1
|
Huang TY, Laysandra L, Chen NCR, Prasetyo F, Chiu YC, Yeh LH, Wu KCW. MOF composites for revolutionizing blue energy harvesting and next-gen soft electronics. Adv Colloid Interface Sci 2025; 340:103444. [PMID: 39999516 DOI: 10.1016/j.cis.2025.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials with highly ordered and crystalline structures, which have earned tremendous attention in the academic community in recent years owing to their high tunability in porosity and pore structure. By integrating MOFs with soft colloids or polymers to form MOF composites, the rigidity and brittle nature of MOFs can be compensated for, thus achieving synergistic effects for a wide variety of applications. In particular, the past decade has seen the advancement of MOF composites in the budding fields of blue energy harvesting and soft electronics, which have received growing interest in the past 5 years. This review focuses on the applications of MOF composites in these two fields, and starts by examining the nanoarchitectures of MOFs, followed by the fabrication of MOF composites. Furthermore, topical advances of MOF composites in blue energy harvesting and soft electronics are reviewed and summarized, and their challenges and future opportunities are discussed as the final touch. This article provides comprehensive review and valuable insights into the development of MOF composites, which may open up new avenues for blue energy harvesting and soft electronics to solve the imminent energy crisis and to advance the wearable technology in healthcare.
Collapse
Affiliation(s)
- Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Norman C-R Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan
| | - Fery Prasetyo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Kevin C-W Wu
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli District, Taoyuan 32003, Taiwan; Department of Chemical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist, Taoyuan City 320, Taiwan.
| |
Collapse
|
2
|
Wu X, Lu Q, Zhu S, Tang S, Li Y, Ma L, Ming X, Jiang W, Wu Z, Hu J, Huang X, Huang J, Hu J, Zhang Y, Zang G. An innovative electrophoresis-coupled electrochemiluminescence immunosensor for rapid and sensitive detection of carcinoembryonic antigen. Biosens Bioelectron 2025; 286:117595. [PMID: 40418863 DOI: 10.1016/j.bios.2025.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025]
Abstract
Electrochemiluminescence (ECL) immunosensor provides unique advantages for the sensitive biomarker detection. However, the lengthy detection duration and plentiful system interferences have hindered their development. Here, we present an innovative approach in which electrophoresis coupled with ECL immunoassay was implemented to construct an electric field-enhanced ECL immunosensor for efficient detection of carcinoembryonic antigen (CEA). The electrophoresis device can be regarded as an electric field-driven incubation system, with a working electrode as the anode and a platinum disk as the cathode. Upon applying direct voltage, CEA was swiftly transported to the electrode surface via an upward electric field force, drastically cutting the CEA incubation time from 60 min to just 5 min-a 12-fold reduction compared to traditional methods. Our method also achieved a broad linear detection range from 10-2 to 104 pg/mL, with a lower detection limit of 2.33 fg/mL. Additionally, we utilized the COMSOL Multiphysics-based numerical model and substantial experiment results, demonstrating that the incorporation of an electrophoresis system has allowed for rapid detection with high sensitivity, thereby boosting the overall efficiency of the ECL immunosensor. This study underscores the potential of the electric field-enhanced ECL immunosensor for broad application in the biodetection field.
Collapse
Affiliation(s)
- Xiaoting Wu
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Lu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shu Zhu
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shengnan Tang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yusha Li
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lei Ma
- The ChenJiaqiao Hospital of ShaPingba District of Chongqing City, Chongqing, 400030, China
| | - Xiaoqing Ming
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Jiang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Zhanghong Wu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jinying Hu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaorui Huang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Huang
- Nanjing HengQiao Instruments Co.,Ltd, Nanjing, 210000, China
| | - Jianjun Hu
- Department of Pathology, Guizhou Provincical People's Hospital, Guizhou, 550002, China.
| | - Yuchan Zhang
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Western Institute of Digital-Intelligent Medicine, Chongqing Medical University, Chongqing, 400016, China; Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Abrishami S, Xiao H, Asadnia M, Low ZX, Razmjou A. Recent advances in the design principles of lithium selective membranes. WATER RESEARCH 2025; 283:123724. [PMID: 40373372 DOI: 10.1016/j.watres.2025.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025]
Abstract
The growing demand for lithium in energy storage applications has intensified the need for efficient lithium extraction technologies, with membrane processes emerging as a promising approach. Among various membrane technologies, nanostructured membranes with precisely engineered channels have shown exceptional potential for selective lithium extraction due to their ability to control ion transport at the molecular level. This review provides a comprehensive analysis of the fundamental design principles governing lithium-selective membranes, with a specific focus on nanochannel-based systems. We examine the critical parameters that influence lithium selectivity, including surface charge distribution, nanochannel dimensions, morphology, and wettability, while exploring how these factors interact with external driving forces to enable selective ion transport. This work extensively analyzes recent developments in nanochannel engineering and ion transport mechanisms, providing crucial insights into optimizing membrane selectivity and performance. By critically analyzing current challenges in scaling up these technologies and identifying promising research directions, this work provides a roadmap for developing next-generation lithium-selective membranes with enhanced efficiency and selectivity.
Collapse
Affiliation(s)
- Shayan Abrishami
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Huan Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
4
|
Fong KD, Grey CP, Michaelides A. On the Physical Origins of Reduced Ionic Conductivity in Nanoconfined Electrolytes. ACS NANO 2025; 19:13191-13201. [PMID: 40130707 PMCID: PMC11984311 DOI: 10.1021/acsnano.4c18956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Ion transport through nanoscale pores is at the heart of numerous energy storage and separation technologies. Despite significant efforts to uncover the complex interplay of ion-ion, ion-water, and ion-pore interactions that give rise to these transport processes, the atomistic mechanisms of ion motion in confined electrolytes remain poorly understood. In this work, we use machine learning-based molecular dynamics simulations to characterize ion transport with first-principles-level accuracy in aqueous NaCl confined to graphene slit pores. We find that ionic conductivity decreases as the degree of confinement increases, a trend governed by changes in both ion self-diffusion and dynamic ion-ion correlations. We show that the self-diffusion coefficients of our confined ions are strongly influenced by the overall electrolyte density, which changes nonmonotonically with slit height based on the layering of water molecules within the pore. We further observe a shift in the ions' diffusion mechanism toward more vehicular motion as the degree of confinement increases. Despite the ubiquity of ideal solution (Nernst-Einstein) assumptions in the field, we find that nonideal contributions to transport become more pronounced under confinement. This increase in nonideal ion correlations arises not simply from an increase in the fraction of associated ions, as is commonly assumed, but from an increase in ion pair lifetimes. By building a mechanistic understanding of confined electrolyte transport, this work provides insights that could guide the design of nanoporous materials optimized for efficient and selective ion transport.
Collapse
Affiliation(s)
- Kara D. Fong
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Clare P. Grey
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Angelos Michaelides
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Baram D, Kvetny M, Ake S, Yang R, Wang G. Anodized Aluminum Oxide Membrane Ionic Memristors. J Am Chem Soc 2025; 147:11089-11097. [PMID: 40108180 PMCID: PMC11969543 DOI: 10.1021/jacs.4c16835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Memory effect in ion transport (IT) at the solid-solution interface is uniquely attractive in that the conductance depends on or "memorizes" the previous states. Hysteretic and rectified transport properties offer exciting potential to developing advanced iontronics and neuromorphic functions, improving the efficiency of energy conversion and electrochemical processes, and overcoming the selectivity-throughput bottleneck in the enrichment of low abundant species for environment- and energy-friendly separations, among others. Herein, memory effects are discovered in the rectified electrokinetic IT through anodized aluminum oxide (AAO) membranes containing densely packed highly ordered nanochannels (1010 per cm2). Characteristic memristor responses of pinched current-potential loops are resolved in voltammetric experiments and successfully reproduced through finite element simulation. Excitatory and inhibitory conductance states are shown to arise from the enrichment and depletion of mobile charge carriers. Structurewise, the transport symmetry is broken by the barrier oxide layer (BOL) on the one end of the cylindrical nanochannels across the AAO membranes. Charge selectivity is attributed to the gradient(s) of the space charge density across the BOL characterized by depth profiling via X-ray photoelectron spectroscopy analysis. The space charge gradient(s) overcomes the fundamental limitation of widely exploited surface charge effects to enable intense rectification and hysteresis prevailing at very high ionic concentrations up to 1-2 M. A new strategy is developed for controlling the preferential IT direction and selectivity via counterion intercalation and extraction/exchange. Mechanistic understanding is further confirmed through parameter variations such as potential scan rate and ionic strength, which also demonstrates convenient controls of the related functions.
