T. Atom-Precise Heteroatom Core-Tailoring of Nanoclusters for Enhanced Solar Hydrogen Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207765. [PMID: 36773328 DOI: 10.1002/adma.202207765] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/07/2023] [Indexed: 05/05/2023]
Abstract
While core-shell nanomaterials are highly desirable for realizing enhanced optical and catalytic properties, their synthesis with atomic-level control is challenging. Here, the synthesis and crystal structure of [Au12 Ag32 (SePh)30 ]4- , the first example of selenolated Au-Ag core-shell nanoclusters, comprising a gold icosahedron core trapped in a silver dodecahedron, which is protected by an Ag12 (SePh)30 shell, is presented. The gold core strongly modifies the overall electronic structure and induces synergistic effects, resulting in high enhancements in the stability and near-infrared-II photoluminescence. The Au12 Ag32 and its homometal analog Ag44 , show strong interactions with oxygen vacancies of TiO2 , facilitating the interfacial charge transfer for photocatalysis. Indeed, the Au12 Ag32 /TiO2 exhibits remarkable solar H2 production (6810 µmol g-1 h-1 ), which is ≈6.2 and ≈37.8 times higher than that of Ag44 /TiO2 and TiO2 , respectively. Good stability and recyclability with minimal catalytic activity loss are additional features of Au12 Ag32 /TiO2 . The experimental and computational results reveal that the Au12 Ag32 acts as an efficient cocatalyst by possessing a favorable electronic structure that aligns well with the TiO2 bands for the enhanced separation of photoinduced charge carriers due to the relatively negatively charged Au12 core. These atomistic insights will motivate uncovering of the structure-catalytic activity relationships of other nanoclusters.
Collapse
Affiliation(s)
- Megalamane Siddaramappa Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hyeseung Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seongbeom Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
33
|
Dong T, Ji J, Yu L, Huang P, Li Y, Suo Z, Liu B, Hu Z, Huang H. Tunable Interfacial Electronic Pd-Si Interaction Boosts Catalysis via Accelerating O 2 and H 2O Activation. JACS AU 2023; 3:1230-1240. [PMID: 37124295 PMCID: PMC10131192 DOI: 10.1021/jacsau.3c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Engineering the interfacial structure between noble metals and oxides, particularly on the surface of non-reducible oxides, is a challenging yet promising approach to enhancing the performance of heterogeneous catalysts. The interface site can alter the electronic and d-band structure of the metal sites, facilitating the transition of energy levels between the reacting molecules and promoting the reaction to proceed in a favorable direction. Herein, we created an active Pd-Si interface with tunable electronic metal-support interaction (EMSI) by growing a thin permeable silica layer on a non-reducible oxide ZSM-5 surface (termed Pd@SiO2/ZSM-5). Our experimental results, combined with density functional theory calculations, revealed that the Pd-Si active interface enhanced the charge transfer from deposited Si to Pd, generating an electron-enriched Pd surface, which significantly lowered the activation barriers for O2 and H2O. The resulting reactive oxygen species, including O2 -, O2 2-, and -OH, synergistically facilitated formaldehyde oxidation. Additionally, moderate electronic metal-support interaction can promote the catalytic cycle of Pd0 ⇆ Pd2+, which is favorable for the adsorption and activation of reactants. This study provides a promising strategy for the design of high-performance noble metal catalysts for practical applications.
Collapse
Affiliation(s)
- Tao Dong
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Jian Ji
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
- Guangdong
Academy of Sciences, Institute of Chemical
Engineering, Guangzhou 510665, China
| | - Leyi Yu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Pingli Huang
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Yiheng Li
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Ziyi Suo
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Biyuan Liu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Zhuofeng Hu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Haibao Huang
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| |
Collapse
|
34
|
Lu K, Kong X, Cai J, Yu S, Zhang X. Review on supported metal catalysts with partial/porous overlayers for stabilization. NANOSCALE 2023; 15:8084-8109. [PMID: 37073811 DOI: 10.1039/d3nr00287j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heterogeneous catalysts of supported metals are important for both liquid-phase and gas-phase chemical transformations which underpin the petrochemical sector and manufacture of bulk or fine chemicals and pharmaceuticals. Conventional supported metal catalysts (SMC) suffer from deactivation resulting from sintering, leaching, coking and so on. Besides the choice of active species (e.g. atoms, clusters, nanoparticles) to maximize catalytic performances, strategies to stabilize active species are imperative for rational design of catalysts, particularly for those catalysts that work under heated and corrosive reaction conditions. The complete encapsulation of metal active species within a matrix (e.g. zeolites, MOFs, carbon, etc.) or core-shell arrangements is popular. However, the use of partial/porous overlayers (PO) to preserve metals, which simultaneously ensures the accessibility of active sites through controlling the size/shape of diffusing reactants and products, has not been systematically reviewed. The present review identifies the key design principles for fabricating supported metal catalysts with partial/porous overlayers (SMCPO) and demonstrates their advantages versus conventional supported metals in catalytic reactions.
