1
|
Rasyotra A, Das M, Sen D, Zhang Z, Pannone A, Chen C, Redwing JM, Yang Y, Jasuja K, Das S. Nanosheets Derived from Titanium Diboride as Gate Insulators for Atomically Thin Transistors. ACS NANO 2025. [PMID: 40387442 DOI: 10.1021/acsnano.4c18634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Development and integration of gate insulators that offer a low equivalent oxide thickness (EOT) while maintaining a physically thicker layer are critical for advancing transistor technology as device dimensions continue to shrink. Such materials can deliver high gate capacitance and yet reduce gate leakage, thereby minimizing static power dissipation without compromising performance. These insulators should also provide the necessary interface quality, thermal stability, switching endurance, and reliability. Here, we demonstrate that nanosheets derived from titanium diboride (NDTD), synthesized at room temperature using a scalable dissolution-recrystallization method, exhibit EOT ∼ 2 nm irrespective of the physical thickness when used as top gate dielectrics for monolayer MoS2 field effect transistors (FETs). Furthermore, these nanosheets enable near-ideal subthreshold swing of 60 mV/decade, low gate leakage current (<10-4 A/cm2), and current on/off ratio of 106 at a supply voltage of 1 V, indicating clean interface and excellent electrostatic control. These titanium diboride (TiB2) derived nanosheet-gated MoS2 FETs also demonstrate stable operation at 125 °C and switching endurance in excess of 109 cycles. While nanosheets derived from metal diborides have been employed in energy storage, catalysis, and CO2 capture, this study showcases their potential as excellent gate insulators for microelectronics.
Collapse
Affiliation(s)
- Anshul Rasyotra
- Engineering Science and Mechanics, Penn State University, University Park 16802, United States
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Mayukh Das
- Engineering Science and Mechanics, Penn State University, University Park 16802, United States
| | - Dipanjan Sen
- Engineering Science and Mechanics, Penn State University, University Park 16802, United States
| | - Zhiyu Zhang
- Engineering Science and Mechanics, Penn State University, University Park 16802, United States
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park 16802, United States
| | - Chen Chen
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park 16802, United States
| | - Joan M Redwing
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park 16802, United States
- Materials Science and Engineering, Penn State University, University Park 16802, United States
- Electrical Engineering, Penn State University, University Park 16802, United States
- Materials Research Institute, Penn State University, University Park 16802, United States
| | - Yang Yang
- Engineering Science and Mechanics, Penn State University, University Park 16802, United States
- Materials Research Institute, Penn State University, University Park 16802, United States
- Nuclear Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Kabeer Jasuja
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park 16802, United States
- Materials Science and Engineering, Penn State University, University Park 16802, United States
- Electrical Engineering, Penn State University, University Park 16802, United States
- Materials Research Institute, Penn State University, University Park 16802, United States
| |
Collapse
|
2
|
Guillam E, Duvail M, Žiberna L, Dufrêche JF. Understanding the Aggregation of Lanthanum(III) Nitrate Clusters in Pure Methanol: A Molecular Dynamics Investigation. J Phys Chem B 2025; 129:3869-3878. [PMID: 40176357 DOI: 10.1021/acs.jpcb.4c08316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A detailed analysis of the structure and speciation of La3+ clusters in the 0.1 mol L-1 La(NO3)3 salt methanol (MeOH) solution has been performed by means of molecular dynamics (MD) simulations. The time distribution and NO3-/MeOH ligand composition of these clusters have been computed using graph theory techniques. These analyses revealed the formation of branched-like polynuclear clusters in the solution, the predominant clusters being the 3, 7, and 8 La3+ clusters. In these clusters, the La3+ cations are bound by "monodentate" nitrate bridges. Moreover, the mechanism of aggregation of the La3+ clusters has been examined with the development of a 3-step model. Finally, the origin of the aggregation process has been identified by estimating the binding constant for the ion pair La3+-NO3- using the Bjerrum theory of dilute solutions, with pK° = 5.32 at 25 °C. The low value of the dielectric constant of methanol promotes the binding of the ion pair La3+-NO3- and the nitrato-bridging polymerization, resulting in the formation of clusters.
Collapse
Affiliation(s)
- Erwann Guillam
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze 30207, France
| | - Magali Duvail
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze 30207, France
| | - Lara Žiberna
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze 30207, France
| | | |
Collapse
|
3
|
Wang W, Shen Q, Yang Y, Sapelkin A, Wang S, Luan C, Yu K. Formation of prenucleation clusters and transformation to ZnSe quantum dots and magic-size clusters. NANOSCALE 2025; 17:8101-8110. [PMID: 40040559 DOI: 10.1039/d5nr00265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Prenucleation clusters (PNCs) play an important role in the synthesis of colloidal semiconductor quantum dots (QDs) and magic-size clusters (MSCs) of binary II-VI metal chalcogenide (ME). Here, we explore the formation and transformation of ZnSe PNCs, using a reaction of zinc oleate (Zn(OA)2), tri-n-octylphosphine selenide (SeTOP), and diphenylphosphine (HPPh2, DPP). The PNC forms above 120 °C, and relatively high feed concentrations and Zn-to-Se molar ratios favor the formation. When a prenucleation-stage sample (160 °C/30 min) is dispersed in a mixture of cyclohexane (CH) and octylamine (OTA) at 25 °C, MSC-299 (displaying optical absorption peaking at 299 nm) develops from the PNC isomerization. The PNC is the precursor compound (PC-299) of MSC-299 and is relatively transparent. When the reaction is heated at higher temperatures (such as 220 °C for 15 min), the PNC fragments to monomers (Mos) and the nucleation and growth (N/G) of QDs occur (via the one-by-one addition of Mos). In a mixture of CH and CH3OH at 25 °C, MSC-299 transforms to MSC-320 and MSC-340. The present study provides a deeper understanding of the formation and transformation of ZnSe PNCs.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Qiu Shen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.
| | - Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.
| | - Andrei Sapelkin
- Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.
| | - Kui Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.
| |
Collapse
|
4
|
Paul D, Varsano N, Biswas P, Kaplan‐Ashiri I, Aram L, Gal A. Non-Stoichiometric Amorphous Calcium Carbonate Forms in Macromolecular Condensates via Interphase Diffusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411965. [PMID: 39821688 PMCID: PMC11899510 DOI: 10.1002/smll.202411965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Transient amorphous phases are known as functional precursors in the formation of crystalline materials, both in vivo and in vitro. A common route to regulate amorphous calcium carbonate (ACC) crystallization is via direct interactions with negatively charged macromolecules. However, a less explored phenomenon that can influence such systems is the electrostatically driven formation of Ca-macromolecule dense phases. In this study, it is shown how Ca-macromolecule condensates that form via liquid-liquid phase separation (LLPS) can be used to control the formation of metastable ACC via diffusion-based mass transport. Contrary to the solid-like ACC particles that form in the dilute phase via rapid nucleation and growth, the condensate ACC gradually forms via carbonate diffusion into the dense droplets. This yields transient phases with non-stoichiometric compositions, similar to a solid solution. It is shown that the ability to control the concentration gradients across the phase boundary can be used to finely regulate the composition and stability of these amorphous precursors, offering new routes to control mineralization through transient phases.