Collapse
Affiliation(s)
| | | | - Sarah Ake
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| | - Ruoyu Yang
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
6
|
Zhao Q, Qian HL, Yan ZY, Ran XQ, Yan XP. Confining Spirocyclic Fluorescein in an Asymmetric Solid-State Nanochannel: A Simple and Versatile Design Concept for Fabricating Integrated Nanofluidic Diodes with Adjustable Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501424. [PMID: 40079076 DOI: 10.1002/smll.202501424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Using small molecules to integrate multifunctional surfaces within a nanopore is an effective way to endow smart responsibilities of nanofluidic diodes. However, the complex synthesis of the small molecules hinders their further application in achieving multifunctional surfaces. Here, a simple and versatile design concept is reported for fabricating bioinspired integrated nanofluidic diodes with adjustable surface chemistry by confining a spirocyclic fluorescein derivative, 6-aminofluorescein (6-AF), within an asymmetric track-etched nanopore. The pH-dependent open-close of lactone ring in 6-AF allows facile fabrication of a pH-gated nanofluidic diode, confirmed with finite element simulations. This pH-gated nanofluidic diode also shows high specificity for sensing 3-nitropropionic acid (3-NPA), indicating its potential applications in food safety. Moreover, three functional nanofluidic diodes are successfully constructed via a regioselective Vilsmeier reaction between 6-AF and N-methylformanilide, the electrophilic addition reaction between 6-AF and propargyl bromide, and a highly controllable reduction process between 6-AF and NaBH4/I2. The combination of asymmetric nanopores with small molecules not only expands traditional fluorescent spirocyclic molecules to the realm of electrochemistry but also offers valuable insights for the achievement of novel fluorescence-electrochemical coupling detection methods. Besides, the introduction of spirocyclic small molecules to asymmetric nanopores serves as an inspiration source to explore new design concepts for nanofluidic devices.
Collapse
Affiliation(s)
- Qi Zhao
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Hung WH, Huang TY, Lung CA, Chu CW, Yeh LH. Engineered Ionic Rectifier with Steep Channel Gradient from Angstrom-Scale to Mesoscale Based on Ultrathin MXene-Capped Single Conical Mesochannel: A Promising Platform for Efficient Osmotic Energy Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412169. [PMID: 40026060 DOI: 10.1002/smll.202412169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Ionic rectifier that mimics the directional ion transport in biological ion channels has been shown with potential toward boosting osmotic energy conversion performance. However, the achieved power by existing rectifying devices is still limited, because they are constructed based on tiny nanoscale channels, which experience high resistance. Here, a novel high-performance ionic rectifier (abbreviated as MXene@MC) with steep channel gradient from angstrom-scale to mesoscale is reported by capping an ultrathin 2D Ti3C2Tx MXene laminate on an asymmetric conical mesochannel (MC). The device can strongly rectify ionic current (with a high ratio of 7.3-fold) even in high 0.5 m electrolyte solution, and thus a single channel can achieve an ultra-large osmotic conductance of 0.596 µS. These features enable MXene@MC as an ultrahigh performance osmotic energy generator, achieving an unprecedented osmotic power of 343 pW under a 1000-fold salinity gradient at neutral pH. Notably, simulations are also provided to demonstrate the findings of the proposed ionic rectifier and efficient osmotic energy conversion. This study unravels the underlying physics of ion transport induced by the apparent structural asymmetry of ion-selective channels, thereby providing a promising platform for further development of high-performance osmotic energy generators.
Collapse
Grants
- 113-2124-M-011-002 National Science and Technology Council (NSTC), Taiwan
- 113-2628-E-011-002 National Science and Technology Council (NSTC), Taiwan
- 112-2923-E-011-003-MY3 National Science and Technology Council (NSTC), Taiwan
- 112-2813-C-011-036-E National Science and Technology Council (NSTC), Taiwan
- 111-2222-E-035-006-MY3 National Science and Technology Council (NSTC), Taiwan
- 112-2124-M-002-015 National Science and Technology Council (NSTC), Taiwan
- 113-2628-E-011-005-MY3 National Science and Technology Council (NSTC), Taiwan
- 110-2223-E-011-003-MY3 National Science and Technology Council (NSTC), Taiwan
- and 111-2622-E-011-003 National Science and Technology Council (NSTC), Taiwan
- The Ministry of Education of Taiwan (MOE, "Sustainable Electrochemical Energy Development Center" (SEED) project)
Collapse
Affiliation(s)
- Wen-Hsin Hung
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-An Lung
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chien-Wei Chu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
8
|
Farajpour N, Bandara YMNDY, Lastra L, Freedman KJ. Negative memory capacitance and ionic filtering effects in asymmetric nanopores. NATURE NANOTECHNOLOGY 2025; 20:421-431. [PMID: 39747603 DOI: 10.1038/s41565-024-01829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/18/2024] [Indexed: 01/04/2025]
Abstract
The pervasive model for a solvated, ion-filled nanopore is often a resistor in parallel with a capacitor. For conical nanopore geometries, here we propose the inclusion of a Warburg-like element, which is necessary to explain otherwise anomalous observations such as negative capacitance and low-pass filtering of translocation events (we term this phenomenon as Warburg filtering). The negative capacitance observed here has long equilibration times and memory (that is, mem-capacitance) at negative voltages. We used the transient occlusion of the pore using λ-DNA and 10 kbp DNA to test whether events are being attenuated by purely ionic phenomena when there is sufficient amplifier bandwidth. We argue here that both phenomena can be explained by the inclusion of the Warburg-like element, which is mechanistically linked to concentration polarization and activation energy to generate and maintain localized concentration gradients. We conclude the study with insights into the transduction of molecular translocations into electrical signals, which is not simply based on pulse-like resistance changes but instead on the complex and nonlinear storage of ions that enter dis-equilibrium during molecular transit.
Collapse
Affiliation(s)
- Nasim Farajpour
- Department of Bioengineering, University of California, Riverside, Riverside, CA, USA
| | - Y M Nuwan D Y Bandara
- Department of Bioengineering, University of California, Riverside, Riverside, CA, USA
| | - Lauren Lastra
- Department of Bioengineering, University of California, Riverside, Riverside, CA, USA
| | - Kevin J Freedman
- Department of Bioengineering, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
9
|
Wang H, Ma J, Liu J, Zhang J, Jiang Y, Yuan G, Yang C, Hu S. Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes. NANO LETTERS 2025; 25:1512-1519. [PMID: 39812440 DOI: 10.1021/acs.nanolett.4c05441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting. Such nanospheres, composed of coiled poly(acrylic acid) molecules, are synthesized at an ice-liquid interface where they self-assemble into continuous membranes with controlled thicknesses and morphologies. We achieve a rival power density of a few thousand watts per square meter, attributed to the fast and selective ion transport through the nanostructured membranes. The selectivity is further found to originate from the membranes' tunable charging states determined by the association/dissociation equilibrium of the residual groups and the presence of translocation ions. Our work suggests polymer membranes absent of straight-through pores as a new platform for efficient osmotic energy generation.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiaojiao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinguo Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Gang Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chongyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Zheng F, Li H, Yang J, Wang H, Qin G, Chen D, Sha J. A switchable and facile ionic diode modulated by polyethylene glycol. Chem Commun (Camb) 2024. [PMID: 39555625 DOI: 10.1039/d4cc05283h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We introduce a switchable ionic diode modulated by PEG, enabling dynamic control of ion transport and reversible ion flow switching. This system achieves tunable current rectification over two orders of magnitude, simplifying fabrication and offering versatile, scalable solutions for high-performance ionic devices in energy harvesting, nanofluidics, and ionic circuits.
Collapse
Affiliation(s)
- Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - HongLuan Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Haiyan Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Guangle Qin
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- Jiangsu Automation Research Institute, Lianyungang 222000, China
| | - Dapeng Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- Jiangsu Automation Research Institute, Lianyungang 222000, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
11
|
Kiy A, Dutt S, Gregory KP, Notthoff C, Toimil-Molares ME, Kluth P. The Effect of Electrolyte Properties on Ionic Transport through Solid-State Nanopores: Experiment and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20888-20896. [PMID: 39317436 DOI: 10.1021/acs.langmuir.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nanopore membranes enable versatile technologies that are employed in many different applications, ranging from clean energy generation to filtration and sensing. Improving the performance can be achieved by conducting numerical simulations of the system, for example, by studying how the nanopore geometry or surface properties change the ionic transport behavior or fluid dynamics of the system. A widely employed tool for numerical simulations is finite element analysis (FEA) using software, such as COMSOL Multiphysics. We found that the prevalent method of implementing the electrolyte in the FEA can diverge significantly from physically accurate values. It is often assumed that salt molecules fully dissociate, and the effect of the temperature is neglected. Furthermore, values for the diffusion coefficients of the ions, as well as permittivity, density, and viscosity of the fluid, are assumed to be their bulk values at infinite dilution. By performing conductometry experiments with an amorphous SiO2 nanopore membrane with conical pores and simulating the pore system with FEA, it is shown that the common assumptions do not hold for different mono- and divalent chlorides (LiCl, NaCl, KCl, MgCl2, and CaCl2) at concentrations above 100 mM. Instead, a procedure is presented where all parameters are implemented based on the type of salt and concentration. This modification to the common approach improves the accuracy of the numerical simulations and thus provides a more comprehensive insight into ion transport in nanopores that is otherwise lacking.
