1
|
Yue L, Wan X, Türel T, Schenning APHJ, Tomović Ž, Debije MG. Responsive Industrial Polymers: A Marriage of Polyurethanes with Liquid Crystal Elastomers? ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40420536 DOI: 10.1021/acsami.5c09198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Responsive polymers have yet to significantly impact the marketplace. In this Perspective, we offer a glimpse of a possible future industrial-scale responsive polymer. We begin by briefly reviewing two different existing polymer materials, one with high volume, excellent processability, and commercial impact (polyurethanes), the other with stimuli responsive functional properties (liquid crystal elastomers). We explore the possibilities of combining the properties of these two disparate entities into a single material. We offer intriguing possibilities for a bulk polymer with both responsivity and processability that could compete in the market with the long-established residents and discuss some of the research roadblocks that need to be overcome to reach this lofty goal.
Collapse
Affiliation(s)
- Lansong Yue
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Xue Wan
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Tankut Türel
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Albert P H J Schenning
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Željko Tomović
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Michael G Debije
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Ding J, Liu T, Zhang J, Li Y, Miao X, Li C, Chen W, Chen B, Huang X, Zhang L, Wang K, Dong Z, Bao B, Zhu L, Lin Q. Controlled Deformation Mode and Amplitude of Liquid Crystal Actuators Through Orthogonal Light and Heat-Induced Exchanges. Angew Chem Int Ed Engl 2025; 64:e202505172. [PMID: 40119528 DOI: 10.1002/anie.202505172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/24/2025]
Abstract
Liquid crystal elastomers (LCEs) are versatile soft actuators known for their flexible texture, low density, and ability to undergo reversible deformations that mimic the behavior of skeletal muscles. These properties make them highly attractive for applications in exoskeletons, soft robotics, and medical devices. However, their functionality is typically limited to simple and discontinuous deformations. This study introduces a novel structural design that enables precise control of both the mode and amplitude of deformation. This design integrates photo-reactive o-nitrobenzyl moieties and temperature-dependent hydrogen bonds into the LCE structure. The o-nitrobenzyl moieties enable irreversible reconfiguration of the LCE crosslinked network through photoreactions, allowing for easy alignment and reshaping of the material. Meanwhile, the hydrogen bonds act as "temperature-dependent locks", regulating the mobility of polymer chains during thermal deformation. By adjusting the heating temperature, the deformation amplitude can be finely tuned across a wide range (0%-103%). The synergy of these two mechanisms-light-induced irreversible reconfiguration and temperature-induced reversible H-bond exchanges-empowers LCEs to achieve customizable and continuous deformations. This represents a significant advancement in bridging the gap between synthetic actuators and biological motion systems.
Collapse
Affiliation(s)
- Jian Ding
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Tuan Liu
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jinwen Zhang
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, WA, 99164, USA
| | - Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Xuepei Miao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, P.R. China
| | - Caicai Li
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Wanqi Chen
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Baihang Chen
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xinyi Huang
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Liangdong Zhang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, P.R. China
| | - Kun Wang
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Zhixiang Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Bingkun Bao
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Linyong Zhu
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Qiuning Lin
- Department School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
3
|
He S, Yu H, Kouwenhoven MBN, Paoletti P, Dijkstra M, Xuan C. Rolling of stimuli-bent cylindrical robots using contact finite element simulations. SOFT MATTER 2025; 21:3480-3491. [PMID: 40066626 PMCID: PMC11894519 DOI: 10.1039/d5sm00080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Curved cylinders, if rigid, cannot roll on a surface like straight cylinders, but soft cylinders bent by specific stimuli can! Studying the autonomous locomotion of these soft robots and their interactions with the environment using finite element analysis is challenging due to the complex multiphysics of stimuli-responsive soft materials and nonlinear contact mechanics. In this pioneering work, we simulate the rolling of stimuli-bent cylinders on a surface using contact finite elements and introduce a simple yet effective pseudo-thermal field method. Our approach successfully reproduces several modes of autonomous locomotion observed experimentally, including phototropic locomotion, phototropic climbing on a slanted surface, steering under partial illumination, and backward rolling under alternating heat-light stimuli. Parametric analysis demonstrates strong agreement between the experiments and our numerical results, validating the effectiveness of our approach. This study reveals the intriguing and highly nonintuitive dynamics of photo- or thermally bent cylindrical soft robots, and serves as a paradigm for modelling and simulating such rolling robots.
Collapse
Affiliation(s)
- Shaobo He
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Hao Yu
- Department of Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - M B N Kouwenhoven
- Department of Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Paolo Paoletti
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Chen Xuan
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Soft Condensed Matter & Biophysics group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- XJTLU-JITRI Academy of Industrial Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China
| |
Collapse
|
4
|
Ji T, Yan F, Zhang Y, Lu Q, Gao K. One-Dimensional Organic Lead Bromide Elastic Crystals with Strong Electron-Phonon Coupling. J Phys Chem Lett 2025; 16:4236-4242. [PMID: 40257178 DOI: 10.1021/acs.jpclett.5c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Two novel one-dimensional (1D) lead halide elastic crystals, [Pb2Br4(DMA)2]n (1) (DMA = N,N-dimethylacetamide) and [Pb2Br4(DMF)2]n (2) (DMF = N,N-dimethylformamide), were reported. Both compounds 1 and 2 feature a neutral 1D bimetallic axis chain structure. The bending strain of compound 1 is 1.36%, higher than those of all reported 1D single-metal axis chain coordinate polymers, indicating the superior elastic properties of the 1D bimetallic axis chain polymers. Compound 1 exhibits strong red-to-near-infrared (NIR) fluorescence emission below 200 K, with an emission peak at 700 nm and a full width at half maximum (fwhm) of 200 nm, indicating strong electron-phonon coupling in compound 1. The large Stokes shift and broad fwhm of compound 1 may be attributed to its excellent elasticity, as this elasticity allows the molecule's self-trapped exciton state to undergo greater structural distortion. It is suggested that 1D organic lead halide elastic crystals could be promising candidates for emerging applications in efficient NIR light-emitting diodes, supercontinuum sources, and flexible NIR optical waveguides.
Collapse
Affiliation(s)
- Teng Ji
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Falong Yan
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaige Gao
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Xu Y, Huang Y, Wang J, Huang S, Yang H, Li Q. Force-Trainable Liquid Crystal Elastomer Enabled by Mechanophore-Induced Radical Polymerization. Angew Chem Int Ed Engl 2025; 64:e202423584. [PMID: 39869822 DOI: 10.1002/anie.202423584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this "adaptive learning" in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment. Inspired by biological training, the LCEs can self-strengthen and acquire new functionalities through mechanical stress-induced radical polymerization. The research not only enhances the mechanical performance of LCEs, but also endows them with the ability to learn properties such as flexibility, light responsiveness, and fluorescence. These advancements are crucial for overcoming the limitations of current materials, paving the way for the creation of advanced intelligent soft materials with autonomous self-improvement, akin to the adaptive skills of living organisms.
Collapse
Affiliation(s)
- Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
6
|
Terentjev EM. Liquid Crystal Elastomers: 30 Years After. Macromolecules 2025; 58:2792-2806. [PMID: 40160994 PMCID: PMC11948470 DOI: 10.1021/acs.macromol.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
This is a Review that attempts to cast a look at the whole history of liquid crystal elastomers and the evolution of this field from its inception to the current state of the art. The exposition is limited by deliberately omitting several important elements of this field, such as densely cross-linked networks or smectic elastomers, focusing solely on the nematic phase of these elastomers. In this more narrow topic, we first discuss the current developments and perspectives in the materials chemistry. This is followed by three sections, each dedicated to one of the three main points of interest in the nematic liquid crystal elastomers: the reversible actuation, the soft elasticity, and the viscoelastic dynamics of nematic elastomers. In each of these directions, there have been significant developments over recent years but equally significant new avenues emerging for the research to follow.