Collapse
Affiliation(s)
- Kun Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China.
| | - Xiao Kong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China.
| | - Junmeng Cai
- Biomass Energy Engineering Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai 5645002, Guizhou, P.R. China
- Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute Luban Street, Renhuai 564502, Guizhou, P.R. China
| | - Xingguang Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China.
| |
Collapse
|
35
|
Yang R, Bao Z, Sun Y. Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis. ACS NANOSCIENCE AU 2023; 3:140-152. [PMID: 37101590 PMCID: PMC10125369 DOI: 10.1021/acsnanoscienceau.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 04/28/2023]
Abstract
The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.
Collapse
Affiliation(s)
- Rui Yang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Zhenghong Bao
- Biomaterials,
Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yifan Sun
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
- E-mail:
| |
Collapse
|
36
|
Cai W, Sun X, Bao Y, Guo J, Liu A, Hu K, Feng L. Distinct morphology-dependent behaviors for Au/γ-Al 2O 3 catalysts: enhanced thermal stabilization in CO oxidation reaction. RSC Adv 2023; 13:9010-9019. [PMID: 36950074 PMCID: PMC10025884 DOI: 10.1039/d3ra00272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The durability of supported metal catalysts usually suffers from sintering, the metal nanoparticles aggregating into larger sizes and subsequent loss of reactive surface, resulting in catalysts deactivation when heated at elevated temperatures. Herein, we investigate the evolution of Au species on different morphologies of γ-Al2O3 and surprisingly found vastly different behavior for the dispersion of surface Au nanoparticles. A nanorod-shaped γ-Al2O3 is prepared by the hydrothermal method resulting in an extraordinary catalyst support that can stabilize Au nanoparticles at annealing temperatures up to 700 °C. In contrast, the Au-supported catalyst prepared using commercial γ-Al2O3 shows a greater degree of inactivation under the same conditions. Remarkably, the unique morphology of such nanorod-shaped γ-Al2O3 is beneficial in preventing Au nanoparticles from sintering. The γ-Al2O3 nanorods are more effective than the commercial γ-Al2O3 at anchoring the Au nanoparticles. The results of X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and H2-TPR, reveal the interfacial interactions between Au nanoparticles and γ-Al2O3 nanorods, yielding a sinter-stability of the obtained Au/γ-Al2O3 nanorods catalyst. This synthetic strategy is simple and amenable to the large-scale manufacture of thermally stable γ-Al2O3 for industrial applications. Here, we investigate the morphology-dependent behavior of Au nanoparticles dispersed on different morphologies of γ-Al2O3. The result of X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and H2-TPR, reveal the interfacial interactions between Au nanoparticles and gamma alumina nanorods. Au nanoparticles on γ-Al2O3 nanorods exhibit higher sinter-resistant performance than those on commercial γ-Al2O3.
