1
|
Sahayasheela VJ, Ooga M, Kumagai T, Sugiyama H. Z-DNA at the crossroads: untangling its role in genome dynamics. Trends Biochem Sci 2025; 50:267-279. [PMID: 39875265 DOI: 10.1016/j.tibs.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications. However, our understanding of its roles remains in its infancy, primarily due to a lack of study tools. In this review we summarize the structure and function of Z-DNA within the genome while addressing the difficulties associated with identifying and investigating its role(s). We then critically evaluate several intracellular factors that can modulate and regulate Z-DNA. Additionally, we discuss the recent technological and methodological advances that may overcome the challenges and enhance our understanding of Z-DNA.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Malina J, Kostrhunova H, Brabec V. Ni(II) Cylinders Damage DNA in Cancer Cells and Preferentially Bind Y-Shaped DNA Three-Way Junctions Blocking DNA Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406814. [PMID: 39428899 PMCID: PMC11673443 DOI: 10.1002/smll.202406814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Indexed: 10/22/2024]
Abstract
DNA three-way junctions are critical in various biological processes and hold significant potential for disease treatment and therapeutic applications. In this study, it is demonstrated that triple-stranded dinuclear [Ni2L3]4+ cylinders (L = C25H20N4) exhibit a preferential binding affinity for Y-shaped DNA three-way junctions (3WJs), even in the presence of an excess of competing DNA structures, including G-quadruplexes. Notably, the investigated Ni(II) cylinders are capable of halting DNA synthesis catalyzed by DNA polymerase by stabilizing the 3WJ on the template strand. Using an extended 1D nanoarchitecture model, it is further established the high affinity and selectivity of the cylinders for DNA 3WJs and explored their potential application in stabilizing short-armed 3WJs for constructing DNA nanomaterials. The combined use of Ni(II) cylinders and DNA damage response inhibitors also revealed that the cylinders promote DNA damage, leading to the formation of double-strand breaks. This effect is likely associated with i) the binding of cylinders to 3WJs and ii) the cytotoxic activity of the cylinders in cancer cells.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of SciencesInstitute of BiophysicsBrnoCZ‐61200Czech Republic
| | - Hana Kostrhunova
- Czech Academy of SciencesInstitute of BiophysicsBrnoCZ‐61200Czech Republic
| | - Viktor Brabec
- Czech Academy of SciencesInstitute of BiophysicsBrnoCZ‐61200Czech Republic
- Palacky UniversityDepartment of BiophysicsFaculty of ScienceOlomoucCZ‐78371Czech Republic
| |
Collapse
|
3
|
Wang J, Wen Y, Zhang Y, Wang Z, Jiang Y, Dai C, Wu L, Leng D, He S, Bo X. An interpretable artificial intelligence framework for designing synthetic lethality-based anti-cancer combination therapies. J Adv Res 2024; 65:329-343. [PMID: 38043609 PMCID: PMC11519055 DOI: 10.1016/j.jare.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Synthetic lethality (SL) provides an opportunity to leverage different genetic interactions when designing synergistic combination therapies. To further explore SL-based combination therapies for cancer treatment, it is important to identify and mechanistically characterize more SL interactions. Artificial intelligence (AI) methods have recently been proposed for SL prediction, but the results of these models are often not interpretable such that deriving the underlying mechanism can be challenging. OBJECTIVES This study aims to develop an interpretable AI framework for SL prediction and subsequently utilize it to design SL-based synergistic combination therapies. METHODS We propose a knowledge and data dual-driven AI framework for SL prediction (KDDSL). Specifically, we use gene knowledge related to the SL mechanism to guide the construction of the model and develop a method to identify the most relevant gene knowledge for the predicted results. RESULTS Experimental and literature-based validation confirmed a good balance between predictive and interpretable ability when using KDDSL. Moreover, we demonstrated that KDDSL could help to discover promising drug combinations and clarify associated biological processes, such as the combination of MDM2 and CDK9 inhibitors, which exhibited significant anti-cancer effects in vitro and in vivo. CONCLUSION These data underscore the potential of KDDSL to guide SL-based combination therapy design. There is a need for biomedicine-focused AI strategies to combine rational biological knowledge with developed models.