Collapse
Affiliation(s)
- Alexander Kiy
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Shankar Dutt
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Kasimir P Gregory
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Christian Notthoff
- Department of Nuclear Physics and Accelerator Applications, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | | | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Liu X, Wang Z, Zhang Q, Lei D, Li X, Zhang Z, Feng X. Highly Anion-Conductive Viologen-Based Two-Dimensional Polymer Membranes as Nanopower Generators. Angew Chem Int Ed Engl 2024; 63:e202409349. [PMID: 38962957 DOI: 10.1002/anie.202409349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks (2D COFs) membranes hold great potential for harvesting sustainable osmotic energy. The nascent research has yet to simultaneously achieve high ionic flux and selectivity, primarily due to inefficient ion transport dynamics. This is directly related to ultrasmall pore size (<3 nm), much smaller than the duple Debye length in the diluted electrolyte (6-20 nm), as well as low charge density (<4.5 mC m-2). Here, we introduce a π-conjugated viologen-based 2DP (V2DP) membrane possessing a large pore size of 4.5 nm, strategically enhancing the overlapping of the electric double layer, coupled with an exceptional positive surface charge density (~6 mC m-2). These characteristics enable the membrane to facilitate high anion flux while maintaining ideal selectivity. Notably, V2DP membranes realize an impressive current density of 5.5×103 A m-2, surpassing benchmarks set by previously reported nanofluidic membranes. In the practical application scenario involving the mixing of artificial seawater and river water, the V2DP membranes exhibit a considerable ion transference number of 0.70 towards Cl-, contributing to an outstanding power density of ~55 W m-2. Theoretical calculations reveal the important role of the large quantity of anion transport sites, which act as binding sites evenly located in the positively charged N-containing pyridine rings. These binding sites enable kinematic coupling and decoupling between anions and the V2DP skeleton, establishing a continuous Cl- ion transport pathway. This work demonstrates the great promise of large-area ultrathin 2DP membranes featuring highly organized charged ion transport networks when applied for osmotic energy conversion.
Collapse
Affiliation(s)
- Xiaohui Liu
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Qixiang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Dandan Lei
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaodong Li
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Zhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| |
Collapse
|
13
|
Lin YC, Chen HH, Chu CW, Yeh LH. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. NANO LETTERS 2024; 24:11756-11762. [PMID: 39236070 PMCID: PMC11421088 DOI: 10.1021/acs.nanolett.4c03836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m2 with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.
Collapse
Affiliation(s)
- Yi-Chuan Lin
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Hong-Hsu Chen
- Department
of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Chien-Wei Chu
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Department
of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Li-Hsien Yeh
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Manufacturing Research Center, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Graduate
Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
14
|
Yang ZJ, Yeh LH, Peng YH, Chuang YP, Wu KCW. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Angew Chem Int Ed Engl 2024; 63:e202408375. [PMID: 38847272 DOI: 10.1002/anie.202408375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Designing a nanofluidic membrane with high selectivity and fast ion transport property is the key towards high-performance osmotic energy conversion. However, most of reported membranes can produce power density less than commercial benchmark (5 W/m2), due to the imbalance between ion selectivity and permeability. Here, we report a novel nanoarchitectured design of a heterogeneous membrane with an ultrathin and dense zirconium-based UiO-66-NH2 metal-organic framework (MOF) layer and a highly aligned and interconnected branched alumina nanochannel membrane. The design leads to a continuous trilayered pore structure of large geometry gradient in the sequence from angstrom-scale to nano-scale to sub-microscale, which enables the enhanced directional ion transport, and the angstrom-sized (~6.6-7 Å) UiO-66-NH2 windows render the membrane with high ion selectivity. Consequently, the novel heterogeneous membrane can achieve a high-performance power of ~8 W/m2 by mixing synthetic seawater and river water. The power density can be largely upgraded to an ultrahigh ~17.1 W/m2 along with ~48.5 % conversion efficiency at a 50-fold KCl gradient. This work not only presents a new membrane design approach but also showcases the great potential of employing the zirconium-based MOF channels as ion-channel-mimetic membranes for highly efficient blue energy harvesting.
Collapse
Affiliation(s)
- Zhen-Jie Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yu-Hsiang Peng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yi-Ping Chuang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
15
|
Alinezhad A, Khatibi M, Ashrafizadeh SN. Impact of surface charge density modulation on ion transport in heterogeneous nanochannels. Sci Rep 2024; 14:18409. [PMID: 39117730 PMCID: PMC11310325 DOI: 10.1038/s41598-024-69335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The PNP nanotransistor, consisting of emitter, base, and collector regions, exhibits distinct behavior based on surface charge densities and various electrolyte concentrations. In this study, we investigated the impact of surface charge density on ion transport behavior within PNP nanotransistors at different electrolyte concentrations and applied voltages. We employed a finite-element method to obtain steady-state solutions for the Poisson-Nernst-Planck and Navier-Stokes equations. The ions form a depletion region, influencing the ionic current, and we analyze the influence of surface charge density on the depth of this depletion region. Our findings demonstrate that an increase in surface charge density results in a deeper depletion zone, leading to a reduction in ionic current. However, at very low electrolyte concentrations, an optimal surface charge density causes the ion current to reach its lowest value, subsequently increasing with further increments in surface charge density. As such, atV app = + 1 V andC 0 = 1 mM , the ionic current increases by 25% when the surface charge density rises from 5 to 20 mC . m - 2 , whereas atC 0 = 10 mM , the ionic current decreases by 65% with the same increase in surface charge density. This study provides valuable insights into the behavior of PNP nanotransistors and their potential applications in nanoelectronic devices.
Collapse
Affiliation(s)
- Amin Alinezhad
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran.
| |
Collapse
|
16
|
Yang Y, Zhou S, Lv Z, Hung CT, Zhao Z, Zhao T, Chao D, Kong B, Zhao D. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting. J Am Chem Soc 2024; 146:19580-19589. [PMID: 38977375 DOI: 10.1021/jacs.4c06949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Developing ionic diode membranes featuring asymmetric structures is in high demand for salinity gradient energy harvesting. These membranes offer benefits in mitigating ion concentration polarization, thereby promoting ion permeability. However, most reported works focus on the role of heterogeneous charge-based bipolar ionic diode membranes for ion concentration polarization suppression, with comparatively less attention given to maintaining ion selectivity. Herein, unipolar ionic diode nanofluidic mesoporous silica membranes featuring stepped mesochannels were developed via a micellar sequential oriented interfacial self-assembly strategy as a salinity gradient energy harvester. Due to the asymmetric mesochannels and unipolar structure (both sides carry negative charge), the ionic diode membranes exhibit a strong rectification ratio of ∼15.91 to facilitate unidirectional ion transport while maintaining excellent cation selectivity (cation transfer number of ∼0.85). Besides, the vertically aligned mesochannels significantly reduce ion transport resistance, generating a high ionic flux. Consequently, the unipolar ionic diode nanofluidic membranes demonstrate a power output of 5.88 W/m2 between artificial sea and river water. The unipolar feature gives notable enhancements of 296% and 144% in power output compared to the symmetric membrane and bipolar ionic diode membrane, respectively. This work opens up new routes for designing ionic diode membranes for salinity gradient energy harvesting.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shan Zhou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Chin-Te Hung
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Biao Kong
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
17
|
Xu YT, Yu SY, Li Z, Kou BH, Pang JX, Zhao WW, Chen HY, Xu JJ. A nanofluidic spiking synapse. Proc Natl Acad Sci U S A 2024; 121:e2403143121. [PMID: 38959041 PMCID: PMC11252921 DOI: 10.1073/pnas.2403143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.
