1
|
Qiu R, Cui L, Peng L, Syzgantseva OA, Li J, Fang N, Syzgantseva MA, Jiang Y, Zhang J, Zhang B, Ding L, Dong Y, Xue T, Li C, Dong JC, Ye J, Akpinar I, Yang S, Li J, Zhang J, Li JF, Han B. Cooperative promotion of electroreduction of CO to n-propanol by *CO enrichment and proton regulation. Chem Sci 2025; 16:8897-8909. [PMID: 40271032 PMCID: PMC12012631 DOI: 10.1039/d5sc00274e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
The CO2/CO electroreduction reaction (CO2RR/CORR) to liquid products presents an enticing pathway to store intermittent renewable electricity. However, the selectivity for desirable high-value C3 products, such as n-propanol, remains unsatisfactory in the CO2RR/CORR. Here, we report that *CO enrichment and proton regulation cooperatively enhance C1-C2 coupling by increasing CO pressure and utilizing proton sponge modification, promoting the production of n-propanol over a Cu0/Cu+ nanosheet catalyst in the CORR. We obtain an impressive faradaic efficiency (FE) of 44.0% ± 2.3% for n-propanol at a low potential of -0.44 V vs. reversible hydrogen electrode (RHE) under 3 bar CO. Experimental results demonstrated that *H intermediates could be regulated by proton sponge modification. In situ characterization combined with density functional theory (DFT) calculations validate that Cu+ species exist stably in proton sponge-modified Cu-based catalysts along with appropriate *CO coverage. This design facilitates the potential-determining C1-C1 and C1-C2 coupling steps and contributes to the n-propanol production.
Collapse
Affiliation(s)
- Rongxing Qiu
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Linxiao Cui
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Li Peng
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Olga A Syzgantseva
- Lomonosov Moscow State University, Peoples' Friendship University of Russia, Russia/Department of Chemistry Moscow 119991 Russia
| | - Jiaran Li
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Nan Fang
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Maria A Syzgantseva
- Department of Physics, Mendeleev University of Chemical Technology Moscow 125047 Russia
| | - Yuan Jiang
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Jie Zhang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) 1951 Sion Switzerland
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 Zhejiang P.R. China
| | - Lingzhi Ding
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Yangyang Dong
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Tianwei Xue
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Cheng Li
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Jin-Chao Dong
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Jinyu Ye
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Isil Akpinar
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Shuliang Yang
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Jun Li
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Jian-Feng Li
- College of Chemistry and Chemical Engineering, College of Energy, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
2
|
Wang J, Liu MT, Hsu CS, Chu YC, Liao YF, Pao CW, Chan TS, Chuang WT, Chen JL, Shao YC, Ishii H, Hiraoka N, Chiang CY, Chen HM. Resolving Dynamic Behavior of Electrocatalysts via Advances of Operando X-Ray Absorption Spectroscopies: Potential Artifacts and Practical Guidelines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418797. [PMID: 40125825 DOI: 10.1002/adma.202418797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Although numerous techniques are developed to enable real-time understanding of dynamic interactions at the solid-liquid interface during electrochemical reactions, further progress in the development of these methods over the last several decades has faced challenges. With the rapid development of high-brilliance synchrotron sources, operando X-ray spectroscopies have become increasingly popular for revealing interfacial features and catalytic mechanisms in electrocatalysis. Nevertheless, the resulting spectra are highly sensitive to factors such as X-ray radiation, reaction environment, and acquisition procedures, all of which may potentially introduce artifacts that are often overlooked, leading to misinterpretations of electrocatalytic behaviors. In this perspective, several emerging hard X-ray spectroscopies used in electrocatalysis research are reviewed, highlighting their electronic transition processes, detection modes, and functional complementarity. Significantly, based on a case study of operando X-ray absorption spectroscopy at various beamlines, potential artifacts generated by X-ray irradiation are systematically investigated through photon-flux density-, dose-, and time-dependent studies of typical copper electrocatalysts. Accordingly, a practical protocol for conducting reliable X-ray spectroscopic measurements in operando electrocatalytic studies to minimize potential artifacts that can affect the resulting X-ray spectra, thereby ensuring accurate interpretation and a deeper understanding of interfacial interactions and electrocatalytic mechanisms, is established.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Ting Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Shuo Hsu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - You-Chiuan Chu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yu-Cheng Shao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Hirofumi Ishii
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Nozomu Hiraoka
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Ching-Yu Chiang
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Luo D, Dai W, Wu K, Liu S, Tang C, Sun Y, Dong F, Long C. Cu-based bimetallic catalysts for electrochemical CO 2 reduction: before and beyond the tandem effect. NANOSCALE 2025; 17:9057-9071. [PMID: 40111958 DOI: 10.1039/d4nr04790g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a promising approach for carbon reduction and the production of high-value chemicals. Among the various catalysts, Cu-based bimetallic catalysts have recently attracted significant attention due to their superior catalytic activity, often outperforming pure Cu counterparts, owing to the discovery of the tandem effect. This review provides an in-depth discussion of the development of Cu-based bimetallic catalysts for CO2RR over the past decades, with the discovery, understanding, and evolution of the tandem effect serving as the central thematic thread. Important milestone works have been reviewed and organized in a roughly historical manner to highlight the development of cutting-edge understanding and the remaining challenges in this field. We believe this review will help the research community clearly track the progress from the original to the latest findings and identify key insights for Cu-based bimetallic catalysts for CO2RR.
Collapse
Affiliation(s)
- Dimiao Luo
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Weidong Dai
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Keying Wu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Siyuan Liu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Chiyao Tang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Chang Long
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| |
Collapse
|
4
|
Lu C, Shi P, Huang S, Yang C, Zhu J, Zhang J, Ke C, Su Y, Zhuang X, Wang T. Heteroarchitectural Gas Diffusion Layer Promotes CO 2 Reduction Coupled with Biomass Oxidation at Ampere-Level Current Density. Angew Chem Int Ed Engl 2025; 64:e202423263. [PMID: 39777826 DOI: 10.1002/anie.202423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Achieving high product selectivity at ampere-level current densities is essential for the industrial application of electrochemical CO2 reduction. However, the operational stability of CO2 electrolyzers at large current density has long been hindered by flooding of gas diffusion layer (GDL). Herein, a new heteroarchitectural GDL is designed to overcome flooding. Such GDL is constructed by sequentially sputtering the conductive silver and titanium boride (TiB2) onto a polytetrafluoroethylene substrate. Assembled with Cu catalyst in a flow cell, a maximum ethylene Faradaic efficiency of 64.7 % was achieved at a current density of 1.2 A cm-2 in 6 M KOH. Furthermore, the GDL is capable of stable operation for over 40 hours at 400 mA cm-2. Theoretical calculations and in situ experiments demonstrate enhanced intermediates adsorption on the TiB2-supported Cu surface, thereby reducing the energy barrier for C-C coupling. When coupling the CO2 reduction reaction with 5-hydroxymethylfurfural oxidation reaction, Faradaic efficiencies of 49.2 % for ethylene and 85.4 % for 2,5-furandicarboxylic acid were achieved at 1.2 A cm-2. This work provides a highly stable GDL for efficient CO2 conversion at ampere-level current density and paves the way for integrating biomolecules conversion in stack-level devices.