Collapse
Affiliation(s)
- Jing Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuqi Wen
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yixin Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Zhongming Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yuyang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Dongjin Leng
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
4
|
Pipier A, Chetot T, Kalamatianou A, Martin N, Caroff M, Britton S, Chéron N, Trantírek L, Granzhan A, Monchaud D. Structural Optimization of Azacryptands for Targeting Three-Way DNA Junctions. Angew Chem Int Ed Engl 2024; 63:e202409780. [PMID: 38873877 DOI: 10.1002/anie.202409780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Transient melting of the duplex-DNA (B-DNA) during DNA transactions allows repeated sequences to fold into non-B-DNA structures, including DNA junctions and G-quadruplexes. These noncanonical structures can act as impediments to DNA polymerase progression along the duplex, thereby triggering DNA damage and ultimately jeopardizing genomic stability. Their stabilization by ad hoc ligands is currently being explored as a putative anticancer strategy since it might represent an efficient way to inflict toxic DNA damage specifically to rapidly dividing cancer cells. The relevance of this strategy is only emerging for three-way DNA junctions (TWJs) and, to date, no molecule has been recognized as a reference TWJ ligand, featuring both high affinity and selectivity. Herein, we characterize such reference ligands through a combination of in vitro techniques comprising affinity and selectivity assays (competitive FRET-melting and TWJ Screen assays), functional tests (qPCR and Taq stop assays) and structural analyses (molecular dynamics and NMR investigations). We identify novel azacryptands TrisNP-amphi and TrisNP-ana as the most promising ligands, interacting with TWJs with high affinity and selectivity. These ligands represent new molecular tools to investigate the cellular roles of TWJs and explore how they can be exploited in innovative anticancer therapies.
Collapse
Affiliation(s)
- Angélique Pipier
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, 9, Avenue Alain Savary, 21078, Dijon, France
| | - Titouan Chetot
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - Apollonia Kalamatianou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - Nicolas Martin
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - Maëlle Caroff
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Nicolas Chéron
- PASTEUR, Département de chimie, École Normale Supérieure (ENS), PSL University, Sorbonne Université, CNRS UMR8640, 75005, Paris, France
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, 9, Avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
5
|
Hazra A, Samanta SK. Main-Chain Cationic Polyelectrolytes: Design, Synthesis, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2417-2438. [PMID: 38253020 DOI: 10.1021/acs.langmuir.3c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polyelectrolytes have attracted a lot of attention spanning across disciplines, including polymer chemistry, materials chemistry, chemical biology, chemical engineering, as well as device physics, as a result of their widespread applications in sensing, biomedicine, food industry, wastewater treatment, optoelectronic devices, and renewable energy. In this review, we focus on the crucial synthetic strategies of structurally different classes of main-chain cationic polyelectrolytes. As a result of the presence of charged moieties in the main polymeric backbone, their solubility and photophysical properties can be easily tuned. Main-chain cationic polyelectrolytes provide various unique characteristics, including solubility in aqueous and organic solvents, easy processability, ease of film formation, ionic interaction, main-chain-directed charge transport, high conductivity, and aggregation. These properties make the main-chain polyelectrolyte a potential candidate for numerous applications ranging from chemo- and biosensing, antibacterial activity, optoelectronics, electrocatalysis, water splitting, ion conduction, to dye-sensitized solar cells.
Collapse
Affiliation(s)
- Amrita Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
6
|
Alcalde-Ordóñez A, Barreiro-Piñeiro N, McGorman B, Gómez-González J, Bouzada D, Rivadulla F, Vázquez ME, Kellett A, Martínez-Costas J, López MV. A copper(ii) peptide helicate selectively cleaves DNA replication foci in mammalian cells. Chem Sci 2023; 14:14082-14091. [PMID: 38098723 PMCID: PMC10718067 DOI: 10.1039/d3sc03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
The use of copper-based artificial nucleases as potential anticancer agents has been hampered by their poor selectivity in the oxidative DNA cleavage process. An alternative strategy to solve this problem is to design systems capable of selectively damaging noncanonical DNA structures that play crucial roles in the cell cycle. We designed an oligocationic CuII peptide helicate that selectively binds and cleaves DNA three-way junctions (3WJs) and induces oxidative DNA damage via a ROS-mediated pathway both in vitro and in cellulo, specifically at DNA replication foci of the cell nucleus, where this DNA structure is transiently generated. To our knowledge, this is the first example of a targeted chemical nuclease that can discriminate with high selectivity 3WJs from other forms of DNA both in vitro and in mammalian cells. Since the DNA replication process is deregulated in cancer cells, this approach may pave the way for the development of a new class of anticancer agents based on copper-based artificial nucleases.