Collapse
Affiliation(s)
- Eugene M. Terentjev
- Cavendish Laboratory, Cambridge
University, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
7
|
Liu X, Zhou X, Liu Z. Strengthening Liquid Crystal Elastomer Muscles. Acc Chem Res 2025; 58:907-918. [PMID: 40042079 DOI: 10.1021/acs.accounts.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ConspectusLiquid crystal elastomer fibers (LCEFs) are reversible artificial muscles capable of stimuli-responsive functions, making them promising competitors for ideal soft actuators. These remarkable actuation properties depend strongly on their mechanical properties, such as elastic modulus and breaking stress. It is necessary to strengthen the LCEF muscles to meet the demands of advanced applications. However, despite the significant progress in LCEFs, there is currently no such Account systematically summarizing and analyzing the strategies adopted for enhancing their mechanical and actuation properties. The intuitive variations among the different enhancement strategies further call for investigations into how to choose the most suitable ones based on specific situations. In this Account, for the first time, we systematically summarize existing approaches to strengthening LCEF-based artificial muscles, contributing to the development of more robust and smarter fibrous artificial muscles.In the first section, we focus on the latest and most valuable progress on strengthening LCEF-based artificial muscles, highlighting the need for a comprehensive summary of the various approaches utilized. The mechanical properties of LCEFs can be tailored through molecular design, physical interactions, and fiber integration. The adjustment of hard/soft segment features, the introduction of additional microstructures, and the fiber integration provide opportunities to strengthen LCEF-based artificial muscles, which are discussed in the second section. Subsequently, we delve into the impact of various preparation methods on the performance of LCEFs, and LCEFs fabricated by different spinning and alignment techniques exhibited rather different mechanical and actuation properties. This has been adopted to engineer novel, stronger, and tailored fibrous artificial muscles, as described in the third section. Moreover, we show that the incorporation of rigid composite materials via coating and doping has emerged as a powerful strategy to strengthen LCEFs, such as core-shell structures. Such enhancements also introduce multifunctionality for LCE-based artificial muscles that can enrich the fiber structure and actuation mechanism, which are elucidated in the fourth section. Finally, we conclude this Account with a critical analysis of the challenges and prospects of LCE-based artificial muscles, hoping to pave the way for the construction of more powerful fibrous artificial muscles.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300350, China
| | - Xiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300350, China
- Department of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Li D, Sun Y, Li X, Li X, Zhu Z, Sun B, Nong S, Wu J, Pan T, Li W, Zhang S, Li M. 3D Printing of Near-Ambient Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation. ACS NANO 2025; 19:7075-7087. [PMID: 39948496 DOI: 10.1021/acsnano.4c15521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Liquid crystal elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building biocompatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable three-dimensional (3D) printing of NAT-LCEs with enhanced nematic order, intricate shape forming, and morphing capability. By integrating a low-temperature nozzle and a cooling platform into a 3D printer, the resulting temperature field synergistically facilitates mesogen alignment during extrusion and disruption-free ultraviolet (UV) cross-linking. This method achieves a nematic order 3000% higher than NAT-LCEs fabricated using traditional room temperature 3D printing. Enabled by shifting of transition temperature during hybrid cooling printing, printed sheets spontaneously turn into 3D structures after release from the platform, exhibiting bidirectional deformation with heating and cooling. By adjusting the nozzle and plate temperatures, NAT-LCEs with graded properties can be fabricated for intricate shape morphing. A wristband system with enhanced heart rate monitoring is also developed based on 3D-printed NAT-LCE. Our method facilitates developments in soft robotics, biomedical devices, and wearable electronics.
Collapse
Affiliation(s)
- Dongxiao Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yuxuan Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xingjian Li
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Xingxiang Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhengqing Zhu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Boxi Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shutong Nong
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiyang Wu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shiwu Zhang
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Mujun Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Turriani M, Cosottini N, Fuochi N, Wiersma DS, Martella D, Parmeggiani C. Exploiting photopolymerization to modulate liquid crystalline network actuation. SOFT MATTER 2025; 21:1162-1169. [PMID: 39820659 DOI: 10.1039/d4sm01360c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens. Following this approach, side-chain polymers are widely described, while a detailed comparison of light-responsive LCNs with different architectures is not properly addressed. In this paper, two synthetic approaches are exploited leading to photoresponsive LCNs with different architectures. Mixed main-chain/side-chain LCNs are obtained in one-pot through a thiol-acrylate chain-transfer reaction, while main-chain LCNs are achieved by a two-step approach involving an aza-Michael addition followed by acrylate crosslinking. Comparison among the two materials highlighted the superior performances in terms of tension developed upon light-activation of the former one, showing muscle-like force production comparable to standard side-chain LCNs combined with the greater ability to contract from common main-chain LCNs.
Collapse
Affiliation(s)
- Marco Turriani
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Fisica e Astronomia, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy
| | - Niccolò Cosottini
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
| | - Neri Fuochi
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Diederik S Wiersma
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Fisica e Astronomia, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy
| | - Daniele Martella
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Camilla Parmeggiani
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
10
|
Feng W, He Q, Zhang L. Embedded Physical Intelligence in Liquid Crystalline Polymer Actuators and Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312313. [PMID: 38375751 PMCID: PMC11733722 DOI: 10.1002/adma.202312313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Indexed: 02/21/2024]
Abstract
Responsive materials possess the inherent capacity to autonomously sense and respond to various external stimuli, demonstrating physical intelligence. Among the diverse array of responsive materials, liquid crystalline polymers (LCPs) stand out for their remarkable reversible stimuli-responsive shape-morphing properties and their potential for creating soft robots. While numerous reviews have extensively detailed the progress in developing LCP-based actuators and robots, there exists a need for comprehensive summaries that elucidate the underlying principles governing actuation and how physical intelligence is embedded within these systems. This review provides a comprehensive overview of recent advancements in developing actuators and robots endowed with physical intelligence using LCPs. This review is structured around the stimulus conditions and categorizes the studies involving responsive LCPs based on the fundamental control and stimulation logic and approach. Specifically, three main categories are examined: systems that respond to changing stimuli, those operating under constant stimuli, and those equip with learning and logic control capabilities. Furthermore, the persisting challenges that need to be addressed are outlined and discuss the future avenues of research in this dynamic field.
Collapse
Affiliation(s)
- Wei Feng
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Qiguang He
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
11
|
Zhou J, Luo F, Tang L, Guo Z. Fabrication of Polyurethane-Polyacrylate Hybrid Latexes with High Organosilicon Content via Phase Inversion Emulsion Polymerization. Molecules 2024; 29:5870. [PMID: 39769959 PMCID: PMC11678795 DOI: 10.3390/molecules29245870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Waterborne polyurethane, with a mechanical strength comparable to solvent-based types, is eco-friendly and safe, using water as a dispersion medium. Polyacrylate excels in film formation and weather resistance but suffers from "hot stickiness and cold brittleness". Merging polyurethane and polyacrylate creates advanced hybrids, while organosilicon enhances properties but is restricted due to hydrolytic crosslinking. In this paper, a series of polyurethane-polyacrylate hybrid latexes with high organosilicon content were prepared using phase inversion emulsion polymerization technology. Even when the monomer content of 3-(methacryloyloxy)propyltrimethoxysilane (MPS) was increased to 10%, the polymerization process was stable, without the formation of a gel precipitate. The resulting latexes could remain stable for at least 6 months without significant changes in the properties of their films. The effects of MPS content on the mechanical and thermal properties of latex films were systematically researched. The study showed that with an increase in MPS dosage, the hardness and elastic modulus of the latex films increased, while the elongation at break and water absorption decreased, together with the increased glass transition temperature and surface hydrophilicity. This work aims to provide new theoretical guidance for the preparation of silicone-modified hybrid latexes, enabling their safe and stable production and storage.
Collapse
Affiliation(s)
| | | | - Liming Tang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (J.Z.); (F.L.); (Z.G.)
| | | |
Collapse
|
12
|
Xue S, Shi Z, Wang Z, Tan H, Gao F, Zhang Z, Ye Z, Nian S, Han T, Zhang J, Zhao Z, Tang BZ, Zhang Q. Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide. Nat Commun 2024; 15:10084. [PMID: 39572542 PMCID: PMC11582805 DOI: 10.1038/s41467-024-54386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Advanced smart polymer materials with the ability of reversible deformation under external stimuli hold great potential in robotics, soft machines, and flexible electronics. However, the complexity and low efficiency for fabricating actuators along with their limited functionality hinder further progress. Here an efficient and mild catalyst-free thiol-yne click polymerization was developed to fabricate photosensitive polyimide (PI) films. Then the fluorescent robust photoactuators with single-layered janus structure were directly obtained via UV assisted photo-crosslinking of the films, exhibiting reversible response driven by a pronounced mismatch in expansion between the front and back sides of the films. Achieving selective, non-uniform spatial distribution within the PI films, rapid and reversible complex morphing of the actuators, along with the capabilities for encrypting, reading, and erasing fluorescent information-all through the use of a single UV light source-becomes straightforward. The robust mechanical property and driving ability of these actuators enable the conversion of light energy into obvious motion even under heavy loads and the leaping through the storage and release of energy, ensuring their potential for practical applications that require durability and reliability.
Collapse
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zhipanxin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zaiyu Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Shifeng Nian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Yang Z, Yang Y, Liang H, He E, Xu H, Liu Y, Wang Y, Wei Y, Ji Y. Robust liquid crystal semi-interpenetrating polymer network with superior energy-dissipation performance. Nat Commun 2024; 15:9902. [PMID: 39548105 PMCID: PMC11568150 DOI: 10.1038/s41467-024-54233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Liquid crystal networks (LCN) have attracted surging interest as extraordinary energy-dissipation materials owning to their unique dissipation mechanism based on the re-orientation of mesogens. However, how to integrate high Young's modulus, good dissipation efficiency and wide effective damping temperature range in energy-dissipation LCN remains a challenge. Here, we report a strategy to resolve this challenge by fabricating robust energy-dissipation liquid crystal semi-interpenetrating polymer network (LC-semi-IPN) consisting crystalline LC polymers (c-LCP). LC-semi-IPN demonstrates a superior synergistic performance in both mechanical and energy-dissipation properties, surpassing all currently reported LCNs. The crystallinity of c-LCP endows LC-semi-IPN with a substantial leap in Young's modulus (1800% higher than single network). The chain reptation of c-LCP also promotes an enhanced dissipation efficiency of LC-semi-IPN by 200%. Moreover, its effective damping temperature reaches up to 130 °C, which is the widest reported for LCNs. By leveraging its exceptional synergistic performance, LC-semi-IPN can be further utilized as a functional architected structure with exceptional energy-dissipation density and deformation-resistance.