Collapse
Affiliation(s)
- Chenbao Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongqing Yang
- College of Smart Energy, Shanghai Jiao Tong University, 665 Jianchuan Road, Shanghai, 200240, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Chen J, Li M, Wang X, Liu H, Jiang W, Zhao B, Song W. Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202424986. [PMID: 39878324 DOI: 10.1002/anie.202424986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions. A copper ion doping strategy was employed to simultaneously enhance the SERS effect and catalytic activity of zinc oxide (ZnO) derived from metal-organic framework (MOF). By analyzing molecular fingerprint SERS spectra, we calculated the degree of CT (ρCT), revealing that SERS enhancement is attributed to the CT mechanism. In situ SERS spectra confirmed a high correlation between the catalytic activity and ρCT of ZnO with varying copper ion doping levels. A range of photoelectric and spectroscopic tests validated the effectiveness of SERS in linking CT to photocatalytic performance, consistent with first-principles density functional theory (DFT) simulations. This finding is also validated in other semiconductor materials and catalytic reactions, demonstrating the broad applicability of ρCT for predicting and evaluating SERS and catalytic activity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
- State Grid Sichuan Electric Power Research Institute, Chengdu, 610041, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Xinmeng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Hongye Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Wenji Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Wu Z, Meng N, Yang R, Chen M, Pan J, Chi S, Wu C, Xi S, Liu Y, Ou Y, Wu W, Han S, Zhang B, Yang QH, Ping Loh K. Boosting C 2+ Alcohols Selectivity and Activity in High-Current CO Electroreduction using Synergistic Cu/Zn Co-Catalysts. Angew Chem Int Ed Engl 2025; 64:e202420283. [PMID: 39653651 DOI: 10.1002/anie.202420283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The electrosynthesis of multi-carbon (C2+) alcohols, specifically ethanol and n-propanol through CO electroreduction (CORR) in H2O, presents a sustainable pathway for intermittent renewable energy storage and a low-carbon economy. However, achieving high selectivity for alcohol production at industrial current densities is kinetically hampered by side reactions such as ethylene generation and hydrogen evolution reaction, which result from competing adsorption of *CO and *H. In this study, we developed a Cu/Zn alloy catalyst to simultaneously enhance the activity and selectivity for alcohol production by increasing CO capture capacity and enriching active hydrogen on Cu sites. Our findings demonstrate that the Cu/5Zn alloy with a molar ratio of Cu to Zn of 95 : 5 exhibits a Faradaic efficiency of 50 % for the selective electrosynthesis of C2+ alcohols during ampere-level CO electrolysis. Mechanistic investigations revealed that the Cu/Zn alloy promotes polarized Cu sites, enhancing CO adsorption while facilitating the spillover of hydrogen atoms from Zn to Cu sites, contributing to selective alcohol formation.
Collapse
Affiliation(s)
- Zhitan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Nannan Meng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Maoxin Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jinhui Pan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Sijia Chi
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chao Wu
- Institute of Chemical and Engineering Sciences, Agency of Science Technology and Research, 1, Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency of Science Technology and Research, 1, Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Yuan Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yingqing Ou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wenya Wu
- Institute of Materials Research and Engineering, Agency of Science Technology and Research, 2, Fusionopolis Way, #08-03, Innovis, 138634, Singapore
| | - Shuhe Han
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 100872, Hong Kong
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Quan-Hong Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Lu C, He Q, Huang S, Shi P, Yang C, Zhang J, Zhu J, Zhang J, Wang T, Zhuang X. Large Dipole Moment Enhanced CO 2 Adsorption on Copper Surface: Achieving 68.9% Catalytic Ethylene Faradaic Efficiency at 1.0 A cm -2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415092. [PMID: 39740176 DOI: 10.1002/adma.202415092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
The electrochemical conversion of carbon dioxide (CO2) into hydrocarbon products emerges as a pivotal sustainable strategy for carbon utilization. Cu-based catalysts are currently prioritized as the most effective means for this process, yet it remains a long-term goal to achieve high product selectivity at elevated current densities. This study delved into exploring the influence of a topological poly(2-aminoazulene) with a substantial dipole moment on modulating the Cu surface dipole field to augment the catalytic activity involved in CO2 reduction. The resulting Cu/poly(2-aminoazulene) heterojunction showcases a remarkable ethylene Faradaic efficiency of 68.9% even at a substantial current density of 1 A cm-2. Through in situ Raman and in situ Fourier-transform infrared spectroscopy, poly(2-aminoazulene)-modified Cu electrode exhibits a heightened concentration of intermediates as compared to the bare Cu, proving advantageous for C-C dimerization. Theoretical calculations demonstrate the reduced energy barrier for C-C dimerization, and meanwhile impeding hydrogen evolution reaction on Cu/poly(2-aminoazulene) heterojunction, which are beneficial to CO2 reduction. The catalyst design in this study, incorporating dipole moment considerations, not only investigates the influence of dipole moment on electrochemical carbon dioxide reduction but also pioneers an innovative strategy to augment catalytic activity by elevating the micro-concentration of reactants on catalyst surfaces.
Collapse
Affiliation(s)
- Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang, Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Qichuan He
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongqing Yang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang, Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
8
|
Wu H, Zhang J. Dynamic restructuring of electrocatalysts in the activation of small molecules: challenges and opportunities. Chem Commun (Camb) 2025; 61:2190-2202. [PMID: 39801457 DOI: 10.1039/d4cc05165c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of in situ restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of in situ restructuring on the electrocatalyst performance. To this end, examples of in situ electrocatalyst restructuring within a focused scope of reactions (i.e. electrochemical CO2 reduction, hydrogen evolution, oxygen reduction and evolution, and dinitrogen and nitrate reduction) are used to demonstrate how restructuring can benefit or adversely affect the desired process outcome. Prospects of manipulating in situ restructuring towards an energy-efficient and durable electrocatalytic process are discussed. The practicality of pulse electrolysis on an industrial scale is questioned, and the need for genius schemes, such as self-healing catalysis, is emphasized.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
9
|
Zhao Y, Hu S, Yuan Q, Wang A, Sun K, Wang Z, Fan M, Jiang J. Copper cluster regulated by N, B atoms for enhanced CO 2 electroreduction to formate. J Colloid Interface Sci 2025; 678:456-464. [PMID: 39255602 DOI: 10.1016/j.jcis.2024.08.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Electrochemical CO2 conversion into formate by intermittent renewable electricity, presents a captivating prospect for both the storage of renewable electrical energy and the utilization of emitted CO2. Typically, Cu-based catalysts in CO2 reduction reactions favor the production of CO and other by-products. However, we have shifted this selectivity by incorporating B, N co-doped carbon (BNC) in the fabrication of Cu clusters. These Cu clusters are regulated with B, N atoms in a porous carbon matrix (Cu/BN-C), and Zn2+ ions were added to achieve Cu clusters with the diameter size of ∼1.0 nm. The obtained Cu/BN-C possesses a significantly improved catalytic performance in CO2 reduction to formate with a Faradaic efficiency (FE) of up to 70 % and partial current density (jformate) surpassing 20.8 mA cm-2 at -1.0 V vs RHE. The high FE and jformate are maintained over a 12-hour. The overall catalytic performance of Cu/BN-C outperforms those of the other investigated catalysts. Based on the density functional theory (DFT) calculation, the exceptional catalytic behavior is attributed to the synergistic effect between Cu clusters and N, B atoms by modulating the electronic structure and enhancing the charge transfer properties, which promoted a preferential adsorption of HCOO* over COOH*, favoring formate formation.
Collapse
Affiliation(s)
- Yuying Zhao
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Shandong Provincial Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Shengchun Hu
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ao Wang
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Kang Sun
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Mengmeng Fan
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianchun Jiang
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Lee SY, Lenef JD, Delgado Cornejo DO, Ortiz-Ortiz AM, Ma T, Arthur TS, Roberts CA, Dasgupta NP. Tuning the selectivity of bimetallic Cu electrocatalysts for CO 2 reduction using atomic layer deposition. Chem Commun (Camb) 2025; 61:965-968. [PMID: 39688273 DOI: 10.1039/d4cc04820b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Cu-Zn bimetallic catalysts were synthesized on 3-D gas diffusion electrodes using atomic layer deposition (ALD) techniques. Electrochemical CO2 reduction was evaluated, and a significant variation in the product selectivity was observed compared to unmodified Cu catalysts. As low as a single ALD cycle of ZnO resulted in a reduction of C2H4 production and shift towards CO selectivity, which is attributed to changes in the chemical state of the surface. Our findings demonstrate the impact of atomically-precise surface modifications on electrocatalyst selectivity.
Collapse
Affiliation(s)
- Si Young Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Julia D Lenef
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Alondra M Ortiz-Ortiz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Tao Ma
- Michigan Center for Materials Characterization, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy S Arthur
- Toyota Research Institute of North America, Ann Arbor, MI, 48105, USA.
| | - Charles A Roberts
- Toyota Research Institute of North America, Ann Arbor, MI, 48105, USA.
| | - Neil P Dasgupta
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Gholizadeh R, Pavlin M, Huš M, Likozar B. Multiscale Modeling of CO 2 Electrochemical Reduction on Copper Electrocatalysts: A Review of Advancements, Challenges, and Future Directions. CHEMSUSCHEM 2025; 18:e202400898. [PMID: 39022871 PMCID: PMC11696222 DOI: 10.1002/cssc.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Although CO2 contributes significantly to global warming, it also offers potential as a raw material for the production of hydrocarbons such as CH4, C2H4 and CH3OH. Electrochemical CO2 reduction reaction (eCO2RR) is an emerging technology that utilizes renewable energy to convert CO2 into valuable fuels, solving environmental and energy problems simultaneously. Insights gained at any individual scale can only provide a limited view of that specific scale. Multiscale modeling, which involves coupling atomistic-level insights (density functional theory, DFT) and (Molecular Dynamics, MD), with mesoscale (kinetic Monte Carlo, KMC, and microkinetics, MK) and macroscale (computational fluid dynamics, CFD) simulations, has received significant attention recently. While multiscale modeling of eCO2RR on electrocatalysts across all scales is limited due to its complexity, this review offers an overview of recent works on single scales and the coupling of two and three scales, such as "DFT+MD", "DFT+KMC", "DFT+MK", "KMC/MK+CFD" and "DFT+MK/KMC+CFD", focusing particularly on Cu-based electrocatalysts as copper is known to be an excellent electrocatalyst for eCO2RR. This sets it apart from other reviews that solely focus exclusively on a single scale or only on a combination of DFT and MK/KMC scales. Furthermore, this review offers a concise overview of machine learning (ML) applications for eCO2RR, an emerging approach that has not yet been reviewed. Finally, this review highlights the key challenges, research gaps and perspectives of multiscale modeling for eCO2RR.