Collapse
Affiliation(s)
- Ana Alcalde-Ordóñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Bríonna McGorman
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Francisco Rivadulla
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Física, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Andrew Kellett
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
7
|
Matos-Rodrigues G, Hisey JA, Nussenzweig A, Mirkin SM. Detection of alternative DNA structures and its implications for human disease. Mol Cell 2023; 83:3622-3641. [PMID: 37863029 DOI: 10.1016/j.molcel.2023.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.
Collapse
Affiliation(s)
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
8
|
Pruška A, Harrison JA, Granzhan A, Marchand A, Zenobi R. Solution and Gas-Phase Stability of DNA Junctions from Temperature-Controlled Electrospray Ionization and Surface-Induced Dissociation. Anal Chem 2023; 95:14384-14391. [PMID: 37699589 DOI: 10.1021/acs.analchem.3c02742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
DNA three-way junction (TWJ) structures transiently form during key cellular processes such as transcription, replication, and DNA repair. Despite their significance, the thermodynamics of TWJs, including the influence of strand length, base pair composition, and ligand binding on TWJ stability and dissociation mechanisms, are poorly understood. To address these questions, we interfaced temperature-controlled nanoelectrospray ionization mass spectrometry (TC-nESI-MS) with a cyclic ion mobility spectrometry (cIMS) instrument that was also equipped with a surface-induced dissociation (SID) stage. This novel combination allowed us to investigate the structural intermediates of three TWJ complexes and examine the effects of GC base pairs on their dissociation pathways. We found that two TWJ-specific ligands, 2,7-tris-naphthalene (2,7-TrisNP) and tris-phenoxybenzene (TrisPOB), lead to TWJ stabilization, revealed by an increase in the melting temperature (Tm) by 13 or 26 °C, respectively. To gain insights into conformational changes in the gas phase, we employed cIMS and SID to analyze TWJs and their complexes with ligands. Analysis of IM arrival distributions suggested a single-step dissociation of TWJs and their intermediates for the three studied TWJ complexes. Upon ligand binding, a higher SID energy by 3 V (2,7-TrisNP) and 5 V (TrisPOB) was required to induce 50% dissociation of TWJ, compared to 38 V in the absence of ligands. Our results demonstrate the power of utilizing TC-nESI-MS in combination with cIMS and SID for thermodynamic characterization of TWJ complexes and investigation of ligand binding. These techniques are essential for the TWJ design and development as drug targets, aptamers, and structural units for functional biomaterials.
Collapse
Affiliation(s)
- Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, Paris Saclay University, F-91405 Orsay, France
| | - Adrien Marchand
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
9
|
Dong J, Willner I. Transient Transcription Machineries Modulate Dynamic Functions of G-Quadruplexes: Temporal Regulation of Biocatalytic Circuits, Gene Replication and Transcription. Angew Chem Int Ed Engl 2023; 62:e202307898. [PMID: 37380611 DOI: 10.1002/anie.202307898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Native G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated. (iii) A dynamically fueled transient transcription machinery for the temporal activation of G-quadruplex-topologically blocked gene polymerization circuits is introduced. (iv) Transcription circuits revealing G-quadruplex-promoted or G-quadruplex-inhibited cascaded transcription machineries are presented. Beyond advancing the rapidly developing field of dynamically modulated G-quadruplex DNA nanostructures, the systems introduce potential therapeutic applications.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Malina J, Kostrhunova H, Scott P, Brabec V. Metallohelices stabilize DNA three-way junctions and induce DNA damage in cancer cells. Nucleic Acids Res 2023; 51:7174-7183. [PMID: 37351627 PMCID: PMC10415117 DOI: 10.1093/nar/gkad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
DNA three-way junctions (3WJ) represent one of the simplest supramolecular DNA structures arising as intermediates in homologous recombination in the absence of replication. They are also formed transiently during DNA replication. Here we examine the ability of Fe(II)-based metallohelices to act as DNA 3WJ binders and induce DNA damage in cells. We investigated the interaction of eight pairs of enantiomerically pure Fe(II) metallohelices with four different DNA junctions using biophysical and molecular biology methods. The results show that the metallohelices stabilize all types of tested DNA junctions, with the highest selectivity for the Y-shaped 3WJ and minimal selectivity for the 4WJ. The potential of the best stabilizer of DNA junctions and, at the same time, the most selective 3WJ binder investigated in this work to induce DNA damage was determined in human colon cancer HCT116 cells. These metallohelices proved to be efficient in killing cancer cells and triggering DNA damage that could yield therapeutic benefits.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| |
Collapse
|
11
|