Collapse
Affiliation(s)
- Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yixuan Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, 32023, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Pan Y, Lu H, Cheng B, Wang C, Dai K, Xu G. Synergistic Effect of Polyurethane on Pore-Sealing and Lubrication of Microarc Oxidation Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23268-23278. [PMID: 39454022 DOI: 10.1021/acs.langmuir.4c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Microarc oxidation (MAO) is a widely used surface treatment technology. However, its processing inevitably leads to the presence of micropores, microcracks, and other defects in the MAO coating. These defects lead to suboptimal tribological performance and diminished corrosion resistance of the MAO coating. Thus, this study proposed a new pore-sealing method with environmental protection and high efficiency. Polyurethane reactive (PUR) composite coating was prepared on the surface of MAO coating. The sealing effect of the PUR sample was analyzed using scanning electron microscopy (SEM). The molecular structure and elemental changes of the coating were analyzed using X-ray photoelectron spectroscopy (XPS). The tribological properties were analyzed using a tribological testing machine, and the corrosion resistance was tested using an electrochemical workstation. The test results show that the lubricity and corrosion resistance of PUR sample are improved significantly compared with MAO coating. When the mass fraction of PUR is 3 wt %, the PUR sample shows the best lubrication performance, and the coefficient of friction decreases by 70.8%. Compared with the traditional sealing technology, this experimental method is simple and low-cost and has a wide application prospect, which promotes the development of MAO technology.
Collapse
Affiliation(s)
- Yanyan Pan
- Group of Mechanical and Biomedical Engineering, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Bo Cheng
- Group of Mechanical and Biomedical Engineering, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Changkai Wang
- Group of Mechanical and Biomedical Engineering, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Ke Dai
- Group of Mechanical and Biomedical Engineering, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Guangshen Xu
- Group of Mechanical and Biomedical Engineering, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| |
Collapse
|
15
|
Zhang C, Zhang Z, Liu X. Closed-Loop Recyclable and Totally Renewable Liquid Crystal Networks with Room-Temperature Programmability and Reconfigurable Functionalities. Angew Chem Int Ed Engl 2024; 63:e202411280. [PMID: 38924237 DOI: 10.1002/anie.202411280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Dynamic covalent liquid crystal networks (DCv-LCNs) with straightforward (re)programmability, reprocessability, and recyclability facilitates the manufacture of sophisticated LCN actuators and intelligent robots. However, the DCv-LCNs are still limited to heat-assisted programming and polymer-to-polymer reprocessing/recycling, which inevitably lead to deterioration of the LCN structures and the actuation performances after repeated programming/processing treatments, owing to the thermal degradation of the polymer network and/or external agent interference. Here, a totally renewable azobenzene-based DCv-LCN with room-temperature programmability and polymer-to-monomers chemical recyclability is reported, which was synthesized by crosslinking the azobenzene-containing dibenzaldehyde monomer and the triamine monomer via the dynamic and dissociable imine bonds. Thanks to the water-activated dynamics of the imine bonds, the resultant DCv-LCN can be simply programmed, upon water-soaking at room temperature, to yield a UV/Vis light-driven actuator. Importantly, the reported DCv-LCN undergoes depolymerization in an acid-solvent medium at room temperature because of the acid-catalyzed hydrolysis of the imine bonds, giving rise to easy separation and recovery of both monomers in high purity, even with tolerance to additives. The recovered pure monomers can be used to regenerate totally new DCv-LCNs and actuators, and their functionalities can be reconfigured by removing old and introducing new additives, by implementing the closed-loop polymer-monomers-polymer recycling.
Collapse
Affiliation(s)
- Chenxuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuoqiang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
16
|
Peng W, Zhao P, Zhou X, Liang X, Zhang X, Jin B, Chen G, Zhao Q, Xie T. Pluralizing actuation behavior of 3D printable liquid crystal elastomers via polymerization sequence control. SCIENCE ADVANCES 2024; 10:eadp4814. [PMID: 39121227 PMCID: PMC11313953 DOI: 10.1126/sciadv.adp4814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Mechanical stretching is commonly used for mesogen alignment which is essential for the muscle-like actuations of liquid crystal elastomers (LCEs). Despite the simplicity of the method, the mesogens are typically aligned in the stretching direction, limiting exclusively the LCE to an actuation mode of cooling-induced elongation. Here, we design an interpenetrating double network consisting of an LCE network and an elastomer network, with one polymerized network stretched before the polymerization of the other network. Depending on the polymerization sequence of the two networks, the double network shows two opposite actuation modes, namely, the conventional cooling-induced elongation or an unusual cooling-induced contraction. Strategic integration of the two opposite behaviors into the same LCE leads to sophisticated actuation difficult to achieve with a conventional LCE design. Coupled with 3D printing, geometrically complexed LCEs with diverse multimodal four-dimensional actuation behaviors are illustrated. Our work expands the design scope of LCE actuators and their potential device applications.
Collapse
Affiliation(s)
- Wenjun Peng
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Pengxin Zhao
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Xiaorui Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Liang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Xianming Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Yang G, Dong L, Ren M, Cui B, Yuan X, Wang X, Li Y, Li W, Qiao G, Shao Y, Li W, Wang X, Xu P, Fang H, Di J, Li Q. Coiled Carbon Nanotube Fibers Sheathed by a Reinforced Liquid Crystal Elastomer for Strong and Programmable Artificial Muscles. NANO LETTERS 2024; 24:9608-9616. [PMID: 39012768 DOI: 10.1021/acs.nanolett.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.
Collapse
Affiliation(s)
- Guang Yang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ming Ren
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bo Cui
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaojie Yuan
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaobo Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuxin Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guanlong Qiao
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yunfeng Shao
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Weiwei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaona Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Panpan Xu
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongbin Fang
- Institute of AI and Robotics, Fudan University, Shanghai 200433, China
| | - Jiangtao Di
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qingwen Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
18
|
Yi J, Ren X, Li Y, Yuan Y, Tang W, Wang X, Yu J, Yu S, Li W, Wang J, Loh XJ, Hu B, Chen X. Rapid-Response Water-Shrink Films with High Output Work Density Based on Polyethylene Oxide and α-Cyclodextrin for Autonomous Wound Closure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403551. [PMID: 38837826 DOI: 10.1002/adma.202403551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Conventional wound closure methods, including sutures and tissue adhesives, present significant challenges for self-care treatment, particularly in the context of bleeding wounds. Existing stimuli-responsive contractile materials designed for autonomous wound closure frequently lack sufficient output work density to generate the force needed to bring the wound edges into proximity or necessitate stimuli that are not compatible with the human body. Here, semi-transparent, flexible, and water-responsive shrinkable films, composed of poly(ethylene oxide) and α-cyclodextrin, are reported. These films exhibit remarkable stability under ambient conditions and demonstrate significant contraction (≈50%) within 6 s upon exposure to water, generating substantial contractile stress (up to 6 MPa) and output work density (≈1028 kJ m-3), which is 100 times larger than that of conventional hydrogel and 25 times larger than that of skeletal muscles. Remarkably, upon hydration, these films are capable of lifting objects 10 000 times their own weight. Leveraging this technology, water-shrink tapes, which, upon contact with water, effectively constrict human skin and autonomously close bleeding wounds in animal models within 10 seconds, are developed further. This work offers a novel approach to skin wound management, showing significant potential for emergency and self-care scenarios.
Collapse
Affiliation(s)
- Junqi Yi
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoshi Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Shujin Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wenlong Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Jiang Z, Tran BH, Jolfaei MA, Abbasi BBA, Spinks GM. Crack-Resistant and Tissue-Like Artificial Muscles with Low Temperature Activation and High Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402278. [PMID: 38657958 DOI: 10.1002/adma.202402278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bach H Tran
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
20
|
Zhou L, Wang Z, Gao L, Yang H, Fang S. Preparation and Properties of Multi-Responsive Liquid Crystalline Poly(urethane-acrylate)s and Its Composite Membranes. Polymers (Basel) 2024; 16:1854. [PMID: 39000707 PMCID: PMC11244038 DOI: 10.3390/polym16131854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
In this work, a kind of side chain liquid crystalline poly(urethane-acrylate)s was synthesized by free polymerization based on self-made liquid crystalline monomers, and a series of liquid crystalline polyurethane/shape memory polyurethane composite membranes were prepared by electrospinning. The synthesized liquid crystalline poly(urethane-acrylate)s have excellent thermal stability. Due to the regular arrangement of azobenzene on the side chains, polymers can rapidly undergo a photoinduced transition from trans-isomerism to cis-isomerism in THF solution and restore reversible configurational changes under visible light. The composite membranes prepared by electrospinning can also undergo photoinduced deformation within 6 s, and the deformation slowly returns under visible light. Meanwhile, the composites have shape memory, and after deformation caused by stretching, the membranes can quickly recover their original shape under thermal stimulation. These results indicate that the composites have triple response performances of photoinduced deformation, photo-, and thermal recovery.
Collapse
Affiliation(s)
| | | | - Lijun Gao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | | | - Shaoming Fang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| |
Collapse
|
21
|
van Hazendonk L, Khalil ZJ, van Grondelle W, Wijkhuijs LEA, Schreur-Piet I, Debije MG, Friedrich H. Hot Fingers: Individually Addressable Graphene-Heater Actuated Liquid Crystal Grippers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32739-32747. [PMID: 38869014 PMCID: PMC11212024 DOI: 10.1021/acsami.4c06130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Liquid crystal-based actuators are receiving increased attention for their applications in wearables and biomedical or surgical devices, with selective actuation of individual parts/fingers still being in its infancy. This work presents the design and realization of two gripper devices with four individually addressable liquid-crystal network (LCN) actuators thermally driven via printed graphene-based heating elements. The resistive heat causes the all-organic actuator to bend due to anisotropic volume expansions of the splay-aligned sample. A heat transfer model that includes all relevant interfaces is presented and verified via thermal imaging, which provides good estimates of dimensions, power production, and resistance required to reach the desired temperature for actuation while maintaining safe electrical potentials. The LCN films displace up to 11 mm with a bending force of 1.10 mN upon application of 0-15 V potentials. The robustness of the LCN finger is confirmed by repetitive on/off switching for 500 cycles. Actuators are assembled into two prototypes able to grip and lift objects of small weights (70-100 mg) and perform complex actions by individually controlling one of the device's fingers to grip an additional object. Selective actuation of parts in soft robotic devices will enable more complex motions and actions to be performed.
