1
|
Kapitonova MA, Reveguk ZV, Malova PS, Hu K, Kononov AI. Binary light-up fluorescent probe based on silver nanoclusters for MicroRNA detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3729-3738. [PMID: 40279134 DOI: 10.1039/d5ay00410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Silver nanoclusters (Ag NCs) are widely applied in the biosensing of metal ions, small organic molecules, nucleic acids, amino acids, and proteins due to their particular fluorescence and chemical properties. Organic matrices such as DNA are usually employed for Ag NC synthesis and stabilization. They make Ag NC/matrix complexes biocompatible and sensitive to the environment. It has recently been shown that Ag NCs based on DNA matrices are capable of self-assembly and rearrangement followed by a change in the fluorescence and absorbance characteristics. These attributes allow the development of sensors with target molecule detection visible even by the naked eye. Here we suggest a simple one-step turn-on highly specific microRNA-210 sensor based on a fluorescent Ag NC. The main feature of the sensor is the smart design of a binary matrix, which provides the appearance of a bright green fluorescence signal only after Ag NCs/DNA-matrix complexes are bonded to the target sequence. The microRNA detection assay requires no additional action because the process proceeds by itself. A comprehensive optimization of the binary probe structure and location was carried out. An approach to detection leading to minimal background signal was defined as follows. The approach involves the preliminary synthesis of non-fluorescent silver clusters using a single strand of the binary matrix containing a 5'-CCCGTTTT-3' part. It was shown that these "dark" structures can be stored for at least a month before analysis. The fluorescence intensity of the green Ag NCs increases in the presence of the microRNA-210 sequence, and that dependence on the target concentration tends to be linear in the range of 5-500 nM. The sensor demonstrates specificity to the miR-210 sequence, and the LOD (limit of detection) was established as 5 nM in serum samples.
Collapse
Affiliation(s)
- Marina A Kapitonova
- St. Petersburg State University, 199034 Saint-Petersburg, Russia.
- St. Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| | - Zakhar V Reveguk
- St. Petersburg State University, 199034 Saint-Petersburg, Russia.
- Tel Aviv University, 69978 Tel Aviv, Israel
| | - Polina S Malova
- St. Petersburg State University, 199034 Saint-Petersburg, Russia.
- Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 100050 Beijing, P. R. China
| | - Alexei I Kononov
- St. Petersburg State University, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Li C, Ekanayake AB, Chu QR, Swenson DC, Tivanski AV, MacGillivray LR. Light-Induced Disruption of 1D Wire-Like Arrays of Monoatomic Ag(I) Ions: Single-Crystal Reaction with Crystal Softening. Angew Chem Int Ed Engl 2025:e202419875. [PMID: 40268682 DOI: 10.1002/anie.202419875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The exploitation of noncovalent bonding in the solid state is attractive to generate one-dimensional (1D) wire-like assemblies of metals and uncover dynamic and physical properties of such intriguing structures. Herein, we describe a metal-organic crystal based on Ag(I) ions that assemble to be organized into 1D wire-like assemblies maintained by argentophilic interactions. UV-light irradiation of the crystal composed of the 1D structures results in a single-crystal-to-single-crystal (SCSC) photodimerization that transforms the 1D periodic metal arrays to isolated metal dimers. The structural reconfiguration creates small voids in the crystal and the resulting solids exhibit a substantial increase in softness up to 60%.
Collapse
Affiliation(s)
- Changan Li
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York, 10027, USA
| | | | - Qianli R Chu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Dale C Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | | |
Collapse
|
3
|
Reveguk Z, Improta R, Martínez-Fernández L, Ramazanov R, Richter S, Kotlyar A. Fluorescent Silver Nanoclusters Associated with Double-Stranded Poly(dGdC) DNA. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:397. [PMID: 40072200 PMCID: PMC11902164 DOI: 10.3390/nano15050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Here, we demonstrate through AFM imaging and CD spectroscopy that the binding of silver ions (Ag+) to poly(dGdC), a double-stranded (ds) DNA composed of two identical repeating strands, at a stoichiometry of one Ag+ per GC base pair induces a one-base shift of one strand relative to the other. This results in a ds nucleic acid-Ag+ conjugate consisting of alternating CC and GG base pairs coordinated by silver ions. The proposed organization of the conjugate is supported by the results of our Quantum Mechanical (QM) and Molecular Mechanics (MMs) calculations. The reduction of Ag+ ions followed by the partial oxidation of silver atoms yields a highly fluorescent conjugate emitting at 720 nm. This fluorescent behavior in conjugates of long, repetitive ds DNA (thousands of base pairs) with silver has never been demonstrated before. We propose that the poly(dGdC)-Ag conjugate functions as a dynamic system, comprising various small clusters embedded within the DNA and interacting with one another through energy transfer. This hypothesis is supported by the results of our QM and MMs calculations. Additionally, these DNA-silver conjugates, comprising silver nanoclusters, may possess conductive properties, making them potential candidates for use as nanowires in nanodevices and nanosensors.
Collapse
Affiliation(s)
- Zakhar Reveguk
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy;
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;
| | - Ruslan Ramazanov
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Shachar Richter
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Alexander Kotlyar
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Tsvetkov V, Mir B, Alieva R, Arutyunyan A, Oleynikov I, Novikov R, Boravleva E, Kamzeeva P, Zatsepin T, Aralov A, González C, Zavyalova E. Unveiling the unusual i-motif-derived architecture of a DNA aptamer exhibiting high affinity for influenza A virus. Nucleic Acids Res 2025; 53:gkae1282. [PMID: 39777463 PMCID: PMC11704962 DOI: 10.1093/nar/gkae1282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Non-canonical nucleic acid structures play significant roles in cellular processes through selective interactions with proteins. While both natural and artificial G-quadruplexes have been extensively studied, the functions of i-motifs remain less understood. This study investigates the artificial aptamer BV42, which binds strongly to influenza A virus hemagglutinin and unexpectedly retains its i-motif structure even at neutral pH. However, BV42 conformational heterogeneity hinders detailed structural analysis. Molecular dynamics simulations and chemical modifications of BV42 helped us to identify a potential binding site, allowing for aptamer redesign to eliminate the conformational diversity while retaining binding affinity. Nuclear magnetic resonance spectroscopy confirmed the i-motif/duplex junction with the three-cytosine loop nearby. This study highlights the unique structural features of the functional i-motif and its role in molecular recognition of the target.
Collapse
Affiliation(s)
- Vladimir Tsvetkov
- Center for Mathematical Modeling in Drug Development, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Department of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Bartomeu Mir
- Instituto de Química Física Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Rugiya Alieva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elizaveta Boravleva
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products (Institute of Poliomyelitis), Russian Academy of Sciences, Moscow 108819, Russia
| | - Polina Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Carlos González
- Instituto de Química Física Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
5
|
Guha R, Malola S, Rafik M, Khatun M, Gonzàlez-Rosell A, Häkkinen H, Copp SM. Fragmentation patterns of DNA-stabilized silver nanoclusters under mass spectrometry. NANOSCALE 2024; 16:20596-20607. [PMID: 39439283 DOI: 10.1039/d4nr03533j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) are emitters with tuneable structures and photophysical properties. While understanding of the sequence-structure-property relationships of AgN-DNAs has advanced significantly, their chemical transformations and degradation pathways are far less understood. To advance understanding of these pathways, we analysed the fragmentation products of 21 different red and NIR AgN-DNAs using negative ion mode electrospray ionization mass spectrometry (ESI-MS). AgN-DNAs were found to lose Ag+ under ESI-MS conditions, and sufficient loss of silver atoms can lead to a transition to a lesser number of effective valence electrons, N0. Of more than 400 mass spectral peaks analysed, only even values of N0 were identified, suggesting that solution-phase AgN-DNAs with odd values of N0 are unlikely to be stable. AgN-DNAs stabilized by three DNA strands were found to fragment significantly more than AgN-DNAs stabilized by two DNA strands. Moreover, the fragmentation behaviour depends strongly on the DNA template sequence, with diverse fragmentation patterns even for AgN-DNAs with similar molecular formulae. Molecular dynamics simulations, with forces calculated from density functional theory, of the fragmentation of (DNA)2(Ag16Cl2)8+ with a known crystal structure show that the 6-electron Ag16Cl2 core fragments into a 4-electron Ag10 and a 2-electron Ag6, preserving electron-pairing rules even at early stages of the fragmentation process, in agreement with experimental observation. These findings provide new insights into the mechanisms by which AgN-DNAs degrade and transform, with relevance for their applications in sensing and biomedical applications.