Craig JS, Melidis L, Williams HD, Dettmer SJ, Heidecker AA, Altmann PJ, Guan S, Campbell C, Browning DF, Sigel RKO, Johannsen S, Egan RT, Aikman B, Casini A, Pöthig A, Hannon MJ. Organometallic Pillarplexes That Bind DNA 4-Way Holliday Junctions and Forks. J Am Chem Soc 2023. [PMID: 37318835 DOI: 10.1021/jacs.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes' ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | - Silke Johannsen
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Nikkel DJ, Wetmore SD. Distinctive Formation of a DNA-Protein Cross-Link during the Repair of DNA Oxidative Damage: Insights into Human Disease from MD Simulations and QM/MM Calculations. J Am Chem Soc 2023. [PMID: 37285289 DOI: 10.1021/jacs.3c01773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species damage DNA and result in health issues. The major damage product, 8-oxo-7,8-dihydroguanine (8oG), is repaired by human adenine DNA glycosylase homologue (MUTYH). Although MUTYH misfunction is associated with a genetic disorder called MUTYH-associated polyposis (MAP) and MUTYH is a potential target for cancer drugs, the catalytic mechanism required to develop disease treatments is debated in the literature. This study uses molecular dynamics simulations and quantum mechanics/molecular mechanics techniques initiated from DNA-protein complexes that represent different stages of the repair pathway to map the catalytic mechanism of the wild-type MUTYH bacterial homologue (MutY). This multipronged computational approach characterizes a DNA-protein cross-linking mechanism that is consistent with all previous experimental data and is a distinct pathway across the broad class of monofunctional glycosylase repair enzymes. In addition to clarifying how the cross-link is formed, accommodated by the enzyme, and hydrolyzed for product release, our calculations rationalize why cross-link formation is favored over immediate glycosidic bond hydrolysis, the accepted mechanism for all other monofunctional DNA glycosylases to date. Calculations on the Y126F mutant MutY highlight critical roles for active site residues throughout the reaction, while investigation of the N146S mutant rationalizes the connection between the analogous N224S MUTYH mutation and MAP. In addition to furthering our knowledge of the chemistry associated with a devastating disorder, the structural information gained about the distinctive MutY mechanism compared to other repair enzymes represents an important step for the development of specific and potent small-molecule inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
13
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
14
|
Wang K, Liu J, Liu P, Wang D, Han T, Tang BZ. Multifunctional Fluorescent Main-Chain Charged Polyelectrolytes Synthesized by Cascade C-H Activation/Annulation Polymerizations. J Am Chem Soc 2023; 145:4208-4220. [PMID: 36763076 DOI: 10.1021/jacs.2c12654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fluorescent polyelectrolytes have attracted enormous attention as functional polymer materials. In contrast with the widely studied conjugated polyelectrolytes with ionic groups in side chains, fluorescent main-chain charged polyelectrolytes (MCCPs) have rarely been explored due to the large synthetic difficulty. Herein, we develop a facile and atom-economical N-heterocyclic carbene-directed cascade C-H activation/annulation polymerization strategy that can transform readily available imidazolium substrates and internal diynes into multifunctional fluorescent MCCPs with complex structures and high molecular weights (absolute Mn up to 135 600) in nearly quantitative yields. The presence of multisubstituted polycyclic N-heteroaromatic cations in polymer backbones endow the obtained MCCPs with excellent solution processability, high thermal stability, and dual-state efficient fluorescence in both solution and aggregate states. Benefiting from the strong electron-withdrawing capability of the cationic heterocycles in main chains, multicolored aggregate-state fluorescence can be readily achieved by modifying the substituents around the cationic ring-fused core. Taking advantage of the good photosensitivity of the fluorescent MCCP thin films, multiscale and high-resolution fluorescent photopatterns with different colors can be facilely prepared with potential applications in optical display devices and anticounterfeiting systems. Moreover, the strong electrostatic interactions of these cationic MCCPs with anionic polyelectrolytes enable them to form multicolored fluorescent interfacial polyelectrolyte complexation microfibers with directly visualized internal structures. Such flexible microfibers can be further made into diversified forms of fiber-based macroscopic patterns or painting.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
15
|