Collapse
Affiliation(s)
- Reza Gholizadeh
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matej Huš
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
- Association for Technical Culture of SloveniaZaloška 65LjubljanaSI-1001Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia, Conservation Centre, Research InstitutePoljanska 40LjubljanaSI-1000Slovenia
- University of Nova GoricaVipavska 13Nova Gorica, LjubljanaSI-5000Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| |
Collapse
|
12
|
Yang R, Wen Q, Yang Y, Liu Y, Yang Y, Wu M, Wei Y, Mei B, Liu Y, Li H, Zhai T. Directional Reconstruction to Highly Active Tandem Sites for Superior Acidic CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414642. [PMID: 39600073 DOI: 10.1002/adma.202414642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Acidic CO2 electroreduction (CO2R) to multi-carbon (C2+) chemicals advance the carbon neutrality in the manner of high carbon utilization efficiency; however, it suffers from low selectivity. Designing tandem catalysts is the most promising remedy, yet achieving highly active tandem sites remains an immense challenge due to the potentiodynamic structural evolution. Here self-reducing ion (e.g., iodate) mediated reconstruction, which leverages the self-reduction of dissolved iodate ions is presented to harmonize reconstruction rate of the tandem catalyst and directionally optimize tandem sites in operation. Multiple in situ workflow clearly demonstrate that the exploited CuO/AgIO3 tandem catalysts occur rapid dissolution of iodate ions in AgIO3 during the CO2R, resulting in the formation of defective Ag. Subsequently, the preferential self-reduction of dissolved iodate as a reduction inhibitor delays the reconstruction rate of CuO and directs surface reconstruction toward highly active Cu(100). The asymmetric charge distribution of defective Ag facilitates the generation of *COOH and enhances local CO availability to further accelerate the C─C coupling step implemented on Cu(100). The directionally reconstructed CuO/AgIO3 achieves outstanding C2+ Faradaic efficiency of 82% at 1.2 A cm-2 and a peak jC2+ (1024 mA cm-2) is ≈1.5 times higher than that reported in literature benchmark in strong acid electrolyte.
Collapse
Affiliation(s)
- Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuqi Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yan Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Mao Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yao Wei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Yan Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
13
|
Singh PK, Thakur J, Yadav PK, Gautam A, Masakapalli SK, Sharma S, Halder A. C 2 Product Selectivity by 2D-nanosheet of Layered Zn-doped Cu 2(OH) 3(NO 3)-A Pre-catalyst for Electrochemical CO 2 Reduction. Chempluschem 2024:e202400566. [PMID: 39607977 DOI: 10.1002/cplu.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
The natural carbon cycle cannot mitigate and recycle the excess CO2 in the atmosphere, leading to a continuous rise in the global temperature. Electrochemical conversion of CO2 is one of the useful methods to utilise this anthropogenic CO2 and convert it into value-added chemicals. However, this process suffers the challenges of product selectivity and good Faradaic efficiency. In our current work, we report the role of Zn-doping in the 2D-Nanosheet of Cu2(OH)3(NO3)-a pre-catalyst that undergoes the in-situ transformation into a metallic state along with surface reconstruction. Our studies show, in the aqueous medium, the optimum amount of Zn plays a crucial role in the production of ethanol with the Faradaic efficiency of ∼45.2 % though C-C coupling. Temperature-programmed desorption studies conclude that Zn increases the product selectivity for CO adsorption on Cu2(OH)3(NO3) nanosheets, further facilitating the C-C coupling at higher negative potential. The detailed XPS studies also reveal that the in-situ conversion of Cu2+ to Cu0 and Cu+ at negative potential contributes to the production of C2 products. The post-catalytic microstructural and spectroscopic studies converge to this point that the cumulative effect of oxidation state, surface reconstruction, as well as the presence of Zn modulate the overall Faradaic efficiency for ethanol formation.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India
| | - Jyotika Thakur
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India
| | - Pradeep Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, India
| | - Akriti Gautam
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India
| | - Shyam K Masakapalli
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India
| | - Sudhanshu Sharma
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, India
| | - Aditi Halder
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
14
|
Crandall BS, Qi Z, Foucher AC, Weitzner SE, Akhade SA, Liu X, Kashi AR, Buckley AK, Ma S, Stach EA, Varley JB, Jiao F, Biener J. Cu Based Dilute Alloys for Tuning the C 2+ Selectivity of Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401656. [PMID: 38994827 DOI: 10.1002/smll.202401656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO2 into the desired multi-carbon (C2+) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100-cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis.
Collapse
Affiliation(s)
- Bradie S Crandall
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Carbon Management, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Zhen Qi
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen E Weitzner
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Sneha A Akhade
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Xin Liu
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Ajay R Kashi
- Twelve Benefit Corporation (formerly Opus 12 Incorporated), 610 Bancroft Way, Berkeley, CA, 94710, USA
| | - Aya K Buckley
- Twelve Benefit Corporation (formerly Opus 12 Incorporated), 610 Bancroft Way, Berkeley, CA, 94710, USA
| | - Sichao Ma
- Twelve Benefit Corporation (formerly Opus 12 Incorporated), 610 Bancroft Way, Berkeley, CA, 94710, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joel B Varley
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Feng Jiao
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Carbon Management, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Juergen Biener
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| |
Collapse
|
15
|
Feng J, Liu C, Qiao L, An K, Lin S, Ip WF, Pan H. Electrolyte-Assisted Structure Reconstruction Optimization of Sn-Zn Hybrid Oxide Boosts the Electrochemical CO 2-to-HCOO - Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407019. [PMID: 39158940 PMCID: PMC11497031 DOI: 10.1002/advs.202407019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Electrolyte plays crucial roles in electrochemical CO2 reduction reaction (e-CO2RR), yet how it affects the e-CO2RR performance still being unclarified. In this work, it is reported that Sn-Zn hybrid oxide enables excellent CO2-to-HCOO- conversion in KHCO3 with a HCOO- Faraday efficiency ≈89%, a yield rate ≈0.58 mmol cm-2 h-1 and a stability up to ≈60 h at -0.93 V, which are higher than those in NaHCO3 and K2SO4. Systematical characterizations unveil that the surface reconstruction on Sn-Zn greatly depends on the electrolyte using: the Sn-SnO2/ZnO, the ZnO encapsulated Sn-SnO2/ZnO and the Sn-SnO2/Zn-ZnO are reconstructed on the surface by KHCO3, NaHCO3 and K2SO4, respectively. The improved CO2-to-HCOO- performance in KHCO3 is highly attributed to the reconstructed Sn-SnO2/ZnO, which can enhance the charge transportation, promote the CO2 adsorption and optimize the adsorption configuration, accumulate the protons by enhancing water adsorption/cleavage and limit the hydrogen evolution. The findings may provide insightful understanding on the relationship between electrolyte and surface reconstruction in e-CO2RR and guide the design of novel electrocatalyst for effective CO2 reduction.
Collapse
Affiliation(s)
- Jinxian Feng
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Chunfa Liu
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Lulu Qiao
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Keyu An
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weng Fai Ip
- Department of Physics and ChemistryFaculty of Science and TechnologyUniversity of MacauMacao SAR999078China
| | - Hui Pan
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
- Department of Physics and ChemistryFaculty of Science and TechnologyUniversity of MacauMacao SAR999078China
| |
Collapse
|
16
|
Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO 2 to value-added products. CHEMOSPHERE 2024; 364:143017. [PMID: 39103104 DOI: 10.1016/j.chemosphere.2024.143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.