Collapse
Affiliation(s)
- Rweetuparna Guha
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Sami Malola
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Malak Rafik
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Maya Khatun
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Hannu Häkkinen
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Rajeev A, Bhatia D. DNA-templated fluorescent metal nanoclusters and their illuminating applications. NANOSCALE 2024; 16:18715-18731. [PMID: 39292491 DOI: 10.1039/d4nr03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
After the discovery of DNA during the mid-20th century, a multitude of novel methodologies have surfaced which exploit DNA for its various properties. One such recently developed application of DNA is as a template in metal nanocluster formation. In the early years of the new millennium, a group of researchers found that DNA can be adopted as a template for the binding of metal nanoparticles that ultimately form nanoclusters. Three metal nanoclusters have been studied so far, including silver, gold, and copper, which have a plethora of biological applications. This review focuses on the synthesis, mechanisms, and novel applications of DNA-templated metal nanoclusters, including the therapies that have employed them for their wide range of fluorescent properties, and the future perspectives related to their development by exploiting machine learning algorithms and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
7
|
Setzler CJ, Petty JT. Click catalysis and DNA conjugation using a nanoscale DNA/silver cluster pair. NANOSCALE 2024; 16:17868-17876. [PMID: 39257181 DOI: 10.1039/d4nr02938k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
DNA-bound silver clusters are most readily recognized by their strong fluorescence that spans the visible and near-infrared regions. From this suite of chromophores, we chose a green-emitting Ag106+ bound to C4AC4TC3GT4 and describe how this DNA/cluster pair is also a catalyst. A DNA-tethered alkyne conjugates with an azide via cycloaddition, an inherently slow reaction that is facilitated through the joint efforts of the cluster and DNA. The Ag106+ structure is the catalytic core in this complex, and it has three distinguishing characteristics. It facilitates cycloaddition while preserving its stoichiometry, charge, and spectra. It also acidifies its nearby alkyne to promote H/D exchange, suggesting a silver-alkyne complex. Finally, it is markedly more efficient when compared with related multinuclear DNA-silver complexes. The Ag106+ is trapped within its C4AC4TC3GT4 host, which governs the catalytic activity in two ways. The DNA has orthogonal functional groups for both the alkyne and cluster, and these can be systematically separated to quench the click reaction. It is also a polydentate ligand that imprints an elongated shape on its cluster adduct. This extended structure suggests that DNA may pry apart the cluster to open coordination sites for the alkyne and azide reactants. These studies indicate that this DNA/silver cluster pair work together with catalysis directly driven by the silver cluster and indirectly guided by the DNA host.
Collapse
Affiliation(s)
- Caleb J Setzler
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| |
Collapse
|
8
|
Sadeghi E, Mastracco P, Gonzàlez-Rosell A, Copp SM, Bogdanov P. Multi-Objective Design of DNA-Stabilized Nanoclusters Using Variational Autoencoders With Automatic Feature Extraction. ACS NANO 2024; 18:26997-27008. [PMID: 39288200 PMCID: PMC11447918 DOI: 10.1021/acsnano.4c09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) have sequence-tuned compositions and fluorescence colors. High-throughput experiments together with supervised machine learning models have recently enabled design of DNA templates that select for AgN-DNA properties, including near-infrared (NIR) emission that holds promise for deep tissue bioimaging. However, these existing models do not enable simultaneous selection of multiple AgN-DNA properties, and require significant expert input for feature engineering and class definitions. This work presents a model for multiobjective, continuous-property design of AgN-DNAs with automatic feature extraction, based on variational autoencoders (VAEs). This model is generative, i.e., it learns both the forward mapping from DNA sequence to AgN-DNA properties and the inverse mapping from properties to sequence, and is trained on an experimental data set of DNA sequences paired with AgN-DNA fluorescence properties. Experimental testing shows that the model enables effective design of AgN-DNA emission, including bright NIR AgN-DNAs with 4-fold greater abundance compared to training data. In addition, Shapley analysis is employed to discern learned nucleobase patterns that correspond to fluorescence color and brightness. This generative model can be adapted for a range of biomolecular systems with sequence-dependent properties, enabling precise design of emerging biomolecular nanomaterials.
Collapse
Affiliation(s)
- Elham Sadeghi
- Department
of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States
| | - Peter Mastracco
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
| | - Petko Bogdanov
- Department
of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States
| |
Collapse
|
9
|
Yadavalli HC, Kim Y, Jung IL, Park S, Kim TH, Shin JY, Nagda R, Thulstrup PW, Bjerrum MJ, Bhang YJ, Lee PH, Yang WH, Shah P, Yang SW. Energy Transfer Between i-Motif DNA Encapsulated Silver Nanoclusters and Fluorescein Amidite Efficiently Visualizes the Redox State of Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401629. [PMID: 38824675 DOI: 10.1002/smll.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Indexed: 06/04/2024]
Abstract
The redox regulation, maintaining a balance between oxidation and reduction in living cells, is vital for cellular homeostasis, intricate signaling networks, and appropriate responses to physiological and environmental cues. Here, a novel redox sensor, based on DNA-encapsulated silver nanoclusters (DNA/AgNCs) and well-defined chemical fluorophores, effectively illustrating cellular redox states in live cells is introduced. Among various i-motif DNAs, the photophysical property of poly-cytosines (C20)-encapsulated AgNCs that sense reactive oxygen species (ROS) is adopted. However, the sensitivity of C20/AgNCs is insufficient for evaluating ROS levels in live cells. To overcome this drawback, the ROS sensing mechanism of C20/AgNCs through gel electrophoresis, mass spectrometry, and small-angle X-ray scattering is primarily defined. Then, by tethering fluorescein amidite (FAM) and Cyanine 5 (Cy5) dyes to each end of the C20/AgNCs sensor, an Energy Transfer (ET) between AgNCs and FAM is achieved, resulting in intensified green fluorescence upon ROS detection. Taken together, the FAM-C20/AgNCs-Cy5 redox sensor enables dynamic visualization of intracellular redox states, yielding insights into oxidative stress-related processes in live cells.
Collapse
Affiliation(s)
- Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Yong Joo Bhang
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahak-ro Yeonsugu, Incheon, 21984, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Imaoka T, Antoku N, Narita Y, Nishiyama K, Takada K, Saito S, Tanaka M, Okochi M, Huda M, Tanabe M, Chun WJ, Yamamoto K. Synthesis of atom-precise supported metal clusters via solid-phase peptide synthesis. Chem Sci 2024:d4sc04400b. [PMID: 39246354 PMCID: PMC11376025 DOI: 10.1039/d4sc04400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
While the utility of supported metal and alloy clusters as catalytic materials is widely recognized, their precise synthesis remains a challenge. Here, we demonstrate the precise synthesis of these clusters via metallopeptides. This technique is characterized by its ability to be automated using Merrifield's solid-phase peptide synthesis (SPPS). Metallopeptides with iron and platinum complexes in their side chains have been prepared using this SPPS. These metallopeptides were successfully transformed into the corresponding supported metal clusters by heating in a hydrogen atmosphere.