Collapse
Affiliation(s)
- Laura
S. van Hazendonk
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Zafeiris J. Khalil
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Wilko van Grondelle
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Levina E. A. Wijkhuijs
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Ingeborg Schreur-Piet
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Center
for Multiscale Electron Microscopy, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Michael G. Debije
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Stimuli-responsive
Functional Materials and Devices (SFD), Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Center
for Multiscale Electron Microscopy, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
22
|
Zhang J, Zhang Y, Yang J, Wang X. Beyond Color Boundaries: Pioneering Developments in Cholesteric Liquid Crystal Photonic Actuators. MICROMACHINES 2024; 15:808. [PMID: 38930778 PMCID: PMC11205596 DOI: 10.3390/mi15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Creatures in nature make extensive use of structural color adaptive camouflage to survive. Cholesteric liquid crystals, with nanostructures similar to those of natural organisms, can be combined with actuators to produce bright structural colors in response to a wide range of stimuli. Structural colors modulated by nano-helical structures can continuously and selectively reflect specific wavelengths of light, breaking the limit of colors recognizable by the human eye. In this review, the current state of research on cholesteric liquid crystal photonic actuators and their technological applications is presented. First, the basic concepts of cholesteric liquid crystals and their nanostructural modulation are outlined. Then, the cholesteric liquid crystal photonic actuators responding to different stimuli (mechanical, thermal, electrical, light, humidity, magnetic, pneumatic) are presented. This review describes the practical applications of cholesteric liquid crystal photonic actuators and summarizes the prospects for the development of these advanced structures as well as the challenges and their promising applications.
Collapse
Affiliation(s)
- Jinying Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China
| | - Yexiaotong Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| | - Jiaxing Yang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| | - Xinye Wang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| |
Collapse
|
23
|
Du L, Zhong Y, Zhao L, Hu C, Shen L, Yang Y, Zhong J. Self-healing polyacrylates based on dynamic disulfide and quadruple hydrogen bonds. SOFT MATTER 2024; 20:3612-3619. [PMID: 38619442 DOI: 10.1039/d4sm00257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, a self-healing polyacrylate system was successfully prepared by introducing crosslinking agents containing disulfide bonds and monomers capable of forming quadruple hydrogen bonds through free radical copolymerization. This polymer material exhibited good toughness and self-healing properties through chemical and physical dual dynamic networks while maintaining excellent mechanical properties, which expanded the development path of self-healing acrylate materials. Compared to uncrosslinked and single dynamically crosslinked polymers, its elongation at break was as high as 437%, and its tensile strength was 5.48 MPa. Due to the presence of dual reversible dynamic bonds in the copolymer system, good self-healing was also achieved at 60 °C. In addition, differential scanning calorimetry and thermogravimetric analysis measurements confirmed that the thermal stability and glass transition temperature of the material were improved owing to the presence of physical and chemical cross-linking networks.
Collapse
Affiliation(s)
- Longjin Du
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Yuting Zhong
- School of Education, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Linying Zhao
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Chengzhen Hu
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Liang Shen
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Yuping Yang
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Jiang Zhong
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| |
Collapse
|
24
|
Chen K, Li M, Yang Z, Ye Z, Zhang D, Zhao B, Xia Z, Wang Q, Kong X, Shang Y, Liu C, Yu H, Cao A. Ultra-Large Stress and Strain Polymer Nanocomposite Actuators Incorporating a Mutually-Interpenetrated, Collective-Deformation Carbon Nanotube Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313354. [PMID: 38589015 DOI: 10.1002/adma.202313354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Stimulus-responsive polymer-based actuators are extensively studied, with the challenging goal of achieving comprehensive performance metrics that include large output stress and strain, fast response, and versatile actuation modes. The design and fabrication of nanocomposites offer a promising route to integrate the advantages of both polymers and nanoscale fillers, thus ensuring superior performance. Here, it is started from a three-dimensional (3D) porous sponge to fabricate a mutually interpenetrated nanocomposite, in which the embedded carbon nanotube (CNT) network undergoes collective deformation with the shape memory polymer (SMP) matrix during large-degree stretching and releasing, increases junction density with polymer chains and enhances molecular orientation. These features result in substantial improvement of the overall mechanical properties and during thermally actuated contraction, the bulk SMP/CNT composites exhibit output stresses up to 19.5 ± 0.97 MPa and strains up to 69%, accompanied by a rapid response and high energy density, exceeding the majority of recent reports. Furthermore, electrical actuation is also demonstrated via uniform Joule heating across the self-percolated CNT network. Applications such as low-temperature thermal actuated vascular stent and wound dressing are explored. These findings lay out a universal blueprint for developing robust and highly deformable SMP/CNT nanocomposite actuators with broad potential applications.
Collapse
Affiliation(s)
- Kun Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zifan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziming Ye
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhiyuan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qi Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaobing Kong
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chenyang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
25
|
Chen L, Li W, Hou X, Feng G. La-Doped Sm 2Zr 2O 7/PU-Coated Leather Composites with Enhanced Mechanical Properties and Highly Efficient Photocatalytic Performance. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1575. [PMID: 38612089 PMCID: PMC11012683 DOI: 10.3390/ma17071575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Flexible La-doped Sm2Zr2O7/polyurethane (PU) coated leather composites were synthesized using a one-step hydrothermal method, with highly efficient photocatalytic degradation properties by coating the La-doped Sm2Zr2O7/PU emulsion onto the leather and drying it. The phase composition and optical properties of the as-prepared photocatalytic material were systematically characterized. The result revealed that La was doped in Sm2Zr2O7 successfully, and the prepared samples still possessed pyrochlore structure. The absorption edge of the prepared samples exhibited a red-shift with the increase in La doping, indicating that La doping could broaden the absorbance range of the La-doped Sm2Zr2O7 materials. The catalytic performance of La-doped Sm2Zr2O7/PU composite emulsion coating on the photocatalytic performance of leather was studied with Congo red solution as the target pollutant. The results showed that the best photocatalytic property was found in the 5% La-doped Sm2Zr2O7 nanomaterial at a concentration of 3 g/L. The resulting 5% La-doped Sm2Zr2O7 nanomaterial exhibited a high specific surface area of 73.5 m2/g. After 40 min of irradiation by a 450 W xenon lamp, the degradation rate of Congo red reached 93%. Moreover, after surface coating, the La-doped Sm2Zr2O7/PU coated leather composites showed obviously improved mechanical properties, as the tensile strength of La-doped Sm2Zr2O7/PU coated leather composites increased from 6.3 to 8.4 MPa. The as-prepared La-doped Sm2Zr2O7/PU coated leather composites with enhanced mechanical properties and highly efficient photocatalytic performance hold promising applications in the treatment of indoor volatile organic compounds.
Collapse
Affiliation(s)
- Liliang Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, China; (L.C.); (X.H.)
- Chongqing Changan Global R&D Center, Changan Automobile Co., Ltd., Chongqing 400023, China;
| | - Weiguo Li
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, China; (L.C.); (X.H.)
| | - Xianbo Hou
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, China; (L.C.); (X.H.)
| | - Gang Feng
- Chongqing Changan Global R&D Center, Changan Automobile Co., Ltd., Chongqing 400023, China;
| |
Collapse
|
26
|
Morang S, Bandyopadhyay A, Borah N, Kar A, Mandal BB, Karak N. Photoluminescent Self-Healable Waterborne Polyurethane/Mo and S Codoped Graphitic Carbon Nitride Nanocomposite with Bioimaging and Encryption Capability. ACS APPLIED BIO MATERIALS 2024; 7:1910-1924. [PMID: 38391158 DOI: 10.1021/acsabm.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Creating polymers that combine various functions within a single system expands the potential applications of such polymeric materials. However, achieving polymer materials that possess simultaneously elevated strength, toughness, and self-healing capabilities, along with special properties, remains a significant challenge. The present study demonstrates the preparation of S and Mo codoped graphitic carbon nitride (g-C3N4) (Mo@S-CN) nanohybrid and the fabrication of self-healing waterborne polyurethane (SHWPU)/Mo@S-CN (SHWPU/NS) nanocomposites for advanced applications. Mo@S-CN is an intriguing combination of g-C3N4 nanosheets and molybdenum oxide (MoOx) nanorods, forming a complex lamellar structure. This unique arrangement significantly improves the inborn properties of SHWPU to an impressive degree, especially mechanical strength (28.37-34.11 MPa), fracture toughness (73.65-140.98 MJ m-2), and thermal stability (340.17-348.01 °C), and introduces fluorescence activity into the matrix. Interestingly, a representative SHWPU/NS0.5 film is so tough that a dumbbell of 15 kg, which is 53,003 times heavier than the weight of the film, can be successfully lifted without any significant crack. Remarkably, fluorescence activity is developed because of electronic excitations occurring within the repeating polymeric tris-triazine units of the Mo@S-CN nanohybrid. This fascinating feature was effectively harnessed by assessing the usability of aqueous dispersions of the Mo@S-CN nanohybrid and photoluminescent SHWPU/NS nanocomposites as sustainable stains for bioimaging of human dermal fibroblast cells and anticounterfeiting materials, respectively. The in vitro fluorescence tagging test showed blue emission from 365 nm excitation, green emission from 470 nm excitation, and red emission from 545 nm excitation. Most importantly, in vitro hemocompatibility assessment, in vitro cytocompatibility, cell proliferation assessment, and cellular morphology assessment supported the biocompatibility nature of the Mo@S-CN nanohybrid and SHWPU/NS nanocomposites. Thus, these materials can be used for advanced applications including bioimaging.