Collapse
Affiliation(s)
- Arun Kumar Senthilkumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Melvin S Samuel
- Department of Civil, Construction & Environmental Engineering, Marquette University, 1637 W Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
17
|
Wang J, Lai TY, Lin HT, Kuo TR, Chen HC, Tseng CS, Tung CW, Chien CY, Chen HM. Light-Induced Dynamic Activation of Copper/Silicon Interface for Highly Selective Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2024; 63:e202403333. [PMID: 38787684 DOI: 10.1002/anie.202403333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Numerous studies have shown a fact that phase transformation and/or reconstruction are likely to occur and play crucial roles in electrochemical scenarios. Nevertheless, a decisive factor behind the diverse photoelectrochemical activity and selectivity of various copper/silicon photoelectrodes is still largely debated and missing in the community, especially the possibly dynamic behaviors of metal catalyst/semiconductor interface. Herein, through in situ X-ray absorption spectroscopy and transmission electron microscope, a model system of Cu nanocrystals with well-defined facets on black p-type silicon (BSi) is unprecedentedly demonstrated to reveal the dynamic phase transformation of forming irreversible silicide at Cu nanocrystal-BSi interface during photoelectrocatalysis, which is validated to originate from the atomic interdiffusion between Cu and Si driven by light-induced dynamic activation process. Significantly, the adaptive junction at Cu-Si interface is activated by an expansion of interatomic Cu-Cu distance for CO2 electroreduction, which efficiently restricts the C-C coupling pathway but strengthens the bonding with key intermediate of *CHO for CH4 yield, resulting in a remarkable 16-fold improvement in the product ratio of CH4/C2 products and an intriguing selectivity switch. This work offers new insights into dynamic structural transformations of metal/semiconductor junction and design of highly efficient catalysts toward photosynthesis.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai Ying Lai
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Ting Lin
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Hsiao-Chien Chen
- Center for Reliability Sciences and Technologies, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chun-Sheng Tseng
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Wei Tung
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Chia-Ying Chien
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| |
Collapse
|
18
|
Sun Z, Li C, Wei Z, Zhang F, Deng Z, Zhou K, Wang Y, Guo J, Yang J, Xiang Z, Ma P, Zhai H, Li S, Chen W. Sulfur-Bridged Asymmetric CuNi Bimetallic Atom Sites for CO 2 Reduction with High Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404665. [PMID: 38923612 DOI: 10.1002/adma.202404665] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical carbon dioxide reduction and advancing sustainable development, however, the rational design of DACs is still challenging. Herein, this work synthesizes atomically dispersed catalysts with novel sulfur-bridged Cu-S-Ni sites (named Cu-S-Ni/SNC), utilizing biomass wool keratin as precursor. The plentiful disulfide bonds in wool keratin overcome the limitations of traditional gas-phase S ligand etching process and enable the one-step formation of S-bridged sites. X-ray absorption spectroscopy (XAS) confirms the existence of bimetallic sites with N2Cu-S-NiN2 moiety. In H-cell, Cu-S-Ni/SNC shows high CO Faraday efficiency of 98.1% at -0.65 V versus RHE. Benefiting from the charge tuning effect between the metal site and bridged sulfur atoms, a large current density of 550 mA cm-2 can be achieved at -1.00 V in flow cell. Additionally, in situ XAS, attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and density functional theory (DFT) calculations show Cu as the main adsorption site is dual-regulated by Ni and S atoms, which enhances CO2 activation and accelerates the formation of *COOH intermediates. This kind of asymmetric bimetallic atom catalysts may open new pathways for precision preparation and performance regulation of atomic materials toward energy applications.
Collapse
Affiliation(s)
- Zhiyi Sun
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, China
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chen Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziwei Deng
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kejia Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yong Wang
- Guangdong R&D Center for Technological Economy, Guangzhou, 510070, China
| | - Jinhong Guo
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiayi Yang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zequn Xiang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shenghua Li
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
19
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
20
|
Peerlings ML, Han K, Longo A, Helfferich KH, Ghiasi M, de Jongh PE, Ngene P. Synthesis and Catalytic Performance of Bimetallic Oxide-Derived CuO-ZnO Electrocatalysts for CO 2 Reduction. ACS Catal 2024; 14:10701-10711. [PMID: 39050901 PMCID: PMC11264205 DOI: 10.1021/acscatal.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Steering the selectivity of electrocatalysts toward the desired product is crucial in the electrochemical reduction of CO2. A promising approach is the electronic modification of the catalyst's active phase. In this work, we report on the electronic modification effects on CuO-ZnO-derived electrocatalysts synthesized via hydrothermal synthesis. Although the synthesis method yields spatially separated ZnO nanorods and distinct CuO particles, strong restructuring and intimate atomic mixing occur under the reaction conditions. This leads to interactions that have a profound effect on the catalytic performance. Specifically, all of the bimetallic electrodes outperformed the monometallic ones (ZnO and CuO) in terms of activity for CO production. Surprisingly, on the other hand, the presence of ZnO suppresses the formation of ethylene on Cu, while the presence of Cu improves CO production of ZnO. In situ X-ray absorption spectroscopy studies revealed that this catalytic effect is due to enhanced reducibility of ZnO by Cu and stabilization of cationic Cu species by the intimate contact with partially reduced ZnO. This suppresses ethylene formation while favoring the production of H2 and CO on Cu. These results show that using mixed metal oxides with different reducibilities is a promising approach to alter the electronic properties of electrocatalysts (via stabilization of cationic species), thereby tuning the electrocatalytic CO2 reduction reaction performance.
Collapse
Affiliation(s)
- Matt L.
J. Peerlings
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kai Han
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alessandro Longo
- European
Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, Grenoble F-38000, France
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Kristiaan H. Helfferich
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mahnaz Ghiasi
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Peter Ngene
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
21
|
Du ZY, Wang K, Xie YM, Zhao Y, Qian ZX, Li SB, Zheng QN, Tian JH, Rudnev AV, Zhang YJ, Zhang H, Li JF. In situ Raman reveals the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts. J Chem Phys 2024; 161:021101. [PMID: 38973762 DOI: 10.1063/5.0213850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.
Collapse
Affiliation(s)
- Zi-Yu Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Yi-Meng Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Zheng-Xin Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Si-Bo Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Qing-Na Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospekt 31, 119071 Moscow, Russia
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
22
|
Huang J, Zhang X, Yang J, Yu J, Chen Q, Peng L. Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO 2 Electrocatalysis: Unlocking the Mystery of Product Selectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309865. [PMID: 38634577 PMCID: PMC11199994 DOI: 10.1002/advs.202309865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO2 (eCO2RR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCO2RR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCO2RR to multi-carbon fuels with high selectivity.
Collapse
Affiliation(s)
- Jiabao Huang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Xinping Zhang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Jiao Yang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
23
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
24
|
Herzog A, Lopez Luna M, Jeon HS, Rettenmaier C, Grosse P, Bergmann A, Roldan Cuenya B. Operando Raman spectroscopy uncovers hydroxide and CO species enhance ethanol selectivity during pulsed CO 2 electroreduction. Nat Commun 2024; 15:3986. [PMID: 38734726 PMCID: PMC11088695 DOI: 10.1038/s41467-024-48052-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Pulsed CO2 electroreduction (CO2RR) has recently emerged as a facile way to in situ tune the product selectivity, in particular toward ethanol, without re-designing the catalytic system. However, in-depth mechanistic understanding requires comprehensive operando time-resolved studies to identify the kinetics and dynamics of the electrocatalytic interface. Here, we track the adsorbates and the catalyst state of pre-reduced Cu2O nanocubes ( ~ 30 nm) during pulsed CO2RR using sub-second time-resolved operando Raman spectroscopy. By screening a variety of product-steering pulse length conditions, we unravel the critical role of co-adsorbed OH and CO on the Cu surface next to the oxidative formation of Cu-Oad or CuOx/(OH)y species, impacting the kinetics of CO adsorption and boosting the ethanol selectivity. However, a too low OHad coverage following the formation of bulk-like Cu2O induces a significant increase in the C1 selectivity, while a too high OHad coverage poisons the surface for C-C coupling. Thus, we unveil the importance of co-adsorbed OH on the alcohol formation under CO2RR conditions and thereby, pave the way for improved catalyst design and operating conditions.