Collapse
Affiliation(s)
- Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Bo-Han Kou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jian-Xiang Pang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
18
|
Geng Y, Zhang L, Li M, He Y, Lu B, He J, Li X, Zhou H, Fan X, Xiao T, Zhai J. Nano-Confined Effect and Heterojunction Promoted Exciton Separation for Light-Boosted Osmotic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309128. [PMID: 38308414 DOI: 10.1002/smll.202309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The osmotic energy conversion properties of biomimetic light-stimulated nanochannels have aroused great interest. However, the power output performance is limited by the low light-induced current and energy conversion efficiency. Here, nanochannel arrays with simultaneous modification of ZnO and di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,20-bipyridyl-4,40-dicarboxylato) ruthenium (II) (N719) onto anodic aluminum oxide (AAO) to combine the nano-confined effect and heterojunction is designed, which demonstrate rectified ion transport behavior due to the asymmetric composition, structure and charge. High cation selectivity and ion flux contribute to the high power density of ≈7.33 W m-2 by mixing artificial seawater and river water. Under light irradiation, heterojunction promoted the production and separation of exciton, enhanced cation selectivity, and improved the utilization efficiency of osmotic energy, providing a remarkable power density of ≈18.49 W m-2 with an increase of 252% and total energy conversion efficiency of 30.43%. The work opens new insights into the biomimetic nanochannels for high-performance energy conversion.
Collapse
Affiliation(s)
- Yutong Geng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Liangqian Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mengjie Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Youfeng He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hangjian Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
19
|
Liu Z, Ma L, Zhang H, Zhuang J, Man J, Siwy ZS, Qiu Y. Dynamic Response of Ionic Current in Conical Nanopores. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30496-30505. [PMID: 38830306 DOI: 10.1021/acsami.4c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ionic current rectification (ICR) of charged conical nanopores has various applications in fields including nanofluidics, biosensing, and energy conversion, whose function is closely related to the dynamic response of nanopores. The occurrence of ICR originates from the ion enrichment and depletion in conical pores, whose formation is found to be affected by the scanning rate of voltages. Here, through time-dependent simulations, we investigate the variation of ion current under electric fields and the dynamic formation of ion enrichment and depletion, which can reflect the response time of conical nanopores. The response time of nanopores when ion enrichment forms, i.e., at the "on" state is significantly longer than that with the formation of ion depletion, i.e., at the "off" state. Our simulation results reveal the regulation of response time by different nanopore parameters including the surface charge density, pore length, tip, and base radius, as well as the applied conditions such as the voltage and bulk concentration. The response time of nanopores is closely related to the surface charge density, pore length, voltage, and bulk concentration. Our uncovered dynamic response mechanism of the ionic current can guide the design of nanofluidic devices with conical nanopores, including memristors, ionic switches, and rectifiers.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
| | - Long Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Hongwen Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jiakun Zhuang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
20
|
Zhang Z, Sabbagh B, Chen Y, Yossifon G. Geometrically Scalable Iontronic Memristors: Employing Bipolar Polyelectrolyte Gels for Neuromorphic Systems. ACS NANO 2024; 18:15025-15034. [PMID: 38804641 PMCID: PMC11171754 DOI: 10.1021/acsnano.4c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Iontronics that are capable of mimicking the functionality of biological systems within an artificial fluidic network have long been pursued for biomedical applications and ion-based intelligence systems. Here, we report on facile and robust realization of iontronic bipolar memristors featuring a three-layer polyelectrolyte gel structure. Significant memristive hysteresis of ion currents was successfully accomplished, and the memory time proved geometrically scalable from 200 to 4000 s. These characteristics were enabled by the ion concentration polarization-induced rectification ratio within the polyelectrolyte gels. The memristors exhibited memory dynamics akin to those observed in unipolar devices, while the bipolar structure notably enabled prolonged memory time and enhanced the ion conductance switching ratio with mesoscale (10-1000 μm) geometry precision. These properties endow the devices with the capability of effective neuromorphic processing with pulse-based input voltage signals. Owing to their simple fabrication process and superior memristive performance, the presented iontronic bipolar memristors are versatile and can be easily integrated into small-scale iontronic circuits, thereby facilitating advanced neuromorphic computing functionalities.
Collapse
Affiliation(s)
- Zhenyu Zhang
- School
of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Jiangsu
Key Laboratory for Design and Manufacture of Micro-Nano Biomedical
Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Barak Sabbagh
- School
of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Faculty
of Mechanical Engineering, Technion−Israel
Institute of Technology, Haifa 3200003, Israel
| | - Yunfei Chen
- Jiangsu
Key Laboratory for Design and Manufacture of Micro-Nano Biomedical
Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Gilad Yossifon
- School
of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
21
|
Chen W, Zhou K, Wu Z, Yang L, Xie Y, Meng X, Zhao Z, Wen L. Ion-Concentration-Hopping Heterolayer Gel for Ultrahigh Gradient Energy Conversion. J Am Chem Soc 2024; 146:13191-13200. [PMID: 38603609 DOI: 10.1021/jacs.4c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Conventional solid ion channel systems relying on single one- or two-dimensional confined nanochannels enabled selective and ultrafast convective ion transport. However, due to intrinsic solid channel stacking, these systems often face pore-pore polarization and ion concentration blockage, thereby restricting their efficiency in macroscale ion transport. Here, we constructed a soft heterolayer-gel system that integrated an ion-selective hydrogel layer with a water-barrier organogel layer, achieving ultrahigh cation selectivity and flux and effectively providing high-efficiency gradient energy conversion on a macroscale order of magnitude. Specifically, the hydrogel layer featured an unconfined 3D network, where the fluctuations of highly hydrated polyelectrolyte chains driven by thermal dynamics enhanced cation selectivity and mitigated transfer energy barriers. Such chain fluctuation mechanisms facilitated ion-cluster internal transmission, thereby enhancing ion concentration hopping for more efficient ion-selective transport. Compared to the existing rigid nanochannel-based gradient energy conversion systems, such a heterogel-based power generator exhibited a record power density of 192.90 and 1.07 W/m2 at the square micrometer scale and square centimeter scale, respectively (under a 500-fold artificial solution). We anticipate that such heterolayer gels would be a promising candidate for energy separation and storage applications.
Collapse
Affiliation(s)
- Weipeng Chen
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linsen Yang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yahui Xie
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liping Wen
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
22
|
Yang R, Balogun Y, Ake S, Baram D, Brown W, Wang G. Negative Differential Resistance in Conical Nanopore Iontronic Memristors. J Am Chem Soc 2024; 146:13183-13190. [PMID: 38695449 PMCID: PMC11099999 DOI: 10.1021/jacs.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Emerging ion transport dynamics with memory effects at nanoscale solution-substrate interfaces offers a unique opportunity to overcome the bottlenecks in traditional computational architectures, trade-offs in selectivity and throughput in separation, and electrochemical energy conversions. Negative differential resistance (NDR), a decrease in conductance with increasing potential, constitutes a new function from the perspective of time-dependent instead of steady-state nanoscale electrokinetic ion transport but remains unexplored in ionotronics to develop higher-order complexity and advanced capabilities. Herein, NDR is introduced in hysteretic and rectified ion transport through single conical nanopipettes (NPs) as ionic memristors. Deterministic and chaotic behaviors are controlled via an electric field as the sole stimulus. The NDR arises fundamentally from the availability and redistribution of the ionic charges during the hysteretic and rectified transport at asymmetric nanointerfaces. The elucidated mechanism is generalizable, and the drastically simplified operations enable tunable state-switching dynamics with higher-order complexity besides the first-order synaptic functions in multiple excitatory and inhibitory states.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Yusuff Balogun
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Sarah Ake
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Dipak Baram
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
23
|
Zhang S, Wang J, Yaroshchuk A, Du Q, Xin P, Bruening ML, Xia F. Addressing Challenges in Ion-Selectivity Characterization in Nanopores. J Am Chem Soc 2024. [PMID: 38606686 DOI: 10.1021/jacs.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ion selectivity is the basis for designing smart nanopore/channel-based devices, e.g., ion separators and biosensors. Quantitative characterization of ion selectivities in nanopores often employs the Nernst or Goldman-Hodgkin-Katz (GHK) equation to interpret transmembrane potentials. However, the direction of the measured transmembrane potential drop is not specified in these equations, and selectivity values calculated using absolute values of transmembrane potentials do not directly reveal the ion for which the membrane is selective. Moreover, researchers arbitrarily choose whether to use the Nernst or GHK equation and overlook the significant differences between them, leading to ineffective quantitative comparisons between studies. This work addresses these challenges through (a) specifying the transmembrane potential (sign) and salt concentrations in terms of working and reference electrodes and the solutions in which they reside when using the Nernst and GHK equations, (b) reporting of both Nernst-selectivity and GHK-selectivity along with solution compositions and transmembrane potentials when comparing different nanopores/channels, and (c) performing simulations to define an ideal selectivity for nanochannels. Experimental and modeling studies provide significant insight into these fundamental equations and guidelines for the development of nanopore/channel-based devices.