Collapse
Affiliation(s)
- Samiran Morang
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nobomi Borah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Annesha Kar
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| |
Collapse
|
27
|
Wu W, Chu Y, Zhang T, He T, Hao J. Liquid Crystal Electrolyte with Lamellar Ionic Channels for All-In-One Gel Flexible Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305463. [PMID: 37939300 DOI: 10.1002/smll.202305463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Liquid crystalline hydrogels with nanoscale order are an attractive soft material to transport ions or electrons with high efficiency. By employing noncovalent interactions between amphiphiles and solvents, defined anisotropic ordered structures can assemble that serve as interior transmissible channels. Herein, the phase behaviors of a polymerizable amphiphile of 1-vinyl-3-alkylimidazolium bromide (VCn IMBr, n = 12, 14, 16) are investigated at different concentrations in a deep eutectic solvent. The aggregation such as micelle, hexagonal, and lamellar liquid crystal phase is created. Through in-phase polymerization, the lamellar structures within an an isotropic liquid crystal can be well solidified to obtain a conductive gel electrolyte. A sandwich-structured all-in-one gel flexible supercapacitor is then built with this specific gel electrolyte. With greatly increased adhesion and minimized interfacial resistance between electrode and electrolyte, the approach will be able to create energy-storage devices with anisotropic ionic and electronic charge transportations envisioned for various electrochemical applications.
Collapse
Affiliation(s)
- Wenna Wu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yiran Chu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264000, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao He
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264000, China
| |
Collapse
|
28
|
Wang H, Chen R, Song D, Sun G, Yu J, Liu Q, Liu J, Zhu J, Liu P, Wang J. Silicone-modified polyurea-interpenetrating polymer network fouling release coatings with excellent wear resistance property tailored to regulations. J Colloid Interface Sci 2024; 653:971-980. [PMID: 37776724 DOI: 10.1016/j.jcis.2023.09.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
The invasion of alien species via marine organisms attaching to the surfaces of ship hulls is a growing problem. A number of countries have introduced corresponding regulations to combat ship biofouling. One effective way to solve this problem is to apply a fouling release coating with excellent wear resistance. In this study, a silicone-modified polyaspartic ester polyurea was synthesized by a simultaneous crosslinking polymerization. Polyaspartic ester polyurea is employed to form a tightly cross-linked network with excellent toughness and outstanding adhesion, while polydimethylsiloxane is used to form a relatively soft cross-linked network with low surface energy and surface elasticity modulus. Polyurea and silicone molecular chain lock onto each other to form interpenetrating polymer network (IPN) through their respective polymerization systems and cross-linking processes. The synergy between silicone and polyurea provides excellent mechanical properties as well as fouling release performance through the locking mechanism. This study provides a promising and universal strategy for the development of fouling release coatings with excellent wear resistance.
Collapse
Affiliation(s)
- Hongxia Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China.
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| |
Collapse
|
29
|
Xu M, Li X, Zhou D, Chen Y, Zhang L, Yao L, Liu Y. Light and Humidity Dual-Responsive Anti-Counterfeiting Films Based on Hydrogen-Bonded Cholesteric Liquid Crystal Polymers with Spiropyran. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58955-58966. [PMID: 38052001 DOI: 10.1021/acsami.3c16079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
There is still significant room for improvement when combining structural color with fluorescence patterns in dual anti-counterfeiting and dynamic anti-counterfeiting labels. In this study, we achieved significant breakthroughs under dual anti-counterfeiting conditions by using the structural color properties of the hydrogen-bonded cholesteric liquid crystal (HBCLC) and combining them with the fluorescence dye spiropyran (SP) to create anti-counterfeiting patterns. The anti-counterfeiting label can only display storage information after meeting the conditions of humidity and ultraviolet light (UV) and has the functions of dynamic encryption and repeated reading. We adjusted the center of the reflection band of the HBCLC film to transition from red to infrared under 40-90% relative humidity (RH) conditions and used it as a background film to draw anti-counterfeiting patterns with SP. Since these fluorescence dyes can switch between merocyanine (MC) (red) and SP (colorless) under UV and visible light conditions, when combined with the HBCLC, orthogonal dynamic encryption was achieved. Additionally, with the adsorption of SP, the reflection band of HBCLC films under the same humidity range increased from around 160 nm to around 260 nm, greatly improving the sensitivity to humidity changes. Furthermore, under UV conditions, it can still emit red fluorescence, demonstrating a polymorphic encryption feature, which greatly increased the complexity of the anti-counterfeiting pattern with significant significance to dynamic anti-counterfeiting and information storage.
Collapse
Affiliation(s)
- Minxing Xu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Xiaolan Li
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Dong Zhou
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Yuzhou Chen
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Lingli Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Lishuang Yao
- Department of Physics, College of Science, Shantou University, Shantou 515063, China
| | - Yongjun Liu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
30
|
Jin B, Zhu Z, Wong TW, Chen G. Network Topology Optimization for Alignment Programming of a Dynamic Liquid Crystalline Organo-Gel. ACS Macro Lett 2023; 12:1486-1490. [PMID: 37874195 DOI: 10.1021/acsmacrolett.3c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Liquid crystalline elastomers (LCEs) exhibit muscle-like actuation upon an external stimulus. To control this, various alignment programming strategies have been developed over the past decades. Among them, force-directed solvent evaporation, namely, that the alignment depends on the applied external force during solvent evaporation, is appreciated for its universality in material design and versatility in attainable actuations. Here, we investigate the influence of network topology on the alignment programming of a liquid crystalline (LC) organo-gel via varying feeding ratios of the monomers. As a result, distinct self-supporting actuations can be repeatedly introduced into a topology-optimized LC organo-gel. Beyond this, the bond exchange reaction of the embedded ester groups can be activated upon heating, which enables alignment manipulation based on dynamic network reconfiguration after drying. The availability of inviting two distinct programming strategies into one LCE network allows us to regulate the LCE alignment at both the gel and dried states, offering ample room to diversify actuation manners. Our design principle shall be adopted by other dynamic LCE systems owing to its maneuverability.
Collapse
Affiliation(s)
- Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhan Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Tuck-Whye Wong
- Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Guancong Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
31
|
Chen G, Feng H, Zhou X, Gao F, Zhou K, Huang Y, Jin B, Xie T, Zhao Q. Programming actuation onset of a liquid crystalline elastomer via isomerization of network topology. Nat Commun 2023; 14:6822. [PMID: 37884494 PMCID: PMC10603074 DOI: 10.1038/s41467-023-42594-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Tuning actuation temperatures of liquid crystalline elastomers (LCEs) achieves control of their actuation onsets, which is generally accomplished in the synthesis step and cannot be altered afterward. Multiple actuation onsets in one LCE can be encoded if the post-synthesis regulation of actuation temperature can be spatiotemporally achieved. This would allow realizing a logical time-evolution of actuation, desired for future soft robots. Nevertheless, this task is challenging given the additional need to ensure mesogen alignment required for actuation. We achieved this goal with a topology isomerizable network (TIN) of LCE containing aromatic and aliphatic esters in the mesogenic and amorphous phases, respectively. These two ester bonds can be distinctly activated for transesterification. The homolytic bond exchange between aliphatic esters allows mechanically induced mesogen alignment without affecting the mesogenic phase. Most importantly, the heterolytic exchange between aromatic and aliphatic esters changes the actuation temperature under different conditions. Spatial control of the two mechanisms via a photo-latent catalyst unleashes the freedom in regulating actuation temperature distribution, yielding unusual controllability in actuation geometries and logical sequence. Our principle is generally applicable to common LCEs containing both aromatic and aliphatic esters.
Collapse
Affiliation(s)
- Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Haijun Feng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xiaorui Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Feng Gao
- National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Kai Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
32
|
Wu Y, Pei D, Wei F, Liu P, Li M, Li T, Li C. Tough and Photo-Plastic Liquid Crystal Elastomer with a 2-Fold Dynamic Linker for Artificial Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44205-44211. [PMID: 37672356 DOI: 10.1021/acsami.3c08390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Liquid crystal elastomers (LCEs) have been optimized by combining cross-linkers and dynamic bonds to achieve a reversible actuation behavior comparable to living skeletal muscles. In this study, one unique type of segment with 2-fold dynamic properties was introduced into LCEs, which offered not only dynamic diselenide covalent bonds for thermo-/photoplasticity but also H-bond arrays for dynamic cross-linking and mechanical robustness. Besides self-healing, self-welding, and recyclability, the LCEs were reprogrammable with elevated temperature or intensive visible light irradiation. The resultant LCEs gave an actuation blocking stress of 1.96 MPa and an elastic modulus of 14.4 MPa at 80 °C. The actuation work capacity reached 135.2 kJ m-3. When incorporating the Joule electrode or photothermal materials, the LCEs could be programmed as the electricity-driven and photothermal artificial muscles and thereby promised the application both as a biomimetic artificial hand and as an energy collector from sunlight. Thus, the 2-fold dynamic LCEs offered the pathway of enabling the reversible actuation behavior comparable to living skeletal muscles and promising applications in sustainable actuators, artificial muscles, and soft robots.