Collapse
Affiliation(s)
- Takane Imaoka
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Nanami Antoku
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Yusuke Narita
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Kazuki Nishiyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Kenji Takada
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Shogo Saito
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Miftakhul Huda
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Makoto Tanabe
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences, International Christian University Mitaka Tokyo 181-8585 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| |
Collapse
|
11
|
Gonzàlez-Rosell A, Copp SM. An Atom-Precise Understanding of DNA-Stabilized Silver Nanoclusters. Acc Chem Res 2024; 57:2117-2129. [PMID: 38995323 PMCID: PMC11308368 DOI: 10.1021/acs.accounts.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) are sequence-encoded fluorophores. Like other noble metal nanoclusters, the optical properties of AgN-DNAs are dictated by their atomically precise sizes and shapes. What makes AgN-DNAs unique is that nanocluster size and shape are controlled by nucleobase sequence of the templating DNA oligomer. By choice of DNA sequence, it is possible to synthesize a wide range of AgN-DNAs with diverse emission colors and other intriguing photophysical properties. AgN-DNAs hold significant potential as "programmable" emitters for biological imaging due to their combination of small molecular-like sizes, bright and sequence-tuned fluorescence, low toxicities, and cost-effective synthesis. In particular, the potential to extend AgN-DNAs into the second near-infrared region (NIR-II) is promising for deep tissue imaging, which is a major area of interest for advancing biomedical imaging. Achieving this goal requires a deep understanding of the structure-property relationships that govern AgN-DNAs in order to design AgN-DNA emitters with sizes and geometries that support NIR-II emission. In recent years, major advances have been made in understanding the structure and composition of AgN-DNAs, enabling new insights into the correlation of nanocluster structure and photophysical properties. These advances have hinged on combined innovations in mass characterization and crystallography of compositionally pure AgN-DNAs, together with combinatorial experiments and machine learning-guided design. A combined approach is essential due to the major challenge of growing suitable AgN-DNA crystals for diffraction and to the labor-intensive nature of preparing and solving the molecular formulas of atomically precise AgN-DNAs by mass spectrometry. These approaches alone are not feasibly scaled to explore the large sequence space of DNA oligomer templates for AgN-DNAs. This account describes recent fundamental advances in AgN-DNA science that have been enabled by high throughput synthesis and fluorimetry together with detailed analytical studies of purified AgN-DNAs. First, short introductions to nanocluster chemistry and AgN-DNA basics are presented. Then, we review recent large-scale studies that have screened thousands of DNA templates for AgN-DNAs, leading to discovery of distinct classes of these emitters with unique cluster core compositions and ligand chemistries. In particular, the discovery of a new class of chloride-stabilized AgN-DNAs enabled the first ab initio calculations of AgN-DNA electronic structure and present new approaches to stabilize these emitters in biologically relevant conditions. Near-infrared (NIR) emissive AgN-DNAs are also found to exhibit diverse structures and properties. Finally, we conclude by highlighting recent proof-of-principle demonstrations of NIR AgN-DNAs for targeted fluorescence imaging. Continued efforts may future push AgN-DNAs into the tissue transparency window for fluorescence imaging in the NIR-II tissue transparency window.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
12
|
Hong LH, Yue SN, Huang X, Sun C, Cai PW, Sun YQ, Li XX, Zheng ST. Development of Stable Water-Soluble Supratomic Silver Clusters Utilizing A Polyoxoniobate-Protected Strategy: Giant Core-Shell-Type Ag 8@Nb 162 Fluorescent Nanocluster. Angew Chem Int Ed Engl 2024; 63:e202404314. [PMID: 38712987 DOI: 10.1002/anie.202404314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Atomically precise low-nuclearity (n<10) silver nanoclusters (AgNCs) have garnered significant interest due to their size-dependent optical properties and diverse applications. However, their synthesis has remained challenging, primarily due to their inherent instability. The present study introduces a new feasible approach for clustering silver ions utilizing highly negative and redox-inert polyoxoniobates (PONbs) as all-inorganic ligands. This strategy not only enables the creation of novel Ag-PONb composite nanoclusters but also facilitates the synthesis of stable low-nuclearity AgNCs. Using this method, we have successfully synthesized a small octanuclear rhombic [Ag8]6+ AgNC stabilized by six highly negative [LiNb27O75]14- polyoxoanions. This marks the first PONb-protected superatomic AgNC, designated as {Ag8@(LiNb27O75)6} (Ag8@Nb162), with an aesthetically spherical core-shell structure. The crystalline Ag8@Nb162 is stable under ambient conditions, What's more, it is water-soluble and able to maintain its molecular cluster structure intact in water. Further, the stable small [Ag8]6+ AgNC has interesting temperature- and pH-dependent reversible fluorescence response, based on which a multiple optical encryption mode for anti-counterfeit technology was demonstrated. This work offers a promising avenue for the synthesis of fascinating and stable PONb-protected AgNCs and sheds light on the development of new-type optical functional materials.
Collapse
Affiliation(s)
- Li-Hao Hong
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Sheng-Nan Yue
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xing Huang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
13
|
Liisberg MB, Vosch T. Fluorescence Screening of DNA-AgNCs with Pulsed White Light Excitation. NANO LETTERS 2024; 24:7987-7991. [PMID: 38905483 PMCID: PMC11229690 DOI: 10.1021/acs.nanolett.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of fluorophores with interesting photophysical properties dominated by the choice of DNA sequence. Screening methods with ultraviolet excitation and steady state well plate readers have previously been used for deepening the understanding between DNA sequence and emission color of the resulting DNA-AgNCs. Here, we present a new method for screening DNA-AgNCs by using pulsed white light excitation (λex ≈ 490-900 nm). By subtraction and time gating we are able to circumvent the dominating scatter of the white excitation light and extract both temporally and spectrally resolved emission of DNA-AgNCs over the visible to near-infrared range. Additionally, we are able to identify weak long-lived emission, which is often buried underneath the intense nanosecond fluorescence. This new approach will be useful for future screening of DNA-AgNCs (or other novel emissive materials) and aid machine-learning models by providing a richer training data set.
Collapse
Affiliation(s)
- Mikkel Baldtzer Liisberg
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Hong S, Walker JN, Luong AT, Mathews J, Shields SWJ, Kuo YA, Chen YI, Nguyen TD, He Y, Nguyen AT, Ghimire ML, Kim MJ, Brodbelt JS, Yeh HC. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. NATURE NANOTECHNOLOGY 2024; 19:810-817. [PMID: 38351231 PMCID: PMC11864325 DOI: 10.1038/s41565-024-01612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/15/2024] [Indexed: 06/21/2024]
Abstract
Fluorescence resonance energy transfer (FRET) reporters are commonly used in the final stages of nucleic acid amplification tests to indicate the presence of nucleic acid targets, where fluorescence is restored by nucleases that cleave the FRET reporters. However, the need for dual labelling and purification during manufacturing contributes to the high cost of FRET reporters. Here we demonstrate a low-cost silver nanocluster reporter that does not rely on FRET as the on/off switching mechanism, but rather on a cluster transformation process that leads to fluorescence color change upon nuclease digestion. Notably, a 90 nm red shift in emission is observed upon reporter cleavage, a result unattainable by a simple donor-quencher FRET reporter. Electrospray ionization-mass spectrometry results suggest that the stoichiometric change of the silver nanoclusters from Ag13 (in the intact DNA host) to Ag10 (in the fragments) is probably responsible for the emission colour change observed after reporter digestion. Our results demonstrate that DNA-templated silver nanocluster probes can be versatile reporters for detecting nuclease activities and provide insights into the interactions between nucleases and metallo-DNA nanomaterials.
Collapse
Affiliation(s)
- Soonwoo Hong
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Aaron T Luong
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jonathan Mathews
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Samuel W J Shields
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Trung Duc Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yujie He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Anh-Thu Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Madhav L Ghimire
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | | | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Chakraborty S, Pramanik S, Shekhar S, Mukherjee S. Plasmon-emitter coupling in cytosine-rich hairpin DNA-templated silver nanoclusters: Thermal reversibility, white light emission, and dynamics inside live cells. J Chem Phys 2024; 160:154303. [PMID: 38624117 DOI: 10.1063/5.0200544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Bio-templated luminescent noble metal nanoclusters (NCs) have attracted great attention for their intriguing physicochemical properties. Continuous efforts are being made to prepare NCs with high fluorescence quantum yield (QY), good biocompatibility, and tunable emission properties for their widespread practical applications as new-generation environment-friendly photoluminescent materials in materials chemistry and biological systems. Herein, we explored the unique photophysical properties of silver nanoclusters (AgNCs) templated by cytosine-rich customized hairpin DNA. Our results indicate that a 36-nucleotide containing hairpin DNA with 20 cytosine (C20) in the loop can encapsulate photostable red-emitting AgNCs with an absolute QY of ∼24%. The luminescent properties in these DNA-templated AgNCs were found to be linked to the coupling between the surface plasmon and the emitter. These AgNCs exhibited excellent thermal sensitivity and were employed to produce high-quality white light emission with an impressive color rendering index of 90 in the presence of dansyl chloride. In addition, the as-prepared luminescent AgNCs possessing excellent biocompatibility can effectively mark the nuclear region of HeLa cells and can be employed as a luminescent probe to monitor the cellular dynamics at a single molecular resolution.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
17
|
Malola S, Häkkinen H. On transient absorption and dual emission of the atomically precise, DNA-stabilized silver nanocluster Ag 16Cl 2. Chem Commun (Camb) 2024; 60:3315-3318. [PMID: 38426876 DOI: 10.1039/d3cc06085c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
DNA-stabilized silver nanoclusters with 10 to 30 silver atoms are interesting biocompatible nanomaterials with intriguing fluorescence properties. However, they are not well understood, since atom-scale high level theoretical calculations have not been possible due to a lack of firm experimental structural information. Here, by using density functional theory (DFT), we study the recently atomically resolved (DNA)2-Ag16Cl2 nanocluster in solvent under the lowest-lying singlet (S1) and triplet (T1) excited states, estimate the relative emission maxima for the allowed (S1 → S0) and dark (T1 → S0) transitions, and evaluate the transient absorption spectra. Our results offer a potential interpretation of the recently reported transient absorption and dual emission of similar DNA-stabilized silver nanoclusters, providing a mechanistic view on their photophysical properties that are attractive for applications in biomedical imaging and biophotonics.
Collapse
Affiliation(s)
- Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland.
| | - Hannu Häkkinen
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland.