Collapse
Affiliation(s)
- Debojit Paul
- Dept. of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Neta Varsano
- Dept. of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Protap Biswas
- Dept. of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Ifat Kaplan‐Ashiri
- Dept. of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Lior Aram
- Dept. of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Assaf Gal
- Dept. of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
5
|
Bose P, Srikrishnarka P, Paatelainen M, Nonappa, Kini AR, Som A, Pradeep T. Nanocluster reaction-driven in situ transformation of colloidal nanoparticles to mesostructures. NANOSCALE 2025; 17:803-812. [PMID: 39377419 DOI: 10.1039/d4nr02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Atomically precise noble metal nanoclusters (NCs) are molecular materials known for their precise composition, electronic structure, and unique optical properties, exhibiting chemical reactivity. Herein, we demonstrated a simple one-pot method for fabricating self-assembled Ag-Au bimetallic mesostructures using a reaction between 2-phenylethanethiol (PET)-protected atomically precise gold NCs and colloidal silver nanoparticles (Ag NPs) in a tunable reaction microenvironment. The reaction carried out in toluene at 45 °C with constant stirring at 250 revolutions per minute (RPM) yielded a thermally stable, micron-sized cuboidal mesocrystals of self-assembled AgAu@PET nanocrystals. However, the reaction in dichloromethane at room temperature with constant stirring at 250 RPM resulted in a self-assembled mesostructure of randomly close-packed AgAu@PET NPs. Using a host of experimental techniques, including optical and electron microscopy, optical absorption spectroscopy, and light scattering, we studied the nucleation and growth processes. Our findings highlight a strategy to utilize precision and plasmonic NP chemistry in tailored microenvironments, leading to customizable bimetallic hybrid three-dimensional nanomaterials with potential applications.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Pillalamarri Srikrishnarka
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Matias Paatelainen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
6
|
Boyn JN, Carter EA. Elucidating and contrasting the mechanisms for Mg and Ca sulfate ion-pair formation with multi-level embedded quantum mechanics/molecular dynamics simulations. J Chem Phys 2024; 161:224501. [PMID: 39651817 DOI: 10.1063/5.0235460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Solutions and minerals containing sulfate (SO42-), and Ca2+ and Mg2+ cations, are ubiquitous throughout the lithosphere and are significant components of seawater, thus presenting a prototypical system for the study of strong electrolytes and crystal nucleation mechanisms. However, despite their relative abundance, key questions remain unanswered about the most fundamental atomic-level steps of their mineralization pathways and aqueous dynamics. Here, we carry out enhanced sampling multi-level molecular dynamics (MD) embedded correlated wavefunction theory simulations to elucidate ion-pairing mechanisms for Mg-SO4 and Ca-SO4 in concentrated aqueous solution, accurately capturing effects arising from both structural dynamics and electron exchange-correlation. We predict contact-ion-pair formation to be barrierless and highly exoergic for Ca-SO4, in agreement with its minimal solubility, whereas for Mg-SO4, solvent-shared and contact ion pairs have similar free energies, qualitatively consistent with its higher solubility. Finally, we demonstrate that brief high-temperature pre-equilibration may be utilized to accelerate convergence of free energies in blue-moon-ensemble enhanced-sampling MD.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263, USA
| |
Collapse
|
7
|
Süle P. Resolving heterogeneous particle mobility in deeply quenched liquid iron: an ultra-fast assembly-free two-step nucleation mechanism. Phys Chem Chem Phys 2024; 26:26091-26108. [PMID: 39377916 DOI: 10.1039/d4cp02526a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Despite intensive research, little is known about the intermediate state of phase transforming materials, which may form the missing link between e.g. liquids and solids on the nanoscale. The unraveling of the nanoscale interplay between the structure and dynamics of the intermediate state of phase transformations (through which e.g. crystal nucleation proceeds) is one of the biggest challenges and unsolved problems of materials science. Here we show using unbiased molecular dynamics simulations and spatially resolved atomic displacement maps (d-maps) that upon deep quenching the solidification of undercooled liquid iron proceeds through the formation of metastable pre-nucleation clusters (PNCs). We also reveal that the hitherto hidden PNCs are nearly immobile (dynamically arrested) and the related heterogeneity in atomic mobilities becomes clearly visible on atomic displacement-maps (d-maps) when atomic jumps are referenced to the final crystalline positions. However, this is in contrast to PNCs found in molecular solutions, in which PNCs tend to aggregate, move and crystallize via an activated process. Coordination filtered d-maps resolved in real space directly demonstrate that previously unseen highly ramified intermediate atomic clusters with a short lifetime emerge after incubation of undercooled liquid iron. The supercooled liquid iron is neither a spinodal system nor a liquid and undergoes a transition into a specific state called a quasi-liquid state within the temperature regime of 700-1250 K (0.5Tm > 0.7Tm, where the melting point is Tm ≈ 1811 K). Below 700 K the supercooled system is spinodal-like and above 1300 K it behaves like an ordinary liquid with long incubation times. A two-step process is proposed to explain the anomalous drop in the incubation time in the temperature regime of 700-1250 K. The 1st step is activated aggregation of small atomic clusters followed by assembly-free nearly barrierless ultrafast growth of early ramified prenucleation clusters called germs. The display and characterization of the hidden PNCs in computer simulations could provide new perspectives on the deeper understanding of the long-standing problem of precursor development during crystal nucleation following deep quenching.
Collapse
Affiliation(s)
- P Süle
- Centre for Energy Research, HUN-REN, Research Institute for Technical Physics and Material Science, Dept. of Nanostructures, Konkoly Thege u. 29-33, Budapest, Hungary.
- Wigner Research Centre for Physics, HUN-REN, P. O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
8
|
Turhan E, Goldberga I, Pötzl C, Keil W, Guigner JM, Haßler MFT, Peterlik H, Azaïs T, Kurzbach D. Branched Polymeric Prenucleation Assemblies Initiate Calcium Phosphate Precipitation. J Am Chem Soc 2024; 146:25614-25624. [PMID: 39228133 PMCID: PMC11421018 DOI: 10.1021/jacs.4c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The formation of crystalline calcium phosphate (CaP) has recently gained ample attention as it does not follow the classic nucleation-and-growth mechanism of solid formation. Instead, the precipitation mechanisms can involve numerous intermediates, including soluble prenucleation species. However, structural features, stability, and transformation of such solution-state precursors remain largely undisclosed. Herein, we report a detailed and comprehensive characterization of the sequential events involved in calcium phosphate crystallization starting from the very early prenucleation stage. We integrated an extensive set of time-resolved methods, including NMR, turbidimetry, SAXS, cryo-TEM, and calcium-potentiometry to show that CaP nucleation is initiated by the transformation of "branched" polymeric prenucleation assemblies into amorphous calcium phosphate spheres. Such a mineralization process starts with the spontaneous formation of so-called nanometric prenucleation clusters (PNCs) that later assemble into those branched polymeric assemblies without calcium ion uptake from the solution. Importantly, the branched macromolecular species are invisible to many techniques (NMR, turbidity, calcium-potentiometry) but can readily be evidenced by time-resolved SAXS. We find that these polymeric assemblies constitute the origin of amorphous calcium phosphate (ACP) precipitation through an unexpected process: spontaneous dissolution is followed by local densification of 100-200 nm wide domains leading to ACP spheres of similar size. Finally, we demonstrate that the timing of the successive events involved in the CaP mineralization pathway can be kinetically controlled by the Ca2+/Pi molar ratio, such that the lifetime of the soluble transient species can be increased up to hours when decreasing it.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, Vienna 1090, Austria
| | - Ieva Goldberga
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, 4, Place Jussieu, Paris F-75005, France
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, Vienna 1090, Austria
| | - Waldemar Keil
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Jean-Michel Guigner
- Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), Sorbonne Université, 4, Place Jussieu, Paris F-75005, France
| | - Martin F T Haßler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Vienna Doctoral School in Physics (VDS), University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Herwig Peterlik
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Thierry Azaïs
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, 4, Place Jussieu, Paris F-75005, France
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| |
Collapse
|
9
|
Wang HW, Nienhuis ET, Graham TR, Pouvreau M, Reynolds JG, Bowden M, Schenter GK, De Yoreo JJ, Rosso KM, Pearce CI. Resolving intermediates during the growth of aluminum deuteroxide (Hydroxide) polymorphs in high chemical potential solutions. Commun Chem 2024; 7:199. [PMID: 39232209 PMCID: PMC11375050 DOI: 10.1038/s42004-024-01285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Aluminum hydroxide polymorphs are of widespread importance yet their kinetics of nucleation and growth remain beyond the reach of current models. Here we attempt to unveil the reaction processes underlying the polymorphs formation at high chemical potential. We examine their formation in-situ from supersaturated alkaline sodium aluminate solutions using deuteration and time-resolved neutron pair distribution function analyses, which indicate the formation of individual Al(OD)3 layers as an intermediate particle phase. These layers ultimately stack to form gibbsite- or bayerite-like layered heterostructures. Ex-situ characterization of the recovered precipitates using 27Al magic angle spinning nuclear magnetic resonance spectroscopy, Raman, X-ray diffraction, and scanning electron microscopy, suggests the presence of additional intermediate states, an amorphous compound bearing both tetrahededrally- and penta-coordinated Al3+. These observations reveal the complex pathways to form Al(OD)3 monolayers via either transient pentacoordinate species or amorphous-to-ordered transitions. The subsequent crystallization of admixed gibbsite/bayerite is followed by an Al(OD)3 monolayer attachment process.