Collapse
Affiliation(s)
- Yongpeng Wu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
| | - Danfeng Pei
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
| | - Fang Wei
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
| | - Ping Liu
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
| |
Collapse
|
33
|
Fan Y, Liu T, Li Y, Miao X, Chen B, Ding J, Dong Z, Rios O, Bao B, Lin Q, Zhu L. One-Step Manufacturing of Supramolecular Liquid-Crystal Elastomers by Stress-Induced Alignment and Hydrogen Bond Exchange. Angew Chem Int Ed Engl 2023; 62:e202308793. [PMID: 37496468 DOI: 10.1002/anie.202308793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Liquid-crystal elastomers (LCEs) capable of performing large and reversible deformation in response to an external stimulus are an important class of soft actuators. However, their manufacturing process typically involves a multistep approach that requires harsh conditions. For the very first time, LCEs with customized geometries that can be manufactured by a rapid one-step approach at room temperature are developed. The LCEs are hydrogen bond (H-bond) crosslinked main chain polymers comprising flexible short side chains. Applying a stretching/shear force to the LCE can simultaneously induce mesogen alignment and H-bond exchange, allowing for the formation of well-aligned LCE networks stabilized by H-bonds. Based on this working principle, soft actuators in fibers and 2D/3D objects can be manufactured by mechanical stretching or melt extrusion within a short time (e.g. <1 min). These actuators can perform reversible macroscopic motions with large, controlled deformations up to 38 %. The dynamic nature of H-bonds also provides the actuators with reprocessability and reprogrammability. Thus, this work opens the way for the one-step and custom manufacturing of soft actuators.
Collapse
Affiliation(s)
- Yuexin Fan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xuepei Miao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, P. R. China
| | - Baihang Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhixiang Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Orlando Rios
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
34
|
Li L, Bai H, Dong X, Jiang Y, Li Q, Wang Q, Yuan N, Ding J. Flexible Capacitive Sensors Based on Liquid Crystal Elastomer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12412-12419. [PMID: 37620278 DOI: 10.1021/acs.langmuir.3c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The disordered transformation of the ordered aligned polar liquid crystal molecules in liquid crystal elastomers (LCEs) under the influence of an external field imbues them with the unique property of thermally reversible shape memory, making them highly valuable for various applications, particularly in actuators. In this study, we examined the high dielectric constant exhibited by the orientation polarization of polar liquid crystal molecules in RM257-LCE films, which holds significant potential for developing flexible capacitive sensors. By manipulating the flexibility of the molecular chain network and introducing hydrogen bonds and metal ions into the main chain, we were able to enhance the relative dielectric constant of LCEs to an impressive value of 62 (at 100 Hz), which is approximately 23 times higher than for polydimethylsiloxane (PDMS). This elevated dielectric constant displays a noteworthy positive temperature coefficient within a specific temperature range, starting from room temperature and extending to the clearing point. Using this property, we fabricated highly sensitive capacitive, flexible temperature sensors. Moreover, we successfully engineered a flexible pressure sensor with an excellent pressure-sensing range of 0-2 MPa by combining the porous structure of the prepared LCEs with mushroom electrodes. Additionally, the sensor showcases a remarkable capacitance recovery time of 0.8 s at 90 °C. These outstanding features collectively contribute to the excellent pressure-sensing characteristics of our sensor. The findings of this study offer valuable insights and serve as a reference for the design of innovative flexible sensors, enabling advancements in sensor technology.
Collapse
Affiliation(s)
- Lvzhou Li
- Institute of Technology for Carbon Neutralization, Yangzhou University, School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Hongyu Bai
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Xu Dong
- Institute of Technology for Carbon Neutralization, Yangzhou University, School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Yaoyao Jiang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Qingyue Li
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Qi Wang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jianning Ding
- Institute of Technology for Carbon Neutralization, Yangzhou University, School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
35
|
Huang Y, Xu Y, Bisoyi HK, Liu Z, Wang J, Tao Y, Yang T, Huang S, Yang H, Li Q. Photocontrollable Elongation Actuation of Liquid Crystal Elastomer Films with Well-Defined Crease Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304378. [PMID: 37421658 DOI: 10.1002/adma.202304378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Although liquid crystal elastomers (LCEs) have demonstrated various applications in artificial muscles and soft robotics, their inherent flexibility and orientation-dependent forces limit their functions. For instance, LCEs can sustain a high actuation force when they contract but cannot elongate to drive loads with large displacements. In this study, it is demonstrated that photocontrollable elongation actuation with a large strain can be achieved in polydomain LCEs by programming the crease structures in a well-defined order to couple the actuation forces. Efficient photoactuation without overheating-induced damage to the materials is favored, based on the well-designed photosensitive molecular switch crosslinker via the synergy of photochemical and photothermal effects. The LCE actuator can jack up heavy loads, elongate freely, and contract back to manipulate distant objects. Theoretical analysis based on a finite element simulation of the deformation energy during the actuation process reveals a trade-off between the abilities of jacking-up and withstanding load. More importantly, this study simplifies the design of a single material with functions inherent only in other soft robotic devices based on the assembly of multiple modules, thus providing a design strategy for surpassing instinctive properties of conventional soft materials to expand the functions of soft robotics.
Collapse
Affiliation(s)
- Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Zhongcheng Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yu Tao
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Tao Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
36
|
Zhang X, Liao W, Wang Y, Yang Z. Thermal-Responsive Liquid Crystal Elastomer Foam-based Compressible and Omnidirectional Gripper. Chem Asian J 2023; 18:e202300340. [PMID: 37325932 DOI: 10.1002/asia.202300340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
Liquid crystal elastomers (LCEs) are considered to be a promising material for the fabrication of soft grippers because of their large and reversible deformations, an LCE gripper with suitable compressibility and omnidirectionality has not yet been developed. To overcome these obstacles, this study utilizes salt template method to fabricate a rod-like LCE foam as gripper. The thickness of the compressible foam can be reduced by up to 77%, temporarily maintaining the deformation and enabling the gripper to pass through slits. The foam was aligned along the long axis and the length of the foam exhibits reversible thermal responsiveness and contract up to 57% along its alignment. Additionally, when the foam approaches a heat source, the generated temperature gradient results in a contraction gradient owing to the low thermal conductivity of the LCE foam. This in turn causes the foam to reversibly bend with a bending angle up to 93° and follow the movement of a heat source omnidirectionally. The developed gripper successfully grasps, moves, and releases hot objects in a cold and safe place, demonstrating its potential for emergency disposal. Thus, LCE foams can be considered suitable materials for novel gripper design and construction.
Collapse
Affiliation(s)
- Xinyuhang Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Wei Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yunpeng Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
37
|
Lan R, Shen W, Yao W, Chen J, Chen X, Yang H. Bioinspired humidity-responsive liquid crystalline materials: from adaptive soft actuators to visualized sensors and detectors. MATERIALS HORIZONS 2023; 10:2824-2844. [PMID: 37211901 DOI: 10.1039/d3mh00392b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inspired by nature, humidity-responsive materials and devices have attracted significant interest from scientists in multiple disciplines, ranging from chemistry, physics and materials science to biomimetics. Owing to their superiorities, including harmless stimulus and untethered control, humidity-driven materials have been widely investigated for application in soft robots, smart sensors and detectors, biomimetic devices and anticounterfeiting labels. Especially, humidity-responsive liquid crystalline materials are particularly appealing due to the combination of programmable and adaptive liquid crystal matrix and humidity-controllability, enabling the fabrication of advanced self-adaptive robots and visualized sensors. In this review, we summarize the recent progress in humidity-driven liquid crystalline materials. First, a brief introduction of liquid crystal materials, including liquid crystalline polymers, cholesteric liquid crystals, blue-phase liquid crystals and cholesteric cellulose nanocrystals is provided. Subsequently, the mechanisms of humidity-responsiveness are presented, followed by the diverse strategies for the fabrication of humidity-responsive liquid crystalline materials. The applications of humidity-driven devices will be presented ranging from soft actuators to visualized sensors and detectors. Finally, we provide an outlook on the development of humidity-driven liquid crystalline materials.
Collapse
Affiliation(s)
- Ruochen Lan
- Institute of Advanced Materials & Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Wenbo Shen
- Hangzhou WITLANCE Technology Co. Ltd, Hangzhou 310024, China
| | - Wenhuan Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingyu Chen
- Institute of Advanced Materials & Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Xinyu Chen
- Institute of Advanced Materials & Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
38
|
Zhang Y, Wang X, Yang W, Yan H, Zhang X, Han D, He Y, Li C, Sun L. Programmable Complex Shape Changing of Polysiloxane Main-Chain Liquid Crystalline Elastomers. Molecules 2023; 28:4858. [PMID: 37375413 DOI: 10.3390/molecules28124858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are shape-morphing materials whose large and reversible shape transformations are caused by the coupling between the mobile anisotropic properties of liquid crystal (LC) units and the rubber elastic of polymer networks. Their shape-changing behaviors under certain stimuli are largely directed by the LC orientation; therefore, various strategies have been developed to spatially modulate the LC alignments. However, most of these methods are limited as they require complex fabrication technologies or have intrinsic limitations in applicability. To address this issue, programmable complex shape changes in some LCE types, such as polysiloxane side-chain LCEs, thiol-acrylate main-chain LCEs, etc., were achieved by using a mechanical alignment programming process coupled with two-step crosslinking. Here, we report a polysiloxane main-chain LCE with programmable 2- and 3D shape-changing abilities that were created by mechanically programming the polydomain LCE with two crosslinking steps. The resulting LCEs exhibited a reversible thermal-induced shape transformation between the initial and programmed shapes due to the two-way memory between the first and second network structures. Our findings expand on the applications of LCE materials in actuators, soft robotics, and smart structures where arbitrary and easily programmed shape morphing is needed.