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland
| |
Collapse
|
18
|
Bose P, Kumaranchira Ramankutty K, Chakraborty P, Khatun E, Pradeep T. A concise guide to chemical reactions of atomically precise noble metal nanoclusters. NANOSCALE 2024; 16:1446-1470. [PMID: 38032061 DOI: 10.1039/d3nr05128e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoparticles (NPs) with atomic precision, known as nanoclusters (NCs), are an emerging field in materials science in view of their fascinating structure-property relationships. Ultrasmall noble metal NPs have molecule-like properties that make them fundamentally unique compared with their plasmonic counterparts and bulk materials. In this review, we present a comprehensive account of the chemistry of monolayer-protected atomically precise noble metal nanoclusters with a focus on the chemical reactions, their diversity, associated kinetics, and implications. To begin with, we briefly review the history of the evolution of such precision materials. Then the review explores the diverse chemistry of noble metal nanoclusters, including ligand exchange reactions, ligand-induced structural transformations, and reactions with metal ions, metal thiolates, and halocarbons. Just as molecules do, these precision materials also undergo intercluster reactions in solution. Supramolecular forces between these systems facilitate the creation of well-defined hierarchical assemblies, composites, and hybrid materials. We conclude the review with a future perspective and scope of such chemistry.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Krishnadas Kumaranchira Ramankutty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Papri Chakraborty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Esma Khatun
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
19
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
20
|
Liasi Z, Jensen L, Mikkelsen KV. A Combined Quantum Mechanics and Molecular Mechanics Approach for Simulating the Optical Properties of DNA-Stabilized Silver Nanoclusters. J Chem Theory Comput 2024; 20:937-945. [PMID: 38164716 DOI: 10.1021/acs.jctc.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
DNA-stabilized silver nanoclusters have emerged as an intriguing type of nanomaterial due to their unique optical and electronic properties, with potential applications in areas such as biosensing and imaging. The development of efficient methods for modeling these properties is paramount for furthering the understanding and utilization of these clusters. In this study, a hybrid quantum mechanical and molecular mechanical approach for modeling the optical properties of a DNA-templated silver nanocluster is evaluated. The influence of different parameters, including ligand fragmentation, damping, embedding potential, basis set, and density functional, is investigated. The results demonstrate that the most important parameter is the type of atomic properties used to represent the ligands, with isotropic dipole-dipole polarizabilities outperforming the rest. This underscores the importance of an appropriate representation of the ligands, particularly through the selection of the properties used to represent them. Moreover, the results are compared to experimental data, showing that the applied methodology is reliable and effective for the modeling of DNA-stabilized silver nanoclusters. These findings offer valuable insights that may guide future computational efforts to explore and harness the potential of these novel systems.
Collapse
Affiliation(s)
- Zacharias Liasi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| |
Collapse
|
21
|
Setzler C, Arrington CA, Lewis D, Petty JT. Breaching the Fortress: Photochemistry of DNA-Caged Ag 106. J Phys Chem B 2023; 127:10851-10860. [PMID: 38054435 PMCID: PMC10749453 DOI: 10.1021/acs.jpcb.3c06358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
A DNA strand can encapsulate a silver molecule to create a nanoscale, aqueous stable chromophore. A protected cluster that strongly fluoresces can also be weakly photolabile, and we describe the laser-driven photochemistry of the green fluorophore C4AC4TC3GT4/Ag106+. The embedded cluster is selectively photoexcited at 490 nm and then bleached, and we describe how the efficiency, products, and route of this photochemical reaction are controlled by the DNA cage. With irradiation at 496.5 nm, the cluster absorption progressively drops to give a photodestruction quantum yield of 1.5 (±0.2) × 10-4, ∼103× less efficient than fluorescence. A new λabs = 335 nm chromophore develops because the precursor with 4 Ag0 is converted into a group of clusters with 2 Ag0 - Ag64+, Ag75+, Ag86+, and Ag97+. The 4-7 Ag+ in this series are chemically distinct from the 2 Ag0 because they are selectively etched by iodide. This halide precipitates silver to favor only the smallest Ag64+ cluster, but the larger clusters re-develop when the precipitated Ag+ ions are replenished. DNA-bound Ag106+ decomposes because it is electronically excited and then reacts with oxygen. This two-step process may be state-specific because O2 quenches the red luminescence from Ag106+. However, the rate constant of 2.3 (±0.2) × 106 M-1 s-1 is relatively small, which suggests that the surrounding DNA matrix hinders O2 diffusion. On the basis of analogous photoproducts with methylene blue, we propose that a reactive oxygen species is produced and then oxidizes Ag106+ to leave behind a loose Ag+-DNA skeleton. These findings underscore the ability of DNA scaffolds to not only tune the spectra but also guide the reactions of their molecular silver adducts.
Collapse
Affiliation(s)
- Caleb
J. Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
22
|
Guha R, Gonzàlez-Rosell A, Rafik M, Arevalos N, Katz BB, Copp SM. Electron count and ligand composition influence the optical and chiroptical signatures of far-red and NIR-emissive DNA-stabilized silver nanoclusters. Chem Sci 2023; 14:11340-11350. [PMID: 37886084 PMCID: PMC10599602 DOI: 10.1039/d3sc02931j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/09/2023] [Indexed: 10/28/2023] Open
Abstract
Near-infrared (NIR) emissive DNA-stabilized silver nanoclusters (AgN-DNAs) are promising fluorophores in the biological tissue transparency windows. Hundreds of NIR-emissive AgN-DNAs have recently been discovered, but their structure-property relationships remain poorly understood. Here, we investigate 19 different far-red and NIR emissive AgN-DNA species stabilized by 10-base DNA templates, including well-studied emitters whose compositions and chiroptical properties have never been reported before. The molecular formula of each purified species is determined by high-resolution mass spectrometry and correlated to its optical absorbance, emission, and circular dichroism (CD) spectra. We find that there are four distinct compositions for AgN-DNAs emissive at the far red/NIR spectral border. These emitters are either 8-electron clusters stabilized by two DNA oligomer copies or 6-electron clusters with one of three different ligand compositions: two oligomer copies, three oligomer copies, or two oligomer copies with additional chlorido ligands. Distinct optical and chiroptical signatures of 6-electron AgN-DNAs correlate with each ligand composition. AgN-DNAs with three oligomer ligands exhibit shorter Stokes shifts than AgN-DNAs with two oligomers, and AgN-DNAs with chlorido ligands have increased Stokes shifts and significantly suppressed visible CD transitions. Nanocluster electron count also significantly influences electronic structure and optical properties, with 6-electron and 8-electron AgN-DNAs exhibiting distinct absorbance and CD spectral features. This study shows that the optical and chiroptical properties of NIR-emissive AgN-DNAs are highly sensitive to nanocluster composition and illustrates the diversity of structure-property relationships for NIR-emissive AgN-DNAs, which could be harnessed to precisely tune these emitters for bioimaging applications.
Collapse
Affiliation(s)
- Rweetuparna Guha
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Malak Rafik
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Nery Arevalos
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Benjamin B Katz
- Department of Chemistry, University of California Irvine CA 92697 USA
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
- Department of Physics and Astronomy, University of California Irvine CA 92697 USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine CA 92697 USA
| |
Collapse
|
23
|
Rolband L, Godakhindi V, Vivero-Escoto JL, Afonin KA. Demonstrating the Synthesis and Antibacterial Properties of Nanostructured Silver. JOURNAL OF CHEMICAL EDUCATION 2023; 100:3547-3555. [PMID: 37720521 PMCID: PMC10501122 DOI: 10.1021/acs.jchemed.3c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/29/2023] [Indexed: 09/19/2023]
Abstract
Investigating and understanding novel antibacterial agents is a necessary task as there is a constant increase in the number of multidrug-resistant bacterial species. The use of nanotechnology to combat drug-resistant bacteria is an important research area. The laboratory experiment described herein demonstrates that changes in the nanostructure of a material lead to significantly different antibacterial efficacies. Silver has been known to be an effective antibacterial agent throughout history, but its therapeutic uses are limited when present as either the bulk material or cations in solution. Silver nanoparticles (AgNPs) and DNA-templated silver nanoclusters (DNA-AgNCs) are both nanostructured silver materials that show vastly different antibacterial activities when incubated with E. coli in liquid culture. This work aims to provide students with hands-on experience in the synthesis and characterization of nanomaterials and basic microbiology skills; moreover, it is applicable to undergraduate and graduate curricula.
