1
|
Sun Q, Xu B, Du J, Yu Y, Huang Y, Deng X. Interfacial electrostatic charges promoted chemistry: Reactions and mechanisms. Adv Colloid Interface Sci 2025; 339:103436. [PMID: 39938156 DOI: 10.1016/j.cis.2025.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Interfacial electrostatic charges are a universal phenomenon in nature. In recent years, interest in the chemical reactivity of electrostatic charges has grown. Interfacial electrostatic charge-driven chemical synthesis reduces the reliance on redox reagents, catalysts, and hazardous solvents, which promotes environmental sustainability and cost-effectiveness in the chemical industry. Electrostatic charges can be generated at the interfaces between solids, liquids, and gases. The chemical properties of electrostatic charges have been observed at interfaces between solids and liquids, and between liquids and gases. This review summarized the chemical reactivity of interfacial electrostatic charges and its mechanisms. Electrostatic charges play a fundamental role in providing electrons and creating electric fields, which in turn induce charge transfer, radical formation, and molecular orientation. We classified the role of interfacial charges in chemical reactions and provided new perspectives. Interfacial electrostatic charges can be generated with mechanical energy input, a power supply and interface transition from solid-liquid to liquid-gas. Redox and catalytic reactions involving inorganic, organic compounds and biomolecules are driven by interfacial electrostatic charges. Electrostatic chemistry mechanisms are currently a subject of debate because there is insufficient experimental evidence. Challenges and opportunities associated with interfacial electrostatic chemistry are discussed. Knowledge of the reactivity of interfacial electrostatic charges could be used to understand electrostatic phenomena in nature, advance green chemistry, and even study the origins of life. We expect this emerging topic will appeal to scientists in disciplines including interfacial chemistry and electrostatics.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Boran Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinyan Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yunlong Yu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yujie Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| |
Collapse
|
2
|
Li Z, Yi Y, Zhang Y, Xiao Y, Ren Q, Zhou K, Liu L, Wu HC. Nanopore-Based High-Resolution Detection of Multiple Post-Translational Modifications in Protein. Angew Chem Int Ed Engl 2025; 64:e202423801. [PMID: 39874178 DOI: 10.1002/anie.202423801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/04/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Protein post-translational modifications (PTMs) play crucial roles in various cellular processes. Despite their significance, only a few PTMs have been extensively studied at the proteome level, primarily due to the scarcity of reliable, convenient, and low-cost sensing methods. Here, we present a straightforward and effective strategy for detecting PTMs on short peptides through host-guest interaction-assisted nanopore sensing. Our results demonstrate that the identity of 13 types of PTMs in a specific position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Furthermore, we extend this strategy by incorporating a short peptide into the probe, enabling the discrimination of various PTMs, positional isomers, and even multiple PTMs on the target peptide. With ongoing improvements, our method holds promise for practical applications in sensing PTMs in biologically relevant samples, offering an efficient alternative to traditional mass spectrometry approaches.
Collapse
Affiliation(s)
- Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Xiao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qianyuan Ren
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Liu
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, P. R. China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Zhang Y, Ding M. Probing nanopores: molecular dynamics insights into the mechanisms of DNA and protein translocation through solid-state and biological nanopores. SOFT MATTER 2025; 21:2385-2399. [PMID: 40094904 DOI: 10.1039/d4sm01534g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nanopore sequencing technology has revolutionized single-molecule analysis through its unique capability to detect and characterize individual biomolecules with unprecedented precision. This perspective provides a comprehensive analysis of molecular dynamics (MD) simulations in nanopore research, with particular emphasis on comparing molecular transport mechanisms between biological and solid-state platforms. We first examine how MD simulations at atomic resolution reveal distinct characteristics: biological nanopores exhibit sophisticated molecular recognition through specific amino acid interactions, while solid-state nanopores demonstrate advantages in structural stability and geometric control. Through detailed analysis of simulation methodologies and their applications, we show how computational approaches have advanced our understanding of critical phenomena such as ion selectivity, conformational dynamics, and surface effects in both nanopore types. Despite computational challenges including limited simulation timescales and force field accuracy constraints, recent advances in high-performance computing and artificial intelligence integration have significantly improved simulation capabilities. By synthesizing perspectives from physics, chemistry, biology, and computational science, this perspective provides both theoretical insights and practical guidelines for developing next-generation nanopore platforms. The integration of computational and experimental approaches discussed here offers promising directions for advancing nanopore technology in applications ranging from DNA/RNA sequencing and protein post-translational modification analysis to disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Yuanshuo Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, P. R. China
| |
Collapse
|
4
|
Zhao X, Zhang Y, Qing G. Nanopore toward Genuine Single-Molecule Sensing: Molecular Ping-Pong Technology. NANO LETTERS 2025; 25:3692-3706. [PMID: 40009055 DOI: 10.1021/acs.nanolett.4c06085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Nanopore sensing is a so-called label-free, single-molecule technology; however, multiple events of different molecules are recorded to obtain statistically robust data, which can limit both efficiency and sample use. To overcome these challenges, nanopore molecular ping-pong technology enables precise single-molecule manipulation, reducing systematic and stochastic errors by repeatedly measuring the same molecule. This review introduces the fundamentals and advancements of ping-pong technology, highlighting a recent breakthrough achieving over 10,000 recaptures of a single dsDNA molecule within minutes. This innovation not only minimizes sample requirements, which is critical for nonamplifiable samples, but also significantly enhances experimental precision. While current applications focus on dsDNA, extending this technology to protein and glycan analysis could transform nanopore research. Just as nanopore technology revolutionized DNA sequencing, it holds the potential to drive the development of nanopore-based protein and glycan sequencers, paving the way for groundbreaking advancements in molecular biology and biomedicine.
Collapse
Affiliation(s)
- Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yahui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Shang Z, Ding D, Deng Z, Zhao J, Yang M, Xiao Y, Chu W, Xu S, Zhang Z, Yi X, Lin M, Xia F. Programming the Dynamic Range of Nanochannel Biosensors for MicroRNA Detection Through Allosteric DNA Probes. Angew Chem Int Ed Engl 2025; 64:e202417280. [PMID: 39494980 DOI: 10.1002/anie.202417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Solid-state nanochannel biosensors are extensively utilized for microRNA (miRNA) detection owing to their high sensitivity and rapid response. However, conventional nanochannel biosensors face limitations in their fixed dynamic range, restricting their versatility and efficacy. Herein, we introduce tunable triblock DNA probes with varying affinities for target miRNA to engineer solid-state nanochannel biosensors capable of customizable dynamic range adjustment. The triblock DNA architecture comprises a poly-adenine (polyA) block for adjustable surface density anchoring, alongside stem and loop blocks for modulating structural stability. Through systematic manipulation of these blocks, we demonstrate the ability to achieve diverse target binding affinities and detection limits, achieving an initial 81-fold dynamic range. By combining probes with various affinities, we extend this dynamic range significantly to 10,900-fold. Furthermore, by implementing a sequestration mechanism, the effective dynamic range of the nanochannel biosensor is narrowed to only a 3-fold span of target concentrations. The customizable dynamic range of these advanced nanochannel biosensors makes them highly promising for a broad spectrum of biomedical and clinical applications.