Collapse
Affiliation(s)
- Hsiu-Wen Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | | - Trent R Graham
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Mark Bowden
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - James J De Yoreo
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Huang Y, Wang N, Wang J, Ji X, Li A, Zhao H, Song W, Huang X, Wang T, Hao H. Unveiling the Factors Influencing Different Nucleation Pathways and Liquid-Liquid Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17786-17795. [PMID: 39120944 DOI: 10.1021/acs.langmuir.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Exploring nucleation pathways has been a research hot spot in the fields of crystal engineering. In this work, vanillin as a model compound was utilized to explore the factors influencing different nucleation pathways with or without liquid-liquid phase separation (LLPS). A thermodynamic phase diagram of vanillin in the mixed solvent system of water and acetone from 10 to 55 °C was determined. It was found that the occurrence of LLPS might be related to different nucleation pathways. Under the guidance of a thermodynamic phase diagram, Raman spectroscopy and molecular simulation were applied to investigate the influencing factors of different nucleation paths. It was found that the degree of solvation is a key factor determining the nucleation path, and strong solvation could lead to LLPS. Additionally, the molecular self-assembly evolution during the crystallization process was further investigated by using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The findings indicate that larger clusters with a diffuse transition layer may lead to LLPS during the nucleation process.
Collapse
Affiliation(s)
- Yunhai Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ao Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenxi Song
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
11
|
Balodis M, Rao Y, Stevanato G, Kellner M, Meibom J, Negroni M, Chmelka BF, Emsley L. Observation of Transient Prenucleation Species of Calcium Carbonate by DNP-Enhanced NMR. J Phys Chem Lett 2024; 15:7954-7961. [PMID: 39074399 PMCID: PMC11318035 DOI: 10.1021/acs.jpclett.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Knowledge of the mechanism by which polymorphic inorganic species, such as carbonates, are formed is crucial to understand and guide the selective crystallization of end products. Recently it has been shown that a key step in the crystallization of calcium carbonate is the formation of intermediate species known as prenucleation clusters. However, the observation of these prenucleation clusters in solution is exceedingly challenging because of their short lifetime and low concentrations. Here, using dissolution DNP-enhanced NMR spectroscopy, we observe signals from prenucleation species of calcium carbonate from which the kinetics of formation and conversion are determined.
Collapse
Affiliation(s)
- Martins Balodis
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Stevanato
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Matthias Kellner
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Josephine Meibom
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mattia Negroni
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bradley F. Chmelka
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Liao Z, Das A, Robb CG, Beveridge R, Wynne K. Amorphous aggregates with a very wide size distribution play a central role in crystal nucleation. Chem Sci 2024; 15:12420-12430. [PMID: 39118639 PMCID: PMC11304771 DOI: 10.1039/d4sc00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
There is mounting evidence that crystal nucleation from supersaturated solution involves the formation and reorganization of prenucleation clusters, contradicting classical nucleation theory. One of the key unresolved issues pertains to the origin, composition, and structure of these clusters. Here, a range of amino acids and peptides is investigated using light scattering, mass spectrometry, and in situ terahertz Raman spectroscopy, showing that the presence of amorphous aggregates is a general phenomenon in supersaturated solutions. Significantly, these aggregates are found on a vast range of length scales from dimers to 30-mers to the nanometre and even micrometre scale, implying a continuous distribution throughout this range. Larger amorphous aggregates are sites of spontaneous crystal nucleation and act as intermediates for laser-induced crystal nucleation. These results are shown to be consistent with a nonclassical nucleation model in which barrierless (homogeneous) nucleation of amorphous aggregates is followed by the nucleation of crystals from solute-enriched aggregates. This provides a novel perspective on crystal nucleation and the role of nonclassical pathways.
Collapse
Affiliation(s)
- Zhiyu Liao
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Ankita Das
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Christina Glen Robb
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Rebecca Beveridge
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow G12 8QQ UK
| |
Collapse
|
13
|
Kozak F, Brandis D, Pötzl C, Epasto LM, Reichinger D, Obrist D, Peterlik H, Polyansky A, Zagrovic B, Daus F, Geyer A, Becker CFW, Kurzbach D. An Atomistic View on the Mechanism of Diatom Peptide-Guided Biomimetic Silica Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401239. [PMID: 38874418 PMCID: PMC11321707 DOI: 10.1002/advs.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.
Collapse
Affiliation(s)
- Fanny Kozak
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Ludovica M. Epasto
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dominik Obrist
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5Vienna1090Austria
| | - Anton Polyansky
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Bojan Zagrovic
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Fabian Daus
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Armin Geyer
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Christian FW Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
14
|
Bi S, Ye J, Tian P, Ning G. Insight from Boric Acid into Bioskeleton Formation: Inscribed Circle Effect on the Edge-Base Plate Growth. Inorg Chem 2024; 63:12740-12751. [PMID: 38941498 DOI: 10.1021/acs.inorgchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Complex morphologies in nature often arise from the assembly of elemental building blocks, leading to diverse and intricate structures. Understanding the mechanisms that govern the formation of these complex morphologies remains a significant challenge. In particular, the edge-base plate growth of biogenic crystals plays a crucial role in directing the development of intricate bioskeleton morphologies. However, the factors and regulatory processes that govern edge-base plate growth remain insufficiently understood. Inspired by biological skeletons and based on the soluble property of boric acid (BA) in both water and alcohols, we obtained a series of novel BA morphologies, including coccolith, and anemone biological skeletons. Here, we unveil the "inscribed circle effect", a concise mathematical model that reveals the underlying causative factors and regulatory mechanisms driving edge-base plate growth. Our findings illuminate how variations in solvent environments can exert control over the edge-base plate growth pathways, thereby resulting in the formation of diverse and complex morphologies. This understanding holds significant potential for guiding the chemical synthesis of bioskeleton materials.
Collapse
Affiliation(s)
- Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Peng Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
15
|
Nowotarski MS, Potnuru LR, Straub JS, Chaklashiya R, Shimasaki T, Pahari B, Coffaro H, Jain S, Han S. Dynamic Nuclear Polarization Enhanced Multiple-Quantum Spin Counting of Molecular Assemblies in Vitrified Solutions. J Phys Chem Lett 2024; 15:7084-7094. [PMID: 38953521 DOI: 10.1021/acs.jpclett.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Crystallization pathways are essential to various industrial, geological, and biological processes. In nonclassical nucleation theory, prenucleation clusters (PNCs) form, aggregate, and crystallize to produce higher order assemblies. Microscopy and X-ray techniques have limited utility for PNC analysis due to the small size (0.5-3 nm) and time stability constraints. We present a new approach for analyzing PNC formation based on 31P nuclear magnetic resonance (NMR) spin counting of vitrified molecular assemblies. The use of glassing agents ensures that vitrification generates amorphous aqueous samples and offers conditions for performing dynamic nuclear polarization (DNP)-amplified NMR spectroscopy. We demonstrate that molecular adenosine triphosphate along with crystalline, amorphous, and clustered calcium phosphate materials formed via a nonclassical growth pathway can be differentiated from one another by the number of dipolar coupled 31P spins. We also present an innovative approach for examining spin counting data, demonstrating that a knowledge-based fitting of integer multiples of cosine wave functions, instead of the traditional Fourier transform, provides a more physically meaningful retrieval of the existing frequencies. This is the first report of multiquantum spin counting of assemblies formed in solution as captured under vitrified DNP conditions, which can be useful for future analysis of PNCs and other aqueous molecular clusters.
Collapse
Affiliation(s)
- Mesopotamia S Nowotarski
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Lokeswara Rao Potnuru
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua S Straub
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Raj Chaklashiya
- Department of Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Toshihiko Shimasaki
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Bholanath Pahari
- School of Physical and Applied Sciences, Goa University, Taleigao, Goa 403206, India
| | - Hunter Coffaro
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Sheetal Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
McDonogh DP, Gale JD, Raiteri P, Gebauer D. Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization. Nat Commun 2024; 15:3359. [PMID: 38637527 PMCID: PMC11026415 DOI: 10.1038/s41467-024-47721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Calcium orthophosphates (CaPs), as hydroxyapatite (HAP) in bones and teeth are the most important biomineral for humankind. While clusters in CaP nucleation have long been known, their speciation and mechanistic pathways to HAP remain debated. Evidently, mineral nucleation begins with two ions interacting in solution, fundamentally underlying solute clustering. Here, we explore CaP ion association using potentiometric methods and computer simulations. Our results agree with literature association constants for Ca2+ and H2PO4-, and Ca2+ and HPO42-, but not for Ca2+ and PO43- ions, which previously has been strongly overestimated by two orders of magnitude. Our data suggests that the discrepancy is due to a subtle, premature phase separation that can occur at low ion activity products, especially at higher pH. We provide an important revision of long used literature constants, where association of Ca2+ and PO43- actually becomes negligible below pH 9.0, in contrast to previous values. Instead, [CaHPO4]0 dominates the aqueous CaP speciation between pH ~6-10. Consequently, calcium hydrogen phosphate association is critical in cluster-based precipitation in the near-neutral pH regime, e.g., in biomineralization. The revised thermodynamics reveal significant and thus far unexplored multi-anion association in computer simulations, constituting a kinetic trap that further complicates aqueous calcium phosphate speciation.