Collapse
Affiliation(s)
- Weimeng Cai
- School of Energy Materials and Chemical Engineering, Hefei University Hefei, 99 Jinxiu Rd Hefei 230601 Anhui People's Republic of China +86-551-62158315
| | - Xinyu Sun
- School of Energy Materials and Chemical Engineering, Hefei University Hefei, 99 Jinxiu Rd Hefei 230601 Anhui People's Republic of China +86-551-62158315
| | - Yaojie Bao
- School of Energy Materials and Chemical Engineering, Hefei University Hefei, 99 Jinxiu Rd Hefei 230601 Anhui People's Republic of China +86-551-62158315
| | - Jianhua Guo
- School of Energy Materials and Chemical Engineering, Hefei University Hefei, 99 Jinxiu Rd Hefei 230601 Anhui People's Republic of China +86-551-62158315
| | - Anqiu Liu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei, 99 Jinxiu Rd Hefei 230601 Anhui People's Republic of China +86-551-62158315
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei, 99 Jinxiu Rd Hefei 230601 Anhui People's Republic of China +86-551-62158315
| | - Lipin Feng
- School of Energy Materials and Chemical Engineering, Hefei University Hefei, 99 Jinxiu Rd Hefei 230601 Anhui People's Republic of China +86-551-62158315
| |
Collapse
|
37
|
Li R, Liu C, Fan Y, Fu Q, Bao X. Metal-oxide interactions modulating the activity of active oxygen species on atomically dispersed silver catalysts. Chem Commun (Camb) 2023; 59:3854-3857. [PMID: 36911985 DOI: 10.1039/d3cc00617d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The activity of active oxygen species on supported Ag atoms can be effectively modulated by metal-support interactions using different oxide supports. The strong interaction between Ag and Al2O3 with more electrons transferred from Ag to Al2O3 leads to the formation of more Ag-O2- (superoxide) species, responsible for the selective oxidation of ethylene to ethylene oxide. The relatively weak interaction between Ag and SiO2 induces the generation of Ag-O (atomic oxygen) and Ag-O22- (peroxide) species, which are more active for complete oxidation of CO and ethylene to CO2. This work is of significance for deep understanding of active surface species in atomically dispersed metal catalysts.
Collapse
Affiliation(s)
- Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Conghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| |
Collapse
|
38
|
Sun Y, Yang Z, Dai S. Nonclassical Strong Metal-Support Interactions for Enhanced Catalysis. J Phys Chem Lett 2023; 14:2364-2377. [PMID: 36848324 DOI: 10.1021/acs.jpclett.2c03915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strong metal-support interaction (SMSI), which encompasses reversible encapsulation and de-encapsulation and modulation of surface adsorption properties, imposes great impacts on the performance of heterogeneous catalysts. Recent development of SMSI has surpassed the prototypical encapsulated Pt-TiO2 catalyst, affording a series of conceptually novel and practically advantageous catalytic systems. Here we provide our perspective on recent progress in nonclassical SMSIs for enhanced catalysis. Unravelling the structural complexity of SMSI necessitates the combination of multiple characterization techniques at different scales. Synthesis strategies leveraging chemical, photonic, and mechanochemical driving forces further expand the definition and application scope of SMSI. Exquisite structure engineering permits elucidation of the interface, entropy, and size effect on the geometric and electronic characteristics. Materials innovation places the atomically thin two-dimensional materials at the forefront of interfacial active site control. A broader space is awaiting exploration, where exploitation of metal-support interactions brings compelling catalytic activity, selectivity, and stability.
Collapse
Affiliation(s)
- Yifan Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
39
|
ul-Haq T, Tahir A, Zubair U, Rafique F, Munir A, Haik Y, Hussain I, ur Rehman H. Au/TiO2 Thin Film with Ultra-Low Content of Gold: An Efficient Self-Supported Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reaction. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
40
|
Guan M, Wang J, Wang K, Wang J, Devasenathipathy R, He S, Yu L, Zhang L, Xie H, Li Z, Lu G. Selective adsorption of cysteamine molecules on Au/TiO 2 boosts visible light-driven photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 633:1033-1041. [PMID: 36516679 DOI: 10.1016/j.jcis.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Photocatalytic evolution of hydrogen is becoming a research hotspot because it can help to produce clean energy and reduce environmental pollution. Titanium dioxide (TiO2) and its composites are photocatalysts that are widely used in hydrogen evolution because of their high abundance in nature, low price, and high photo/chemical stability. However, their catalytic performances still need to be further improved, particularly in the visible light spectrum. Herein, visible light-driven photocatalytic evolution of hydrogen on Au/TiO2 nanocomposite is enhanced ∼ 10 folds by selectively functionalizing the nanocomposite with cysteamine molecules. It is revealed that the amine group (-NH2) in cysteamine favors the transfer and separation of photo-generated hot carriers. The rate of hydrogen produced can be further tuned by varying the ionization of the functionalized molecules at different pH values. This work provides a simple, convenient, and effective method that can be used to improve the photocatalytic evolution of hydrogen. This method can also be used for many other nanocatalysts (e.g., Au-MoS2, Au-BiVO4) and catalytic reactions (e.g., carbon dioxide reduction, nitrogen reduction).