Collapse
Affiliation(s)
- Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zixuan Deng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Mengyu Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuling Xiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shijun Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhicheng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
6
|
Mereuta L, Bhatti H, Asandei A, Cimpanu A, Ying YL, Long YT, Luchian T. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40100-40110. [PMID: 39038810 PMCID: PMC11299134 DOI: 10.1021/acsami.4c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore. We demonstrated an efficient tool of controlling the ssDNA translocation time, via the interplay between the nanopore-ssDNA surface electrostatic interactions and electroosmotic flow, all mediated by the pH-dependent ionization of amino acids lining the nanopore's translocation pathway. Our data also reveal the nonmonotonic, pH-induced alteration of ssDNA average translocation time. Unlike mildly acidic conditions (pH ∼ 4.7), at a pH ∼ 2.8 maintained symmetrically or asymmetrically across the WT α-HL, we evidenced the manifestation of a dominant electroosmotic flow, determining the speeding up of the ssDNA translocation across the nanopore by counteracting the ssDNA-nanopore attractive electrostatic interactions. We envision potential applications of the presented approach by enabling easy-to-use, real-time detection of short ssDNA sequences, without the need for complex biochemical modifications to the nanopore to mitigate the fast translocation of such sequences.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Huma Bhatti
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Alina Asandei
- Interdisciplinary
Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Adina Cimpanu
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Yi-Lun Ying
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tudor Luchian
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
7
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Yu J, Yu C, Li Y, Yu C, Wang Y, Wu R, Li B. The single strand template shortening strategy improves the sensitivity and specificity of solid-state nanopore detection. Chem Commun (Camb) 2024; 60:4723-4726. [PMID: 38597243 DOI: 10.1039/d4cc00961d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Through controlling the ssDNA product length of rolling circle amplification with AcyNTP, here we develop a nanopore signal enhancement strategy (STSS), which can successfully transfer the short oligonucleotide targets into long ssDNAs with appropriate lengths that can generate significant translocation currents. By labelling the RCA product with tags such as tetrahedral structures and isothermal amplicons, the resolution, signal specificity, and target range of the STSS can be further extended.
Collapse
Affiliation(s)
- Jin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunxu Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunmiao Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yesheng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Ruiping Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Chen S, He W, Li J, Xu D, Zhao R, Zhu L, Wu H, Xu F. Pulley Effect in the Capture of DNA Translocation through Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5799-5808. [PMID: 38501264 DOI: 10.1021/acs.langmuir.3c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nanopores are powerful single-molecule sensors for analyzing biomolecules such as DNA and proteins. Understanding the dynamics of DNA capture and translocation through nanopores is essential for optimizing their performance. In this study, we examine the effects of applied voltage and pore diameter on current blockage, translocation time, collision, and capture location by translocating λ-DNA through 5.7 and 16 nm solid-state nanopores. Ionic current changes are used to infer DNA conformations during translocation. We find that translocation time increases with pore diameter, which can be attributed to the decrease of the stall force. Linear and exponential decreases of collision frequency with voltage are observed in the 16 and 5.7 nm pores, respectively, indicating a free energy barrier in the small pore. Moreover, the results reveal a voltage-dependent bias in the capture location toward the DNA ends, which is explained by a "pulley effect" deforming the DNA as it approaches the pore. This study provides insights into the physics governing DNA capture and translocation, which can be useful for promoting single-file translocation to enhance nanopore sensing.
Collapse
Affiliation(s)
- Shulan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Wen He
- Analysis and Testing Center, Nanchang Hangkong University, Nanchang 330063, China
| | - Jun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Derong Xu
- Jiangxi Institute of Translational Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Libo Zhu
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Hongwen Wu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Jiangxi Hospital, Nanchang 330006, China
| |
Collapse
|
10
|
Wei X, Ma D, Ou J, Song G, Guo J, Robertson JW, Wang Y, Wang Q, Liu C. Narrowing Signal Distribution by Adamantane Derivatization for Amino Acid Identification Using an α-Hemolysin Nanopore. NANO LETTERS 2024; 24:1494-1501. [PMID: 38264980 PMCID: PMC10947511 DOI: 10.1021/acs.nanolett.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The rapid progress in nanopore sensing has sparked interest in protein sequencing. Despite recent notable advancements in amino acid recognition using nanopores, chemical modifications usually employed in this process still need further refinements. One of the challenges is to enhance the chemical specificity to avoid downstream misidentification of amino acids. By employing adamantane to label proteinogenic amino acids, we developed an approach to fingerprint individual amino acids using the wild-type α-hemolysin nanopore. The unique structure of adamantane-labeled amino acids (ALAAs) improved the spatial resolution, resulting in distinctive current signals. Various nanopore parameters were explored using a machine-learning algorithm and achieved a validation accuracy of 81.3% for distinguishing nine selected amino acids. Our results not only advance the effort in single-molecule protein characterization using nanopores but also offer a potential platform for studying intrinsic and variant structures of individual molecules.
Collapse
Affiliation(s)
- Xiaojun Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Dumei Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Junlin Ou
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Ge Song
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Jiawei Guo
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Yi Wang
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
11
|
Gavrilov M, Zhang J, Yang O, Ha T. Free-energy measuring nanopore device. Phys Rev E 2024; 109:024404. [PMID: 38491642 DOI: 10.1103/physreve.109.024404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/05/2023] [Indexed: 03/18/2024]
Abstract
Free energies (FEs) in molecular sciences can be used to quantify the stability of folded molecules. In this article, we introduce nanopores for measuring FEs. We pull DNA hairpin-forming molecules through a nanopore, measure work, and estimate the FE change in the slow limit, and with the Jarzynski fluctuation theorem (FT) at fast pulling times. We also pull our molecule with optical tweezers, compare it to nanopores, and explore how sampling single molecules from equilibrium or a folded ensemble affects the FE estimate via the FT. The nanopore experiment helps us address and overcome the conceptual problem of equilibrium sampling in single-molecule pulling experiments. Only when molecules are sampled from an equilibrium ensemble do nanopore and tweezer FE estimates mutually agree. We demonstrate that nanopores are very useful tools for comparing FEs of two molecules at finite times and we propose future applications.