Collapse
Affiliation(s)
- David P McDonogh
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation and School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation and School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia.
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| |
Collapse
|
17
|
Feng C, Lu BQ, Fan Y, Ni H, Zhao Y, Tan S, Zhou Z, Liu L, Hachtel JA, Kepaptsoglou D, Wu B, Gebauer D, He S, Chen F. Amorphous 1-D nanowires of calcium phosphate/pyrophosphate: A demonstration of oriented self-growth of amorphous minerals. J Colloid Interface Sci 2024; 657:960-970. [PMID: 38096779 DOI: 10.1016/j.jcis.2023.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Amorphous inorganic solids are traditionally isotropic, thus, it is believed that they only grow in a non-preferential way without the assistance of regulators, leading to the morphologies of nanospheres or irregular aggregates of nanoparticles. However, in the presence of (ortho)phosphate (Pi) and pyrophosphate ions (PPi) which have synergistic roles in biomineralization, the highly elongated amorphous nanowires (denoted ACPPNs) form in a regulator-free aqueous solution (without templates, additives, organics, etc). Based on thorough characterization and tracking of the formation process (e.g., Cryo-TEM, spherical aberration correction high resolution TEM, solid state NMR, high energy resolution monochromated STEM-EELS), the microstructure and its preferential growth behavior are elucidated. In ACPPNs, amorphous calcium orthophosphate and amorphous calcium pyrophosphate are distributed at separated but close sites. The ACPPNs grow via either the preferential attachment of ∼2 nm nanoclusters in a 1-dimension way, or the transformation of bigger nanoparticles, indicating an inherent driving force-governed process. We propose that the anisotropy of ACPPNs microstructure, which is corroborated experimentally, causes their oriented growth. This study proves that, unlike the conventional view, amorphous minerals can form via oriented growth without external regulation, demonstrating a novel insight into the structures and growth behaviors of amorphous minerals.
Collapse
Affiliation(s)
- Chaobo Feng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Bing-Qiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China.
| | - Yunshan Fan
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Haijian Ni
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Yunfei Zhao
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Shuo Tan
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Zhi Zhou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Lijia Liu
- Department of Chemistry, University of Western Ontario, London, ON N6A5B7, Canada
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Demie Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, UK; Department of Physics, University of York, York YO10 5DD, UK
| | - Baohu Wu
- Forschungszentrum Jülich GmbH, JCNS-4, JCNS at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, D-30167 Hanover, Germany
| | - Shisheng He
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China.
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001 PR China.
| |
Collapse
|
18
|
Wang T, Wang Z, Wang S, Chen X, Luan C, Yu K. Thermally-Induced Isomerization of Prenucleation Clusters During the Prenucleation Stage of CdTe Quantum Dots. Angew Chem Int Ed Engl 2023; 62:e202310234. [PMID: 37581340 DOI: 10.1002/anie.202310234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
The evolution of prenucleation clusters in the prenucleation stage of colloidal semiconductor quantum dots (QDs) has remained unexplored. With CdTe as a model system, we show that substances form and isomerize prior to the nucleation and growth of QDs. Called precursor compounds (PCs), the prenucleation clusters are relatively optically transparent and can transform to absorbing magic-size clusters (MSCs). When a prenucleation-stage sample at 25, 45, or 80 °C is dispersed in a mixture of cyclohexane (CH) and octylamine (OTA) at room temperature, either MSC-371, MSC-417, or MSC-448 evolves with absorption peaking at 371, 417, or 448 nm, respectively. We propose that PC-371 forms at 25 °C, and isomerizes to PC-417 at 45 °C and to PC-448 at 80 °C. The PCs and MSCs are quasi isomers. Relatively large and small amounts of OTA favor PC-371 and PC-448 in dispersion, respectively. The present findings suggest the existence of PC-to-PC isomerization in the QD prenucleation stage.
Collapse
Affiliation(s)
- Tinghui Wang
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Shanling Wang
- Analytical and Testing Center, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| |
Collapse
|
19
|
Karafiludis S, Scoppola E, Wolf SE, Kochovski Z, Matzdorff D, Van Driessche AES, Hövelmann J, Emmerling F, Stawski TM. Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation. J Chem Phys 2023; 159:134503. [PMID: 37787132 DOI: 10.1063/5.0166278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH4PO4 · 6H2O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s.
Collapse
Affiliation(s)
- Stephanos Karafiludis
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstatter-Straße 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ernesto Scoppola
- Biomaterials, Hierarchical Structure of Biological and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Stephan E Wolf
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering, Institute for Glass and Ceramics, Martensstr. 5, 91058 Erlangen, Germany
| | - Zdravko Kochovski
- Helmholtz-Zentrum Berlin for Materials and Energy, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - David Matzdorff
- Helmholtz-Zentrum Berlin for Materials and Energy, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Alexander E S Van Driessche
- Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC - Universidad de Granada, Av. De las Palmeras 4, 18100 Armilla, Spain
| | - Jörn Hövelmann
- REMONDIS Production GmbH, Brunnenstraße 138, 44536 Lünen, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstatter-Straße 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Tomasz M Stawski
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstatter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
20
|
Turhan E, Pötzl C, Keil W, Negroni M, Kouřil K, Meier B, Romero JA, Kazimierczuk K, Goldberga I, Azaïs T, Kurzbach D. Biphasic NMR of Hyperpolarized Suspensions-Real-Time Monitoring of Solute-to-Solid Conversion to Watch Materials Grow. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19591-19598. [PMID: 37817917 PMCID: PMC10561236 DOI: 10.1021/acs.jpcc.3c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Indexed: 10/12/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid-solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| | - Christopher Pötzl
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| | - Waldemar Keil
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Mattia Negroni
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Egenstein-Leopoldshafen 76344, Germany
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Egenstein-Leopoldshafen 76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany
| | - Javier Agustin Romero
- Centre
of New Technologies, University of Warsaw, ul. Banacha 2c, Warsaw 02-097, Poland
| | | | - Ieva Goldberga
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4, place Jussieu, Paris F-75005, France
| | - Thierry Azaïs
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4, place Jussieu, Paris F-75005, France
| | - Dennis Kurzbach
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| |
Collapse
|
21
|
Chen Y, Amirav L. Shape tunability of copper nanocrystals deposited on nanorods. Chem Sci 2023; 14:7512-7523. [PMID: 37449067 PMCID: PMC10337768 DOI: 10.1039/d3sc00677h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023] Open
Abstract
The significant role of metal particle geometry in dictating catalytic activity, selectivity, and stability is well established in heterocatalysis. However, this topic is rarely explored in semiconductor-metal hybrid photocatalytic systems, primarily due to the lack of synthetic control over this feature. Herein, we present a new synthetic route for the deposition of metallic Cu nanoparticles with spherical, elliptic, or cubic geometrical shapes, which are selectively grown on one side of the well-established CdSe@CdS nanorod photocatalytic system. An additional multipod morphology in which several nanorod branches are combined on a single Cu domain is presented as well. Cu is an earth-abundant low-cost catalyst known to promote a diverse gallery of organic transformations and is an excellent thermal and electrical conductor with interesting plasmonic properties. Its deposition on cadmium chalcogenide nanostructures is enabled here via mitigation of the reaction kinetics such that the cation exchange reaction is prevented. The structural diversity of these sophisticated nanoscale hybrid systems lays the foundations for shape-activity correlation studies and employment in various applications.