Collapse
Affiliation(s)
- Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Andriy Yaroshchuk
- Department of Chemical Engineering, Polytechnic University of Catalonia-Barcelona Tech, Avenida Diagonal 647, Barcelona 08028, Spain
- ICREA, pg.L.Companys 23, 08010 Barcelona, Spain
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang 453007, China
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
24
|
Liu TR, Fung MYT, Yeh LH, Chiang CH, Yang JS, Kuo PC, Shiue J, Chen CC, Chen CW. Single-Layer Hexagonal Boron Nitride Nanopores as High-Performance Ionic Gradient Power Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306018. [PMID: 38041449 DOI: 10.1002/smll.202306018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Indexed: 12/03/2023]
Abstract
Atomically thin two-dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single-layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high-performance ion-gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis-driven proton-gradient power up to ≈3 nW under 1000-fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid-base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single-layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
Collapse
Affiliation(s)
- Ting-Ran Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Man Yui Thomas Fung
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jhih-Sian Yang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Pai-Chia Kuo
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Jessie Shiue
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Center of Condensed Matter Science, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
25
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
26
|
Li S, Zhang X, Su J. Enhanced Rectification Performance in Bipolar Janus Graphene Oxide Channels by Lateral Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5488-5498. [PMID: 38423602 DOI: 10.1021/acs.langmuir.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Improving the ionic rectification in nanochannels enables versatile applications such as biosensors, energy harvesting, and fluidic diodes. While previous work mostly focused on the effect of channel geometry and surface charge, in this work via a series of molecular dynamics simulations, we find a striking phenomenon that the ionic current rectification (ICR) ratio in Janus graphene oxide (GO) channels can be tremendously promoted by lateral electric fields. First, under a given axial electric field, an additional lateral electric field can improve the ICR ratio by several times to an order, depending on the channel symmetry. The symmetric channel has an obviously greater ICR ratio because it maintains a more pronounced ion transport disparity at opposite axial fields. The underlying mechanism for the function of the lateral electric field is that it promotes the lateral migration of ions and thus amplifies the ion-residue electrostatic interaction at opposite axial fields, enlarging the ion dynamical difference. Furthermore, for different axial electric fields, the ICR ratio can always be improved by lateral electric fields (up to two orders), suggesting that the ICR improvement is universal. Our results demonstrate that applying a lateral electric field could be a new method to improve the rectification performance of nanochannels, providing valuable guidance for the design of efficient ionic diode devices.
Collapse
Affiliation(s)
- Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
27
|
Liu BY, Zhang YH, Qian Y, Quan D, Jia MJ, Jin XY, Zhou M, Kong XY, Jiang L. Single Idiosyncratic Ionic Generator Working in Iso-Osmotic Solutions Via Ligand Confined Assembled in Gaps Between Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202317361. [PMID: 38116868 DOI: 10.1002/anie.202317361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Numerous reported bioinspired osmotic energy conversion systems employing cation-/anion-selective membranes and solutions with different salinity are actually far from the biological counterpart. The iso-osmotic power generator with the specific ionic permselective channels (e.g., K+ or Na+ channels) which just allow specific ions to get across and iso-osmotic solutions still remain challenges. Inspired by nature, we report a bioinspired K+ -channel by employing a K+ selective ligand, 1,1,1-tris{[(2'-benzylaminoformyl)phenoxy]methyl}ethane (BMP) and graphene oxide membrane. Specifically, the K+ and Na+ selectivity of the prepared system could reach up to ≈17.8, and the molecular dynamics simulation revealed that the excellent permselectivity of K+ mainly stemmed from the formed suitable channel size. Thus, we assembled the K+ -selective iso-osmotic power generator (KSIPG) with the power density up to ≈15.1 mW/m2 between equal concentration solutions, which is higher than traditional charge-selective osmotic power generator (CSOPG). The proposed strategy has well shown the realizable approach to construct single-ion selective channels-based highly efficient iso-osmotic energy conversion systems and would surely inspire new applications in other fields, including self-powered systems and medical materials, etc.
Collapse
Affiliation(s)
- Bi-Ying Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Hui Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Di Quan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei-Juan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao-Yan Jin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Min Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
28
|
Mei T, Liu W, Xu G, Chen Y, Wu M, Wang L, Xiao K. Ionic Transistors. ACS NANO 2024. [PMID: 38285731 DOI: 10.1021/acsnano.3c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Biological voltage-gated ion channels, which behave as life's transistors, regulate ion transport precisely and selectively through atomic-scale selectivity filters to sustain important life activities. By this inspiration, voltage-adaptable ionic transistors that use ions as signal carriers may provide an alternative information processing unit beyond solid-state electronic devices. This review provides a comprehensive overview of the first generation of biomimetic ionic transistors, including their operating mechanisms, device architecture development, and property characterizations. Despite its infancy, significant progress has been made in the applications of ionic transistors in fields such as DNA detection, drug delivery, and ionic circuits. Challenges and prospects of full exploitation of ionic transistors for a broad spectrum of practical applications are also discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Yuanxia Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
29
|
Li C, Zhai Y, Jiang H, Li S, Liu P, Gao L, Jiang L. Bioinspired light-driven chloride pump with helical porphyrin channels. Nat Commun 2024; 15:832. [PMID: 38280867 PMCID: PMC10821862 DOI: 10.1038/s41467-024-45117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Halorhodopsin, a light-driven chloride pump, utilizes photonic energy to drive chloride ions across biological membranes, regulating the ion balance and conveying biological information. In the light-driven chloride pump process, the chloride-binding chromophore (protonated Schiff base) is crucial, able to form the active center by absorbing light and triggering the transport cycle. Inspired by halorhodopsin, we demonstrate an artificial light-driven chloride pump using a helical porphyrin channel array with excellent photoactivity and specific chloride selectivity. The helical porphyrin channels are formed by a porphyrin-core star block copolymer, and the defects along the channels can be effectively repaired by doping a small number of porphyrins. The well-repaired porphyrin channel exhibits the light-driven Cl- migration against a 3-fold concentration gradient, showing the ion pumping behavior. The bio-inspired artificial light-driven chloride pump provides a prospect for designing bioinspired responsive ion channel systems and high-performance optogenetics.
Collapse
Affiliation(s)
- Chao Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yi Zhai
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Heming Jiang
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Siqi Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pengxiang Liu
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Longcheng Gao
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
| | - Lei Jiang
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
30
|
Li S, Zhang X, Su J. Desalination Performance in Janus Graphene Oxide Channels: Geometric Asymmetry vs Charge Polarity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2659-2671. [PMID: 38166374 DOI: 10.1021/acsami.3c16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Improving the desalination performance of membranes is always in the spotlight of scientific research; however, Janus channels with polarized surface charge as nanofiltration membranes are still unexplored. In this work, using molecular dynamics simulations, we demonstrate that Janus graphene oxide (GO) channels with appropriate geometry and surface charge can serve as highly efficient nanofiltration membranes. We observe that the water permeability of symmetric Janus GO channels is significantly superior to that of asymmetric channels without sacrificing much ion rejection, owing to weakened ion blockage and electrostatic effects. Furthermore, in symmetric Janus GO channels, the transport of water and ions is sensitive to the charge polarity of the channel inner surface, which is realized by tuning the ratio of cationic and anionic functionalization. Specifically, with the increase in cationic functionalization, the water flux decreases monotonously, while ion rejection displays an interesting maximum behavior that indicates desalination optimization. Moreover, the trade-off between water permeability and ion rejection suggests that the Janus GO channels have an excellent desalination potential and are highly tunable according to the specific water treatment requirements. Our work sheds light on the key role of channel geometry and charge polarity in the desalination performance of Janus GO channels, which paves the way for the design of novel desalination devices.