Collapse
Affiliation(s)
- Momčilo Gavrilov
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | - Jinghang Zhang
- Johns Hopkins University, Department of Biomedical Engineering, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Olivia Yang
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | - Taekjip Ha
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
- Johns Hopkins University, Department of Biomedical Engineering, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
12
|
Liu Y, Wang X, Campolo G, Teng X, Ying L, Edel JB, Ivanov AP. Single-Molecule Detection of α-Synuclein Oligomers in Parkinson's Disease Patients Using Nanopores. ACS NANO 2023; 17:22999-23009. [PMID: 37947369 PMCID: PMC10690843 DOI: 10.1021/acsnano.3c08456] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
α-Synuclein (α-Syn) is an intrinsically disordered protein whose aggregation in the brain has been significantly implicated in Parkinson's disease (PD). Beyond the brain, oligomers of α-Synuclein are also found in cerebrospinal fluid (CSF) and blood, where the analysis of these aggregates may provide diagnostic routes and enable a better understanding of disease mechanisms. However, detecting α-Syn in CSF and blood is challenging due to its heterogeneous protein size and shape, and low abundance in clinical samples. Nanopore technology offers a promising route for the detection of single proteins in solution; however, the method often lacks the necessary selectivity in complex biofluids, where multiple background biomolecules are present. We address these limitations by developing a strategy that combines nanopore-based sensing with molecular carriers that can specifically capture α-Syn oligomers with sizes of less than 20 nm. We demonstrate that α-Synuclein oligomers can be detected directly in clinical samples, with minimal sample processing, by their ion current characteristics and successfully utilize this technology to differentiate cohorts of PD patients from healthy controls. The measurements indicate that detecting α-Syn oligomers present in CSF may potentially provide valuable insights into the progression and monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Yaxian Liu
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Xiaoyi Wang
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Giulia Campolo
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Xiangyu Teng
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Liming Ying
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| |
Collapse
|
13
|
Lu SM, Vannoy KJ, Dick JE, Long YT. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective. J Am Chem Soc 2023; 145:25043-25055. [PMID: 37934860 DOI: 10.1021/jacs.3c07374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kathryn J Vannoy
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
14
|
Chen C, Song M, Li K, Yan S, Chen M, Geng J. E. coli outer membrane protein T (OmpT) nanopore for peptide sensing. Biochem Biophys Res Commun 2023; 677:132-140. [PMID: 37586211 DOI: 10.1016/j.bbrc.2023.05.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
Peptide detection methods with facility and high sensitivity are essential for diagnosing disease associated with peptide biomarkers. Nanopore sensing technology had emerged as a low cost, high-throughput, and scalable tool for peptide detection. The omptins family proteins which can form β-barrel pores have great potentials to be developed as nanopore biosensor. However, there are no study about the channel properties of E. coli OmpT and the development of OmpT as a nanopore biosensor. In this study, the OmpT biological nanopore channel was constructed with a conductance of 1.49 nS in 500 mM NaCl buffer and a three-step gating phenomenon under negative voltage higher than 100 mV and then was developed as a peptide biosensor which can detect peptide without the interfere of ssDNA and dNTPs. The OmpT constructed in this study has potential application in peptide detection, and also provides a new idea for the detection of peptides using the specific binding ability of protease.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China; School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Mengxiao Song
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Shixin Yan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China; Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China.
| |
Collapse
|
15
|
Huang Y, Liu L, Luo C, Liu W, Lou X, Jiang L, Xia F. Solid-state nanochannels for bio-marker analysis. Chem Soc Rev 2023; 52:6270-6293. [PMID: 37581902 DOI: 10.1039/d2cs00865c] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bio-markers, such as ions, small molecules, nucleic acids, peptides, proteins and cells, participate in the construction of living organisms and play important roles in biological processes. It is of great significance to accurately detect these bio-markers for studying their basic functions, the development of molecular diagnosis and to better understand life processes. Solid-state nanochannel-based sensing systems have been demonstrated for the detection of bio-markers, due to their rapid, label-free and high-throughput screening, with high sensitivity and specificity. Generally, studies on solid-state nanochannels have focused on probes on the inner-wall (PIW), ignoring probes on the outer-surface (POS). As a result, the direct detection of cells is difficult to realize by these inner-wall focused nanochannels. Moreover, the sensitivity for detecting ions, small molecules, nucleic acids, peptides and proteins requires further improvement. Recent research has focused on artificial solid-state nanochannels with POS, which have demonstrated the ability to independently regulate ion transport. This design not only contributes to the in situ detection of large analytes, such as cells, but also provides promising opportunities for ultra-high sensitivity detection with a clear mechanism. In this tutorial review, we present an overview of the detection principle used for solid-state nanochannels, inner-wall focused nanochannels and outer-surface focused nanochannels. Furthermore, we discuss the remaining challenges faced by current nanochannel technologies and provide insights into their prospects.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Wei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| |
Collapse
|
16
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
17
|
Awasthi S, Ying C, Li J, Mayer M. Simultaneous Determination of the Size and Shape of Single α-Synuclein Oligomers in Solution. ACS NANO 2023; 17:12325-12335. [PMID: 37327131 PMCID: PMC10339783 DOI: 10.1021/acsnano.3c01393] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Soluble oligomers of amyloid-forming proteins are implicated as toxic species in the context of several neurodegenerative diseases. Since the size and shape of these oligomers influence their toxicity, their biophysical characterization is essential for a better understanding of the structure-toxicity relationship. Amyloid oligomers are difficult to characterize by conventional approaches due to their heterogeneity in size and shape, their dynamic aggregation process, and their low abundance. This work demonstrates that resistive pulse measurements using polymer-coated solid-state nanopores enable single-particle-level characterization of the size and shape of individual αSyn oligomers in solution within minutes. A comparison of the resulting size distribution with single-particle analysis by transmission electron microscopy and mass photometry reveals good agreement with superior resolution by nanopore-based characterization. Moreover, nanopore-based analysis has the capability to combine rapid size analysis with an approximation of the oligomer shape. Applying this shape approximation to putatively toxic oligomeric species that range in size from 18 ± 7 aggregated monomers (10S) to 29 ± 10 aggregated monomers (15S) and in concentration from picomolar to nanomolar revealed oligomer shapes that agree well with previous estimates by cryo-EM with the added advantage that nanopore-based analysis occurs rapidly, in solution, and has the potential to become a widely accessible technique.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Cuifeng Ying
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jiali Li
- University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
18
|
Zhu J, Tivony R, Bošković F, Pereira-Dias J, Sandler SE, Baker S, Keyser UF. Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches. J Am Chem Soc 2023. [PMID: 37220424 DOI: 10.1021/jacs.3c01649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multiplexed nucleic acid sensing methods with high specificity are vital for clinical diagnostics and infectious disease control, especially in the postpandemic era. Nanopore sensing techniques have developed in the past two decades, offering versatile tools for biosensing while enabling highly sensitive analyte measurements at the single-molecule level. Here, we establish a nanopore sensor based on DNA dumbbell nanoswitches for multiplexed nucleic acid detection and bacterial identification. The DNA nanotechnology-based sensor switches from an "open" into a "closed" state when a target strand hybridizes to two sequence-specific sensing overhangs. The loop in the DNA pulls two groups of dumbbells together. The change in topology results in an easily recognized peak in the current trace. Simultaneous detection of four different sequences was achieved by assembling four DNA dumbbell nanoswitches on one carrier. The high specificity of the dumbbell nanoswitch was verified by distinguishing single base variants in DNA and RNA targets using four barcoded carriers in multiplexed measurements. By combining multiple dumbbell nanoswitches with barcoded DNA carriers, we identified different bacterial species even with high sequence similarity by detecting strain specific 16S ribosomal RNA (rRNA) fragments.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Filip Bošković
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
19
|