Collapse
Affiliation(s)
- Mengdan Guan
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jin Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Shunhao He
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Linrong Zhang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou 310003, PR China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China; National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
41
|
Feng G, Chen J, Liang B, Zhu Y, Zhang Y, Gan T, Huang Z, Hu H. Construction of a stable biochar-supported amorphous aluminum solid acid catalyst with Brønsted–Lewis dual acid sites for efficient conversion of cellulose. Int J Biol Macromol 2023; 237:124196. [PMID: 36972830 DOI: 10.1016/j.ijbiomac.2023.124196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023]
Abstract
The development of sustainable catalysts for the efficient conversion of biomass to desirable chemicals is significant and challenging. Herein, a stable biochar (BC)-supported amorphous aluminum solid acid catalyst with Brønsted-Lewis dual acid sites was constructed through one-step calcination of a mechanical activation (MA)-treated precursor (starch, urea, and Al(NO3)3). The as-prepared N-doped BC (N-BC)-supported Al composite (MA-Al/N-BC) was used for the selective catalytic conversion of cellulose to produce levulinic acid (LA). MA treatment promoted uniform dispersion and stable embedding of Al-based components in the N-BC support with nitrogen- and oxygen-containing functional groups. This process provided the MA-Al/N-BC catalyst with Brønsted-Lewis dual acid sites and improved its stability and recoverability. When the MA-Al/N-BC catalyst was used under optimal reaction conditions (180 °C, 4 h), it achieved a cellulose conversion rate of 93.1 % and a LA yield of 70.1 %. Additionally, it also showed high activity for catalytic conversion of other carbohydrates. The results of this study offer a promising solution for the production of sustainable biomass-derived chemicals through the use of stable and eco-friendly catalysts.
Collapse
Affiliation(s)
- Guifen Feng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiashuo Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Beiling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ying Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| |
Collapse
|
42
|
An X, Wei T, Ding P, Liu LM, Xiong L, Tang J, Ma J, Wang F, Liu H, Qu J. Sodium-Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency. J Am Chem Soc 2023; 145:1759-1768. [PMID: 36607337 DOI: 10.1021/jacs.2c10690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrating different reaction sites offers new prospects to address the difficulties in single-atom catalysis, but the precise regulation of active sites at the atomic level remains challenging. Here, we demonstrate a sodium-directed photon-induced assembly (SPA) strategy for boosting the atomic utilization efficiency of single-atom catalysts (SACs) by constructing multifarious Au sites on TiO2 substrate. Na+ was employed as the crucial cement to direct Au single atoms onto TiO2, while the light-induced electron transfer from excited TiO2 to Au(Na+) ensembles contributed to the self-assembly formation of Au nanoclusters. The synergism between plasmonic near-field and Schottky junction enabled the cascade electron transfer for charge separation, which was further enhanced by oxygen vacancies in TiO2. Our dual-site photocatalysts exhibited a nearly 2 orders of magnitude improvement in the hydrogen evolution activity under simulated solar light, with a striking turnover frequency (TOF) value of 1533 h-1 that exceeded other Au/TiO2-based photocatalysts reported. Our SPA strategy can be easily extended to prepare a wide range of metal-coupled nanostructures with enhanced performance for diverse catalytic reactions. Thus, this study provides a well-defined platform to extend the boundaries of SACs for multisite catalysis through harnessing metal-support interactions.
Collapse
Affiliation(s)
- Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingcha Wei
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.,MIIT Key Laboratory of Aerospace Information Materials and Physics, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Peijia Ding
- School of Physics, Beihang University, Beijing 100191, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi'an 710119, China
| | - Feng Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Pu T, Zhang W, Zhu M. Engineering Heterogeneous Catalysis with Strong Metal-Support Interactions: Characterization, Theory and Manipulation. Angew Chem Int Ed Engl 2023; 62:e202212278. [PMID: 36287199 DOI: 10.1002/anie.202212278] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Strong metal-support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.