Collapse
Affiliation(s)
- Antonia Herzog
- Department of Interface Science, Fritz Haber Institute of the Max-Planck Society, 14195, Berlin, Germany
- Massachusetts Institute of Technology, Research Laboratory of Electronics, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Mauricio Lopez Luna
- Department of Interface Science, Fritz Haber Institute of the Max-Planck Society, 14195, Berlin, Germany
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz Haber Institute of the Max-Planck Society, 14195, Berlin, Germany
- Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Wolgok 2(i)-dong, Seongbuk-gu, Seoul, South Korea
| | - Clara Rettenmaier
- Department of Interface Science, Fritz Haber Institute of the Max-Planck Society, 14195, Berlin, Germany
| | - Philipp Grosse
- Department of Interface Science, Fritz Haber Institute of the Max-Planck Society, 14195, Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz Haber Institute of the Max-Planck Society, 14195, Berlin, Germany.
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max-Planck Society, 14195, Berlin, Germany.
| |
Collapse
|
25
|
Sabouhanian N, Lipkowski J, Chen A. Growth and Electrochemical Study of Bismuth Nanodendrites as an Efficient Catalyst for CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21895-21904. [PMID: 38636081 DOI: 10.1021/acsami.4c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
There is a growing interest in creating cost-effective catalysts for efficient electrochemical CO2 reduction to address pressing environmental issues and produce valuable products. A bimetallic ZnBi catalyst that enhances catalytic activity and stability toward the electrochemical reduction of CO2 is designed. It is based on bismuth nanodendrites grown using a facile, scalable, and low-cost method. The results have shown that the incorporation of bismuth can decrease the charge transfer resistance and facilitate CO2 reduction toward the formation of CO and formate. It was revealed that the ZnBi catalyst exhibited higher catalytic activity compared with that of the pure Zn catalyst for CO2 reduction, with a lower onset potential [-0.75 V vs a reversible hydrogen electrode (RHE) compared with -0.85 V vs RHE for Zn]. In situ electrochemical attenuated total internal reflection Fourier transform infrared spectroscopy was employed to study the reaction mechanism, showing the formation of CO and formate through the adsorbed *COO- intermediates. This study has demonstrated a new approach for the feasible synthesis of high-performance catalysts for large-scale electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Negar Sabouhanian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
26
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
27
|
Yu J, Hao X, Mu L, Shi W, She G. Photoelectrocatalytic Utilization of CO 2 : A Big Show of Si-based Photoelectrodes. Chemistry 2024; 30:e202303552. [PMID: 38158581 DOI: 10.1002/chem.202303552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
CO2 is a greenhouse gas that contributes to environmental deterioration; however, it can also be utilized as an abundant C1 resource for the production of valuable chemicals. Solar-driven photoelectrocatalytic (PEC) CO2 utilization represents an advanced technology for the resourcing of CO2 . The key to achieving PEC CO2 utilization lies in high-performance semiconductor photoelectrodes. Si-based photoelectrodes have attracted increasing attention in the field of PEC CO2 utilization due to their suitable band gap (1.1 eV), high carrier mobility, low cost, and abundance on Earth. There are two pathways to PEC CO2 utilization using Si-based photoelectrodes: direct reduction of CO2 into small molecule fuels and chemicals, and fixation of CO2 with organic substrates to generate high-value chemicals. The efficiency and product selectivity of PEC CO2 utilization depends on the structures of the photoelectrodes as well as the composition, morphology, and size of the catalysts. In recent years, significant and influential progress has been made in utilizing Si-based photoelectrodes for PEC CO2 utilization. This review summarizes the latest research achievements in Si-based PEC CO2 utilization, with a particular emphasis on the mechanistic understanding of CO2 reduction and fixation, which will inspire future developments in this field.
Collapse
Affiliation(s)
- Jiacheng Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xue Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
28
|
Pastor E, Lian Z, Xia L, Ecija D, Galán-Mascarós JR, Barja S, Giménez S, Arbiol J, López N, García de Arquer FP. Complementary probes for the electrochemical interface. Nat Rev Chem 2024; 8:159-178. [PMID: 38388837 DOI: 10.1038/s41570-024-00575-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.
Collapse
Affiliation(s)
- Ernest Pastor
- CNRS, IPR (Institut de Physique de Rennes), University of Rennes, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, Tokyo, Japan.
| | - Zan Lian
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Ecija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Ramón Galán-Mascarós
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Sara Barja
- Department of Polymers and Advanced Materials, Centro de Física de Materiales (CFM), University of the Basque Country UPV/EHU, San Sebastián, Spain
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, Castelló, Spain
| | - Jordi Arbiol
- ICREA, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Núria López
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
29
|
Wang H, Deng N, Li X, Chen Y, Tian Y, Cheng B, Kang W. Recent insights on the use of modified Zn-based catalysts in eCO 2RR. NANOSCALE 2024; 16:2121-2168. [PMID: 38206085 DOI: 10.1039/d3nr05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Converting CO2 into valuable chemicals can provide a new path to mitigate the greenhouse effect, achieving the aim of "carbon neutrality" and "carbon peaking". Among numerous electrocatalysts, Zn-based materials are widely distributed and cheap, making them one of the most promising electrocatalyst materials to replace noble metal catalysts. Moreover, the Zn metal itself has a certain selectivity for CO. After appropriate modification, such as oxide derivatization, structural reorganization, reconstruction of the surfaces, heteroatom doping, and so on, the Zn-based electrocatalysts can expose more active sites and adjust the d-band center or electronic structure, and the FE and stability of them can be effectively improved, and they can even convert CO2 to multi-carbon products. This review aims to systematically describe the latest progresses of modified Zn-based electrocatalyst materials (including organic and inorganic materials) in the electrocatalytic carbon dioxide reduction reaction (eCO2RR). The applications of modified Zn-based catalysts in improving product selectivity, increasing current density and reducing the overpotential of the eCO2RR are reviewed. Moreover, this review describes the reasonable selection and good structural design of Zn-based catalysts, presents the characteristics of various modified zinc-based catalysts, and reveals the related catalytic mechanisms for the first time. Finally, the current status and development prospects of modified Zn-based catalysts in eCO2RR are summarized and discussed.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xinyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yiyang Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Ying Tian
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
30
|
Dieu Thuy UT, Huan TN, Zanna S, Wilson K, Lee AF, Le ND, Mensah J, Dasireddy VDBC, Liem NQ. Cu and Zn promoted Al-fumarate metal organic frameworks for electrocatalytic CO 2 reduction. RSC Adv 2024; 14:3489-3497. [PMID: 38259983 PMCID: PMC10801401 DOI: 10.1039/d3ra07639c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metal organic frameworks (MOFs) are attractive materials to generate multifunctional catalysts for the electrocatalytic reduction of CO2 to hydrocarbons. Here we report the synthesis of Cu and Zn modified Al-fumarate (Al-fum) MOFs, in which Zn promotes the selective reduction of CO2 to CO and Cu promotes CO reduction to oxygenates and hydrocarbons in an electrocatalytic cascade. Cu and Zn nanoparticles (NPs) were introduced to the Al-fum MOF by a double solvent method to promote in-pore metal deposition, and the resulting reduced Cu-Zn@Al-fum drop-cast on a hydrophobic gas diffusion electrode for electrochemical study. Cu-Zn@Al-fum is active for CO2 electroreduction, with the Cu and Zn loading influencing the product yields. The highest faradaic efficiency (FE) of 62% is achieved at -1.0 V vs. RHE for the conversion of CO2 into CO, HCOOH, CH4, C2H4 and C2H5OH, with a FE of 28% to CH4, C2H4 and C2H5OH at pH 6.8. Al-fum MOF is a chemically robust matrix to disperse Cu and Zn NPs, improving electrocatalyst lifetime during CO2 reduction by minimizing transition metal aggregation during electrode operation.
Collapse
Affiliation(s)
- Ung Thi Dieu Thuy
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Ngoc Huan
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Sandrine Zanna
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP) 11 rue Pierre et Marie Curie 75005 Paris France
| | - Karen Wilson
- School of Environment & Science, Centre for Catalysis and Clean Energy, Griffith University Gold Coast Campus QLD 4222 Australia
| | - Adam F Lee
- School of Environment & Science, Centre for Catalysis and Clean Energy, Griffith University Gold Coast Campus QLD 4222 Australia
| | - Ngoc-Diep Le
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Jim Mensah
- Centre for Applied Materials and Industrial Chemistry (CAMIC), RMIT University Australia
| | - Venkata D B C Dasireddy
- School of Environment & Science, Centre for Catalysis and Clean Energy, Griffith University Gold Coast Campus QLD 4222 Australia
| | - Nguyen Quang Liem
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
31
|
Rettenmaier C, Herzog A, Casari D, Rüscher M, Jeon HS, Kordus D, Luna ML, Kühl S, Hejral U, Davis EM, Chee SW, Timoshenko J, Alexander DTL, Bergmann A, Cuenya BR. Operando insights into correlating CO coverage and Cu-Au alloying with the selectivity of Au NP-decorated Cu 2O nanocubes during the electrocatalytic CO 2 reduction. EES CATALYSIS 2024; 2:311-323. [PMID: 38222061 PMCID: PMC10782806 DOI: 10.1039/d3ey00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024]
Abstract
Electrochemical reduction of CO2 (CO2RR) is an attractive technology to reintegrate the anthropogenic CO2 back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C2+) producing Cu2O nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied via operando X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, operando high-energy X-ray diffraction as well as quasi in situ X-ray photoelectron spectroscopy. These operando studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CO2RR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C2+ formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CO2RR. This study highlights the importance of site engineering and operando investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.