Collapse
Affiliation(s)
- Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
31
|
Khatibi M, Ashrafizadeh SN. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field. Anal Chem 2023. [PMID: 38019778 DOI: 10.1021/acs.analchem.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This research delves into investigating ion transport behavior within nanochannels, enhanced through modification with a negatively charged polyelectrolyte layer (PEL), aimed at achieving superior control. The study examines two types of electric fields─direct current and alternating current with square, sinusoidal, triangular, and sawtooth waveforms─to understand their impact on ion transport. Furthermore, the study compares symmetric (cylindrical) and asymmetric (conical) nanochannel geometries to assess the influence of overlapping electrical double layers (EDLs) in generating specific electrokinetic behaviors such as ionic current rectification (ICR) and ion selectivity. The research employs the finite element method to solve the coupled Poisson-Nernst-Planck and Navier-Stokes equations under unsteady-state conditions. By considering factors such as electrolyte concentration, soft layer charge density, and electric field type, the study evaluates ion transport performance in charged nanochannels, investigating effects on concentration polarization, electroosmotic flow (EOF), ion current, rectification, and ion selectivity. Notably, the study accounts for ion partitioning between the PEL and electrolyte to simulate real conditions. Findings reveal that conical nanochannels, due to improved EDL overlap, significantly enhance ion transport and related characteristics compared to cylindrical ones. For instance, under ηε = ηD = 0.8, ημ = 2, C0 = 20 mM, and NPEL/NA = 80 mol m-3 conditions, the average EOF for conical and cylindrical geometries is 0.1 and 0.008 m/s, respectively. Additionally, the study explores ion selectivity and rectification based on the electric field type, unveiling the potential of nanochannels as ion gates or diodes. In cylindrical nanochannels, the ICR remains at unity, with lower ion selectivity across waveforms compared to conical channels. Furthermore, rectification and ion selectivity trends are identified as Rf,square > Rf,DC > Rf,triangular > Rf,sinusoidal > Rf,sawtooth and Ssawtooth > Ssinusoidal > Striangular > SDC > Ssquare for conical nanochannels. Our study of ion transport control in nanochannels, guided by tailored electric fields and unique geometries, offers versatile applications in the field of Analytical Chemistry. This includes enhanced sample separation, controlled drug delivery, optimized pharmaceutical analysis, and the development of advanced biosensing technologies for precise chemical analysis and detection. These applications highlight the diverse analytical contributions of our methodology, providing innovative solutions to challenges in chemical analysis and biosensing.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
32
|
Jiang Y, Hu R, Yang C, Zhou Z, Yuan G, Zhou H, Hu S. Surface diffusion enhanced ion transport through two-dimensional nanochannels. SCIENCE ADVANCES 2023; 9:eadi8493. [PMID: 37922345 PMCID: PMC10624347 DOI: 10.1126/sciadv.adi8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Fast ion permeation in nanofluidic channels has been intensively investigated in the past few decades because of their potential uses in separation technologies and osmotic energy harvesting. Mechanisms governing ion transport at this ultimately small spatial regime remain to be understood, which can only be achieved in nanochannels that are controllably fabricated. Here, we report the fabrication of two-dimensional nanochannels with their top and bottom walls consisting of atomically flat graphite and mica crystals, respectively. The distinct wall structures and properties enable us to investigate interactions between ions and interior surfaces. We find an enhanced ion transport within the channels that is orders of magnitude faster than that in the bulk solutions. The result is attributed to the highly dense packing of adsorbed cations at mica surfaces, where they diffuse in-plane. Our work provides insights into surface effects on ion transport at the nanoscale.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Rong Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chongyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhihua Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Gang Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Han Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
33
|
Lin CY, Chang SF, Kuo KT, Garner S, Pollard SC, Chen SH, Hsu JP. Essence of the Giant Reduction of Power Density in Osmotic Energy Conversion in Porous Membranes: Importance of Testing Area. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43094-43101. [PMID: 37650485 DOI: 10.1021/acsami.3c05831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Harvesting osmotic energy through nanofluidic devices with diverse materials has received considerable attention in recent years. Often, a small testing area on a membrane was chosen to assess its power performance by calculating power density as output power per effective area. Since the choice of this testing area is arbitrary, and it is usually quite small, the result obtained can be too optimistic. There is a need to come up with a common standard so that the performance of a device/membrane can be assessed reasonably. In this study, we systematically investigate the power density as a function of testing area in nanoporous anodic-aluminum-oxide membranes. Through changing the aperture size of substrates, we clearly show that the obtained power density decreases drastically with increasing testing area. For instance, the power density acquired from the testing area of μm2-scale can be five orders of magnitude larger than that from the pristine membrane of cm2-scale. We also advance simulations by building a 3D model to simulate osmotic-driven ion transport in the multichannel system. The result of modeling agrees with our experimental observation that the power density decreases with increasing number of channels, and the ionic concentration profile reveals that the concentration polarization becomes serious as the number of channels increases. Our result highlights the importance of effective area on testing the power performance in nanofluidic devices.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Fu Chang
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kuan-Ting Kuo
- Corning Research and Development Corporation, One River Front Plaza, Corning, New York, 14831, United States
| | - Sean Garner
- Corning Research and Development Corporation, One River Front Plaza, Corning, New York, 14831, United States
| | - Scott C Pollard
- Corning Research and Development Corporation, One River Front Plaza, Corning, New York, 14831, United States
| | - Shih-Hsun Chen
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Li C, Liu P, Zhi Y, Zhai Y, Liu Z, Gao L, Jiang L. Ultra-mechanosensitive Chloride Ion Transport through Bioinspired High-Density Elastomeric Nanochannels. J Am Chem Soc 2023; 145:19098-19106. [PMID: 37603884 DOI: 10.1021/jacs.3c07675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Mechanosensitive ion channels play crucial roles in physiological activities, where small mechanical stimuli induce the membrane tension, trigger the ion channels' deformation, and are further transformed into significant electrochemical signals. Artificial ion channels with stiff moduli have been developed to mimic mechanosensory behaviors, exhibiting an electrochemical response by the high-pressure-induced flow. However, fabricating flexible mechanosensitive channels capable of regulating specific ion transporting upon dramatic deformation has remained a challenge. Here, we demonstrate bioinspired high-density elastomeric channels self-assembled by polyisoprene-b-poly4-vinylpyridine, which exhibit ultra-mechanosensitive chloride ion transport resulting from nanochannel deformation. The PI-formed continuous elastic matrix can transmit external forces into internal tensions, while P4VP forms transmembrane chloride channels that undergo dramatic deformation and respond to mechanical stimuli. The integrated and flexible chloride channels present a dramatic and stable electrochemical signal toward a low pressure of 0.2 mbar. This research first demonstrates the artificial mechanosensory chloride channels, which could provide a promising avenue for designing flexible and responsive channel systems.
Collapse
Affiliation(s)
- Chao Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengxiang Liu
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yafang Zhi
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yi Zhai
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhiwen Liu
- Oxford Instrument Technology China, Beijing 100034, P. R China
| | - Longcheng Gao
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lei Jiang
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
35
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
36
|
Yang R, Kvetny M, Brown W, Ogbonna EN, Wang G. A Single-Entity Method for Actively Controlled Nucleation and High-Quality Protein Crystal Synthesis. Anal Chem 2023. [PMID: 37243709 DOI: 10.1021/acs.analchem.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lack of controls and understanding in nucleation, which proceeds crystal growth and other phase transitions, has been a bottleneck challenge in chemistry, materials, biology, and other fields. The exemplary needs for better methods for biomacromolecule crystallization include (1) synthesizing crystals for high-resolution structure determinations in fundamental research and (2) tuning the crystal habit and thus the corresponding properties in materials and pharmaceutical applications. Herein, a deterministic method is established capable of sustaining the nucleation and growth of a single crystal using the protein lysozyme as a prototype. The supersaturation is localized at the interface between a sample and a precipitant solution, spatially confined by the tip of a single nanopipette. The exchange of matter between the two solutions determines the supersaturation, which is controlled by electrokinetic ion transport driven by an external potential waveform. Nucleation and subsequent crystal growth disrupt the ionic current limited by the nanotip and are detected. The nucleation and growth of individual single crystals are measured in real time. Electroanalytical and optical signatures are elucidated as feedbacks with which active controls in crystal quality and method consistency are achieved: five out of five crystals diffract at a true atomic resolution of up to 1.2 Å. As controls, those synthesized under less optimized conditions diffract poorly. The crystal habits during the growth process are tuned successfully by adjusting the flux. The universal mechanism of nano-transport kinetics, together with the correlations of the diffraction quality and crystal habit with the crystallization control parameters, lay the foundation for the generalization to other materials systems.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Maksim Kvetny
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Warren Brown
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Edwin N Ogbonna
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
37
|
Sabbagh B, Fraiman NE, Fish A, Yossifon G. Designing with Iontronic Logic Gates─From a Single Polyelectrolyte Diode to an Integrated Ionic Circuit. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23361-23370. [PMID: 37068481 DOI: 10.1021/acsami.3c00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This article presents the implementation of on-chip iontronic circuits via small-scale integration of multiple ionic logic gates made of bipolar polyelectrolyte diodes. These ionic circuits are analogous to solid-state electronic circuits, with ions as the charge carriers instead of electrons/holes. We experimentally characterize the responses of a single fluidic diode made of a junction of oppositely charged polyelectrolytes (i.e., anion and cation exchange membranes), with a similar underlying mechanism as a solid-state p- and n-type junction. This served to carry out predesigned logical computations in various architectures by integrating multiple diode-based logic gates, where the electrical signal between the integrated gates was transmitted entirely through ions. The findings shed light on the limitations affecting the number of logic gates that can be integrated, the degradation of the electrical signal, their transient response, and the design rules that can improve the performance of iontronic circuits.
Collapse
Affiliation(s)
- Barak Sabbagh
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Noa Edri Fraiman
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Alex Fish
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Siwy ZS, Bruening ML, Howorka S. Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact. Chem Soc Rev 2023; 52:1983-1994. [PMID: 36794856 DOI: 10.1039/d2cs00894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.