Collapse
Affiliation(s)
- Yuexing Chen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 32000 Israel
| | - Lilac Amirav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
22
|
Otter LM, Eder K, Kilburn MR, Yang L, O'Reilly P, Nowak DB, Cairney JM, Jacob DE. Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre. Nat Commun 2023; 14:2254. [PMID: 37080977 PMCID: PMC10119311 DOI: 10.1038/s41467-023-37814-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Biominerals, such as nacreous bivalve shells, are important archives of environmental information. Most marine calcifiers form their shells from amorphous calcium carbonate, hypothesised to occur via particle attachment and stepwise crystallisation of metastable precursor phases. However, the mechanism of this transformation, including the incorporation of trace elements used for environmental reconstructions, are poorly constrained. Here, using shells of the Mediterranean mussel, we explore the formation of nacre from the meso- to the atomic scale. We use a combination of strontium pulse-chase labelling experiments in aquaculture and correlated micro- to sub-nanoscale analysis to show that nacre grows in a dynamic two-step process with extensional and space-filling growth components. Furthermore, we show that nacre crystallizes via localised dissolution and reprecipitation within nanogranules. Our findings elucidate how stepwise crystallization pathways affect trace element incorporation in natural biominerals, while preserving their intricate hierarchical ultrastructure.
Collapse
Affiliation(s)
- L M Otter
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia.
| | - K Eder
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M R Kilburn
- Centre for Microscopy Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - L Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - P O'Reilly
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - D B Nowak
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - J M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - D E Jacob
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
23
|
Zhu Y, Lu M, Gao F, Zhou C, Jia C, Wang J. Role of Tailor-Made Additives in Crystallization from Solution: A Review. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Affiliation(s)
- Yin Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Meijin Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Feng Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chunli Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chenyang Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
24
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
25
|
Baba Y, Chiacchia M, Patwardhan SV. A Novel Method for Understanding the Mixing Mechanisms to Enable Sustainable Manufacturing of Bioinspired Silica. ACS ENGINEERING AU 2023; 3:17-27. [PMID: 36820228 PMCID: PMC9936550 DOI: 10.1021/acsengineeringau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/03/2023]
Abstract
Bioinspired silica (BIS) has received unmatched attention in recent times owing to its green synthesis, which offers a scalable, sustainable, and economical method to produce high-value silica for a wide range of applications, including catalysis, environmental remediation, biomedical, and energy storage. To scale-up BIS synthesis, it is critically important to understand how mixing affects the reaction at different scales. In particular, successful scale-up can be achieved if mixing time is measured, modeled, and kept constant across different production scales. To this end, a new image analysis technique was developed using pH, as one of the key parameters, to monitor the reaction and the mixing. Specifically, the technique involved image analysis of color (pH) change using a custom-written algorithm to produce a detailed pH map. The degree of mixing and mixing time were determined from this analysis for different impeller speeds and feed injection locations. Cross validation of the mean pH of selected frames with measurements using a pH calibration demonstrated the reliability of the image processing technique. The results suggest that the bioinspired silica formation is controlled by meso- and, to a lesser extent, micromixing. Based on the new data from this investigation, a mixing time correlation is developed as a function of Reynolds number-the first of a kind for green nanomaterials. Further, we correlated the effects of mixing conditions on the reaction and the product. These results provide valuable insights into the scale-up to enable sustainable manufacturing of BIS and other nanomaterials.
Collapse
|
26
|
Juramy M, Vioglio PC, Ziarelli F, Viel S, Thureau P, Mollica G. Monitoring the influence of additives on the crystallization processes of glycine with dynamic nuclear polarization solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101836. [PMID: 36327551 DOI: 10.1016/j.ssnmr.2022.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Crystallization is fundamental in many domains, and the investigation of the sequence of solid phases produced as a function of crystallization time is thus key to understand and control crystallization processes. Here, we used a solid-state nuclear magnetic resonance strategy to monitor the crystallization process of glycine, which is a model compound in polymorphism, under the influence of crystallizing additives, such as methanol or sodium chloride. More specifically, our strategy is based on a combination of low-temperatures and dynamic nuclear polarization (DNP) to trap and detect transient crystallizing forms, which may be present only in low quantities. Interestingly, our results show that these additives yield valuable DNP signal enhancements even in the absence of glycerol within the crystallizing solution.
Collapse
Affiliation(s)
- Marie Juramy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | | | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, Marseille, France; Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
27
|
Zhao Y, Zhang Q, Ma J, Yi R, Gou L, Nie D, Han X, Zhang L, Wang Y, Xu X, Wang Z, Chen L, Lu Y, Zhang S, Zhang L. Directional growth of quasi-2D Cu2O monocrystals on rGO membranes in aqueous environments. iScience 2022; 25:105472. [DOI: 10.1016/j.isci.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
|
28
|
Afshani J, Perez Mellor A, Bürgi T, Hagemann H. Crystallization of SrAl 12O 19 Nanocrystals from Amorphous Submicrometer Particles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19336-19345. [PMID: 36425001 PMCID: PMC9677969 DOI: 10.1021/acs.jpcc.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Advanced instrumentation and modern analysis tools such as transmission electron microscopy (TEM) have led to phenomenal progress in understanding crystallization, in particular from solution, which is a prerequisite for the design-based preparation of a target crystal. Nevertheless, little has been understood about the crystallization pathway under high-temperature annealing (HTA) conditions. Metal oxide crystals are prominent materials that are usually obtained via HTA. Despite the widespread application of hydro-/solvothermal methods on the laboratory scale, HTA is the preferred method in many industries for the mass production of metal oxide crystals. However, poor control over the morphology and grain sizes of these crystals under extreme HTA conditions limits their applications. Here, applying ex-situ TEM, the transformation of a single amorphous spherical submicrometer precursor particle of SrAl12O19 (SA6) at 1150 °C toward a nanosized thermodynamically favored hexagonal crystal is explored. It is illustrated in real space, step by step, how both kinetic and thermodynamic factors contribute to this faceting and morphology evolution. These results demonstrate a nonclassical nucleation and growth process consisting of densification, crystallite domain formation, oriented attachment, surface nucleation, 2-dimensional (2D) growth, and surface diffusion of the atoms to eventually result in the formation of a hexagonal platelet crystal. The TEM images further delineate a parent crystal driving the crystal lattice and morphological orientation of a network of interconnected platelets.
Collapse
Affiliation(s)
- Jafar Afshani
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Ariel Perez Mellor
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Thomas Bürgi
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Hans Hagemann
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| |
Collapse
|
29
|
Zhang P, Tian Z, Kang Y, He B, Zhao Z, Hung CT, Duan L, Chen W, Tang Y, Yu J, Mai L, Li YF, Li W, Zhao D. Sub-10 nm Corrugated TiO 2 Nanowire Arrays by Monomicelle-Directed Assembly for Efficient Hole Extraction. J Am Chem Soc 2022; 144:20964-20974. [DOI: 10.1021/jacs.2c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhangliu Tian
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yikun Kang
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Bowen He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zaiwang Zhao
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Chin-Te Hung
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Linlin Duan
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yun Tang
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ye-Fei Li
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
30
|
Cheng Y, Wang C, Kang F, He YB. Self-Healable Lithium-Ion Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3656. [PMID: 36296849 PMCID: PMC9610850 DOI: 10.3390/nano12203656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The inner constituents of lithium-ion batteries (LIBs) are easy to deform during charging and discharging processes, and the accumulation of these deformations would result in physical fractures, poor safety performances, and short lifespan of LIBs. Recent studies indicate that the introduction of self-healing (SH) materials into electrodes or electrolytes can bring about great enhancements in their mechanical strength, thus optimizing the cycle stability of the batteries. Due to the self-healing property of these special functional materials, the fractures/cracks generated during repeated cycles could be spontaneously cured. This review systematically summarizes the mechanisms of self-healing strategies and introduces the applications of SH materials in LIBs, especially from the aspects of electrodes and electrolytes. Finally, the challenges and the opportunities of the future research as well as the potential of applications are presented to promote the research of this field.
Collapse
Affiliation(s)
- Ye Cheng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengrui Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yan-Bing He
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small-Molecular-Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022; 61:e202208475. [PMID: 35785466 PMCID: PMC9796263 DOI: 10.1002/anie.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Small-molecular-weight (MW) additives can strongly impact amorphous calcium carbonate (ACC), playing an elusive role in biogenic, geologic, and industrial calcification. Here, we present molecular mechanisms by which these additives regulate stability and composition of both CaCO3 solutions and solid ACC. Potent antiscalants inhibit ACC precipitation by interacting with prenucleation clusters (PNCs); they specifically trigger and integrate into PNCs or feed PNC growth actively. Only PNC-interacting additives are traceable in ACC, considerably stabilizing it against crystallization. The selective incorporation of potent additives in PNCs is a reliable chemical label that provides conclusive chemical evidence that ACC is a molecular PNC-derived precipitate. Our results reveal additive-cluster interactions beyond established mechanistic conceptions. They reassess the role of small-MW molecules in crystallization and biomineralization while breaking grounds for new sustainable antiscalants.