Collapse
Affiliation(s)
- Clara Rettenmaier
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Daniele Casari
- Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH-1015 Switzerland
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - David Kordus
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Mauricio Lopez Luna
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Stefanie Kühl
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Earl M Davis
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Duncan T L Alexander
- Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH-1015 Switzerland
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
32
|
Ocampo-Restrepo VK, Verga LG, Da Silva JLF. Ab initio study for late steps of CO 2 and CO electroreduction: from CHCO* toward C 2 products on Cu and CuZn nanoclusters. Phys Chem Chem Phys 2023. [PMID: 38018495 DOI: 10.1039/d3cp03315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Electroreduction of CO2 to C2 products such as ethanol is motivated by its potential application to satisfy global energy demand in a more sustainable and renewable way. Cooper-based catalysts have exhibited highlighted performance in obtaining C2 products, but large overpotentials and poor selectivity are still challenging. Herein, we employed density functional theory calculations and the computational hydrogen electrode model to study the impact of CuZn alloys on the mechanism and selectivity of CO2 and CO electroreduction to C2 products. On both clusters, the preferred pathway to ethanol and ethylene shares a common intermediate: CH2CHO*. On Cu55, ethanol formation would occur at lower electrode potential than the formation of ethylene, which agrees with experimental studies. Since Cu42Zn13 increases the Gibbs free energy change between CH2CHO* and adsorbed acetaldehyde, the alloy exhibited lower selectivity toward ethanol than Cu55 cluster. The role of Zn is mainly related to the stronger adsorption of the intermediates on Cu42Zn13 than in the Cu55 group. Our results suggested that the d states of Zn are involved in the adsorption of intermediates, strengthening the interaction.
Collapse
Affiliation(s)
- Vivianne K Ocampo-Restrepo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, SP, Brazil.
| | - Lucas G Verga
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, SP, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
33
|
Gao W, Xu Y, Xiong H, Chang X, Lu Q, Xu B. CO Binding Energy is an Incomplete Descriptor of Cu-Based Catalysts for the Electrochemical CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202313798. [PMID: 37837328 DOI: 10.1002/anie.202313798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023]
Abstract
CO binding energy has been employed as a descriptor in the catalyst design for the electrochemical CO2 reduction reactions (CO2 RR). The reliability of the descriptor has yet been experimentally verified due to the lack of suitable methods to determine CO binding energies. In this work, we determined the standard CO adsorption enthalpies (Δ H C O ∘ ${\Delta {H}_{CO}^{^\circ{}}}$ ) of undoped and doped oxide-derived Cu (OD-Cu) samples, and for the first time established the correlation ofΔ H C O ∘ ${\Delta {H}_{CO}^{^\circ{}}}$ with the Faradaic efficiencies (FE) for C2+ products. A clear volcano shaped dependence of the FE for C2+ products onΔ H C O ∘ ${\Delta {H}_{CO}^{^\circ{}}}$ is observed on OD-Cu catalysts prepared with the same hydrothermal durations, however, the trend becomes less clear when all catalysts investigated are taken into account. The relative abundance of Cu sites active for the CO2 -to-CO conversion and the further reduction of CO is identified as another key descriptor.
Collapse
Affiliation(s)
- Wenqiang Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Haocheng Xiong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Qi Lu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
34
|
Jia Y, Ding Y, Song T, Xu Y, Li Y, Duan L, Li F, Sun L, Fan K. Dynamic Surface Reconstruction of Amphoteric Metal (Zn, Al) Doped Cu 2 O for Efficient Electrochemical CO 2 Reduction to C 2+ Products. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303726. [PMID: 37530207 PMCID: PMC10558649 DOI: 10.1002/advs.202303726] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Indexed: 08/03/2023]
Abstract
The recognition of the surface reconstruction of the catalysts during electrochemical CO2 reduction (CO2RR) is essential for exploring and comprehending active sites. Although the superior performance of Cu-Zn bimetallic sites toward multicarbon C2+ products has been established, the dynamic surface reconstruction has not been fully understood. Herein, Zn-doped Cu2 O nano-octahedrons are used to investigate the effect of the dynamic stability by the leaching and redeposition on CO2RR. Correlative characterizations confirm the Zn leaching from Zn-doped Cu2 O, which is redeposited at the surface of the catalysts, leading to dynamic stability and abundant Cu-Zn bimetallic sites at the surface. The reconstructed Zn-doped Cu2 O catalysts achieve a high Faradaic efficiency (FE) of C2+ products (77% at -1.1 V versus reversible hydrogen electrode (RHE)). Additionally, similar dynamic stability is also discovered in Al-doped Cu2 O for CO2RR, proving its universality in amphoteric metal-doped catalysts. Mechanism analyses reveal that the OHC-CHO pathway can be the C-C coupling processes on bare Cu2 O and Zn-doped Cu2 O, and the introduction of Zn to Cu can efficiently lower the energy barrier for CO2RR to C2 H4 . This research provides profound insight into unraveling surface dynamic reconstruction of amphoteric metal-containing electrocatalysts and can guide rational design of the high-performance electrocatalysts for CO2RR.
Collapse
Affiliation(s)
- Yufei Jia
- State Key Laboratory of Fine ChemicalsInstitute of Artificial PhotosynthesisDUT‐KTH Joint Education and Research Centre on Molecular DevicesInstitute for Energy Science and TechnologyDalian University of TechnologyDalian116024P. R. China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels, Department of ChemistrySchool of ScienceWestlake UniversityHangzhou310024P. R. China
| | - Tao Song
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Yunlong Xu
- State Key Laboratory of Fine ChemicalsInstitute of Artificial PhotosynthesisDUT‐KTH Joint Education and Research Centre on Molecular DevicesInstitute for Energy Science and TechnologyDalian University of TechnologyDalian116024P. R. China
| | - Yaqing Li
- State Key Laboratory of Fine ChemicalsInstitute of Artificial PhotosynthesisDUT‐KTH Joint Education and Research Centre on Molecular DevicesInstitute for Energy Science and TechnologyDalian University of TechnologyDalian116024P. R. China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Fei Li
- State Key Laboratory of Fine ChemicalsInstitute of Artificial PhotosynthesisDUT‐KTH Joint Education and Research Centre on Molecular DevicesInstitute for Energy Science and TechnologyDalian University of TechnologyDalian116024P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine ChemicalsInstitute of Artificial PhotosynthesisDUT‐KTH Joint Education and Research Centre on Molecular DevicesInstitute for Energy Science and TechnologyDalian University of TechnologyDalian116024P. R. China
- Center of Artificial Photosynthesis for Solar Fuels, Department of ChemistrySchool of ScienceWestlake UniversityHangzhou310024P. R. China
| | - Ke Fan
- State Key Laboratory of Fine ChemicalsInstitute of Artificial PhotosynthesisDUT‐KTH Joint Education and Research Centre on Molecular DevicesInstitute for Energy Science and TechnologyDalian University of TechnologyDalian116024P. R. China
| |
Collapse
|
35
|
Abstract
Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure-activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO2/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques.