Collapse
Affiliation(s)
- Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, USA.
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA.
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, UK.
| |
Collapse
|
39
|
Li S, Zhang X, Su J. Surface charge density governs the ionic current rectification direction in asymmetric graphene oxide channels. Phys Chem Chem Phys 2023; 25:7477-7486. [PMID: 36852635 DOI: 10.1039/d2cp05137k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Charged asymmetric channels are extensively investigated for the design of artificial biological channels, ionic diodes, artificial separation films, etc. These applications are attributed to the unique ionic current rectification phenomenon, where the surface charge density of the channel has a deep influence. In this work, we use molecular dynamics simulations to study the rectification phenomenon in asymmetric graphene oxide channels. A fascinating finding is that the ionic current rectification direction reverses from the negative to positive electric field direction with an increase in surface charge density. Specifically, at low charge density, the ionic flux reaches greater values in the negative electric field due to the enrichment of cations and anions, which provides a sufficient electrostatic shielding effect inside the channel and increases the possibility of ion release by the residues. However, at high charge density, the extremely strong residue attraction induces a Coulomb blockade effect in the negative electric field, which seriously impedes the ion transport and eventually leads to a smaller ionic current. Consequently, this ionic current order transition ultimately results in the rectification reversion phenomenon, providing a new route for the design of some novel nanofluidic devices.
Collapse
Affiliation(s)
- Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
40
|
Wang M, Jiang J. Designing Nanofluidic Diode from a Hybrid-Bilayer Covalent Organic Framework: Molecular Simulation Investigation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206382. [PMID: 36519638 DOI: 10.1002/smll.202206382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Nanofluidic diodes are potentially useful in many important applications such as sensing, electronics, and energy conversion. However, the manufacturing of controllable nanopores for nanofluidic diodes is technically challenging. Herein, a nanofluidic diode is designed from a highly programmatic covalent organic framework (COF). Through molecular simulation, remarkable diode behavior is observed in a hybrid-bilayer COF but not in its constituent single-layer COFs. The rectification effect of ion current in the hybrid-bilayer COF is attributed to an asymmetric electrostatic potential across the COF nanopore. Furthermore, a synergistic effect of counterion is unraveled in the hybrid-bilayer COF, and the presence of counterion is found to reduce the entry barrier and facilitate ion transport. The performance of the hybrid-bilayer COF as a nanofluidic diode is comprehensively investigated by varying salt concentration, layer number, interlayer spacing, and slipping. This proof-of-concept simulation study demonstrates the feasibility of the hybrid-bilayer COF as a nanofluidic diode and the finding may stimulate the development of new nanofluidic platforms.
Collapse
Affiliation(s)
- Mao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
41
|
Zheng DC, Hsu JP. Enhancing the osmotic energy conversion of a nanoporous membrane: influence of pore density, pH, and temperature. Phys Chem Chem Phys 2023; 25:6089-6101. [PMID: 36752071 DOI: 10.1039/d2cp05831f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salinity gradient power, which converts Gibbs free energy of mixing to electric energy through an ion-selective pore, has great potential. Towards practical use, developing membrane-scaled nanoporous materials is desirable and necessary. Unfortunately, the presence of a significant ion concentration polarization (ICP) lowers appreciably the power harvested, especially at a high pore density. To alleviate this problem, we suggest applying an extra pressure difference ΔP across a membrane containing multiple nanopores, taking account of the associated power consumption. The results gathered reveal that the application of a negative pressure difference can improve the power harvested due to the enhanced selectivity. In addition, if the pore density of a membrane is high, raising its pore length is necessary to make the energy harvested economic. For example, if the pore length is 2000 nm and the pore density is 2.5 × 109 pores per cm2, an increment in the power density of 213 mW m-2 can be obtained by applying ΔP = -1 bar at pH 11 and 323 K, where a net positive power density can be retrieved. The performance of the system considered under various conditions is examined in detail, along with associated mechanisms.
Collapse
Affiliation(s)
- Ding-Cheng Zheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
42
|
Pandey D, Mondal PK, Wongwises S. Chemiosomotic flow in a soft conical nanopore: harvesting enhanced blue energy. SOFT MATTER 2023; 19:1152-1163. [PMID: 36633007 DOI: 10.1039/d2sm01096h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The salinity gradient energy or the 'blue energy' is one of the most promising inexpensive and abundant sources of clean energy, having immense capabilities to serve modern-day society. In this article, we overlay an extensive analysis of reverse electrodialysis (RED) for harvesting salinity gradient energy in a single conical nanochannel, grafted with a pH-tunable polyelectrolyte layer (PEL) on the inner surfaces. We primarily focus on the distinctiveness of the solution pH of the connecting reservoirs. In spite of acquiring a maximum power density of ∼1.2 kW m-2 in the chosen configuration, we notice a counter-intuitive patterning of the ion transport for a certain span of pH, leading to diminishing power. To this end, we discuss the possible strategic avenues essentially to achieve a higher amount of power density. In order to achieve a desirable outcome within that pH zone, we employ two separate approaches intending to counter the underlying physics. Results reveal a great enhancement in the power density as well as in the efficiency even under the framework of both strategies proposed herein. Moreover, as shown, the window of solution pH has increased by three times, implicating the maximum power density mentioned above. We expect that the strategic procedure of augmented energy harvesting as discussed in this analysis can be of importance from the perspective of fabricating state-of-the-art nanodevices aimed at blue energy harvesting.
Collapse
Affiliation(s)
- Doyel Pandey
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| | - Pranab Kumar Mondal
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Somchai Wongwises
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| |
Collapse
|
43
|
Li Z, Misra RP, Li Y, Yao YC, Zhao S, Zhang Y, Chen Y, Blankschtein D, Noy A. Breakdown of the Nernst-Einstein relation in carbon nanotube porins. NATURE NANOTECHNOLOGY 2023; 18:177-183. [PMID: 36585518 DOI: 10.1038/s41565-022-01276-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
For over 100 years, the Nernst-Einstein relation has linked a charged particle's electrophoretic mobility and diffusion coefficient. Here we report experimental measurements of diffusion and electromigration of K+ ions in narrow 0.8-nm-diameter single-walled carbon nanotube porins (CNTPs) and demonstrate that the Nernst-Einstein relation in these channels breaks down by more than three orders of magnitude. Molecular dynamics simulations using polarizable force fields show that K+ ion diffusion in CNTPs in the presence of a single-file water chain is three orders of magnitude slower than bulk diffusion. Intriguingly, the simulations also reveal a disintegration of the water chain upon application of electric fields, resulting in the formation of distinct K+-water clusters, which then traverse the CNTP at high velocity. Finally, we show that although individual ion-water clusters still obey the Nernst-Einstein relation, the overall relation breaks down because of two distinct mechanisms for ion diffusion and electromigration.
Collapse
Affiliation(s)
- Zhongwu Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Sidi Zhao
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Engineering, University of California Merced, Merced, CA, USA
| | - Yuliang Zhang
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- School of Natural Sciences, University of California Merced, Merced, CA, USA.
| |
Collapse
|
44
|
Rahman MM. Membranes for Osmotic Power Generation by Reverse Electrodialysis. MEMBRANES 2023; 13:164. [PMID: 36837667 PMCID: PMC9963266 DOI: 10.3390/membranes13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the utilization of the selective ion transport through porous membranes for osmotic power generation (blue energy) has received a lot of attention. The principal of power generation using the porous membranes is same as that of conventional reverse electrodialysis (RED), but nonporous ion exchange membranes are conventionally used for RED. The ion transport mechanisms through the porous and nonporous membranes are considerably different. Unlike the conventional nonporous membranes, the ion transport through the porous membranes is largely dictated by the principles of nanofluidics. This owes to the fact that the osmotic power generation via selective ion transport through porous membranes is often referred to as nanofluidic reverse electrodialysis (NRED) or nanopore-based power generation (NPG). While RED using nonporous membranes has already been implemented on a pilot-plant scale, the progress of NRED/NPG has so far been limited in the development of small-scale, novel, porous membrane materials. The aim of this review is to provide an overview of the membrane design concepts of nanofluidic porous membranes for NPG/NRED. A brief description of material design concepts of conventional nonporous membranes for RED is provided as well.