Collapse
Affiliation(s)
- Patrick Duchstein
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Simon Leupold
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Shifi Kababya
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Maria R. Cicconi
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Dominique de Ligny
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science (JCNS)Forschungszentrum Jülich GmbHOutstation at FRM IILichtenbergstrasse 185747GarchingGermany
| | - David Eike
- The Procter & Gamble CompanyMason Business Center8700 Mason-Montgomery RoadMasonOH 45040USA
| | - Asher Schmidt
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Dirk Zahn
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Stephan E. Wolf
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| |
Collapse
|
32
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Pilling R, Patwardhan SV. Recent Advances in Enabling Green Manufacture of Functional Nanomaterials: A Case Study of Bioinspired Silica. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12048-12064. [PMID: 36161096 PMCID: PMC9490786 DOI: 10.1021/acssuschemeng.2c02204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/15/2022] [Indexed: 05/19/2023]
Abstract
Global specialty silica production is over 3 million tonnes per annum with diverse applications across sectors and an increasing demand for more complex material structures and surface chemistries. Commercial manufacturing of high-value silica nanomaterials is energy and resource intensive. In order to meet market needs and mitigate environmental impacts, new synthesis methods for these porous materials are required. The development of the bioinspired silica (BIS) product system, which is the focus of this review, provides a potential solution to this challenge. BIS is a versatile and greener route with the prospect of good scalability, attractive process economics and well controlled product materials. The potential of the system lies not only in its provision of specific lead materials but also, as itself, a rich design-space for the flexible and potentially predictive design of diverse sustainable silica nanomaterials. Realizing the potential of this design space, requires an integrative mind-set, which enables parallel and responsive progression of multiple and dependent research strands, according to need, opportunities, and emergent knowledge. Specifically, this requires development of detailed understanding of (i) the pathways and extent of material diversity and control, (ii) the influences and mechanisms of scale-up, and (iii) performance, economic and environmental characteristics and sensitivities. Crucially, these need to be developed for the system overall, which sits in contrast to a more traditional research approach, which focuses initially on the discovery of specific material leads at the laboratory scale, leaving scale-up, commercialization, and, potentially, pathway understanding to be considered as distinctly separate concerns. The intention of this review is to present important recent advances made in the field of BIS. Specifically, advances made along three research themes will be discussed: (a) particle formation pathways, (b) product design, and (c) scale-up and manufacture. These advances include first quantitative investigation of synthesis-product relationships, first structured investigation of mixing effects, preparation of a broad range of functionalized and encapsulated silica materials and continued industrial engagement and market research. We identify future challenges and provide an important foundation for the development of new research avenues. These include the need to develop comprehensive and predictive product design models, to understand markets in terms of product cost, performance and environmental considerations, and to develop capabilities enabling rapid prototyping and scale-up of desired nanomaterials.
Collapse
Affiliation(s)
- Robert Pilling
- Green Nanomaterials
Research Group, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Siddharth V. Patwardhan
- Green Nanomaterials
Research Group, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
34
|
Grote L, Seyrich M, Döhrmann R, Harouna-Mayer SY, Mancini F, Kaziukenas E, Fernandez-Cuesta I, A Zito C, Vasylieva O, Wittwer F, Odstrčzil M, Mogos N, Landmann M, Schroer CG, Koziej D. Imaging Cu 2O nanocube hollowing in solution by quantitative in situ X-ray ptychography. Nat Commun 2022; 13:4971. [PMID: 36038564 PMCID: PMC9424245 DOI: 10.1038/s41467-022-32373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding morphological changes of nanoparticles in solution is essential to tailor the functionality of devices used in energy generation and storage. However, we lack experimental methods that can visualize these processes in solution, or in electrolyte, and provide three-dimensional information. Here, we show how X-ray ptychography enables in situ nano-imaging of the formation and hollowing of nanoparticles in solution at 155 °C. We simultaneously image the growth of about 100 nanocubes with a spatial resolution of 66 nm. The quantitative phase images give access to the third dimension, allowing to additionally study particle thickness. We reveal that the substrate hinders their out-of-plane growth, thus the nanocubes are in fact nanocuboids. Moreover, we observe that the reduction of Cu2O to Cu triggers the hollowing of the nanocuboids. We critically assess the interaction of X-rays with the liquid sample. Our method enables detailed in-solution imaging for a wide range of reaction conditions.
Collapse
Affiliation(s)
- Lukas Grote
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Martin Seyrich
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Ralph Döhrmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Sani Y Harouna-Mayer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Federica Mancini
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Emilis Kaziukenas
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Irene Fernandez-Cuesta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Cecilia A Zito
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- São Paulo State University UNESP, Rua Cristóvão Colombo, 2265, 15054000, São José do Rio Preto, Brazil
| | - Olga Vasylieva
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Felix Wittwer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Michal Odstrčzil
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
- Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447, Oberkochen, Germany
| | - Natnael Mogos
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Mirko Landmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Christian G Schroer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
35
|
Ramnarain V, Georges T, Ortiz Peña N, Ihiawakrim D, Longuinho M, Bulou H, Gervais C, Sanchez C, Azaïs T, Ersen O. Monitoring of CaCO 3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMR. J Am Chem Soc 2022; 144:15236-15251. [PMID: 35971919 DOI: 10.1021/jacs.2c05731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most significant biominerals in nature. Living organisms are able to control its biomineralization by means of an organic matrix to tailor a myriad of hybrid functional materials. The soluble organic components are often proteins rich in acidic amino-acids such as l-aspartic acid. While several studies have demonstrated the influence of amino acids on the crystallization of calcium carbonate, nanoscopic insight of their impact on CaCO3 mineralization, in particular at the early stages, is still lacking. Herein, we implement liquid phase-transmission electron microscopy (LP-TEM) in order to visualize in real-time and at the nanoscale the prenucleation stages of CaCO3 formation. We observe that l-aspartic acid favors the formation of individual and aggregated prenucleation clusters which are found stable for several minutes before the transformation into amorphous nanoparticles. Combination with hyperpolarized solid state nuclear magnetic resonance (DNP NMR) and density functional theory (DFT) calculations allow shedding light on the underlying mechanism at the prenucleation stage. The promoting nature of l-aspartic acid with respect to prenucleation clusters is explained by specific interactions with both Ca2+ and carbonates and the stabilization of the Ca2+-CO32-/HCO3- ion pairs favoring the formation and stabilization of the CaCO3 transient precursors. The study of prenucleation stages of mineral formation by the combination of in situ LP-TEM, advanced analytical techniques (including hyperpolarized solid-state NMR), and numerical modeling allows the real-time monitoring of prenucleation species formation and evolution and the comprehension of their relative stability.
Collapse
Affiliation(s)
- Vinavadini Ramnarain
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Tristan Georges
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Nathaly Ortiz Peña
- Laboratoire Matériaux et Phénomènes Quantiques, 75025 Paris, Cedex 13, France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Mariana Longuinho
- CBPF, Rua Dr. Xavier Sigaud, 150 Urca I, CEP 22290-180, Rio de Janeiro, Brasil.,UFRJ, Av Pedro Calmon, 550 Edificio da Reitoria, Iha de do Fundao, CEP 21941-901 Rio de Janeiro, Brasil
| | - Hervé Bulou
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Christel Gervais
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Clément Sanchez
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France.,USIAS, Université de Strasbourg, 67000 Strasbourg, France
| | - Thierry Azaïs
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
36
|
Li Y, Zhang M, He L, Rowell N, Kreouzis T, Zhang C, Wang S, Luan C, Chen X, Zhang S, Yu K. Manipulating Reaction Intermediates to Aqueous-Phase ZnSe Magic-Size Clusters and Quantum Dots at Room Temperature. Angew Chem Int Ed Engl 2022; 61:e202209615. [PMID: 35909255 DOI: 10.1002/anie.202209615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 02/05/2023]
Abstract
It is not resolved which model describes better the aqueous-phase nucleation and growth of semiconductor quantum dots (QDs), the classical one-step one or the nonclassical multi-step one. Here, we design a room-temperature reaction to trap reaction intermediates in the prenucleation stage of ZnSe QDs (as a model system). We show that the trapped intermediate can transform to magic-size clusters (MSCs) via intra-molecular reorganization and can fragment to enable the growth of QDs. The MSCs exhibit a sharp optical absorption peaking at 299 nm, labelled MSC-299. The intermediate, the precursor compound (PC-299) of MSC-299, is optically transparent at 299 nm and to longer wavelengths. This intermediate forms in various Zn and Se reaction systems. The present study provides unambiguous evidence that the nonclassical and classical pathways are both necessary to explain the nucleation and growth of aqueous-phase QDs, with the former pathway favored more by high reaction concentrations.