Collapse
Affiliation(s)
- Bjorn Hasa
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| | - Yaran Zhao
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| |
Collapse
|
36
|
Wang FD, Yang LJ, Wang XX, Rong Y, Yang LB, Zhang CX, Yan FY, Wang QL. Pyrazine-Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H 2 Evolution with High Proton Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207421. [PMID: 36890778 DOI: 10.1002/smll.202207421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Indexed: 06/08/2023]
Abstract
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
Collapse
Affiliation(s)
- Feng-Dong Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Juan Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xin-Xin Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yi Rong
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Bin Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Fang-You Yan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
37
|
Chen YJ, Liu M, Chen J, Huang X, Li QH, Ye XL, Wang GE, Xu G. Dangling bond formation on COF nanosheets for enhancing sensing performances. Chem Sci 2023; 14:4824-4831. [PMID: 37181787 PMCID: PMC10171198 DOI: 10.1039/d3sc00562c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Dangling bond formation for COF materials in a rational manner is an enormous challenge, especially through post-treatment which is a facile strategy while has not been reported yet. In this work, a "chemical scissor" strategy is proposed for the first time to rationally design dangling bonds in COF materials. It is found that Zn2+ coordination in post-metallization of TDCOF can act as an "inducer" which elongates the target bond and facilitates its fracture in hydrolyzation reactions to create dangling bonds. The number of dangling bonds is well-modulated by controlling the post-metallization time. Zn-TDCOF-12 shows one of the highest sensitivities to NO2 in all reported chemiresistive gas sensing materials operating under visible light and room temperature. This work opens an avenue to rationally design a dangling bond in COF materials, which could increase the active sites and improve the mass transport in COFs to remarkably promote their various chemical applications.
Collapse
Affiliation(s)
- Yong-Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Ming Liu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Xin Huang
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Xiao-Liang Ye
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
38
|
Gianolio D, Higham MD, Quesne MG, Aramini M, Xu R, Large AI, Held G, Velasco-Vélez JJ, Haevecker M, Knop-Gericke A, Genovese C, Ampelli C, Schuster ME, Perathoner S, Centi G, Catlow CRA, Arrigo R. Interfacial Chemistry in the Electrocatalytic Hydrogenation of CO 2 over C-Supported Cu-Based Systems. ACS Catal 2023; 13:5876-5895. [PMID: 37180964 PMCID: PMC10167656 DOI: 10.1021/acscatal.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Indexed: 05/16/2023]
Abstract
Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO2, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.
Collapse
Affiliation(s)
- Diego Gianolio
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Michael D. Higham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Matthew G. Quesne
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
| | - Matteo Aramini
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Ruoyu Xu
- Department
of Chemical Engineering, University College
London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Alex I. Large
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Georg Held
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Juan-Jesús Velasco-Vélez
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Michael Haevecker
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Axel Knop-Gericke
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Chiara Genovese
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Claudio Ampelli
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | | | - Siglinda Perathoner
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - C. Richard A. Catlow
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Rosa Arrigo
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- School
of Science, Engineering and Environment, University of Salford, Cockcroft Building, Salford, Greater Manchester M5 4WT, U.K.
| |
Collapse
|
39
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
40
|
Li J, Zhang B, Dong B, Feng L. MOF-derived transition metal-based catalysts for the electrochemical reduction of CO 2 to CO: a mini review. Chem Commun (Camb) 2023; 59:3523-3535. [PMID: 36847576 DOI: 10.1039/d3cc00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The excessive emission of CO2 derived from the consumption of fossil fuels has caused severe energy and environmental crises. The electrochemical reduction of CO2 into value-added products such as CO not only reduces the CO2 concentration in the atmosphere but also promotes sustainable development in chemical engineering. Thus, tremendous work has been devoted to developing highly efficient catalysts for the selective CO2 reduction reaction (CO2RR). Recently, MOF-derived transition metal-based catalysts have shown great potential for the CO2RR due to their various compositions, adjustable structures, competitive ability, and acceptable cost. Herein, based on our work, a mini-review is proposed for an MOF-derived transition metal-based catalyst for the electrochemical reduction of CO2 to CO. The catalytic mechanism of the CO2RR was first introduced, and then we summarized and analyzed the MOF-derived transition metal-based catalysts in terms of MOF-derived single atomic metal-based catalysts and MOF-derived metal nanoparticle-based catalysts. Finally, we present the challenges and perspectives for the subject topic. Hopefully, this review could be helpful and instructive for the design and application of MOF-derived transition metal-based catalysts for the selective CO2RR to CO.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Baoxia Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
41
|
Zhang J, Guo C, Fang S, Zhao X, Li L, Jiang H, Liu Z, Fan Z, Xu W, Xiao J, Zhong M. Accelerating electrochemical CO 2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat Commun 2023; 14:1298. [PMID: 36894571 PMCID: PMC9998885 DOI: 10.1038/s41467-023-36926-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Electrochemical CO2 reduction (CO2R) to ethylene and ethanol enables the long-term storage of renewable electricity in valuable multi-carbon (C2+) chemicals. However, carbon-carbon (C-C) coupling, the rate-determining step in CO2R to C2+ conversion, has low efficiency and poor stability, especially in acid conditions. Here we find that, through alloying strategies, neighbouring binary sites enable asymmetric CO binding energies to promote CO2-to-C2+ electroreduction beyond the scaling-relation-determined activity limits on single-metal surfaces. We fabricate experimentally a series of Zn incorporated Cu catalysts that show increased asymmetric CO* binding and surface CO* coverage for fast C-C coupling and the consequent hydrogenation under electrochemical reduction conditions. Further optimization of the reaction environment at nanointerfaces suppresses hydrogen evolution and improves CO2 utilization under acidic conditions. We achieve, as a result, a high 31 ± 2% single-pass CO2-to-C2+ yield in a mild-acid pH 4 electrolyte with >80% single-pass CO2 utilization efficiency. In a single CO2R flow cell electrolyzer, we realize a combined performance of 91 ± 2% C2+ Faradaic efficiency with notable 73 ± 2% ethylene Faradaic efficiency, 31 ± 2% full-cell C2+ energy efficiency, and 24 ± 1% single-pass CO2 conversion at a commercially relevant current density of 150 mA cm-2 over 150 h.
Collapse
Affiliation(s)
- Jin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chenxi Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Susu Fang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaotong Zhao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Le Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Haoyang Jiang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zhaoyang Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ziqi Fan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Miao Zhong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
42
|
Kong Q, An X, Liu Q, Xie L, Zhang J, Li Q, Yao W, Yu A, Jiao Y, Sun C. Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects. MATERIALS HORIZONS 2023; 10:698-721. [PMID: 36601800 DOI: 10.1039/d2mh01218a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is an urgent need for the development of high performance electrocatalysts for the CO2 reduction reaction (CO2RR) to address environmental issues such as global warming and achieve carbon neutral energy systems. In recent years, Cu-based electrocatalysts have attracted significant attention in this regard. The present review introduces fundamental aspects of the electrocatalytic CO2RR process together with a systematic examination of recent developments in Cu-based electrocatalysts for the electroreduction of CO2 to various high-value multicarbon products. Current challenges and future trends in the development of advanced Cu-based CO2RR electrocatalysts providing high activity and selectivity are also discussed.
Collapse
Affiliation(s)
- Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Qian Liu
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Lisi Xie
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Jing Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Qinye Li
- Dongguan University of Technology, School Chemistry Engineering and Energy Technology, Dongguan 523808, P. R. China
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Weitang Yao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Aimin Yu
- School of Science, Computing and Engineering Technology, Swinburne University of Technology, VIC, 3122, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
43
|
Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2. Catalysts 2023. [DOI: 10.3390/catal13020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Fossil fuels are still the main source of energy in today’s society, so emissions of CO2 are inevitable, but when the CO2 level in the atmosphere is too high, many environmental problems will arise, such as the greenhouse effect, among others. Electrocatalytic reduction of CO2 is one of the most important methods that one can use to reduce the amount of CO2 in the atmosphere. This paper reviews bimetallic catalysts prepared on the basis of copper materials, such as Ag, Au, Zn and Ni. The effects of different ratios of metal atoms in the bimetallic catalysts on the selectivity of CO2RR were investigated and the effects of bimetallic catalysts on the CO2RR of different ligands were also analysed. Finally, this paper points out that the real reaction of CO2RR still needs to be studied and analysed, and the effect of the specific reaction environment on selectivity has not been thoroughly studied. This article also describes some of the problems encountered so far.