Collapse
Affiliation(s)
- Lewis Rolband
- Department
of Chemistry, University of North Carolina
at Charlotte, Charlotte, North Carolina 28223, United States
| | - Varsha Godakhindi
- Department
of Chemistry, University of North Carolina
at Charlotte, Charlotte, North Carolina 28223, United States
| | - Juan L. Vivero-Escoto
- Department
of Chemistry, University of North Carolina
at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department
of Chemistry, University of North Carolina
at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
24
|
Lee E, Choi S, Zhao Y, Yu J. Open Linear Polymer Host-Guest Interactions Sensed by Luminescent Silver Nanodots. ACS Sens 2023; 8:3240-3247. [PMID: 37480154 DOI: 10.1021/acssensors.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The selectivity of the linear polymer chain toward its binding moieties has been considered negligible; thus, a clear demonstration showing the best-fit binding of a linear polymer to its guest counterpart is still unknown. Luminescent poly(acrylic acid) (PAA)-stabilized silver nanodots (PAA-AgNDs) have been applied as a turn-on sensor to monitor the interaction between the PAA chain and its binding cations. The binding of cations ions to the PAA chain may cross-link the linear PAA chain via coordination with carboxylate, which increases the rigidity of the polymer chain, retards the nonradiative decay of PAA-AgNDs, and consequently enhances the emission of silver nanodots while inducing a blue-shift of its emission spectrum. For the first time, we have demonstrated that a linear polymer chain can act as an open host to selectively bind to its best-matching cations. Specifically, among Group 2 cations (Mg2+, Ca2+, Sr2+, Ba2+), calcium ions show the strongest bonding to the PAA polymer chain. Our research suggests that, with extra rigidity, the polymer improves its chemical stability as calcium ions cross-linked the linear polymer. Meanwhile, it has also been demonstrated that luminescent silver nanodots can be excellent probes for the detection of polymer activities with straightforward and simple visualization methods.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungmoon Choi
- Center for Educational Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Yanlu Zhao
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhua Yu
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea
- Department of Science Education, Science Education Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Mastracco P, Copp SM. Beyond nature's base pairs: machine learning-enabled design of DNA-stabilized silver nanoclusters. Chem Commun (Camb) 2023; 59:10360-10375. [PMID: 37575075 DOI: 10.1039/d3cc02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sequence-encoded biomolecules such as DNA and peptides are powerful programmable building blocks for nanomaterials. This paradigm is enabled by decades of prior research into how nucleic acid and amino acid sequences dictate biomolecular interactions. The properties of biomolecular materials can be significantly expanded with non-natural interactions, including metal ion coordination of nucleic acids and amino acids. However, these approaches present design challenges because it is often not well-understood how biomolecular sequence dictates such non-natural interactions. This Feature Article presents a case study in overcoming challenges in biomolecular materials with emerging approaches in data mining and machine learning for chemical design. We review progress in this area for a specific class of DNA-templated metal nanomaterials with complex sequence-to-property relationships: DNA-stabilized silver nanoclusters (AgN-DNAs) with bright, sequence-tuned fluorescence colors and promise for biophotonics applications. A brief overview of machine learning concepts is presented, and high-throughput experimental synthesis and characterization of AgN-DNAs are discussed. Then, recent progress in machine learning-guided design of DNA sequences that select for specific AgN-DNA fluorescence properties is reviewed. We conclude with emerging opportunities in machine learning-guided design and discovery of AgN-DNAs and other sequence-encoded biomolecular nanomaterials.
Collapse
Affiliation(s)
- Peter Mastracco
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| |
Collapse
|
26
|
Tang Q, Li Q, Shi L, Liu W, Li B, Jin Y. Multifunctional DNA nanoprobe for tumor-targeted synergistic therapy by integrating chemodynamic therapy with gene silencing. NANOSCALE HORIZONS 2023; 8:1106-1112. [PMID: 37317707 DOI: 10.1039/d2nh00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the high complexity, diversity and heterogeneity of tumor occurrence and development, multi-mode synergistic therapy is more effective than single treatment modes to improve the antitumor efficacy. Also, multifunctional probes are crucial to realize synergistic therapy. Herein, a multifunctional DNA tetrahedron nanoprobe was ingeniously designed to simultaneously achieve chemodynamic therapy (CDT) and gene silencing for synergistic antitumor. The multifunctional DNA tetrahedron nanoprobe, DNA tetrahedron-silver nanocluster-antagomir-21 (D-sgc8-DTNS-AgNCs-Anta-21), integrated a CDT reagent (DNA-AgNCs) and miRNA-21 inhibitor (Anta-21) with a specific recognition probe (aptamer). After targeted entry in cancer cells, D-sgc8-DTNS-AgNCs-Anta-21 silenced endogenous miRNA-21 by Anta-21 and produced highly toxic ˙OH by reacting with H2O2, which induced apoptosis in the tumor cells. The targeted recognition of aptamers led to the concentration-dependent death of HeLa cells. On the contrary, the cell survival rate of normal cells was basically unaffected with an increase in the concentration of D-sgc8-DTNS-AgNCs-Anta-21. Therefore, the diverse functions, biocompatibility and programmability of DNA provide a useful and easy way to assemble multifunctional probes for synergistic therapy.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
27
|
Gupta AK, Marshall N, Yourston L, Rolband L, Beasock D, Danai L, Skelly E, Afonin KA, Krasnoslobodtsev AV. Optical, structural, and biological properties of silver nanoclusters formed within the loop of a C-12 hairpin sequence. NANOSCALE ADVANCES 2023; 5:3500-3511. [PMID: 37383066 PMCID: PMC10295035 DOI: 10.1039/d3na00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Silver nanoclusters (AgNCs) are the next-generation nanomaterials representing supra-atomic structures where silver atoms are organized in a particular geometry. DNA can effectively template and stabilize these novel fluorescent AgNCs. Only a few atoms in size - the properties of nanoclusters can be tuned using only single nucleobase replacement of C-rich templating DNA sequences. A high degree of control over the structure of AgNC could greatly contribute to the ability to fine-tune the properties of silver nanoclusters. In this study, we explore the properties of AgNCs formed on a short DNA sequence with a C12 hairpin loop structure (AgNC@hpC12). We identify three types of cytosines based on their involvement in the stabilization of AgNCs. Computational and experimental results suggest an elongated cluster shape with 10 silver atoms. We found that the properties of the AgNCs depend on the overall structure and relative position of the silver atoms. The emission pattern of the AgNCs depends strongly on the charge distribution, while all silver atoms and some DNA bases are involved in optical transitions based on molecular orbital (MO) visualization. We also characterize the antibacterial properties of silver nanoclusters and propose a possible mechanism of action based on the interactions of AgNCs with molecular oxygen.
Collapse
Affiliation(s)
- Akhilesh Kumar Gupta
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Nolan Marshall
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Liam Yourston
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Lewis Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Leyla Danai
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Elizabeth Skelly
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | | |
Collapse
|
28
|
Liasi Z, Hillers-Bendtsen AE, Jensen L, Mikkelsen KV. Elucidating the Mystery of DNA-Templating Effects on a Silver Nanocluster. J Phys Chem Lett 2023:5727-5733. [PMID: 37318362 DOI: 10.1021/acs.jpclett.3c00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This presentation considers the effects that DNA-templating has on the optical properties of a 16-atom silver cluster. To accomplish this, hybrid quantum mechanical and molecular mechanical simulations of a Ag16-DNA complex have been carried out and compared with pure time-dependent density functional theory calculations of two Ag16 clusters in vacuum. The presented results show that the templating DNA polymers both red-shift the one-photon absorption of the silver cluster and increase its intensity. This occurs through a change in cluster shape prompted by the structural constraints of the DNA ligands combined with silver-DNA interactions. The overall charge of the cluster also contributes to the observed optical response, as oxidation of the cluster results in a simultaneous blue-shift of the one-photon absorption and a decrease in intensity. Additionally, the changes in shape and environment also lead to a blue-shift and enhancement of the two-photon absorption.