Collapse
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenhao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
44
|
He Y, Zhang J, Polo-Garzon F, Wu Z. Adsorbate-Induced Strong Metal-Support Interactions: Implications for Catalyst Design. J Phys Chem Lett 2023; 14:524-534. [PMID: 36626846 DOI: 10.1021/acs.jpclett.2c03391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Since the discovery of strong metal-support interactions (SMSIs) over supported metal catalysts in the 1970s, researchers have studied ways to harness this type of catalyst reconstruction to achieve enhanced stability of metal particles against sintering and to create catalytic sites with novel electronic and bonding properties. The motivation to elucidate performance-structure relationships in catalytic transformations has led researchers to take a closer look into catalytic surfaces under reaction conditions rather than a postreaction analysis. These investigations of operating catalysts have made it clear that SMSIs are more common than initially thought. Recent reports show how various adsorbed species, rather than traditional H2/O2 treatment, can promote SMSI in various catalytic systems, a phenomenon named adsorbate-induced SMSI (A-SMSI). Researching the occurrence of A-SMSI has allowed fundamental understanding of catalyst stability, catalytic rates, and product selectivity. The present Perspective discusses the state-of-the-art regarding A-SMSI, the current challenges, and the opportunities ahead in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yang He
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Junyan Zhang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory. Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
45
|
Gao M, Yang Z, Zhang H, Ma J, Zou Y, Cheng X, Wu L, Zhao D, Deng Y. Ordered Mesopore Confined Pt Nanoclusters Enable Unusual Self-Enhancing Catalysis. ACS CENTRAL SCIENCE 2022; 8:1633-1645. [PMID: 36589882 PMCID: PMC9801509 DOI: 10.1021/acscentsci.2c01290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 06/17/2023]
Abstract
As an important kind of emerging heterogeneous catalyst for sustainable chemical processes, supported metal cluster (SMC) catalysts have received great attention for their outstanding activity; however, the easy aggregation of metal clusters due to their migration along the substrate's surface usually deteriorates their activity and even causes catalyst failure during cycling. Herein, stable Pt nanoclusters (NCs, ∼1.06 nm) are homogeneously confined in the uniform spherical mesopores of mesoporous titania (mpTiO2) by the interaction between Pt NCs and metal oxide pore walls made of polycrystalline anatase TiO2. The obtained Pt-mpTiO2 exhibits excellent stability with well-retained CO conversion (∼95.0%) and Pt NCs (∼1.20 nm) in the long term water-gas shift (WGS) reaction. More importantly, the Pt-mpTiO2 displays an unusual increasing activity during the cyclic catalyzing WGS reaction, which was found to stem from the in situ generation of interfacial active sites (Ti3+-Ov-Ptδ+) by the reduction effect of spillover hydrogen generated at the stably supported Pt NCs. The Pt-mpTiO2 catalysts also show superior performance toward the selective hydrogenation of furfural to 2-methylfuran. This work discloses an efficient and robust Pt-mpTiO2 catalyst and systematically elucidates the mechanism underlying its unique catalytic activity, which helps to design stable SMC catalysts with self-enhancing interfacial activity in sustainable heterogeneous catalysis.
Collapse
Affiliation(s)
- Meiqi Gao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Zhirong Yang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Haijiao Zhang
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Xiaowei Cheng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Limin Wu
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, Hohhot010021, China
| | - Dongyuan Zhao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| |
Collapse
|
46
|
Promtongkaew A, Márquez V, Prasertcharoensuk P, Kerdsamai K, Praserthdam S, Praserthdam P. Controlling the Fe 2O 3-SiO 2 interaction: The effect on the H 2S selective catalytic oxidation and catalyst deactivation. ENVIRONMENTAL RESEARCH 2022; 215:114354. [PMID: 36126690 DOI: 10.1016/j.envres.2022.114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Biogas utilization is one of the most promising options for reducing the consumption of fossil fuels for energy production, but the presence of H2S represents a serious industrial and environmental problem. In this work, two different synthesis methods (sol-gel and incipient wetness impregnation) were used to synthesize iron oxide supported on silica catalysts (Fe2O3/SiO2) with metal loadings ranging from 0.5 to 10 %wt. The catalysts were tested for the selective oxidation of H2S, changing the operating conditions like O2/H2S (0.5-2.5), temperature (170-250°C), and water content (0-50%). The optimum condition was O2/H2S = 0.5 and no water at 230 °C with the conversion of approximately 100%, the selectivity of 97%, and the deactivation of 0.6%. A detailed characterization of the fresh and spent catalysts' surface revealed the presence of four deactivation mechanisms: metal surface reduction, oxygen vacancy loss, pore plugging, and sintering. Among the observed deactivation mechanisms, the sintering showed the highest impact on catalytic activity and deactivation. The sol-gel catalysts (SG) showed the highest metal-oxide/support interaction, which reduced the metal-oxide nanoparticles sintering compared with the incipient wetness impregnation method (IWI), reporting a lower sintering, higher activity, and selectivity, lower deactivation rates and lower sensitivity to the operating conditions. A catalytic cycle representing the possible surface intermediate states of the catalyst is proposed based on the performance and characterization results obtained.