Collapse
Affiliation(s)
- Yang Li
- Sichuan University, College of Biomedical Engineering, CHINA
| | - Meng Zhang
- Sichuan University, School of Physical and Chemical Sciences, CHINA
| | - Li He
- Sichuan University, College of Biomedical Engineering, CHINA
| | - Nelson Rowell
- National Research Council Canada, Metrology Research Centre, CANADA
| | - Theo Kreouzis
- Queen Mary University of London, School of Physical and Chemical Sciences, UNITED KINGDOM
| | | | - Shanlin Wang
- Sichuan University, Analytical & Testing Center, CHINA
| | - Chaoran Luan
- West China School of Medicine: Sichuan University West China Hospital, Laboratory of Ethnopharmacology, CHINA
| | - Xiaoqin Chen
- Sichuan University, College of Biomedical Engineering, CHINA
| | - Sijie Zhang
- Guizhou University of Engineering Science, , CHINA
| | - Kui Yu
- Sichuan University, National Engineering Research Center for Biomaterials, No. 24, South Section, First Ring Road, Chengdu, 610065, Chengdu, CHINA
| |
Collapse
|
37
|
Li Y, Zhang M, He L, Rowell N, Kreouzis T, Zhang C, Wang S, Luan C, Chen X, Zhang S, Yu K. Manipulating Reaction Intermediates to Aqueous‐Phase ZnSe Magic‐Size Clusters and Quantum Dots at Room Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yang Li
- Sichuan University College of Biomedical Engineering CHINA
| | - Meng Zhang
- Sichuan University School of Physical and Chemical Sciences CHINA
| | - Li He
- Sichuan University College of Biomedical Engineering CHINA
| | - Nelson Rowell
- National Research Council Canada Metrology Research Centre CANADA
| | - Theo Kreouzis
- Queen Mary University of London School of Physical and Chemical Sciences UNITED KINGDOM
| | | | - Shanlin Wang
- Sichuan University Analytical & Testing Center CHINA
| | - Chaoran Luan
- West China School of Medicine: Sichuan University West China Hospital Laboratory of Ethnopharmacology CHINA
| | - Xiaoqin Chen
- Sichuan University College of Biomedical Engineering CHINA
| | - Sijie Zhang
- Guizhou University of Engineering Science CHINA
| | - Kui Yu
- Sichuan University National Engineering Research Center for Biomaterials No. 24, South Section, First Ring Road, Chengdu 610065 Chengdu CHINA
| |
Collapse
|
38
|
Page K, Stack AG, Chen SA, Wang HW. Nanopore facilitated monohydrocalcitic amorphous calcium carbonate precipitation. Phys Chem Chem Phys 2022; 24:18340-18346. [PMID: 35880670 DOI: 10.1039/d2cp00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Predicting the precipitation of solids is important in both natural systems and subsurface energy applications. The factors controlling reaction mechanisms, phase selection and conversion between phases are particularly important. In this contribution the precipitation and growth of an amorphous calcium carbonate species from flowing aqueous solution in a nanoporous controlled pore glass is followed in situ with differential X-ray pair distribution function analysis. It is discovered that the local atomic structure of this phase indicates monohydrocalcite-like pair-pair correlations, yet is functionally amorphous because it lacks long-range structure. The unexpected occurrence of synthetic proto-monohydrocalcite amorphous calcium carbonate, precipitated from a solution undersaturated with respect to published solubilities, suggests that nanopore confinement facilitates formation of an amorphous phase at the expense of more favorable crystalline ones. This result illustrates that confinement and interface effects are physical factors exerting control on mineral nucleation behavior in natural and geological systems.
Collapse
Affiliation(s)
- Katharine Page
- Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN, 38996, USA. .,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Si Athena Chen
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Hsiu-Wen Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
39
|
Trinh TTH, Nguyen TKP, Khuu CQ, Wolf SE, Nguyen AT. Influence of Taylor Vortex Flow on the Crystallization of l-Glutamic Acid as an Organic Model Compound. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thi Thanh Huyen Trinh
- Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province 820000, Vietnam
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstrasse 5, Erlangen 91058, Germany
| | - Thi Kim Phuong Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology (VAST), 1A-TL29 Street, District 12th,
Thanh Loc Ward, Ho Chi Minh City 700000, Vietnam
| | - Chau Quang Khuu
- Institute of Chemical Technology, Vietnam Academy of Science and Technology (VAST), 1A-TL29 Street, District 12th,
Thanh Loc Ward, Ho Chi Minh City 700000, Vietnam
| | - Stephan E. Wolf
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstrasse 5, Erlangen 91058, Germany
- Interdisciplinary Centre for Functional Particle Systems (FPS), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Anh-Tuan Nguyen
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstrasse 5, Erlangen 91058, Germany
- Institute of Chemical Technology, Vietnam Academy of Science and Technology (VAST), 1A-TL29 Street, District 12th,
Thanh Loc Ward, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
40
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small‐Molecular‐Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Simon Leupold
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Shifi Kababya
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Maria R. Cicconi
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Dominique de Ligny
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Lehrstuhl für Glas und Keramik GERMANY
| | - Vitaliy Pipich
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH Garching GERMANY
| | | | - Asher Schmidt
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Dirk Zahn
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry Department GERMANY
| | - Stephan E. Wolf
- Friedrich-Alexander University Erlangen-Nürnberg – Institute of Glass and Ceramics Department of Materials Science and Engineering Martensstrasse 5 91058 Erlangen GERMANY
| |
Collapse
|
41
|
Gebauer D, Gale JD, Cölfen H. Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107735. [PMID: 35678091 DOI: 10.1002/smll.202107735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.
Collapse
Affiliation(s)
- Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TiGER), School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
| | - Helmut Cölfen
- University of Konstanz, Physical Chemistry, Universitätsstr. 10, 78465, Konstanz, Germany
| |
Collapse
|
42
|
The nano- and meso-scale structure of amorphous calcium carbonate. Sci Rep 2022; 12:6870. [PMID: 35477728 PMCID: PMC9046151 DOI: 10.1038/s41598-022-10627-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the underlying processes of biomineralization is crucial to a range of disciplines allowing us to quantify the effects of climate change on marine organisms, decipher the details of paleoclimate records and advance the development of biomimetic materials. Many biological minerals form via intermediate amorphous phases, which are hard to characterize due to their transient nature and a lack of long-range order. Here, using Monte Carlo simulations constrained by X-ray and neutron scattering data together with model building, we demonstrate a method for determining the structure of these intermediates with a study of amorphous calcium carbonate (ACC) which is a precursor in the bio-formation of crystalline calcium carbonates. We find that ACC consists of highly ordered anhydrous nano-domains of approx. 2 nm that can be described as nanocrystalline. These nano-domains are held together by an interstitial net-like matrix of water molecules which generate, on the mesoscale, a heterogeneous and gel-like structure of ACC. We probed the structural stability and dynamics of our model on the nanosecond timescale by molecular dynamics simulations. These simulations revealed a gel-like and glassy nature of ACC due to the water molecules and carbonate ions in the interstitial matrix featuring pronounced orientational and translational flexibility. This allows for viscous mobility with diffusion constants four to five orders of magnitude lower than those observed in solutions. Small and ultra-small angle neutron scattering indicates a hierarchically-ordered organization of ACC across length scales that allow us, based on our nano-domain model, to build a comprehensive picture of ACC formation by cluster assembly from solution. This contribution provides a new atomic-scale understanding of ACC and provides a framework for the general exploration of biomineralization and biomimetic processes.