Collapse
Affiliation(s)
- Zacharias Liasi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
29
|
Gonzàlez-Rosell A, Malola S, Guha R, Arevalos NR, Matus MF, Goulet ME, Haapaniemi E, Katz BB, Vosch T, Kondo J, Häkkinen H, Copp SM. Chloride Ligands on DNA-Stabilized Silver Nanoclusters. J Am Chem Soc 2023; 145:10721-10729. [PMID: 37155337 DOI: 10.1021/jacs.3c01366] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV-vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure-property relationships and to imbue these emitters with favorable stability for biophotonics applications.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sami Malola
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Rweetuparna Guha
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Nery R Arevalos
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - María Francisca Matus
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Meghen E Goulet
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Esa Haapaniemi
- Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hannu Häkkinen
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
30
|
Wang HH, Wei J, Bigdeli F, Rouhani F, Su HF, Wang LX, Kahlal S, Halet JF, Saillard JY, Morsali A, Liu KG. Monocarboxylate-protected two-electron superatomic silver nanoclusters with high photothermal conversion performance. NANOSCALE 2023; 15:8245-8254. [PMID: 37073517 DOI: 10.1039/d3nr00571b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first series of monocarboxylate-protected superatomic silver nanoclusters was synthesized and fully characterized by X-ray diffraction, fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and electrospray ionization mass spectrometry (ESI-MS). Specifically, compounds [Ag16(L)8(9-AnCO2)12]2+ (L = Ph3P (I), (4-ClPh)3P (II), (2-furyl)3P (III), and Ph3As (IV)) were prepared by a solvent-thermal method under alkaline conditions. These clusters exhibit a similar unprecedented structure containing a [Ag8@Ag8]6+ metal kernel, of which the 2-electron superatomic [Ag8]6+ inner core shows a flattened and puckered hexagonal bipyramid of S6 symmetry. Density functional theory calculations provide a rationalization of the structure and stability of these 2-electron superatoms. Results indicate that the 2 superatomic electrons occupy a superatomic molecular orbital 1S that has a substantial localization on the top and bottom vertices of the bipyramid. The π systems of the anthracenyl groups, as well as the 1S HOMO, are significantly involved in the optical and photothermal behavior of the clusters. The four characterized nanoclusters show high photothermal conversion performance in sunlight. These results show that the unprecedented use of mono-carboxylates in the stabilization of Ag nanoclusters is possible, opening the door for the introduction of various functional groups on their cluster surface.
Collapse
Affiliation(s)
- Hao-Hai Wang
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jianyu Wei
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Hai-Feng Su
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Ling-Xiao Wang
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Kuan-Guan Liu
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| |
Collapse
|
31
|
Danai L, Rolband LA, Perdomo VA, Skelly E, Kim T, Afonin KA. Optical, structural and antibacterial properties of silver nanoparticles and DNA-templated silver nanoclusters. Nanomedicine (Lond) 2023; 18:769-782. [PMID: 37345552 PMCID: PMC10308257 DOI: 10.2217/nnm-2023-0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Silver nanoparticles (AgNPs) are increasingly considered for biomedical applications as drug-delivery carriers, imaging probes and antibacterial agents. Silver nanoclusters (AgNCs) represent another subclass of nanoscale silver. AgNCs are a promising tool for nanomedicine due to their small size, structural homogeneity, antibacterial activity and fluorescence, which arises from their molecule-like electron configurations. The template-assisted synthesis of AgNCs relies on organic molecules that act as polydentate ligands. In particular, single-stranded nucleic acids reproducibly scaffold AgNCs to provide fluorescent, biocompatible materials that are incorporable in other formulations. This mini review outlines the design and characterization of AgNPs and DNA-templated AgNCs, discusses factors that affect their physicochemical and biological properties, and highlights applications of these materials as antibacterial agents and biosensors.
Collapse
Affiliation(s)
- Leyla Danai
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Lewis A Rolband
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Elizabeth Skelly
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Taejin Kim
- Physical Sciences Department, West Virginia University Institute of Technology, Beckley, WV 25801, USA
| | - Kirill A Afonin
- Department of Chemistry, Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
32
|
Skelly E, Rolband LA, Beasock D, Afonin KA. Synthesis of DNA-Templated Silver Nanoclusters and the Characterization of Their Optical Properties and Biological Activity. Methods Mol Biol 2023; 2709:299-307. [PMID: 37572290 PMCID: PMC10482316 DOI: 10.1007/978-1-0716-3417-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) are a unique class of bioinorganic nanomaterials. The optical properties and biological activities of DNA-AgNCs are readily modulated by the minor adjustments in the sequence or structure of the templating oligonucleotide. Excitation-emission matrix spectroscopy (EEMS) enables the fluorescence of compounds to be measured in a way that examines the entirety of a material's fluorescent properties. The use of EEMS for the characterization of DNA-AgNCs allows for multiple fluorescence peaks to be readily identified while providing the excitation and emission wavelengths of each signal. To assess the antibacterial and cytotoxic activities of DNA-AgNCs, two separate experimental approaches are used. Assessing the growth of bacteria over time is accomplished by measuring the optical density of the bacterial suspension with 600 nm light, which is directly related to the number of bacteria in suspension. In order to evaluate the DNA-AgNCs for cytotoxic activity, cell viability assays which probe mitochondrial activity were used. Herein, we describe protocols for the characterization of the fluorescent, antibacterial, and cytotoxic activities of DNA-AgNCs using EEM, optical density measurements, and cell viability assays.
Collapse
|
33
|
Perdomo VA, Kim T. Molecular Dynamics Simulations of RNA Motifs to Guide the Architectural Parameters and Design Principles of RNA Nanostructures. Methods Mol Biol 2023; 2709:3-29. [PMID: 37572270 DOI: 10.1007/978-1-0716-3417-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Molecular dynamics (MD) simulations can be used to investigate the stability and conformational characteristics of RNA nanostructures. However, MD simulations of an RNA nanostructure is computationally expensive due to the size of nanostructure and the number of atoms. Alternatively, MD simulations of RNA motifs can be used to estimate the conformational stability of constructed RNA nanostructure due to their small sizes. In this chapter, we introduce the preparation and MD simulations of two RNA kissing loop (KL) motifs, a linear KL complex and a bent KL complex, and an RNA nanoring. The initial solvated system and topology files of each system will be prepared by two major force fields, AMBER and CHARMM force fields. MD simulations will be performed by NAMD simulation package, which can accept both force fields. In addition, we will introduce the use of the AMBER cpptraj program and visual molecular dynamics (VMD) for data analysis. We will also discuss how MD simulations of two KL motifs can be used to estimate the conformation and stability of RNA nanoring as well as to explain the vibrational characteristics of RNA nanoring.
Collapse
Affiliation(s)
| | - Taejin Kim
- Physical Sciences Department, West Virginia University Institute of Technology, Beckley, WV, USA.
| |
Collapse
|
34
|
Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
David F, Setzler C, Sorescu A, Lieberman RL, Meilleur F, Petty JT. Mapping H + in the Nanoscale (A 2C 4) 2-Ag 8 Fluorophore. J Phys Chem Lett 2022; 13:11317-11322. [PMID: 36453924 DOI: 10.1021/acs.jpclett.2c03161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
When strands of DNA encapsulate silver clusters, supramolecular optical chromophores develop. However, how a particular structure endows a specific spectrum remains poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-emitting fluorophore with a "Big Dipper" arrangement of silvers. The DNA host has two substructures with distinct protonation patterns. Three cytosines from each strand collectively chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8 suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of these nanoscale chromophores.
Collapse
Affiliation(s)
- Fred David
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caleb Setzler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Alexandra Sorescu
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, North Carolina 27695, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
36
|
Mastracco P, Gonzàlez-Rosell A, Evans J, Bogdanov P, Copp SM. Chemistry-Informed Machine Learning Enables Discovery of DNA-Stabilized Silver Nanoclusters with Near-Infrared Fluorescence. ACS NANO 2022; 16:16322-16331. [PMID: 36124941 PMCID: PMC9620400 DOI: 10.1021/acsnano.2c05390] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA can stabilize silver nanoclusters (AgN-DNAs) whose atomic sizes and diverse fluorescence colors are selected by nucleobase sequence. These programmable nanoclusters hold promise for sensing, bioimaging, and nanophononics. However, DNA's vast sequence space challenges the design and discovery of AgN-DNAs with tailored properties. In particular, AgN-DNAs with bright near-infrared luminescence above 800 nm remain rare, placing limits on their applications for bioimaging in the tissue transparency windows. Here, we present a design method for near-infrared emissive AgN-DNAs. By combining high-throughput experimentation and machine learning with fundamental information from AgN-DNA crystal structures, we distill the salient DNA sequence features that determine AgN-DNA color, for the entire known spectral range of these nanoclusters. A succinct set of nucleobase staple features are predictive of AgN-DNA color. By representing DNA sequences in terms of these motifs, our machine learning models increase the design success for near-infrared emissive AgN-DNAs by 12.3 times as compared to training data, nearly doubling the number of known AgN-DNAs with bright near-infrared luminescence above 800 nm. These results demonstrate how incorporating known structure-property relationships into machine learning models can enhance materials study and design, even for sparse and imbalanced training data.
Collapse
Affiliation(s)
- Peter Mastracco
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Joshua Evans
- Chaffey
Community College, Rancho
Cucamonga, California 91737, United States
| | - Petko Bogdanov
- Department
of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Email
for S.M.C.:
| |
Collapse
|
37
|
Kuo YA, Jung C, Chen YA, Kuo HC, Zhao OS, Nguyen TD, Rybarski JR, Hong S, Chen YI, Wylie DC, Hawkins JA, Walker JN, Shields SWJ, Brodbelt JS, Petty JT, Finkelstein IJ, Yeh HC. Massively Parallel Selection of NanoCluster Beacons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204957. [PMID: 35945159 PMCID: PMC9588665 DOI: 10.1002/adma.202204957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here, a high-throughput selection method is reported that takes advantage of repurposed next-generation-sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow-orange and red POTs, respectively. Based on these findings, a "zipper-bag" model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high-throughput screening with machine-learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico.