Collapse
Affiliation(s)
- Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
45
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels. Anal Chem 2023; 95:1522-1531. [PMID: 36537870 DOI: 10.1021/acs.analchem.2c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tools utilized by humans continue to shrink and speed up. Lab-on-a-chip (LOC) is one of the most recent techniques for decreasing the size of chemical systems. Today, LOCs have made substantial strides in developing nanomaterial fabrication techniques. Controlling and regulating the fluid and ion mobility in these systems is crucial. Layer-by-layer (LBL) soft layers are one of the most effective strategies for controlling fluid flow in channels. In light of the present constraints for developing these systems and the high expense of experimental investigations, it is vital to employ modeling to minimize costs and comprehend their underlying ideas and operations. In this study, we examined the influence of the LBL soft layer's presence in the charged nanochannels on the ion transport parameters. To examine the effect of the coating length of the LBL soft layer, we first examined three lengths of coating: one with a length greater than half (type (I)), one with a length equal to half (type (II)), and one with a length less than half (type (III)) of the nanochannel length. Then, by solving Poisson-Nernst-Planck and Navier-Stokes equations, we determined the influences of pH, soft layer charge density (NPEL/NA), bulk concentration (C0), and hard surface charge density (σ) on the ionic current rectification (Rf) and selectivity (S) of the nanochannel. The maximum rectification of 30.65 was achieved using a nanochannel of type (III) and σ = +10 mC/m2. The current results demonstrate a promising hybrid architecture consisting of an LBL soft layer and a smart charged nanochannel for enhanced rectification.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| |
Collapse
|
46
|
Aarts M, Boon WQ, Cuénod B, Dijkstra M, van Roij R, Alarcon-Llado E. Ion Current Rectification and Long-Range Interference in Conical Silicon Micropores. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56226-56236. [PMID: 36484483 PMCID: PMC9782324 DOI: 10.1021/acsami.2c11467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fluidic devices exhibiting ion current rectification (ICR), or ionic diodes, are of broad interest for applications including desalination, energy harvesting, and sensing, among others. For such applications a large conductance is desirable, which can be achieved by simultaneously using thin membranes and wide pores. In this paper we demonstrate ICR in micrometer sized conical channels in a thin silicon membrane with pore diameters comparable to the membrane thickness but both much larger than the electrolyte screening length. We show that for these pores the entrance resistance is key not only to Ohmic conductance around 0 V but also for understanding ICR, both of which we measure experimentally and capture within a single analytic theoretical framework. The only fit parameter in this theory is the membrane surface potential, for which we find that it is voltage dependent and its value is excessively large compared to the literature. From this we infer that surface charge outside the pore strongly contributes to the observed Ohmic conductance and rectification by a different extent. We experimentally verify this hypothesis in a small array of pores and find that ICR vanishes due to pore-pore interactions mediated through the membrane surface, while Ohmic conductance around 0 V remains unaffected. We find that the pore-pore interaction for ICR is set by a long-ranged decay of the concentration which explains the surprising finding that the ICR vanishes for even a sparsely populated array with a pore-pore spacing as large as 7 μm.
Collapse
Affiliation(s)
- Mark Aarts
- Center
for Nanophotonics, AMOLF, Science Park 109, 1098 XGAmsterdam, Netherlands
| | - Willem Q. Boon
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CCUtrecht, Netherlands
| | - Blaise Cuénod
- Center
for Nanophotonics, AMOLF, Science Park 109, 1098 XGAmsterdam, Netherlands
| | - Marjolein Dijkstra
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, Netherlands
| | - René van Roij
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CCUtrecht, Netherlands
| | - Esther Alarcon-Llado
- Center
for Nanophotonics, AMOLF, Science Park 109, 1098 XGAmsterdam, Netherlands
| |
Collapse
|
47
|
Yadav SK, D M, Singh C, Kumar M, G A, Ramaprabhu S, Nandigana VVR, Nayak PK. Laser-Assisted Scalable Pore Fabrication in Graphene Membranes for Blue-Energy Generation. Chemphyschem 2022; 24:e202200598. [PMID: 36510477 DOI: 10.1002/cphc.202200598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The osmotic energy from a salinity gradient (i. e. blue energy) is identified as a promising non-intermittent renewable energy source for a sustainable technology. However, this membrane-based technology is facing major limitations for large-scale viability, primarily due to the poor membrane performance. An atomically thin 2D nanoporous material with high surface charge density resolves the bottleneck and leads to a new class of membrane material the salinity gradient energy. Although 2D nanoporous membranes show extremely high performance in terms of energy generation through the single pore, the fabrication and technical challenges such as ion concentration polarization make the nanoporous membrane a non-viable solution. On the other hand, the mesoporous and micro porous structures in the 2D membrane result in improved energy generation with very low fabrication complexity. In the present work, we report femtosecond (fs) laser-assisted scalable fabrication of μm to mm size pores on Graphene membrane for blue energy generation for the first time. A remarkable osmotic power in the order of μW has been achieved using mm size pores, which is about six orders of magnitudes higher compared to nanoporous membranes, which is mainly due to the diffusion-osmosis driven large ionic flux. Our work paves the way towards fs laser-assisted scalable pore creation in the 2D membrane for large-scale osmotic power generation.
Collapse
Affiliation(s)
- Sharad Kumar Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.,Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India.,Micro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Manikandan D
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Chob Singh
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Mukesh Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Aswathy G
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Sundara Ramaprabhu
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India.,Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Indian Institute of Technology Madras, Chennai, India
| | - Vishal V R Nandigana
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pramoda K Nayak
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India.,Micro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras, Chennai, 600036, India.,2D Materials Research and Innovation Group, Indian Institute of Technology Madras, Chennai, 600036, India.,Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, 562112, India
| |
Collapse
|
48
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
49
|
Yadav SK, Manikandan D, Singh C, Kumar M, Nandigana VVR, Nayak PK. Electrodiffusioosmosis induced negative differential resistance in micro-to-millimeter size pores through a graphene/copper membrane. NANOSCALE ADVANCES 2022; 4:5123-5131. [PMID: 36504743 PMCID: PMC9680926 DOI: 10.1039/d2na00443g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Negative differential resistance (NDR) is one of the nonlinear transport phenomena in which ionic current decreases with the increase in electromotive potential. Electro-osmosis, diffusio-osmosis, and surface charge density of pores are the driving forces for observing NDR in nanoscale ion transport. Here, we report electrodiffusioosmosis induced NDR using micro to millimeter size pores in a two-dimensional (2D) graphene-coated copper (Gr/Cu) membrane. Along with NDR, we also observed ion current rectification (ICR), in which there is preferential one-directional ion flow for equal and opposite potentials. The experimentally observed NDR effect has been validated by performing ion transport simulations using Poisson-Nernst-Planck (PNP) equations and Navier-Stokes equations with the help of COMSOL Multiphysics considering salinity gradient across the membrane. Charge polarization induced electro-osmotic flow (EOF) dominates over diffusio-osmosis, causing the backflow of low concentration/conductivity solution into the pore, thereby causing NDR. This finding paves the way toward potential applications in ionic tunnel diodes as rectifiers, switches, amplifiers, and biosensors.
Collapse
Affiliation(s)
- Sharad Kumar Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai 600036 India
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
- Micro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras Chennai-600036 India
| | - D Manikandan
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Chob Singh
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Mukesh Kumar
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Vishal V R Nandigana
- Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai 600036 India
- Micro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras Chennai-600036 India
| | - Pramoda K Nayak
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
- Micro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras Chennai-600036 India
- 2D Materials Research and Innovation Group, Indian Institute of Technology Madras Chennai-600036 India
| |
Collapse
|
50
|
Wang Z, Hu R, Zhu R, Lu W, Wei G, Zhao J, Gu ZY, Zhao Q. Metal-Organic Cage as Single-Molecule Carrier for Solid-State Nanopore Analysis. SMALL METHODS 2022; 6:e2200743. [PMID: 36216776 DOI: 10.1002/smtd.202200743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ability to detect biomolecules at the single-molecule level is at the forefront of biological research, precision medicine, and early diagnosis. Recently, solid-state nanopore sensors have emerged as a promising technique for label-free and precise diagnosis assay. However, insufficient sensitivity and selectivity for small analytes are a great challenge for clinical diagnosis applications via solid-state nanopores. Here, for the first time, a metal-organic cage, PCC-57, is employed as a carrier to increase the sensitivity and selectivity of solid-state nanopores based on the intrinsic interaction of the nanocage with biomolecules. Firstly, it is found that the carrier itself is undetectable unless bound with the target analytes and used oligonucleotides as linkers to attach PCC-57 and target analytes. Secondly, two small analytes, oligonucleotide conjugated angiopep-2 and polyphosphoric acid, are successfully distinguished using the molecular carrier. Finally, selectivity of nanopore detection is achieved by attaching PCC-57 to oligonucleotide-tailed aptamers, and the human alpha-thrombin sample is successfully detected. It is believed that the highly designable metal-organic cage could serve as a rich carrier repository for a variety of biomolecules, facilitating single-molecule screening of clinically relevant biomolecules based on solid-state nanopores in the future.
Collapse
Affiliation(s)
- Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Rui Zhu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhi-Yuan Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| |
Collapse
|