Collapse
|
44
|
Ejeh S, Uzairu A, Shallangwa GA, Abechi SE, Ibrahim MT, Ramu R, Al-Ghorbani M. Chemical bioinformatics study of Nonadec-7-ene-4-carboxylic acid derivatives via molecular docking, and molecular dynamic simulations to identify novel lead inhibitors of hepatitis c virus NS3/4a protease. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
45
|
Azenha C, Mateos-Pedrero C, Lagarteira T, Mendes AM. Tuning the selectivity of Cu2O/ZnO catalyst for CO2 electrochemical reduction. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Pan H, Wang F, She S, Zhang Z, Min S. Boosting CO 2 electroreduction on a Zn electrode via concurrent surface reconstruction and interfacial surfactant modification. Dalton Trans 2023; 52:556-561. [PMID: 36597855 DOI: 10.1039/d2dt03685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, we report an effective strategy for improving the electrocatalytic CO2 reduction reaction (CO2RR) performance of a Zn foil electrode via concurrent surface reconstruction and interfacial surfactant modification. The oxide-derived and CTAB-modified Zn electrode (OD-Zn-CTAB) prepared by electrochemically reducing the air-annealed Zn foil electrode in the presence of CTAB exhibits high electrocatalytic activity and selectivity for CO production with a CO partial current density (jCO) of 8.2 mA cm-2 and a CO faradaic efficiency (FECO) of 90% at -1.0 V vs. the reversible hydrogen electrode (RHE), greatly outperforming the pristine Zn foil (FECO = 32.0%; jCO = 0.5 mA cm-2) and OD-Zn (FECO = 77.6%; jCO = 5.0 mA cm-2) obtained by electroreduction of annealed Zn. The greatly enhanced CO2RR performance of OD-Zn-CTAB can be attributed to the increased number of active sites originating from the surface reconstruction and the formation of a favorable CTAB-modified electrode/electrolyte (E/E) interface that can efficiently adsorb and activate CO2 while inhibiting the competitive H2 evolution reaction.
Collapse
Affiliation(s)
- Hui Pan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Shixiong She
- College of Chemical Engineering, Qinghai University, Xining 810016, P. R. China
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| |
Collapse
|
47
|
Liu G, Zhan J, Zhang Z, Zhang LH, Yu F. Recent Advances of the Confinement Effects Boosting Electrochemical CO 2 Reduction. Chem Asian J 2023; 18:e202200983. [PMID: 36373345 DOI: 10.1002/asia.202200983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Powered by clean and renewable energy, electrocatalytic CO2 reduction reaction (CO2 RR) to chemical feedstocks is an effective way to mitigate the greenhouse effect and artificially close the carbon cycle. However, the performance of electrocatalytic CO2 RR was impeded by the strong thermodynamic stability of CO2 molecules and the high susceptibility to hydrogen evolution reaction (HER) in aqueous phase systems. Moreover, the numerous reaction intermediates formed at very near potentials lead to poor selectivity of reaction products, further preventing the industrialization of CO2 RR. Catalysis in confined space can enrich the reaction intermediates to improve their coverage at the active site, increase local pH to inhibit HER, and accelerate the mass transfer rate of reactants/products and subsequently facilitate CO2 RR performance. Therefore, we summarize the research progress on the application of the confinement effects in the direction of CO2 RR in theoretical and experimental directions. We first analyzed the mechanism of the confinement effect. Subsequently, the confinement effect was discussed in various forms, which can be characterized as an abnormal catalytic phenomenon due to the relative limitation of the reaction region. In specific, based on the physical structure of the catalyst, the confinement effect was divided in four categories: pore structure confinement, cavity structure confinement, active center confinement, and other confinement methods. Based on these discussions, we also have summarized the prospects and challenges in this field. This review aims to stimulate greater interests for the development of more efficient confined strategy for CO2 RR in the future.
Collapse
Affiliation(s)
- Guomeng Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiauyu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Zisheng Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
48
|
Chen X, Zhao Y, Han J, Bu Y. Copper-Based Catalysts for Electrochemical Reduction of Carbon Dioxide to Ethylene. Chempluschem 2023; 88:e202200370. [PMID: 36651767 DOI: 10.1002/cplu.202200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Electrochemical reduction of CO2 into high energy density multi-carbon chemicals or fuels (e. g., ethylene) via new renewable energy storage has extraordinary implications for carbon neutrality. Copper (Cu)-based catalysts have been recognized as the most promising catalysts for the electrochemical reduction of CO2 to ethylene (C2 H4 ) due to their moderate CO adsorption energy and moderate hydrogen precipitation potential. However, the poor selectivity, low current density and high overpotential of the CO2 RR into C2 H4 greatly limit its industrial applications. Meanwhile, the complex reaction mechanism is still unclear, which leads to blindness in the design of catalysts. Herein, we systematically summarized the latest research, proposed possible conversion mechanisms and categorized the general strategies to adjust of the structure and composition for CO2 RR, such as tip effect, defect engineering, crystal plane catalysis, synergistic effect, nanoconfinement effect and so on. Eventually, we provided a prospect of the future challenges for further development and progress in CO2 RR. Previous reviews have summarized catalyst designs for the reduction of CO2 to multi-carbon products, while lacking in targeting C2 H4 alone, an important industrial feedstock. This Review mainly aims to provide a comprehensive understanding for the design strategies and challenges of electrocatalytic CO2 reduction to C2 H4 through recent researches and further propose some guidelines for the future design of copper-based catalysts for electroreduction of CO2 to C2 H4 .
Collapse
Affiliation(s)
- Xiao Chen
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunxia Zhao
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Jiayi Han
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- Jiangsu Collaborative Innovation Center of, Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of, Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| |
Collapse
|
49
|
Nabi AG, Aman-ur-Rehman, Hussain A, Chass GA, Di Tommaso D. Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO 2 Conversion to One Carbon Products. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:87. [PMID: 36615997 PMCID: PMC9823659 DOI: 10.3390/nano13010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/12/2023]
Abstract
Electrochemical CO2 reduction reactions can lead to high value-added chemical and materials production while helping decrease anthropogenic CO2 emissions. Copper metal clusters can reduce CO2 to more than thirty different hydrocarbons and oxygenates yet they lack the required selectivity. We present a computational characterization of the role of nano-structuring and alloying in Cu-based catalysts on the activity and selectivity of CO2 reduction to generate the following one-carbon products: carbon monoxide (CO), formic acid (HCOOH), formaldehyde (H2C=O), methanol (CH3OH) and methane (CH4). The structures and energetics were determined for the adsorption, activation, and conversion of CO2 on monometallic and bimetallic (decorated and core@shell) 55-atom Cu-based clusters. The dopant metals considered were Ag, Cd, Pd, Pt, and Zn, located at different coordination sites. The relative binding strength of the intermediates were used to identify the optimal catalyst for the selective CO2 conversion to one-carbon products. It was discovered that single atom Cd or Zn doping is optimal for the conversion of CO2 to CO. The core@shell models with Ag, Pd and Pt provided higher selectivity for formic acid and formaldehyde. The Cu-Pt and Cu-Pd showed lowest overpotential for methane formation.
Collapse
Affiliation(s)
- Azeem Ghulam Nabi
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Department of Physics, University of Gujrat, Jalalpur Jattan Road, Gujrat 50700, Pakistan
- Theoretical Physics Division, Pakistan Institute of Nuclear Science& Technology (PINSTECH), Nilore, Islamabad 45650, Pakistan
| | - Aman-ur-Rehman
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Department of Nuclear Engineering, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Center for Mathematical Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Akhtar Hussain
- Theoretical Physics Division, Pakistan Institute of Nuclear Science& Technology (PINSTECH), Nilore, Islamabad 45650, Pakistan
| | - Gregory A. Chass
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Chemistry, McMaster University, Hamilton, ON L8S 4L8, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
50
|
Synthesis of Aliphatic Polycarbonates from Diphenyl Carbonate and Diols over Zinc (II) Acetylacetonate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248958. [PMID: 36558091 PMCID: PMC9788399 DOI: 10.3390/molecules27248958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
APCs (aliphatic polycarbonates) are one of the most important types of biodegradable polymers and widely used in the fields of solid electrolyte, biological medicine and biodegradable plastics. Zinc-based catalysts have the advantages of being low cost, being non-toxic, having high activity, and having excellent environmental and biological compatibility. Zinc (II) acetylacetonate (Zn(Acac)2) was first reported as a highly effective catalyst for the melt transesterification of biphenyl carbonate with 1,4-butanediol to synthesize poly(1,4-butylene carbonate)(PBC). It was found that the weight-average molecular weight of PBC derived from Zn(Acac)2 could achieve 143,500 g/mol with a yield of 85.6% under suitable reaction conditions. The Lewis acidity and steric hindrance of Zn2+ could obviously affect the catalytic performance of Zn-based catalysts for this reaction. The main reasons for the Zn(Acac)2 catalyst displaying a higher yield and Mw than other zinc-based catalysts should be ascribed to the presence of the interaction between acetylacetone ligand and Zn2+, which can provide this melt transesterification reaction with the appropriate Lewis acidity as well as the steric hindrance.
Collapse
|