Collapse
Affiliation(s)
- Yuhe Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Wenlong Yang
- Department of Applied Science, Harbin University of Science and Technology, Harbin 150080, China
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Xinyu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Dongxu Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Liguo Sun
- Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
39
|
Yao Y, He E, Xu H, Liu Y, Yang Z, Wei Y, Ji Y. Enabling liquid crystal elastomers with tunable actuation temperature. Nat Commun 2023; 14:3518. [PMID: 37316483 DOI: 10.1038/s41467-023-39238-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Liquid crystalline elastomers are regarded as a kind of desirable soft actuator material for soft robotics and other high-tech areas. The isotropization temperature (Ti) plays an important role as it determines the actuation temperature and other properties, which in turn has a great effect on their applications. In the past, the common physical methods (e.g. annealing) to tune Ti is not applicable to tune the actuation temperature. The new Ti obtained by annealing immediately goes back to the old one once it is heated to a temperature above Ti, while actuation needs a temperature higher than Ti. For a fully cross-linked LCE material, once it is synthesized, the actuation temperature is fixed. Accordingly, the actuation temperature can not be tuned unless the chemical structure is changed, which usually needs to start from the very beginning of the molecular design and material synthesis. Here, we found that different Ti achieved by annealing can be preserved by reversible reactions of dynamic covalent bonds in covalently adaptable LC networks including LC vitrimers. Thus, a variety of soft actuators with different actuation temperatures can be obtained from the same fully cross-linked LCE material. As the tuning of Ti is also reversible, the same actuator can be adjusted for applications with different actuation temperature requirements. Such tuning will also expand the application of LCEs.
Collapse
Affiliation(s)
- Yanjin Yao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, 32023, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Yao Y, He E, Xu H, Liu Y, Wei Y, Ji Y. Fabricating liquid crystal vitrimer actuators far below the normal processing temperature. MATERIALS HORIZONS 2023; 10:1795-1805. [PMID: 36857698 DOI: 10.1039/d3mh00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Liquid crystal vitrimers can be reprocessed, reshaped, welded, and healed due to exchange-reaction-enabled topology changes despite having fully covalently cross-linked network structures. Fabricating liquid crystal (LC) vitrimer actuators is invariably carried out above a characteristic temperature known as the topology freezing transition temperature (Tv). The reason that all exchange-reaction-based operations must be performed above Tv is because the exchange reaction is insignificant below Tv. Here we find that LC vitrimers can be reshaped at temperatures below the measured Tv, whereas non-LC vitrimers cannot. The work here not only makes it possible to create reprogrammable and stable LC vitrimer actuators at low temperatures but also reminds us that both our measurement and understanding of the Tv need further attention to facilitate the use of vitrimers in different areas.
Collapse
Affiliation(s)
- Yanjin Yao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
- Chung-Yuan Christian University, Chung-Li, 32023, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| |
Collapse
|
41
|
Yang Z, Li J, Chen X, Fan Y, Huang J, Yu H, Yang S, Chen EQ. Precisely Controllable Artificial Muscle with Continuous Morphing based on "Breathing" of Supramolecular Columns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211648. [PMID: 36634260 DOI: 10.1002/adma.202211648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Skeletal muscles are natural motors executing sophisticated work through precise control of linear contraction. Although various liquid crystal polymers based artificial muscles have been designed, the mechanism based on mainly the order-disorder transition usually leads to discrete shape morphing, leaving arbitrary and precise deformation a huge challenge. Here, one novel photoresponsive hemiphasmidic side-chain liquid crystal polymer with a unique "breathing" columnar phase that enables continuous morphing is presented. Due to confinement inside the supramolecular columnar assembly, the cooperative movements of side-chains and backbones generate a significant negative thermal expansion and lead to temperature-controllable muscle-like elongation/contraction in the oriented polymer strip. The irreversible isomerization of the photoresponsive mesogens results in the synergistic phototunable bending and high-contrast fluorescence change. Based on the orthogonal responses to heat and light, controllable arm-like bending motions of this material, which is applicable in constructing advanced artificial muscles or intelligent soft robotics, are further demonstrated.
Collapse
Affiliation(s)
- Zifan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiahua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yining Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Huang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100871, P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
42
|
Wang Y, He Q, Wang Z, Zhang S, Li C, Wang Z, Park YL, Cai S. Liquid Crystal Elastomer Based Dexterous Artificial Motor Unit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211283. [PMID: 36806211 DOI: 10.1002/adma.202211283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Indexed: 05/17/2023]
Abstract
Despite the great advancement in designing diverse soft robots, they are not yet as dexterous as animals in many aspects. One challenge is that they still lack the compact design of an artificial motor unit with a great comprehensive performance that can be conveniently fabricated, although many recently developed artificial muscles have shown excellent properties in one or two aspects. Herein, an artificial motor unit is developed based on gold-coated ultrathin liquid crystal elastomer (LCE) film. Subject to a voltage, Joule heating generated by the gold film increases the temperature of the LCE film underneath and causes it to contract. Due to the small thermal inertial and electrically controlling method of the ultrathin LCE structure, its cyclic actuation speed is fast and controllable. It is shown that under electrical stimulation, the actuation strain of the LCE-based motor unit reaches 45%, the strain rate reaches 750%/s, and the output power density is as high as 1360 W kg-1 . It is further demonstrated that the LCE-based motor unit behaves like an actuator, a brake, or a nonlinear spring on demand, analogous to most animal muscles. Finally, as a proof-of-concept, multiple highly dexterous artificial neuromuscular systems are demonstrated using the LCE-based motor unit.
Collapse
Affiliation(s)
- Yang Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qiguang He
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shengjia Zhang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shengqiang Cai
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
43
|
Silva PES, Lin X, Vaara M, Mohan M, Vapaavuori J, Terentjev EM. Active Textile Fabrics from Weaving Liquid Crystalline Elastomer Filaments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210689. [PMID: 36639143 DOI: 10.1002/adma.202210689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Active fabrics, responding autonomously to environmental changes, are the "Holy Grail" of the development of smart textiles. Liquid crystal elastomers (LCEs) promise to be the base materials for large-stroke reversible actuation. The mechanical behavior of LCEs matches almost exactly the human muscle. Yet, it has not been possible to produce filaments from LCEs that will be suitable for standard textile production methods, such as weaving. Based on the recent development of LCE fibers, here, the crafting of active fabrics incorporating LCE yarn, woven on a standard loom, giving control over the weave density and structure, is presented. Two types of LCE yarns (soft and stiff) and their incorporation into several weaving patterns are tested, and the "champions" identified: the twill pattern with stiffer LCE yarn that shows the greatest blocking force of 1-2 N cm-1 , and the weft rib pattern with over 10% reversible actuation strain on repeated heating cycles. Reversible 3D shape changes of active fabric utilize the circular weaving patterns that lead to cone shapes upon heating. The seamless combination of active LCE yarns into the rich portfolio of existing passive yarns can be transformative in creating new stimuli-responsive actuating textiles.
Collapse
Affiliation(s)
- Pedro E S Silva
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Xueyan Lin
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Maija Vaara
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Mithila Mohan
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
44
|
Yang J, Zhang H, Berdin A, Hu W, Zeng H. Dandelion-Inspired, Wind-Dispersed Polymer-Assembly Controlled by Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206752. [PMID: 36574479 PMCID: PMC9982548 DOI: 10.1002/advs.202206752] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Indexed: 06/01/2023]
Abstract
The rise of stimuli-responsive polymers has brought about a wealth of materials for small-scale, wirelessly controlled soft-bodied robots. Thinking beyond conventional robotic mobilities already demonstrated in synthetic systems, such as walking, swimming and jumping, flying in air by dispersal, gliding, or even hovering is a frontier yet to be explored by responsive materials. The demanding requirements for actuator's performance, lightweight, and effective aerodynamic design underlie the grand challenges. Here, a soft matter-based porous structure capable of wind-assisted dispersal and lift-off/landing action under the control of a light beam is reported. The design is inspired by the seed of dandelion, resembling several biomimetic features, i.e., high porosity, lightweight, and separated vortex ring generation under a steady wind flow. Superior to its natural counterparts, this artificial seed is equipped with a soft actuator made of light-responsive liquid crystalline elastomer, which induces reversible opening/closing actions of the bristles upon visible light excitation. This shape-morphing enables manual tuning of terminal velocity, drag coefficient, and wind threshold for dispersal. Optically controlled wind-assisted lift-off and landing actions, and a light-induced local accumulation in descending structures are demonstrated. The results offer novel approaches for wirelessly controlled, miniatured devices that can passively navigate over a large aerial space.
Collapse
Affiliation(s)
- Jianfeng Yang
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Hang Zhang
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI‐02150Finland
| | - Alex Berdin
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Wenqi Hu
- Max Planck Institute for Intelligent Systems, Stuttgart70569StuttgartGermany
| | - Hao Zeng
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| |
Collapse
|
45
|
Jiang Y, Dong X, Zhu S, Dai S, Bai H, Li Q, Li L, Yuan N, Ding J. Skin-friendly and antibacterial monodomain liquid crystal elastomer actuator. Colloids Surf B Biointerfaces 2023; 222:113110. [PMID: 36586236 DOI: 10.1016/j.colsurfb.2022.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Monodomain liquid crystal elastomers (mLCEs) are flexible and biocompatible smart materials that show unique behaviors of soft elasticity, anisotropy, and reversible shape changes above the nematic-isotropic transition temperature. Therefore, it has great potential for application in wearable devices and biologically. However, most of the reported mLCEs have nematic-isotropic transition temperature (TNI) higher than 60 °C; and above this TNI, the tensile strength of the mLCEs decreases by orders of magnitude. These issues have received little attention, limiting their application in humans. Herein, the TNI of mLCEs was reduced from 78.4 °C to 23.5 °C by substituting part of the rigid LC mesogens with a flexible backbone. The physical entanglement of hydrogen bonds between molecular chains alleviated the molecular chain slip caused by the long flexible backbone. The tensile strength remained constant during the phase transformation. Furthermore, dynamic disulfide bonds were used to modify the LC polymer network, imparting it with excellent antimicrobial, programmable, and self-healing properties. To realize its application in the closure of skin wounds, a porous PHG-mLCE/hydrogel patch that was breathable and waterproof was designed to increase skin adhesion (262 N/m).