Wang Y, Shi N, He Y, Li Y, Zheng Q. A direct approach toward investigating DNA-ligand interactions via surface-enhanced Raman spectroscopy combined with molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:2153-2160. [PMID: 36562542 DOI: 10.1039/d2cp04566d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules that interfere with DNA replication can trigger genomic instability, which makes these molecules valuable in the search for anticancer drugs. Thus, interactions between DNA and its ligands at the molecular level are of great significance. In the present study, a new method based on surface-enhanced Raman spectroscopy (SERS) combined with molecular dynamics simulations has been proposed for analyzing the interactions between DNA and its ligands. The SERS signals of DNA hairpins (ST: d(CGACCAACGTGTCGCCTGGTCG), AP1: d(CGCACAACGTGTCGCCTGTGCG)), pure argininamide, and their complexes, were obtained, and the characteristic peak sites of the DNA secondary structure and argininamide ligand-binding region were analyzed. Molecular dynamics calculations predicted that argininamide binds to the 8C and 9G bases of AP1 via hydrogen bonding. Our method successfully detected the changes of SERS fingerprint peaks of hydrogen bonds and bases between argininamide and DNA hairpin bases, and their binding sites and action modes were consistent with the predicted results of the molecular dynamics simulations. This SERS technology combined with the molecular dynamics simulation detection platform provides a general analysis tool, with the advantage of effective, rapid, and sensitive detection. This platform can obtain sufficient molecular level conformational information to provide avenues for rapid drug screening and promote progress in several fields, including targeted drug design.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Yingying He
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| |
Collapse
|
16
|
Ma X, Li X, Luo G, Jiao J. DNA-functionalized gold nanoparticles: Modification, characterization, and biomedical applications. Front Chem 2022; 10:1095488. [PMID: 36583149 PMCID: PMC9792995 DOI: 10.3389/fchem.2022.1095488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
With the development of technologies based on gold nanoparticles (AuNPs), bare AuNPs cannot meet the increasing requirements of biomedical applications. Modifications with different functional ligands are usually needed. DNA is not only the main genetic material, but also a good biological material, which has excellent biocompatibility, facile design, and accurate identification. DNA is a perfect ligand candidate for AuNPs, which can make up for the shortcoming of bare AuNPs. DNA-modified AuNPs (DNA-AuNPs) have exciting features and bright prospects in many fields, which have been intensively investigated in the past decade. In this review, we summarize the various approaches for the immobilization of DNA strands on the surface of AuNPs. Representative studies for biomedical applications based on DNA-AuNPs are also discussed. Finally, we present the challenges and future directions.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoqiang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Gangyin Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China,*Correspondence: Gangyin Luo, ; Jin Jiao,
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,*Correspondence: Gangyin Luo, ; Jin Jiao,
| |
Collapse
|
17
|
McQuaid K, Pipier A, Cardin C, Monchaud D. Interactions of small molecules with DNA junctions. Nucleic Acids Res 2022; 50:12636-12656. [PMID: 36382400 PMCID: PMC9825177 DOI: 10.1093/nar/gkac1043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The four natural DNA bases (A, T, G and C) associate in base pairs (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA (or duplex-DNA, also known as B-DNA). The intrinsic supramolecular properties of nucleobases make other associations possible (such as base triplets or quartets), which thus translates into a diversity of DNA structures beyond B-DNA. To date, the alphabet of DNA structures is ripe with approximately 20 letters (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and, by extension, valuable targets for chemical biology intervention. In the present review, we summarise what is known about alternative DNA structures (what are they? When, where and how do they fold?) and proceed to discuss further about those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures, particularly the three- and four-way DNA junctions, in order to intervene in the biological processes where they are involved. This new and stimulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Angélique Pipier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
18
|
Ivens E, Cominetti MM, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem 2022; 69:116897. [DOI: 10.1016/j.bmc.2022.116897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
19
|
Baig MMFA, Gao X, Khan MA, Farid A, Zia AW, Wu H. Nanoscale packing of DNA tiles into DNA macromolecular lattices. Int J Biol Macromol 2022; 220:520-527. [PMID: 35988727 DOI: 10.1016/j.ijbiomac.2022.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