Collapse
Affiliation(s)
- Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Yu-An Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Oliver S Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Trung D Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - James R Rybarski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dennis C Wylie
- Computational Biology and Bioinformatics, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, 78712, USA
| | - John A Hawkins
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29617, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
38
|
Gonzàlez-Rosell A, Guha R, Cerretani C, Rück V, Liisberg MB, Katz BB, Vosch T, Copp SM. DNA Stabilizes Eight-Electron Superatom Silver Nanoclusters with Broadband Downconversion and Microsecond-Lived Luminescence. J Phys Chem Lett 2022; 13:8305-8311. [PMID: 36037464 PMCID: PMC9465679 DOI: 10.1021/acs.jpclett.2c02207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 05/25/2023]
Abstract
DNA oligomers are known to serve as stabilizing ligands for silver nanoclusters (AgN-DNAs) with rod-like nanocluster geometries and nanosecond-lived fluorescence. Here, we report two AgN-DNAs that possess distinctly different structural properties and are the first to exhibit only microsecond-lived luminescence. These emitters are characterized by significant broadband downconversion from the ultraviolet/visible to the near-infrared region. Circular dichroism spectroscopy shows that the structures of these two AgN-DNAs differ significantly from previously reported AgN-DNAs. We find that these nanoclusters contain eight valence electrons, making them the first reported DNA-stabilized luminescent quasi-spherical superatoms. This work demonstrates the important role that nanocluster composition and geometry play in dictating luminescence properties of AgN-DNAs and significantly expands the space of structure-property relations that can be achieved for AgN-DNAs.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Rweetuparna Guha
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Cecilia Cerretani
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Vanessa Rück
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Mikkel B. Liisberg
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Benjamin B. Katz
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Tom Vosch
- Nanoscience
Center and Department of Chemistry, University
of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
39
|
Ramasanoff RR, Sokolov PA. Intersystem Crossing Rates of Violet-, Green- and Red-emitting DNA Stabilized Silver Luminescent Clusters. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Chen X, Liu Y, Liu X, Lu C. Nanoparticle-based single molecule fluorescent probes. LUMINESCENCE 2022; 37:1808-1821. [PMID: 35982510 DOI: 10.1002/bio.4364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
Abstract
Single molecule fluorescent probes have attracted considerable attention duet to their ultimate sensitivity, fast response, low sample consumption, and high signal-to-noise ratio. Nanoparticles with outstanding optical properties make them perfect candidates for probes in application of single molecule detection. In this review, we focus on various kinds of nanoparticles acting as single molecule fluorescent probes, including quantum dots, upconverting fluorescent nanoparticles, carbon dots, single-wall carbon nanotubes, fluorescent nanodiamonds, polymeric nanoparticles, nanoclusters, and metallic nanoparticles. Optical properties of various nanoparticles and their recent application in single molecule fluorescent probes are explored. How nanoparticles boost the sensitivity of detection is emphasized in combination with different sensing strategies. Future trends of nanoparticles in single molecule detection are also discussed. We hope this review can provide practical guidance for researchers who work on nanoparticle-based single molecule fluorescent probes.
Collapse
Affiliation(s)
- Xueqian Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yuhao Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Xiaoting Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Chao Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
41
|
Cerretani C, Liisberg MB, Rück V, Kondo J, Vosch T. The effect of inosine on the spectroscopic properties and crystal structure of a NIR-emitting DNA-stabilized silver nanocluster. NANOSCALE ADVANCES 2022; 4:3212-3217. [PMID: 36132821 PMCID: PMC9416947 DOI: 10.1039/d2na00325b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 05/16/2023]
Abstract
The effect of replacing guanosines with inosines in the two stabilizing strands (5'-CACCTAGCGA-3') of the NIR emissive DNA-Ag16NC was investigated. The spectroscopic behavior of the inosine mutants is position-dependent: when the guanosine in position 7 was exchanged, the nanosecond fluorescence decay time shortened, while having the inosine in position 9 made the decay time longer. Thanks to structural information gained from single crystal X-ray diffraction measurements, it was possible to propose a mechanistic origin for the observed changes.
Collapse
Affiliation(s)
- Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Mikkel B Liisberg
- Nanoscience Center and Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Vanessa Rück
- Nanoscience Center and Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences, Sophia University 7-1 Kioi-cho Chiyoda-ku 102-8554 Tokyo Japan
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
42
|
Fatermans J, Romolini G, Altantzis T, Hofkens J, Roeffaers MBJ, Bals S, Van Aert S. Atomic-scale detection of individual lead clusters confined in Linde Type A zeolites. NANOSCALE 2022; 14:9323-9330. [PMID: 35687327 DOI: 10.1039/d2nr01819e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structural analysis of metal clusters confined in nanoporous materials is typically performed by X-ray-driven techniques. Although X-ray analysis has proved its strength in the characterization of metal clusters, it provides averaged structural information. Therefore, we here present an alternative workflow for bringing the characterization of confined metal clusters towards the local scale. This workflow is based on the combination of aberration-corrected transmission electron microscopy (TEM), TEM image simulations, and powder X-ray diffraction (XRD) with advanced statistical techniques. In this manner, we were able to characterize the clustering of Pb atoms in Linde Type A (LTA) zeolites with Pb loadings as low as 5 wt%. Moreover, individual Pb clusters could be directly detected. The proposed methodology thus enables a local-scale characterization of confined metal clusters in zeolites. This is important for further elucidation of the connection between the structure and the physicochemical properties of such systems.
Collapse
Affiliation(s)
- Jarmo Fatermans
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Belgium.
| | - Giacomo Romolini
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thomas Altantzis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Belgium.
- Applied Electrochemistry and Catalysis Group (ELCAT), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis, And Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001, Leuven, Belgium.
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Belgium.
| | - Sandra Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Belgium.
| |
Collapse
|
43
|
Petty JT, Lewis D, Carnahan S, Kim D, Couch C. Tug-of-War between DNA Chelation and Silver Agglomeration in DNA-Silver Cluster Chromophores. J Phys Chem B 2022; 126:3822-3830. [PMID: 35594191 DOI: 10.1021/acs.jpcb.2c01054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supramolecular chromophores form when a DNA traps silvers that then coalesce into clusters with discrete, molecular electronic states. However, DNA strands are polymeric ligands that disperse silvers and thus curb agglomeration. We study this competition using two chromophores that share three common components: a dimeric DNA scaffold, Ag+-nucleobase base pairs, and Ag0 chromophores. The DNA host C4-A2-iC4T mimics structural elements in a DNA-cluster crystal structure using a phosphodiester backbone with combined 5' → 3' and 3' → 5' (indicated by "i") directions. The backbone directions must alternate to form the two silver clusters, and this interdependence supports a silver-linked structure. This template creates two chromophores with distinct sizes, charges, and hence spectra: (C4-A2-iC4T)2/Ag117+ with λabs/λem = 430/520 nm and (C4-A2-iC4T)2/Ag148+ with λabs/λem = 510/630 nm. The Ag+ and Ag0 constituents in these partially oxidized clusters are linked with structural elements in C4-A2-iC4T. Ag+ alone binds sparsely but strongly to form C4-A2-iC4T/3-4 Ag+ and (C4-A2-iC4T)2/7-8 Ag+ complexes, and these stoichiometries suggest that Ag+ cross-links pairs of cytosines to form a hairpin with a metallo-C4/iC4 duplex and an adenine loop. The Ag0 are chemically orthogonal because they can be oxidatively etched without disrupting the underlying Ag+-DNA matrix, and their reactivity is attributed to their valence electrons and weaker chelation by the adenines. These studies suggest that Ag+ disperses with the cytosines to create an adenine binding pocket for the Ag0 cluster chromophores.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - David Lewis
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Savannah Carnahan
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caroline Couch
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
44
|
Chen T, Lin H, Cao Y, Yao Q, Xie J. Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103918. [PMID: 34617332 DOI: 10.1002/adma.202103918] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The interactions of materials with light determine their applications in various fields. In the past decade, ultrasmall metal nanoclusters (NCs) have emerged as a promising class of optical materials due to their unique molecular-like properties. Herein, the basic principles of optical absorption and photoluminescence of metal NCs, their interactions with polarized light, and light-induced chemical reactions, are discussed, highlighting the roles of the core and protecting ligands/motifs of metal NCs in their interactions with light. The metal core and protecting ligands/motifs determine the electronic structures of metal NCs, which are closely related to their optical properties. In addition, the protecting ligands/motifs of metal NCs contribute to their photoluminescence and chiral origin, further promoting the interactions of metal NCs with light through various pathways. The fundamentals of light-NC interactions provide guidance for the design of metal NCs in optical applications, which are discussed in the second part. In the last section, some strategies are proposed to further understand light-NC interactions, highlighting the challenges and opportunities. It is hoped that this work will stimulate more research on the optical properties of metal NCs and their applications in various fields.