Jiang J, Li MY, Wu XY, Ying YL, Han HX, Long YT. Protein nanopore reveals the renin-angiotensin system crosstalk with single-amino-acid resolution. Nat Chem 2023; 15:578-586. [PMID: 36805037 DOI: 10.1038/s41557-023-01139-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/13/2023] [Indexed: 02/22/2023]
Abstract
The discovery of crosstalk effects on the renin-angiotensin system (RAS) is limited by the lack of approaches to quantitatively monitor, in real time, multiple components with subtle differences and short half-lives. Here we report a nanopore framework to quantitatively determine the effect of the hidden crosstalk between angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) on RAS. By developing an engineered aerolysin nanopore capable of single-amino-acid resolution, we show that the ACE can be selectively inhibited by ACE2 to prevent cleavage of angiotensin I, even when the concentration of ACE is more than 30-fold higher than that of ACE2. We also show that the activity of ACE2 for cleaving angiotensin peptides is clearly suppressed by the spike protein of SARS-CoV-2. This leads to the relaxation of ACE and the increased probability of accumulation of the principal effector angiotensin II. The spike protein of the SARS-CoV-2 Delta variant is demonstrated to have a much greater impact on the crosstalk than the wild type.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xue-Yuan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Huan-Xing Han
- Department of Pharmacy, Shanghai Changzheng Hospital, Shanghai, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Berzina B, Peramune U, Kim S, Saurabh K, Claus EL, Strait ME, Ganapathysubramanian B, Anand RK. Electrokinetic Enrichment and Label-Free Electrochemical Detection of Nucleic Acids by Conduction of Ions along the Surface of Bioconjugated Beads. ACS Sens 2023; 8:1173-1182. [PMID: 36800317 DOI: 10.1021/acssensors.2c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In this paper, we report a method to integrate the electrokinetic pre-enrichment of nucleic acids within a bed of probe-modified microbeads with their label-free electrochemical detection. In this detection scheme, hybridization of locally enriched target nucleic acids to the beads modulates the conduction of ions along the bead surfaces. This is a fundamental advancement in that this mechanism is similar to that observed in nanopore sensors, yet occurs in a bed of microbeads with microscale interstices. In application, this approach has several distinct advantages. First, electrokinetic enrichment requires only a simple DC power supply, and in combination with nonoptical detection, it makes this method amenable to point-of-care applications. Second, the sensor is easy to fabricate and comprises a packed bed of commercially available microbeads, which can be readily modified with a wide range of probe types, thereby making this a versatile platform. Finally, the sensor is highly sensitive (picomolar) despite the modest 100-fold pre-enrichment we employ here by faradaic ion concentration polarization (fICP). Further gains are anticipated under conditions for fICP focusing that are known to yield higher enrichment factors (up to 100,000-fold enrichment). Here, we demonstrate the detection of 3.7 pM single-stranded DNA complementary to the bead-bound oligoprobe, following a 30 min single step of enrichment and hybridization. Our results indicate that a shift in the slope of a current-voltage curve occurs upon hybridization and that this shift is proportional to the logarithm of the concentration of target DNA. Finally, we investigate the proposed mechanism of sensing by developing a numerical simulation that shows an increase in ion flux through the bed of insulating beads, given the changes in surface charge and zeta potential, consistent with our experimental conditions.
Collapse
Affiliation(s)
- Beatrise Berzina
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Umesha Peramune
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Sungu Kim
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
- The Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, 2529 Union Drive, Ames, Iowa 50011-2030, United States
| | - Kumar Saurabh
- The Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, 2529 Union Drive, Ames, Iowa 50011-2030, United States
| | - Echo L Claus
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Madison E Strait
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Baskar Ganapathysubramanian
- The Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, 2529 Union Drive, Ames, Iowa 50011-2030, United States
| | - Robbyn K Anand
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
21
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Fujita S, Kawamura I, Kawano R. Cell-Free Expression of De Novo Designed Peptides That Form β-Barrel Nanopores. ACS NANO 2023; 17:3358-3367. [PMID: 36731872 PMCID: PMC9979648 DOI: 10.1021/acsnano.2c07970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Nanopore sensing has attracted much attention as a rapid, simple, and label-free single-molecule detection technology. To apply nanopore sensing to extensive targets including polypeptides, nanopores are required to have a size and structure suitable for the target. We recently designed a de novo β-barrel peptide nanopore (SVG28) that constructs a stable and monodispersely sized nanopore. To develop the sizes and functionality of peptide nanopores, systematic exploration is required. Here we attempt to use a cell-free synthesis system that can readily express peptides using transcription and translation. Hydrophilic variants of SVG28 were designed and expressed by the PURE system. The peptides form a monodispersely sized nanopore, with a diameter 1.1 or 1.5 nm smaller than that of SVG28. Such cell-free synthesizable peptide nanopores have the potential to enable the systematic custom design of nanopores and comprehensive sequence screening of nanopore-forming peptides.
Collapse
Affiliation(s)
- Shoko Fujita
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo184-8588, Japan
| | - Izuru Kawamura
- Graduate
School of Engineering Science, Yokohama
National University, Yokohama240-8501, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo184-8588, Japan
| |
Collapse
|
23
|
Guan X, Li H, Chen L, Qi G, Jin Y. Glass Capillary-Based Nanopores for Single Molecule/Single Cell Detection. ACS Sens 2023; 8:427-442. [PMID: 36670058 DOI: 10.1021/acssensors.2c02102] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A glass capillary-based nanopore (G-nanopore), due to its tapered tip, easy tunability in orifice size, and especially its flexible surface modifications that can be tailored to effectively capture and enhance the ionic current signal of single entities (single molecules, single cells, and single particles), offers a powerful and nanoconfined sensing platform for diverse biological measurements of single cells and single molecules. Compared with other artificial two-dimensional solid-state nanopores, its conical tip and high spatial and temporal resolution characteristics facilitate noninvasive single molecule and selected area (subcellular) single cell detections (e.g., DNA mutations, highly expressed proteins, and small molecule markers that reflect the change characteristics of the tumor), as a small G-nanopore (≤100 nm) does negligible damage to cell functions and cell membrane integrity when inserted through the cell membrane. In this brief review, we summarize the preparation of G-nanopores and discuss the advantages of them as solid-state sensing platforms for single molecule and single cell detection applications as well as for cancer diagnosis and treatment applications. We also describe the current bottlenecks that limit the widespread use of G-nanopores in clinical applications and provide an outlook on future developments. The brief review will provide the reader with a quick survey of this field and facilitate the rapid development of a G-nanopore sensing platform for future tumor diagnosis and personalized medicine based on single-molecule/single-cell bioassay.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
24
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
25
|
Li M, Chen S, Wang Y, Zhang S, Song D, Tian R, Geng J, Wang L. Label-free high-precise nanopore detection of endopeptidase activity of anthrax lethal factor regulated by diverse conditions. Biosens Bioelectron 2023; 219:114800. [PMID: 36274430 DOI: 10.1016/j.bios.2022.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/24/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
Abstract
Endopeptidase activity of anthrax lethal factor (aLF) prevents the destroy of anthracis spore intracellularly by host macrophages, meanwhile disables the signaling pathways extracellularly that leads to host lethality. Hence, inhibitory of this activity is expected to be an alternative option to cure anthrax infection. Herein, we fabricated a nanopore platform via transmembrane pore construction in vitro, which allows precise mimics, monitoring of intercellular proteinic transport and enables the quantitative detection of aLF endopeptidase activity towards MAPKK signaling protein at single molecule level. Next, we inhibited the aLF activity via screening approaches of protein-metal ion acquisition and other condition controlment (proton/hydroxide strength, adapted temperature, ionizing irradiation), which were identified by nanopore electrokinetic study. Upon the results, we found that Ca2+, Mg2+, Mn2+, Ni2+ collaborating with Zn2+ promote aLF activity efficiently. In contrary, Cd2+, Co2+, Cu2+ have great inhibitory effect. Result further revealed that, the speed of aLF endopeptidase activity with different ions functions as the nanopore signal frequency in linear manner, which enables evident distinction of those divalent ions using this proteinase assay. We also found the higher strength of the proton or hydroxide, the higher the inhibitory to aLF activity. Besides, adapted temperature and γ-ray also play integral roles in inhibiting this activity. Our results lay experimental basis for accurate detection of aLF activity, meanwhile provide new direction to screening novel stimuli-responsive inhibitors specific to aLF.