Nanoscale double-crossovers (DX), antiparallel (A), and even half-turns-perimeter (E) DNA tiles (DAE-tiles) with rectangular shapes can be packed into large arrays of micrometer-scale lattices. But the features and mechanical strength of DNA assembly made from differently shaped large-sized DAE DNA tiles and the effects of various geometries on the final DNA assembly are yet to be explored. Herein, we focused on examining DNA lattices synthesized from DX bi-triangular, DNA tiles (T) with concave and convex regions along the perimeter of the tiles. The bi-triangular DNA tiles "T(A) and T(B)" were synthesized by self-assembling the freshly prepared short circular scaffold (S) strands "S(A) and S(B)", each of 106 nucleotides (NT) lengths. The tiles "T(A) and T(B)" were then coupled together to get assembled via sticky ends. It resulted in the polymerization of DNA tiles into large-sized DNA lattices with giant micrometer-scale dimensions to form the "T(A) + T(B)" assembly. These DNA macro-frameworks were visualized "in the air" under atomic force microscopy (AFM) employing tapping mode. We have characterized how curvature in DNA tiles may undergo transitions and transformations to adjust the overall torque, strain, twists, and the topology of the final self-assembly array of DNA tiles. According to our results, our large-span DX tiles assembly "T(A) + T(B)" despite the complicated curvatures and mechanics, was successfully packed into giant DNA lattices of the width of 30-500 nm and lengths of 500 nm to over 10 μm. Conclusively, the micrometer-scale "T(A) + T(B)" framework assembly was rigid, stable, stiff, and exhibited enough tensile strength to form monocrystalline lattices.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Department of Chemistry, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Xiuli Gao
- Microbiological and Biochemical Pharmaceutical Engineering Research Center of Guizhou Province, State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China.
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Marie Curie Research Unit, Northumbria University, Newcastle, United Kingdom
| | - Hongkai Wu
- Department of Chemistry, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Department of Chemical and Biological Engineering, Division of Biomedical Engineering, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
20
|
Gómez-González J, Martínez-Castro L, Tolosa-Barrilero J, Alcalde-Ordóñez A, Learte-Aymamí S, Mascareñas JL, García-Martínez JC, Martínez-Costas J, Maréchal JD, Vázquez López M, Vázquez ME. Selective recognition of A/T-rich DNA 3-way junctions with a three-fold symmetric tripeptide. Chem Commun (Camb) 2022; 58:7769-7772. [PMID: 35730795 DOI: 10.1039/d2cc02874c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Non-canonical DNA structures, particularly 3-Way Junctions (3WJs) that are transiently formed during DNA replication, have recently emerged as promising chemotherapeutic targets. Here, we describe a new approach to target 3WJs that relies on the cooperative and sequence-selective recognition of A/T-rich duplex DNA branches by three AT-Hook peptides attached to a three-fold symmetric and fluorogenic 1,3,5-tristyrylbenzene core.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - Laura Martínez-Castro
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Juan Tolosa-Barrilero
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain.,Regional Center for Biomedical Research (CRIB), 02071 Albacete, Spain
| | - Ana Alcalde-Ordóñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - Soraya Learte-Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| | - Joaquín C García-Martínez
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, 02071 Albacete, Spain.,Regional Center for Biomedical Research (CRIB), 02071 Albacete, Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Sakai N, Assies L, Matile S. G‐Quartets, 4‐Way Junctions and Triple Helices but Not DNA Duplexes: Planarization of Twisted Push‐Pull Flipper Probes by Surface Recognition Rather Than Physical Compression. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naomi Sakai
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Lea Assies
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Stefan Matile
- University of Geneva Department of Organic Chemistry Quai Ernest-Ansermet 30 CH-1211 Geneva SWITZERLAND
| |
Collapse
|
22
|
Ye M, Gao Y, Liang M, Qiu W, Ma X, Xu J, Hu J, Xue P, Kang Y, Xu Z. Microenvironment-responsive chemotherapeutic nanogels for enhancing tumor therapy via DNA damage and glutathione consumption. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Malina J, Kostrhunova H, Brabec V. Dinuclear nickel( ii) supramolecular helicates down-regulate gene expression in human cells by stabilizing DNA G-quadruplexes formed in the promoter regions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dinuclear nickel(ii) supramolecular helicates selectively stabilize DNA G-quadruplexes and suppress G-quadruplex-regulated genes.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
24
|
Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 2021; 49:10275-10288. [PMID: 34551430 PMCID: PMC8501980 DOI: 10.1093/nar/gkab796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Katerina Duskova
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Leïla Chouh
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - Nicolas Chéron
- Pasteur, Département de chimie, École Normale Supérieure (ENS), CNRS UMR8640, PSL Research University, Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
25
|
Melidis L, Hill HJ, Coltman NJ, Davies SP, Winczura K, Chauhan T, Craig JS, Garai A, Hooper CAJ, Egan RT, McKeating JA, Hodges NJ, Stamataki Z, Grzechnik P, Hannon MJ. Supramolecular Cylinders Target Bulge Structures in the 5' UTR of the RNA Genome of SARS-CoV-2 and Inhibit Viral Replication. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:18292-18299. [PMID: 38505190 PMCID: PMC10947172 DOI: 10.1002/ange.202104179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 01/09/2023]
Abstract
The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.