Collapse
Affiliation(s)
- Yaoyao Jiang
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xu Dong
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Shijie Zhu
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Shengping Dai
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| | - Hongyu Bai
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Qingyue Li
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Lvzhou Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, PR China.
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jianning Ding
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China; School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
46
|
Zhang Y, Zhou J, Deng H, Fang Y, Qiao N, Ren M, Zhang Y, Zhang D, Lin H, Chen Y, Yong KT, Xiong J. Silk fibroin fibers-based shape memory membrane with Janus wettability for multitiered wearable protection. JOURNAL OF MATERIALS RESEARCH 2023; 38:633-643. [PMID: 36741987 PMCID: PMC9888350 DOI: 10.1557/s43578-022-00805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Realizing breathable shape memory fiber-based material with antibacterial and waterproof performances is important for multitiered wearable protection to address the increasing concerns of air pollution. Herein, using an alternating electrospinning-electrospraying technology, we develop a fiber-based membrane with Janus wettability based on a silk fibroin nanofibers-substrate (SFNFs), a polyurethane nanospheres-top layer (PUNSs), and a middle layer of PU nanofibers-mat with in-situ grown silver nanoparticles (PUNFs-AgNPs), which serves separately for skin contact, a self-cleaning physical barrier to resist external aerosol/bacteria (PM2.5 filtration efficiency ~ 98.1%), and a bio-barrier that can sterilize harmful particles and inhibit bacteria proliferation (> 95%). This breathable Janus film (SFNFs/PUNFs-AgNPs/PUNSs, SPAP) with an antibacterial filter shows shape memory stretchability enabled by the thermoplastic PU component, which is mechanically adaptive to human body for wearable protection. This work presents a breathable wearable material for air-filtration and anti-bacteria, promising for applications such as wound dressings, medical masks, protection suits, and multifunctional filters. GRAPHICAL ABSTRACT An alternating electrospinning-electrospraying technology was proposed to achieve a silk fibroin-based antibacterial membrane with Janus wettability, as well as good skin affinity and breathability, which serves well as physical and bio-barriers for water resistance, PM2.5 filtration (~98.1%) and bacteria inhibition (efficiency of 95%). This shape memory Janus membrane can adapt mechanically to human body curvatures for functional wearable protections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43578-022-00805-w.
Collapse
Affiliation(s)
- Yue Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Jiahui Zhou
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Heli Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Ying Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Na Qiao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Meng Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620 China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123 China
| | - Hong Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Yuyue Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Ken Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620 China
| |
Collapse
|
47
|
Tasmim S, Yousuf Z, Rahman FS, Seelig E, Clevenger AJ, VandenHeuvel SN, Ambulo CP, Raghavan S, Zimmern PE, Romero-Ortega MI, Ware TH. Liquid crystal elastomer based dynamic device for urethral support: Potential treatment for stress urinary incontinence. Biomaterials 2023; 292:121912. [PMID: 36434829 PMCID: PMC9772118 DOI: 10.1016/j.biomaterials.2022.121912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
Stress urinary incontinence (SUI) is characterized by the involuntary loss of urine due to increased intra-abdominal pressure during coughing, sneezing, or exercising. SUI affects 20-40% of the female population and is exacerbated by aging. Severe SUI is commonly treated with surgical implantation of an autologous or a synthetic sling underneath the urethra for support. These slings, however, are static, and their tension cannot be non-invasively adjusted, if needed, after implantation. This study reports the fabrication of a novel device based on liquid crystal elastomers (LCEs) capable of changing shape in response to temperature increase induced by transcutaneous IR light. The shape change of the LCE-based device was characterized in a scar tissue phantom model. An in vitro urinary tract model was designed to study the efficacy of the LCE-based device to support continence and adjust sling tension with IR illumination. Finally, the device was acutely implanted and tested for induced tension changes in female multiparous New Zealand white rabbits. The LCE device achieved 5.6% ± 1.1% actuation when embedded in an agar gel with an elastic modulus of 100 kPa. The corresponding device temperature was 44.9 °C ± 0.4 °C, and the surrounding agar temperature stayed at 42.1 °C ± 0.4 °C. Leaking time in the in vitro urinary tract model significantly decreased (p < 0.0001) when an LCE-based cuff was sutured around the model urethra from 5.2min ± 1min to 2min ±0.5min when the cuff was illuminated with IR light. Normalized leak point force (LPF) increased significantly (p = 0.01) with the implantation of an LCE-CB cuff around the bladder neck of multiparous rabbits. It decreased significantly (p = 0.023) when the device was actuated via IR light illumination. These results demonstrate that LCE material could be used to fabricate a dynamic device for treating SUI in women.
Collapse
Affiliation(s)
- Seelay Tasmim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Zuha Yousuf
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Farial S Rahman
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Emily Seelig
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sabrina N VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Cedric P Ambulo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Mario I Romero-Ortega
- Departments of Bioengineering and Biomedical Science, University of Houston, Houston, TX, 77004, USA
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
48
|
Zhang X, Yao L, Yan H, Zhang Y, Han D, He Y, Li C, Zhang J. Optical wavelength selective actuation of dye doped liquid crystalline elastomers by quasi-daylight. SOFT MATTER 2022; 18:9181-9196. [PMID: 36437786 DOI: 10.1039/d2sm01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We explore obtaining different photo responses of liquid crystalline elastomer (LCE) materials through modulating the optical wavelengths in order to promote the development of precise photocontrol on LCE actuators, and thus study the effect of light-absorbing dyes with different absorption bands on the selective actuation of LCE materials. The dye-doped LCEs were prepared by incorporating special visible absorber dyes into thiol-acrylate main chain LCE (MC-LCE) matrices. The dyes showed photo actuation performance to LCEs due to the photothermal effects. But, every dye-doped LCE could be effectively actuated by light irradiation whose wavelength was inside its absorption band, but could not be effectively actuated by the light whose wavelength was beyond its absorption band. Wavelength selective actuation effects, no matter actuating deformation or actuating force, could be remarkably demonstrated by these dye-doped LCEs through filtering the same quasi-daylight source to be different wavelength bands. Our work opens up a significant way for the precise and convenient photo actuation of LCE actuators, while expanding the utilization potential of quasi-daylight, and further natural sunlight.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liru Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuhe Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Dongxu Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
49
|
Wang J, Yuan W, Li Z, Trofimov Y, Lishik S, Fan J. A neural network-assisted 3D theoretical thermoelastic solution for laminated liquid crystal elastomer plate used in restoring cardiac mechanical function. J Mech Behav Biomed Mater 2022; 136:105478. [PMID: 36209590 DOI: 10.1016/j.jmbbm.2022.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
Abstract
Some atrial contractile assist devices applied on the heart surface can be regarded as a laminated Liquid crystal elastomer (LCE) plate under steady temperature loads and a contact mechanical force. An exact solution for the deformation of the laminated LCE plate under combined thermal and mechanical loads is derived by solving the three-dimensional (3D) equilibrium equations including heat conduction and thermoelastic theory. The validity of mathematical formula and computer programming is proved by convergence and comparison examples with finite element method (FEM). In order to simplify the complex calculation of exact solution, a back propagation neural network (BPNN) is further trained with a database containing 9504 sets of thermo-mechanical load conditions and their corresponding deformation which is solved by the exact solutions. Then the deformations of LCE plate subject to combined thermo-mechanical load can be predicted by this BP neural network instead of complex numerical calculation. Moreover, it is also applied to inverse the contact mechanical force at the bottom surface of LCE plate with a given deformation and temperature conditions. The results show that: (1) The results from the exact theoretical solution are in consistence with that from FEM but have a higher computational efficiency and stability; (2) The deformation of the laminated plate is more sensitive to the layered thickness of LCE than the variation of the temperature; (3) 3-D elasticity solutions of a laminated LCE plate under the combined thermos-mechanical load can be effectively predicted by a trained BP neural network.
Collapse
Affiliation(s)
- Jue Wang
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, 213022, China
| | - Weiyi Yuan
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, 213022, China
| | - Zichuan Li
- Department of Microelectronics, Delft University of Technology, 2628 CD, Delft, the Netherlands
| | - Yuri Trofimov
- Center of LED and Optoelectronic Technologies of NAS Belarus, Minsk, 220090, Belarus
| | - Sergey Lishik
- Center of LED and Optoelectronic Technologies of NAS Belarus, Minsk, 220090, Belarus
| | - Jiajie Fan
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, 200433, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; Department of Microelectronics, Delft University of Technology, 2628 CD, Delft, the Netherlands; Fudan Zhangjiang Institute, Shanghai, 201203, China.
| |
Collapse
|
50
|
Photo-crosslinkable and ultrastable poly(1,4-butadiene) based organogel with record-high reversible elongation upon cooling and contraction upon heating. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|