Collapse
Affiliation(s)
- Tiankai Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hongbin Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
45
|
Lippert B. “Metal-modified base pairs” vs. “metal-mediated pairs of bases”: not just a semantic issue! J Biol Inorg Chem 2022; 27:215-219. [PMID: 35091756 PMCID: PMC8907086 DOI: 10.1007/s00775-022-01926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
A “nucleobase pair” is not identical with a “pair of basic ligands”, as only in the first case, the existence of inter-base hydrogen bonds is implied. The cross-linking of two nucleobases or two basic ligands by a metal ion of suitable geometry produces either “metal-modified” or “metal-mediated” species, but in the author’s opinion, this difference is not always properly made. This commentary is an attempt to provide a clearer distinction between the two scenarios.
Collapse
Affiliation(s)
- Bernhard Lippert
- Fakultät Für Chemie Und Chemische Biologie (CCB), Technische Universität Dortmund, 44221, Dortmund, Germany.
| |
Collapse
|
46
|
Feng DQ, Liu G. Target-Activating and Toehold Displacement Ag NCs/GO Biosensor-Mediating Signal Shift and Enhancement for Simultaneous Multiple Detection. Anal Chem 2021; 93:16025-16034. [PMID: 34817158 DOI: 10.1021/acs.analchem.1c03570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we demonstrate that a new multicolor silver nanoclusters/graphene oxide (Ag NCs/GO) hybrid material, upon target response, undergoes a configuration transformation, based on entropy-driven enzyme-free toehold-mediated strand displacement reaction, achieving emission shift and enhancement. To realize the aim above, two different synthesis routes (route I and II) of synthesizing fluorescent Ag NCs for constructing toehold displacement Ag NCs/GO biosensor is designed and performed. Influenza A virus subtype genes (H1N1 and H5N1) as a model can efficiently initiate the operation of entropy-driven displacement reaction, resulting in activatable fluorescence. Red-emitting and green-emitting Ag NCs tethering the complementary sequence of H1N1 (pDNA1) and H5N1 (pDNA2) are indirectly immobilized on GO surface through binding with capture DNA (cDNA1 and cDNA2), respectively, forming multicolor pDNA-Ag NCs/GO nanohybrid materials. However, they do not exhibit nearly fluorescence signals attributed to energy transfer from donor Ag NCs to acceptor GO. Upon adding targets H1N1 and H5N1 (tDNA1 and tDNA2), pDNA1-Ag NCs and pDNA2-Ag NCs detach from GO, based on toehold-mediated strand displacement reaction, which interferes the energy transfer and leads to significant fluorescence enhancement. More interestingly, the activatable process is accompanied by remarkable hypsochromic shift (19 nm) or bathochromic shift (21 nm) emission with quite high fluorescence recovery rates (823.35% and 693.62%). Therefore, based on these phenomena, a novel multiple approach has been developed with the assistance of toehold displacement and Ag NCs/GO nanohybrid materials. As for the remarkable emission recovery and multichannel signal, the proposed approach displays the promising application prospect in accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Da-Qian Feng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guoliang Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
47
|
A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters. Nat Commun 2021; 12:6186. [PMID: 34702816 PMCID: PMC8548331 DOI: 10.1038/s41467-021-26528-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Although the hollow icosahedral M12 kernel has been extensively observed in metal nanoclusters, its origin remains a mystery. Here we report a reasonable avenue for the generation of the hollow icosahedron: the kernel collapse from several small nano-building blocks to an integrated hollow icosahedron. On the basis of the Au alloying processes from Ag28Cu12(SR)24 to the template-maintained AuxAg28-xCu12(SR)24 and then to the template-transformed Au12CuyAg32-y(SR)30, the kernel evolution/collapse from “tetrahedral Ag4 + 4∗Ag3” to “tetrahedral Au4 + 4∗M3 (M = Au/Ag)” and then to “hollow icosahedral Au12” is mapped out. Significantly, the “kernel collapse” from small-sized nano-building blocks to large-sized nanostructures not only unveils the formation of hollow icosahedral M12 in this work, but also might be a very common approach in constructing metallic kernels of nanoclusters and nanoparticles (not limited to the M12 structure). The origin of the hollow icosahedral M12 kernel in metal nanoclusters is under debate. Here the authors demonstrate the Au alloying-induced kernel collapse from small-sized nano-building blocks as a viable approach for the generation of hollow icosahedral M12 kernel in metal nanoclusters.
Collapse
|
48
|
Wu Q, Liu C, Cui C, Li L, Yang L, Liu Y, Safari Yazd H, Xu S, Li X, Chen Z, Tan W. Plasmon Coupling in DNA-Assembled Silver Nanoclusters. J Am Chem Soc 2021; 143:14573-14580. [PMID: 34464111 DOI: 10.1021/jacs.1c04949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum-size metal clusters with multiple delocalized electrons could support collective plasmon excitation, and thus, theoretically, coupling of plasmons in the few-atom limit might exist between assembled metal clusters, while currently few experimental observations about this phenomenon have been reported. Here we examined the optical absorption of DNA-templated Ag nanoclusters (DNA-AgNCs) assembled through DNA hybridization and found their absorption peaks were sensitive to the assembled distances, which share common characteristics with classical plasmon coupling. Dipolar charge distribution, multiple transition contributed optical absorption, and strongly enhanced electric field simulated by time-dependent density functional theory (TDDFT) indicated the origin of the absorption of individual DNA-AgNCs is a plasmon. The consistency of the peak-shifting trend between experimental and simulation results for assembled DNA-AgNCs suggested the possible presence of plasmon coupling. Our data imply the possibility for quantum-size structures to support plasmon coupling and also show that DNA-AgNCs possess the potential to be promising materials for construction of plasmon-coupling devices with ultrasmall size, site-specific and stoichiometric binding abilities, and biocompatibility.
Collapse
Affiliation(s)
- Qiong Wu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Chengcheng Liu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Long Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yuan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Shujuan Xu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Dairaku T, Kawai R, Nozawa-Kumada K, Yoshida K, Ono T, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Chemical reduction of Ag + to Ag employing organic electron donors: evaluation of the effect of Ag +-mediated cytosine-cytosine base pairing on the aggregation of Ag nanoparticles. Dalton Trans 2021; 50:12208-12214. [PMID: 35226008 DOI: 10.1039/d1dt01927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ag+-mediated base pairing is valuable for synthesising DNA-based silver nanoparticles (AgNPs) and nanoclusters (AgNCs). Recently, we reported the formation of a [Ag(cytidine)2]+ complex in dimethyl sulfoxide (DMSO), which facilitated the evaluation of the effect of cytosine-Ag+-cytosine (C-Ag+-C) base pairing on the degree of AgNP aggregation in solution. As an aprotic solvent, DMSO was expected to dissolve the [Ag(cytidine)2]+ complex, and powerful reducing agents, such as organic electron donors. In this study, the chemical reduction of a cytidine/Ag+ system using a powerful reducing agent tetrakis(dimethylamino)ethylene (TDAE) was investigated. 1H/13C/15N NMR spectroscopic evidence was obtained to identify the iminium dication (TDAE2+), which is an oxidised form of TDAE. The results were compared with those obtained using another organic electron donor, tetrathiafulvalene (TTF), which exhibits a relatively lower reduction activity than TDAE. AgNPs prepared via redox reaction between [Ag(cytidine)2]+ and organic electron donors (TDAE and TTF) were characterised using UV-Vis spectroscopy and nanoparticle tracking analysis. It was found that the formation of C-Ag+-C base pairing inhibited the aggregation of AgNPs in solution. In addition, in the presence of cytidine, the total concentration of the AgNP solution was affected by the reduction activity of the reducing agent.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
50
|
Zhang Y, He C, de La Harpe K, Goodwin PM, Petty JT, Kohler B. A single nucleobase tunes nonradiative decay in a DNA-bound silver cluster. J Chem Phys 2021; 155:094305. [PMID: 34496579 DOI: 10.1063/5.0056836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag10 6+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag10 6+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2-NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs-400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster-ligand interactions and, in turn, cluster brightness.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Chen He
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, USA
| | - Peter M Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|