Collapse
Affiliation(s)
- Lazaros Melidis
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Harriet J. Hill
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Scott P. Davies
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Kinga Winczura
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Tasha Chauhan
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - James S. Craig
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Aditya Garai
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Ross T. Egan
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Jane A. McKeating
- Nuffield Department of Medicine & Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI)Oxford UniversityOxfordOX3 7BNUK
| | - Nikolas J. Hodges
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Zania Stamataki
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Pawel Grzechnik
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Michael J. Hannon
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
26
|
Melidis L, Hill HJ, Coltman NJ, Davies SP, Winczura K, Chauhan T, Craig JS, Garai A, Hooper CAJ, Egan RT, McKeating JA, Hodges NJ, Stamataki Z, Grzechnik P, Hannon MJ. Supramolecular Cylinders Target Bulge Structures in the 5' UTR of the RNA Genome of SARS-CoV-2 and Inhibit Viral Replication*. Angew Chem Int Ed Engl 2021; 60:18144-18151. [PMID: 33915014 PMCID: PMC8222931 DOI: 10.1002/anie.202104179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.
Collapse
Affiliation(s)
- Lazaros Melidis
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Harriet J. Hill
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Scott P. Davies
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Kinga Winczura
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Tasha Chauhan
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - James S. Craig
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Aditya Garai
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Ross T. Egan
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Jane A. McKeating
- Nuffield Department of Medicine & Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI)Oxford UniversityOxfordOX3 7BNUK
| | - Nikolas J. Hodges
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Zania Stamataki
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Pawel Grzechnik
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Michael J. Hannon
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
27
|
Wickhorst PJ, Ihmels H. Berberrubine Phosphate: A Selective Fluorescent Probe for Quadruplex DNA. Molecules 2021; 26:2566. [PMID: 33924894 PMCID: PMC8124163 DOI: 10.3390/molecules26092566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
A phosphate-substituted, zwitterionic berberine derivative was synthesized and its binding properties with duplex DNA and G4-DNA were studied using photometric, fluorimetric and polarimetric titrations and thermal DNA denaturation experiments. The ligand binds with high affinity toward both DNA forms (Kb = 2-7 × 105 M-1) and induces a slight stabilization of G4-DNA toward thermally induced unfolding, mostly pronounced for the telomeric quadruplex 22AG. The ligand likely binds by aggregation and intercalation with ct DNA and by terminal stacking with G4-DNA. Thus, this compound represents one of the rare examples of phosphate-substituted DNA binders. In an aqueous solution, the title compound has a very weak fluorescence intensity (Φfl < 0.01) that increases significantly upon binding to G4-DNA (Φfl = 0.01). In contrast, the association with duplex DNA was not accompanied by such a strong fluorescence light-up effect (Φfl < 0.01). These different fluorimetric responses upon binding to particular DNA forms are proposed to be caused by the different binding modes and may be used for the selective fluorimetric detection of G4-DNA.