Collapse
Affiliation(s)
- Minghan Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Shanchuan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shaoxia Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Dandan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
26
|
Zheng X, Liu J, Li M, Hua Y, Liang X, Zhang S, Zhang X, Shao Y. Dual-Nanopipettes for the Detection of Single Nanoparticles and Small Molecules. Anal Chem 2022; 94:17431-17438. [PMID: 36495265 DOI: 10.1021/acs.analchem.2c03344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanopore sensing is blooming due to its label-free and high sensitivity features. As a novel nanopore, a droplet is formed at the orifice of a dual-nanopipette, which allows for the translocation of analytes through the two channels at a relatively low speed and the promotion of signal-to-noise ratio. However, nanopore sensing based on the principle of current blockage requires the pore size to be comparable to that of the single entity, which poses a huge challenge for the direct detection of small molecules. In this work, gold nanoparticles (Au NPs) modified with sulfhydryl poly(ethylene glycol) (PEG-SH) or aptamers were detected successfully. The size difference of Au NPs and the interaction between Au NPs and dual-nanopipettes could be distinguished sensitively. Furthermore, Au NPs modified with designed aptamers will produce different blocking current after capturing the corresponding small molecules (e.g., dopamine and serotonin). Even non-electroactive ions, such as potassium ions, can also be detected, which is difficult to sense based on redox reactions, and further illustrates that the change of surface properties of nanoparticles is responsible for the detection. This work expands the application of nanopipette sensing for Au NPs and provides a universal platform for the small-molecule detection, which has the potential application in biosensing.
Collapse
Affiliation(s)
- Xinhe Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yutong Hua
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Mittal S, Manna S, Pathak B. Machine Learning Prediction of the Transmission Function for Protein Sequencing with Graphene Nanoslit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51645-51655. [PMID: 36374991 DOI: 10.1021/acsami.2c13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein sequencing has rapidly changed the landscape of healthcare and life science by accelerating the growth of diagnostics and personalized medicines for a variety of fatal diseases. Next-generation nanopore/nanoslit sequencing is promising to achieve single-molecule resolution with chromosome-size-long readability. However, due to inherent complexity, high-throughput sequencing of all 20 amino acids demands different approaches. Aiming to accelerate the detection of amino acids, a general machine learning (ML) method has been developed for quick and accurate prediction of the transmission function for amino acid sequencing. Among the utilized ML models, the XGBoost regression model is found to be the most effective algorithm for fast prediction of the transmission function with a very low test root-mean-square error (RMSE ∼0.05). In addition, using the random forest ML classification technique, we are able to classify the neutral amino acids with a prediction accuracy of 100%. Therefore, our approach is an initiative for the prediction of the transmission function through ML and can provide a platform for the quick identification of amino acids with high accuracy.
Collapse
Affiliation(s)
- Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| | - Souvik Manna
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| |
Collapse
|
28
|
Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown. Chem Asian J 2022; 17:e202200888. [DOI: 10.1002/asia.202200888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Indexed: 11/19/2022]
|
29
|
Wei X, Wang X, Zhang Z, Luo Y, Wang Z, Xiong W, Jain PK, Monnier JR, Wang H, Hu TY, Tang C, Albrecht H, Liu C. A click chemistry amplified nanopore assay for ultrasensitive quantification of HIV-1 p24 antigen in clinical samples. Nat Commun 2022; 13:6852. [PMID: 36369146 PMCID: PMC9651128 DOI: 10.1038/s41467-022-34273-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Despite major advances in HIV testing, ultrasensitive detection of early infection remains challenging, especially for the viral capsid protein p24, which is an early virological biomarker of HIV-1 infection. Here, To improve p24 detection in patients missed by immunological tests that dominate the diagnostics market, we show a click chemistry amplified nanopore (CAN) assay for ultrasensitive quantitative detection. This strategy achieves a 20.8 fM (0.5 pg/ml) limit of detection for HIV-1 p24 antigen in human serum, demonstrating 20~100-fold higher analytical sensitivity than nanocluster-based immunoassays and clinically used enzyme-linked immunosorbent assay, respectively. Clinical validation of the CAN assay in a pilot cohort shows p24 quantification at ultra-low concentration range and correlation with CD4 count and viral load. We believe that this strategy can improve the utility of p24 antigen in detecting early infection and monitoring HIV progression and treatment efficacy, and also can be readily modified to detect other infectious diseases.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Yuanyuan Luo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wen Xiong
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Piyush K Jain
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32608, USA
| | - John R Monnier
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Helmut Albrecht
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
- Center of Infectious Diseases Research and Policy, Prisma Health, Columbia, SC, 29203, USA
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
30
|
Abstract
Pulse-like signals are ubiquitous in the field of single molecule analysis, e.g., electrical or optical pulses caused by analyte translocations in nanopores. The primary challenge in processing pulse-like signals is to capture the pulses in noisy backgrounds, but current methods are subjectively based on a user-defined threshold for pulse recognition. Here, we propose a generalized machine-learning based method, named pulse detection transformer (PETR), for pulse detection. PETR determines the start and end time points of individual pulses, thereby singling out pulse segments in a time-sequential trace. It is objective without needing to specify any threshold. It provides a generalized interface for downstream algorithms for specific application scenarios. PETR is validated using both simulated and experimental nanopore translocation data. It returns a competitive performance in detecting pulses through assessing them with several standard metrics. Finally, the generalization nature of the PETR output is demonstrated using two representative algorithms for feature extraction.
Collapse
Affiliation(s)
- Dario Dematties
- Northwestern
Argonne Institute of Science and Engineering, Northwestern University, 2205 Tech Drive Suite 1-160, Evanston, 60208 Illinois, United States,Mathematics
and Computer Science Division, Argonne National
Laboratory, 9700 S. Cass
Avenue, Lemont, 60439 Illinois, United States
| | - Chenyu Wen
- NanoDynamicsLab,
Laboratory of Biophysics, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The
Netherlands,Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Shi-Li Zhang
- Department
of Electrical Engineering, Uppsala University, Lägerhyddsvägen 1,
752 37, SE-751 03 Uppsala, Sweden,
| |
Collapse
|
31
|
Krishnan R S, Jana K, Shaji AH, Nair KS, Das AD, Vikraman D, Bajaj H, Kleinekathöfer U, Mahendran KR. Assembly of transmembrane pores from mirror-image peptides. Nat Commun 2022; 13:5377. [PMID: 36104348 PMCID: PMC9474448 DOI: 10.1038/s41467-022-33155-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Tailored transmembrane alpha-helical pores with desired structural and functional versatility have promising applications in nanobiotechnology. Herein, we present a transmembrane pore DpPorA, based on the natural pore PorACj, built from D-amino acid α-helical peptides. Using single-channel current recordings, we show that DpPorA peptides self-assemble into uniform cation-selective pores in lipid membranes and exhibit properties distinct from their L-amino acid counterparts. DpPorA shows resistance to protease and acts as a functional nanopore sensor to detect cyclic sugars, polypeptides, and polymers. Fluorescence imaging reveals that DpPorA forms well-defined pores in giant unilamellar vesicles facilitating the transport of hydrophilic molecules. A second D-amino acid peptide based on the polysaccharide transporter Wza forms transient pores confirming sequence specificity in stable, functional pore formation. Finally, molecular dynamics simulations reveal the specific alpha-helical packing and surface charge conformation of the D-pores consistent with experimental observations. Our findings will aid the design of sophisticated pores for single-molecule sensing related technologies. Alpha-helix nanopores have a range of potential applications and the inclusion of non-natural amino acids allows for modification. Here, the authors report on the creation of alpha-helix pores using D-amino acids and show the pores formed, have different properties to the L-counterparts and were resistant to proteases.