Collapse
Affiliation(s)
- Athitaya Promtongkaew
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Victor Márquez
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Phuet Prasertcharoensuk
- Center of Excellence in Process and Energy Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritta Kerdsamai
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
47
|
Feng B, Hao L, Deng C, Wang J, Song H, Xiao M, Huang T, Zhu Q, Gai H. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Xu M, Qin X, Xu Y, Zhang X, Zheng L, Liu JX, Wang M, Liu X, Ma D. Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts. Nat Commun 2022; 13:6720. [DOI: 10.1038/s41467-022-34463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractConsiderable attention has been drawn to tune the geometric and electronic structure of interfacial catalysts via modulating strong metal-support interactions (SMSI). Herein, we report the construction of a series of TiO2−x/Ni catalysts, where disordered TiO2−x overlayers immobilized onto the surface of Ni nanoparticles (~20 nm) are successfully engineered with SMSI effect. The optimal TiO2−x/Ni catalyst shows a CO conversion of ~19.8% in Fischer–Tropsch synthesis (FTS) process under atmospheric pressure at 220 °C. More importantly, ~64.6% of the product is C2+ paraffins, which is in sharp contrast to the result of the conventional Ni catalyst with the main product being methane. A combination study of advanced electron microscopy, multiple in-situ spectroscopic characterizations, and density functional theory calculations indicates the presence of Niδ−/TiO2−x interfacial sites, which could bind carbon atom strongly, inhibit methane formation and facilitate the C-C chain propagation, lead to the production of C2+ hydrocarbon on Ni surface.
Collapse
|
49
|
Yan Z, Yao B, Hall C, Gao Q, Zang W, Zhou H, He Q, Zhu H. Metal-Metal Oxide Catalytic Interface Formation and Structural Evolution: A Discovery of Strong Metal-Support Bonding, Ordered Intermetallics, and Single Atoms. NANO LETTERS 2022; 22:8122-8129. [PMID: 36194541 DOI: 10.1021/acs.nanolett.2c02568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In-depth investigation of metal-metal oxide interactions and their corresponding evolution is of paramount importance to heterogeneous catalysis as it allows the understanding and maneuvering of the structure of catalytic motifs. Herein, using a series of core/shell metal/iron oxide (M/FeOx, M = Pd, Pt, Au) nanoparticles and through a combination of in situ and ex situ electron and X-ray investigations, we revealed anomalous and dissimilar M-FeOx interactions among different systems under reducing conditions. Pd interacts strongly with FeOx after high-temperature reductive treatment, featured by the formation of Pd single atoms in the FeOx matrix and increased Pd-Fe bonding, while Pt transforms into ordered PtFe intermetallics and Pt single atoms immediately upon the coating of FeOx. In contrast, Au does not manifest strong bonding with FeOx. As a proof of concept of tailoring metal-metal oxide interactions for catalysis, optimized Pd/FeOx demonstrates 100% conversion and 86.5% selectivity at 60 °C for acetylene semihydrogenation.
Collapse
Affiliation(s)
- Zihao Yan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Connor Hall
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Qiang Gao
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Wenjie Zang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Huiyuan Zhu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
50
|
Korobov A. Frustrations of supported catalytic clusters under operando conditions predicted by a simple lattice model. Sci Rep 2022; 12:17020. [PMID: 36220887 PMCID: PMC9553940 DOI: 10.1038/s41598-022-21534-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
The energy landscape with a number of close minima separated by low barriers is a well-known issue in computational heterogeneous catalysis. In the framework of the emerging out-of-equilibrium material science, the navigation through such involved landscapes is associated with the functionality of materials. Current advancements in the cluster catalysis has brought and continues to bring essential nuances to the topic. One of them is the possibility of frustration of the catalytic centre under operando conditions. However, this conjecture is difficult to check either experimentally or theoretically. As a step in this direction, as-simple-as-possible lattice model is used to estimate how the supposed frustrations may couple with the elementary reaction and manifest themselves at the macroscopic scale.
Collapse
Affiliation(s)
- Alexander Korobov
- Materials Chemistry Department, V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine.
| |
Collapse
|