Collapse
|
43
|
Jia X, Kayitmazer AB, Ahmad A, Ramzan N, Li Y, Xu Y, Sun S. Polyacids for producing colloidally stable amorphous calcium carbonate clusters in water. J Appl Polym Sci 2022. [DOI: 10.1002/app.51899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xianjing Jia
- Lab of Low‐Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | | | - Ayyaz Ahmad
- Department of Chemical Engineering Muhammad Nawaz Sharif University of Engineering and Technology Multan Pakistan
| | - Naveed Ramzan
- Faculty of Chemical, Metallurgical, and Polymer Engineering University of Engineering & Technology Lahore Pakistan
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Shengtong Sun
- Center for Advanced Low‐dimension Materials Donghua University Shanghai China
| |
Collapse
|
44
|
King M, Avaro JT, Peter C, Hauser K, Gebauer D. Solvent-mediated isotope effects strongly influence the early stages of calcium carbonate formation: exploring D 2O vs. H 2O in a combined computational and experimental approach. Faraday Discuss 2022; 235:36-55. [PMID: 35388817 DOI: 10.1039/d1fd00078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In experimental studies, heavy water (D2O) is employed, e.g., so as to shift the spectroscopic solvent background, but any potential effects of this solvent exchange on reaction pathways are often neglected. While the important role of light water (H2O) during the early stages of calcium carbonate formation has been realized, studies into the actual effects of aqueous solvent exchanges are scarce. Here, we present a combined computational and experimental approach to start to fill this gap. We extended a suitable force field for molecular dynamics (MD) simulations. Experimentally, we utilised advanced titration assays and time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. We find distinct effects in various mixtures of the two aqueous solvents, and in pure H2O or D2O. Disagreements between the computational results and experimental data regarding the stabilities of ion associates might be due to the unexplored role of HDO, or an unprobed complex phase behaviour of the solvent mixtures in the simulations. Altogether, however, our data suggest that calcium carbonate formation might proceed "more classically" in D2O. Also, there are indications for the formation of new structures in amorphous and crystalline calcium carbonates. There is huge potential towards further improving the understanding of mineralization mechanisms by studying solvent-mediated isotope effects, also beyond calcium carbonate. Last, it must be appreciated that H2O and D2O have significant, distinct effects on mineralization mechanisms, and that care has to be taken when experimental data from D2O studies are used, e.g., for the development of H2O-based computer models.
Collapse
Affiliation(s)
- Michael King
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jonathan T Avaro
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.,Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University of Hannover, Callinstr. 9, 30167 Hannover, Germany.
| |
Collapse
|
45
|
De Dalui S, Das B. Binding of As 3+ and As 5+ to Fe(III) Oxyhydroxide Clusters and the Influence of Aluminum Substitution: A Molecular Perspective. J Phys Chem A 2022; 126:670-684. [PMID: 35084850 DOI: 10.1021/acs.jpca.1c08754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fe(III) oxides and oxyhydroxides play a very important role in contaminant cycling and mobility in the environment through numerous sorption mechanisms owing to their nanoparticulate nature. Generally coprecipitated from mixtures of metal ions in natural environments, Fe(III) oxyhydroxides are often doped by various impurity metal ions to a certain degree. These dopant/impurity ions then play a crucial role in the geochemical cycling of toxic contaminants like arsenic via modified adsorption energetics on Fe(III) oxyhydroxide nanoparticles. Aluminum (Al) commonly coexists with ferric salts and minerals in nature and affects the arsenic (As) binding abilities of Fe(III) oxyhydroxides. We use electronic structure studies to model the As binding potential of Al-doped Fe(III) oxyhydroxide clusters, using a "bottom-up" molecular approach to understand their role in As fixation. We start from small Al-doped Fe(III) oxyhydroxide clusters, like dimers and trimers, and gradually study larger clusters including the δ-Fe13 Keggin cluster, evaluating their As binding potential with respect to pure undoped Fe(III) oxyhydroxide clusters at each step. The calculated reaction free energies clearly show that Al doping into Fe(III) oxyhydroxide clusters reduces their As3+ binding potential, whereas the As5+ binding is not affected much due to Al doping.
Collapse
Affiliation(s)
- Sharmistha De Dalui
- Technical Research Center (TRC), School of Applied and Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata 700032 West Bengal, India
| | - Bidisa Das
- Technical Research Center (TRC), School of Applied and Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata 700032 West Bengal, India
| |
Collapse
|
46
|
Das KS, Saha S, Pal B, Adhikary A, Moorthy S, Bala S, Akhtar S, Ghose PK, Singh SK, Ray PP, Mondal R. A Nd6 molecular butterfly: a unique all-in-one material for SMM, MCE and maiden photosensitized opto-electronic device fabrication. Dalton Trans 2022; 51:1617-1633. [PMID: 34994757 DOI: 10.1039/d1dt02364k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides iron, ironically neodymium (Nd) is the most ubiquitously used metal for magnetic purposes, even among the lanthanides, when it comes to the field of molecular magnetism, yet it ranks among the least studied metals. However, strong apathy towards this magnetic lanthanide means that vital information will be missed, which is required for the advancement of the subject. Herein, we have successfully demonstrated the usefulness of a hexanuclear neodymium complex as a magnetic material, and also in electronic device fabrication. A {NdIII6} cage with an aesthetically pleasing butterfly topology was synthesized using a rather non-conventional N-rich pyridyl-pyrazolyl based ligand. The cage shows single molecule magnet (SMM) properties, with an effective energy barrier, Ueff, value of 3.4 K and relaxation time, τ0, of 3.1 × 10-4 s, originating from an unusual occurrence of metal centres with different coordination environments. Furthermore, magnetic studies reveal significant cyrogenic magnetic cooling, with a magnetic entropy change of 8.28 J kg-1 K-1 at 5 T and 3 K. To the best of our knowledge, the titular compound is the only example of a Nd-complex that exhibits concomitant magnetocaloric effect (MCE) and SMM properties. Complete active space self-consistent field (CASSCF) calculations were carried out to shed light on the origin of the magnetic anisotropy and magnetic relaxation of the compound. The same uniqueness is also true for the first electronic investigation carried out on the Nd complex. The maiden electronic device fabricated using the Nd complex shows an interesting intertwining of electronic and optical features, which contribute towards its improved photosensitized optoelectronic data.
Collapse
Affiliation(s)
- Krishna Sundar Das
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Sayan Saha
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Amit Adhikary
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502284, Telangana, India
| | - Sukhen Bala
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Sohel Akhtar
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Pradeepta Kumar Ghose
- School of Physical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502284, Telangana, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Raju Mondal
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| |
Collapse
|
47
|
Tritschler U, Delgado López JM, Umbach TR, Van Driessche AES, Schlaad H, Cölfen H, Kellermeier M. Oriented attachment and aggregation as a viable pathway to self-assembled organic/inorganic hybrid materials. CrystEngComm 2022. [DOI: 10.1039/d2ce00447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intrinsic particle-based mechanisms of calcium sulfate crystallisation are exploited to incorporate specific organic polymers in the emerging mineral phase and thus obtain biomimetic organic/inorganic hybrid structures via self-organisation.
Collapse
Affiliation(s)
- Ulrich Tritschler
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
- Dispersions & Resins, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | | | - Tobias R. Umbach
- Material Science, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | | | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
48
|
The transition of rodlike micelles to wormlike micelles of an ionic liquid surfactant induced by different additives and the template-directed synthesis of calcium oxalate monohydrate to mimic the formation of urinary stones. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Wu M, Jiang X, Meng Y, Niu Y, Yuan Z, Xiao W, Li X, Ruan X, Yan X, He G. High selective synthesis of CaCO3 superstructures via ultra-homoporous interfacial crystallizer. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Residue-resolved monitoring of protein hyperpolarization at sub-second time resolution. Commun Chem 2021; 4:147. [PMID: 36697662 PMCID: PMC9814832 DOI: 10.1038/s42004-021-00587-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Signal-enhancement techniques for NMR spectroscopy are important to amplify the weak resonances provided by nuclear spins. Recently, 'hyperpolarization' techniques have been intensively investigated. These provide nuclear spin states far from equilibrium yielding strong signal boosts up to four orders of magnitude. Here we propose a method for real-time NMR of 'hyperpolarized' proteins at residue resolution. The approach is based on dissolution dynamic nuclear polarization (d-DNP), which enables the use of hyperpolarized buffers that selectively boost NMR signals of solvent-exposed protein residues. The resulting spectral sparseness and signal enhancements enable recording of residue-resolved spectra at a 2 Hz sampling rate. Thus, we monitor the hyperpolarization level of different protein residues simultaneously under near-physiological conditions. We aim to address two points: 1) NMR experiments are often performed under conditions that increase sensitivity but are physiologically irrelevant; 2) long signal accumulation impedes fast real-time monitoring. Both limitations are of fundamental relevance to ascertain pharmacological relevance and study protein kinetics.
Collapse
|