Collapse
|
32
|
Huang G, Voorspoels A, Versloot RCA, van der Heide NJ, Carlon E, Willems K, Maglia G. PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood. Angew Chem Int Ed Engl 2022; 61:e202206227. [PMID: 35759385 PMCID: PMC9541544 DOI: 10.1002/anie.202206227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/04/2023]
Abstract
The real‐time identification of protein biomarkers is crucial for the development of point‐of‐care and portable devices. Here, we use a PlyAB biological nanopore to detect haemoglobin (Hb) variants. Adult haemoglobin (HbA) and sickle cell anaemia haemoglobin (HbS), which differ by just one amino acid, were distinguished in a mixture with more than 97 % accuracy based on individual blockades. Foetal Hb, which shows a larger sequence variation, was distinguished with near 100 % accuracy. Continuum and Brownian dynamics simulations revealed that Hb occupies two energy minima, one near the inner constriction and one at the trans entry of the nanopore. Thermal fluctuations, the charge of the protein, and the external bias influence the dynamics of Hb within the nanopore, which in turn generates the unique ionic current signal in the Hb variants. Finally, Hb was counted from blood samples, demonstrating that direct discrimination and quantification of Hb from blood using nanopores, is feasible.
Collapse
Affiliation(s)
- Gang Huang
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Aderik Voorspoels
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | | | - Nieck Jordy van der Heide
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Enrico Carlon
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | | | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
33
|
Liu HL, Zhan K, Wang K, Xia XH. Nanopore-based surface-enhanced Raman scattering technologies. Sci Bull (Beijing) 2022; 67:1539-1541. [PMID: 36546279 DOI: 10.1016/j.scib.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hai-Ling Liu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kan Zhan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
34
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
35
|
Probing the Hepatitis B Virus E-Antigen with a Nanopore Sensor Based on Collisional Events Analysis. BIOSENSORS 2022; 12:bios12080596. [PMID: 36004992 PMCID: PMC9405897 DOI: 10.3390/bios12080596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Real-time monitoring, simple operation, and cheaper methods for detecting immunological proteins hold the potential for a solid influence on proteomics and human biology, as they can promote the onset of timely diagnoses and adequate treatment protocols. In this work we present an exploratory study suggesting the applicability of resistive-pulse sensing technology in conjunction with the α-hemolysin (α-HL) protein nanopore, for the detection of the chronic hepatitis B virus (HBV) e-antigen (HBeAg). In this approach, the recognition between HBeAg and a purified monoclonal hepatitis B e antibody (Ab(HBeAg)) was detected via transient ionic current spikes generated by partial occlusions of the α-HL nanopore by protein aggregates electrophoretically driven toward the nanopore’s vestibule entrance. Despite the steric hindrance precluding antigen, antibody, or antigen–antibody complex capture inside the nanopore, their stochastic bumping with the nanopore generated clear transient blockade events. The subsequent analysis suggested the detection of protein subpopulations in solution, rendering the approach a potentially valuable label-free platform for the sensitive, submicromolar-scale screening of HBeAg targets.
Collapse
|
36
|
Lucas FLR, Willems K, Tadema MJ, Tych KM, Maglia G, Wloka C. Unbiased Data Analysis for the Parameterization of Fast Translocation Events through Nanopores. ACS OMEGA 2022; 7:26040-26046. [PMID: 35936408 PMCID: PMC9352258 DOI: 10.1021/acsomega.2c00871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-molecule nanopore electrophysiology is an emerging technique for the detection of analytes in aqueous solutions with high sensitivity. These detectors have proven applicable for the enzyme-assisted sequencing of oligonucleotides. There has recently been an increased interest in the use of nanopores for the fingerprinting of peptides and proteins, referred to as single-molecule nanopore spectrometry. However, the analysis of the resulting electrophysiology traces remains complicated due to the fast unassisted translocation of such analytes, usually in the order of micro- to milliseconds, and the small ion current signal produced (in the picoampere range). Here, we present the application of a generalized normal distribution function (gNDF) for the characterization of short-lived ion current signals (blockades). We show that the gNDF can be used to determine if the observed blockades have adequate time to reach their maximum current plateau while also providing a description of each blockade based on the open pore current (I O), the difference caused by the pore blockade (ΔI B), the position in time (μ), the standard deviation (σ), and a shape parameter (β), leaving only the noise component. In addition, this method allows the estimation of an ideal range of low-pass filter frequencies that contains maximum information with minimal noise. In summary, we show a parameter-free and generalized method for the analysis of short-lived ion current blockades, which facilitates single-molecule nanopore spectrometry with minimal user bias.
Collapse
Affiliation(s)
- Florian L. R. Lucas
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands
- Lab
for Nanobiology, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | | | - Matthijs J. Tadema
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Katarzyna M. Tych
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Carsten Wloka
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
37
|
Cai J, Zhao J, Gao X, Ma W, Meng D, Zhang H, Hao C, Sun M, Kuang H, Xu C, Xu L. Magnetic Field Tuning Ionic Current Generated by Chiromagnetic Nanofilms. ACS NANO 2022; 16:11066-11075. [PMID: 35776106 DOI: 10.1021/acsnano.2c03778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The realization of chiral magnetic effect by macroscopically manipulating quantum states of chiral matter under the magnetic field makes a future for information transmission, memory storage, magnetic cooling materials etc., while the microscopic tiny signal differences of at the interface electrons are laborious to be discerned. Here, chiromagnetic iron oxide (Fe3O4) nanofilms were successfully prepared by modulating the magnetic and electrical transition dipoles and combined with confined ion transport, enabling magnetic field-tunable ionic currents with markedly ∼7.91-fold higher for l-tartaric acid (TA)-modified Fe3O4 nanofilms than that by d-TA. The apparent amplification results from the charge redistribution at the ferromagnetic-organic interface under the influence of the chiral magnetic effect, resulting in a significant potential difference across the nanofilms that drive ion transport in the confined environment. This strategy, on the one hand, makes it possible to efficiently characterize the electronic microimbalance state in chiral substances induced by the magnetic field and, on the other hand realizes the discrimination and highly sensitive quantitative detection of chiral drug enantiomers, which give insights for the in-depth understanding of chiral magnetic effects and efficient enantiomeric recognition.