Collapse
Affiliation(s)
| | - Heiko Ihmels
- Department of Chemistry-Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering (Cµ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany;
| |
Collapse
|
28
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
29
|
Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 2020; 10:578095. [PMID: 33324554 PMCID: PMC7724080 DOI: 10.3389/fonc.2020.578095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a therapeutic milestone exerting a synthetic lethal effect in the treatment of cancer involving BRCA1/2 mutation. Theoretically, PARP inhibitors (PARPi) eliminate tumor cells by disrupting DNA damage repair through either PARylation or the homologous recombination (HR) pathway. However, resistance to PARPi greatly hinders therapeutic effectiveness in triple-negative breast cancer (TNBC). Owing to the high heterogeneity and few genetic targets in TNBC, there has been limited therapeutic progress in the past decades. In view of this, there is a need to circumvent resistance to PARPi and develop potential treatment strategies for TNBC. We present, herein, a review of the scientific progress and explore the mechanisms underlying PARPi resistance in TNBC. The complicated mechanisms of PARPi resistance, including drug exporter formation, loss of poly (ADP-ribose) glycohydrolase (PARG), HR reactivation, and restoration of replication fork stability, are discussed in detail in this review. Additionally, we also discuss new combination therapies with PARPi that can improve the clinical response in TNBC. The new perspectives for PARPi bring novel challenges and opportunities to overcome PARPi resistance in breast cancer.
Collapse
Affiliation(s)
- Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Biomedical Informatics, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Hooper CAJ, Cardo L, Craig JS, Melidis L, Garai A, Egan RT, Sadovnikova V, Burkert F, Male L, Hodges NJ, Browning DF, Rosas R, Liu F, Rocha FV, Lima MA, Liu S, Bardelang D, Hannon MJ. Rotaxanating Metallo-supramolecular Nano-cylinder Helicates to Switch DNA Junction Binding. J Am Chem Soc 2020; 142:20651-20660. [DOI: 10.1021/jacs.0c07750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Catherine A. J. Hooper
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lucia Cardo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - James S. Craig
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lazaros Melidis
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Aditya Garai
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ross T. Egan
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Viktoriia Sadovnikova
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Florian Burkert
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nikolas J. Hodges
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille 13007, France
| | - Fengbo Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Fillipe V. Rocha
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Mauro A. Lima
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | | | - Michael J. Hannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
31
|
Photosensitizers Based on G-Quadruplex Ligand for Cancer Photodynamic Therapy. Genes (Basel) 2020; 11:genes11111340. [PMID: 33198362 PMCID: PMC7697063 DOI: 10.3390/genes11111340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
G-quadruplex (G4) is the non-canonical secondary structure of DNA and RNA formed by guanine-rich sequences. G4-forming sequences are abundantly located in telomeric regions and in the promoter and untranslated regions (UTR) of cancer-related genes, such as RAS and MYC. Extensive research has suggested that G4 is a potential molecular target for cancer therapy. Here, we reviewed G4 ligands as photosensitizers for cancer photodynamic therapy (PDT), which is a minimally invasive therapeutic approach. The photosensitizers, such as porphyrins, were found to be highly toxic against cancer cells via the generation of reactive oxidative species (ROS) upon photo-irradiation. Several porphyrin derivatives and analogs, such as phthalocyanines, which can generate ROS upon photo-irradiation, have been reported to act as G4 ligands. Therefore, they have been implicated as promising photosensitizers that can selectively break down cancer-related DNA and RNA forming G4. In this review, we majorly focused on the potential application of G4 ligands as photosensitizers, which would provide a novel strategy for PDT, especially molecularly targeted PDT (mtPDT).
Collapse
|
32
|
Zhou Z, Fan D, Willner I. Modeling Gene Expression Instability by Programmed and Switchable Polymerization/Nicking DNA Nanomachineries. ACS NANO 2020; 14:5046-5052. [PMID: 32250590 DOI: 10.1021/acsnano.0c01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Models for gene expression instability by noncanonical DNA-nanostructures are introduced. The systems consist of a promoter-template scaffold that acts as a polymerization/nicking machinery that models, in the presence of polymerase/Nt.BbvCI and dNTPs, the autonomous synthesis of displaced strands mimicking the native "genes". Incorporation of noncanonical DNA structures into the scaffolds consisting of Sr2+-ion-stabilized G-quadruplexes, T-A·T triplexes, or ATP-aptamer complexes results in the perturbation of the polymerization/nicking DNA machineries and the synthesis of displaced strands-"genes" exhibiting other structures. By the dissociation of the noncanonical blockage units, the regeneration of the synthesis of the original intact displaced strands-"genes" is demonstrated. The study introduces conceptual means to eliminate destructive gene expression instability pathways.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daoqing Fan
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|