Collapse
Affiliation(s)
- Jiarong Cai
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang 325001, P. R. China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
38
|
Wordsworth J, Benedetti TM, Somerville SV, Schuhmann W, Tilley RD, Gooding JJ. The Influence of Nanoconfinement on Electrocatalysis. Angew Chem Int Ed Engl 2022; 61:e202200755. [PMID: 35403340 PMCID: PMC9401583 DOI: 10.1002/anie.202200755] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/02/2023]
Abstract
The use of nanoparticles and nanostructured electrodes are abundant in electrocatalysis. These nanometric systems contain elements of nanoconfinement in different degrees, depending on the geometry, which can have a much greater effect on the activity and selectivity than often considered. In this Review, we firstly identify the systems containing different degrees of nanoconfinement and how they can affect the activity and selectivity of electrocatalytic reactions. Then we follow with a fundamental understanding of how electrochemistry and electrocatalysis are affected by nanoconfinement, which is beginning to be uncovered, thanks to the development of new, atomically precise manufacturing and fabrication techniques as well as advances in theoretical modeling. The aim of this Review is to help us look beyond using nanostructuring as just a way to increase surface area, but also as a way to break the scaling relations imposed on electrocatalysis by thermodynamics.
Collapse
Affiliation(s)
- Johanna Wordsworth
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| | - Tania M. Benedetti
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| | - Samuel V. Somerville
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätstrasse 15044780BochumGermany
| | - Richard D. Tilley
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydney2052Australia
| | - J. Justin Gooding
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
| |
Collapse
|
39
|
Decomposing biophotovoltaic current density profiles using the Hilbert-Huang transform reveals influences of circadian clock on cyanobacteria exoelectrogenesis. Sci Rep 2022; 12:10962. [PMID: 35768500 PMCID: PMC9243294 DOI: 10.1038/s41598-022-15111-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Electrons from cyanobacteria photosynthetic and respiratory systems are implicated in current generated in biophotovoltaic (BPV) devices. However, the pathway that electrons follow to electrodes remains largely unknown, limiting progress of applied research. Here we use Hilbert–Huang Transforms to decompose Synechococcus elongatus sp. PCC7942 BPV current density profiles into physically meaningful oscillatory components, and compute their instantaneous frequencies. We develop hypotheses for the genesis of the oscillations via repeat experiments with iron-depleted and 20% CO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${_2}$$\end{document}2 enriched biofilms. The oscillations exhibit rhythms that are consistent with the state of the art cyanobacteria circadian model, and putative exoelectrogenic pathways. In particular, we observe oscillations consistent with: rhythmic D1:1 (photosystem II core) expression; circadian-controlled glycogen accumulation; circadian phase shifts under modified intracellular %ATP; and circadian period shortening in the absence of the iron-sulphur protein LdpA. We suggest that the extracted oscillations may be used to reverse-identify proteins and/or metabolites responsible for cyanobacteria exoelectrogenesis.
Collapse
|
40
|
Huang G, Voorspoels A, Versloot RCA, Van Der Heide NJ, Carlon E, Willems K, Maglia G. PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Huang
- University of Groningen: Rijksuniversiteit Groningen Chemical Biology NETHERLANDS
| | - Aderik Voorspoels
- KU Leuven: Katholieke Universiteit Leuven Soft Matter and Biophysics BELGIUM
| | | | | | - Enrico Carlon
- KU Leuven University: Katholieke Universiteit Leuven Soft Matter and Biophysics NETHERLANDS
| | - Kherim Willems
- Imec Integrated photonics for microscopy and biomedical imaging BELGIUM
| | - Giovanni Maglia
- Rijksuniversiteit Groningen Chemical Biology Nijenborgh 7 9747 AG Groningen NETHERLANDS
| |
Collapse
|
41
|
Mereuta L, Asandei A, Dragomir I, Park J, Park Y, Luchian T. A Nanopore Sensor for Multiplexed Detection of Short Polynucleotides Based on Length-Variable, Poly-Arginine-Conjugated Peptide Nucleic Acids. Anal Chem 2022; 94:8774-8782. [PMID: 35666169 DOI: 10.1021/acs.analchem.2c01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Real-time and easy-to-use detection of nucleic acids is crucial for many applications, including medical diagnostics, genetic screening, forensic science, or monitoring the onset and progression of various diseases. Herein, an exploratory single-molecule approach for multiplexed discrimination among similar-sized single-stranded DNAs (ssDNA) is presented. The underlying strategy combined (i) a method based on length-variable, short arginine (poly-Arg) tags appended to peptide nucleic acid (PNA) probes, designed to hybridize with selected regions from complementary ssDNA targets (cDNA) in solution and (ii) formation and subsequent detection with the α-hemolysin nanopore of (poly-Arg)-PNA-cDNA duplexes containing two overhangs associated with the poly-Arg tail and the non-hybridized segment from ssDNA. We discovered that the length-variable poly-Arg tail marked distinctly the molecular processes associated with the nanopore-mediated duplexes capture, trapping and unzipping. This enabled the detection of ssDNA targets via the signatures of (poly-Arg)-PNA-cDNA blockade events, rendered most efficient from the β-barrel entrance of the nanopore, and scaled proportional in efficacy with a larger poly-Arg moiety. We illustrate the approach by sensing synthetic ssDNAs designed to emulate fragments from two regions of SARS-CoV-2 nucleocapsid phosphoprotein N-gene.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Isabela Dragomir
- Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, 38065 Kongju, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, 61452 Gwangju, Republic of Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
42
|
Lu SM, Li MY, Long YT. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry. J Phys Chem Lett 2022; 13:4653-4659. [PMID: 35604854 DOI: 10.1021/acs.jpclett.2c00960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-entity electrochemistry (SEE) provides powerful means to measure single cells, single particles, and even single molecules at the nanoscale by diverse well-defined interfaces. The nanoconfined electrode interface has significantly enhanced structural, electrical, and compositional characteristics that have great effects on the assay limitation and selectivity of single-entity measurement. In this Perspective, after introducing the dynamic chemistry interactions of the target and electrode interface, we present a fundamental understanding of how these dynamic interactions control the features of the electrode interface and thus the stochastic and discrete electrochemical responses of single entities under nanoconfinement. Both stochastic single-entity collision electrochemistry and nanopore electrochemistry as examples in this Perspective explore how these interactions alter the transient charge transfer and mass transport. Finally, we discuss the further challenges and opportunities in SEE, from the design of sensing interfaces to hybrid spectro-electrochemical methods, theoretical models, and advanced data processing.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
43
|
Wei W, Chen X, Wang X. Nanopore Sensing Technique for Studying the Hofmeister Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200921. [PMID: 35484475 DOI: 10.1002/smll.202200921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The nanopore sensing technique is an emerging method of detecting single molecules, and extensive research has gone into various fields, including nanopore sequencing and other applications of single-molecule studies. Recently, several researchers have explored the specific ion effects in nanopore channels, enabling a unique understanding of the Hofmeister effect at the single-molecule level. Herein, the recent advances of using nanopore sensing techniques are reviewed to study the Hofmeister effect and the physicochemical mechanism of this process is attempted. The challenges and goals are also discussed for the future in this field.
Collapse
Affiliation(s)
- Weichen Wei
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaojuan Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xuejiao Wang
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
44
|
Wang L, Wang H, Chen X, Zhou S, Wang Y, Guan X. Chemistry solutions to facilitate nanopore detection and analysis. Biosens Bioelectron 2022; 213:114448. [PMID: 35716643 DOI: 10.1016/j.bios.2022.114448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Characteristic ionic current modulations will be produced in a single molecule manner during the communication of individual molecules with a nanopore. Hence, the information regarding the length, composition, and structure of a molecule can be extracted from deciphering the electrical message. However, until now, achieving a satisfactory resolution for observation and quantification of a target analyte in a complex system remains a nontrivial task. In this review, we summarize the progress and especially the recent advance in utilizing chemistry solutions to facilitate nanopore detection and analysis. The discussed chemistry solutions are classified into several major categories, including covalent/non-covalent chemistry, redox chemistry, displacement chemistry, back titration chemistry, chelation chemistry, hydrolysis-chemistry, and click chemistry. Considering the significant success of using chemical reaction-assisted nanopore sensing strategies to improve sensor sensitivity & selectivity and to study various topics, other non-chemistry based methodologies can undoubtedly be employed by nanopore sensors to explore new applications in the interdisciplinary area of chemistry, biology, materials, and nanotechnology.
Collapse
Affiliation(s)
- Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
45
|
A Nanopore Sensing Assay Resolves Cascade Reactions in a Multienzyme System. Angew Chem Int Ed Engl 2022; 61:e202200866. [DOI: 10.1002/anie.202200866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/07/2022]
|
46
|
Si W, Yuan R, Wu G, Kan Y, Sha J, Chen Y, Zhang Y, Shen Y. Navigated Delivery of Peptide to the Nanopore Using In-Plane Heterostructures of MoS 2 and SnS 2 for Protein Sequencing. J Phys Chem Lett 2022; 13:3863-3872. [PMID: 35467868 DOI: 10.1021/acs.jpclett.2c00533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The impressive success of DNA sequencing using nanopores makes it possible to realize nanopore based protein sequencing. Well-controlled capture and linear movement of the protein are essential for accurate nanopore protein sequencing. Here, by taking advantage of different binding affinities of protein to two isomorphic materials, we theoretically designed a heterostructual platform for delivering the unfolded peptide to the nanopore sensing region. Due to the stronger binding between the peptide and SnS2 compared to MoS2, the peptide would adsorb to the SnS2 nanostripe and keep its threadlike conformation in the MoS2/SnS2/MoS2 heterostructure. Through switching the direction of the applied electric field in real time, the peptide was strategically driven to move along the designed path to the target nanopore. The ionic current blockades were also found to be different as the compositions of the peptide were changed, indicating the possibility for differentiating different peptides using this platform.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Runyi Yuan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yajing Kan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
47
|
Wu Y, Gooding JJ. The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 2022; 51:3862-3885. [PMID: 35506519 DOI: 10.1039/d1cs00988e] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanopore-based sensors typically work by monitoring transient pulses in conductance via current-time traces as molecules translocate through the nanopore. The unique property of being able to monitor single molecules gives nanopore sensors the potential as quantitative sensors based on the counting of single molecules. This review provides an overview of the concepts and fabrication of nanopore sensors as well as nanopore sensing with a view toward using nanopore sensors for quantitative analysis. We first introduce the classification of nanopores and highlight their applications in molecular identification with some pioneering studies. The review then shifts focus to recent strategies to extend nanopore sensors to devices that can rapidly and accurately quantify the amount of an analyte of interest. Finally, future prospects are provided and briefly discussed. The aim of this review is to aid in understanding recent advances, challenges, and prospects for nanopore sensors for quantitative analysis.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
48
|
Asandei A, Mereuta L, Bucataru IC, Park Y, Luchian T. A single-molecule insight into the ionic strength dependent, cationic peptide nucleic acids - oligonucleotides interactions. Chem Asian J 2022; 17:e202200261. [PMID: 35419929 DOI: 10.1002/asia.202200261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Indexed: 11/08/2022]
Abstract
To alleviate solubility-related shortcomings associated with the use of neutral peptide nucleic acids (PNA), a powerful strategy is incorporate various charged sidechains onto the PNA structure. Here we employ a single-molecule technique and prove that the ionic current blockade signature of free poly(Arg)-PNAs and their corresponding duplexes with target ssDNAs interacting with a single a-hemolysin (a-HL) nanopore is highly ionic strength dependent, with high salt-containing electrolytes facilitating both capture and isolation of such complexes. Our data illustrate the effect of low ionic strength in reducing the effective volume of free poly(Arg)-PNAs and augmentation of their electrophoretic mobility while traversing the nanopore. We found that unlike in high salt electrolytes, the specific hybridization of cationic moiety-containing PNAs with complementary negatively charged ssDNAs in a salt concentration as low as 0.5 M is dramatically impeded. We suggest a scenario in which reduced charge screening by counterions in low salt electrolytes enables non-specific, electrostatic interactions with the anionic backbone of polynucleotides, thus reducing the ability of PNA-DNA complementary association via hydrogen bonding patterns. We applied an experimental strategy with spatially-separated poly(Arg)-PNAs and ssDNAs, and present evidence at the single-molecule level suggestive of the real-time, long-range interactions-driven formation of poly(Arg)-PNA-DNA complexes, as individual strands entering the nanopore from opposite directions collide inside a nanocavity.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, ICI, ROMANIA
| | - Loredana Mereuta
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Ioana C Bucataru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Yoonkyung Park
- Chosun University, Department of Biomedical Science, ROMANIA
| | - Tudor Luchian
- Alexandru I. Cuza University, Physics, Blvd. Carol I, no. 11, 700506, Iasi, ROMANIA
| |
Collapse
|
49
|
Wordsworth J, Benedetti TM, Somerville SV, Schuhmann W, Tilley RD, Gooding JJ. The Influence of Nanoconfinement on Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Wolfgang Schuhmann
- Ruhr-Universitat Bochum Analytische Chemie Universitätsstr 150 44780 Bochum GERMANY
| | - Richard D. Tilley
- UNSW: University of New South Wales Electron Microscopy Unit AUSTRALIA
| | | |
Collapse
|
50
|
Liu W, Yang ZL, Yang CN, Ying YL, Long YT. Profiling single-molecule reaction kinetics under nanopore confinement. Chem Sci 2022; 13:4109-4114. [PMID: 35440975 PMCID: PMC8985585 DOI: 10.1039/d1sc06837g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/13/2022] [Indexed: 02/02/2023] Open
Abstract
The study of a single-molecule reaction under nanoconfinement is beneficial for understanding the reactive intermediates and reaction pathways. However, the kinetics model of the single-molecule reaction under confinement remains elusive. Herein we engineered an aerolysin nanopore reactor to elaborate the single-molecule reaction kinetics under nanoconfinement. By identifying the bond-forming and non-bond-forming events directly, a four-state kinetics model is proposed for the first time. Our results demonstrated that the single-molecule reaction kinetics inside a nanopore depends on the frequency of individual reactants captured and the fraction of effective collision inside the nanopore confined space. This insight will guide the design of confined nanopore reactors for resolving the single-molecule chemistry, and shed light on the mechanistic understanding of dynamic covalent chemistry inside confined systems such as supramolecular cages, coordination cages, and micelles. A four-state kinetics model is proposed to reveal the kinetics of a single-molecule reaction under nanopore confinement.![]()
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhong-Lin Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Chao-Nan Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|