1
|
Huang P, Zhang H, Zeng H. Mussel-Inspired Molecular Strategies for Fabricating Functional Materials With Underwater Adhesion and Self-Healing Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501542. [PMID: 40376853 DOI: 10.1002/adma.202501542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/05/2025] [Indexed: 05/18/2025]
Abstract
The exceptional underwater adhesion and self-healing capabilities of mussels have fascinated researchers for over two decades. Extensive studies have shown that these remarkable properties arise from a series of reversible and dynamic molecular interactions involving mussel foot proteins. Inspired by these molecular interaction strategies, numerous functional materials exhibiting strong underwater adhesion and self-healing performance have been successfully developed. This review systematically explores the nanomechanical mechanisms of mussel-inspired molecular interactions, mainly revealed by direct force measurement techniques such as surface forces apparatus and atomic force microscopy. The development of functional materials, including coacervates, coatings, and hydrogels, with underwater adhesion and self-healing properties, is then summarized. Furthermore, the macroscopic material performances are correlated with the underlying molecular mechanisms, providing valuable insights for the rational design of next-generation mussel-inspired functional materials with enhanced underwater adhesion and self-healing properties.
Collapse
Affiliation(s)
- Pan Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongjian Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
2
|
An B, Cui H, Wang M, Li Z, Li J. Hydrogel tissue adhesive: Adhesion strategy and application. Colloids Surf B Biointerfaces 2025; 253:114755. [PMID: 40344744 DOI: 10.1016/j.colsurfb.2025.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Hydrogel tissue adhesives have emerged as a promising alternative to conventional wound closure methods such as sutures and staples due to their operational simplicity demonstrated biocompatibility and capacity for multifunctional integration. However, complex and variable tissue microenvironments and dynamic adhesion surfaces still challenge the actual adhesion performance of adhesives, especially natural polymer-based adhesives. In addition, to expand the application of adhesives in biomedical fields, there is an urgent need to further improve tissue adhesion performance through composition design, adhesion mechanism research and bioeffect development. This review focuses on the adhesive properties of adhesives and their applications in biomedical fields. Adhesion-cohesion equilibria, forms of adhesion failure, methods for improving cohesion and various interfacial adhesion mechanisms are presented. Moreover, practical biomedical applications of tissue adhesives are reviewed, focusing on skin, heart, stomach, liver, and cornea. Finally, this review looks ahead to a new generation of multi-functional, strong adhesion tissue adhesives, in the hope of providing inspiration to those working in the field.
Collapse
Affiliation(s)
- Boyuan An
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengke Wang
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Li D, Yao X, Wang WW, Wang Y, Wu W, Hu Z. Design, synthesis and antifungal activity of novel vanillin derivatives containing thiazole and acylhydrazone moieties. PEST MANAGEMENT SCIENCE 2025; 81:1909-1922. [PMID: 39628436 DOI: 10.1002/ps.8591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND The potential application of vanillin as a fungicide has garnered significant attention in the agricultural product market and food industries. Consequently, a novel series of vanillin derivatives containing thiazole and hydrazone fragments were strategically designed, synthesized, and evaluated for their antifungal activity against six representative plant phytopathogenic fungi. RESULTS In the in vitro antifungal assay, some title vanillin derivatives showed good antifungal activity against Botrytis cinerea, Fusarium solani, and Magnaporthe grisea. Significantly, compound 4a exhibited remarkable broad-spectrum fungistatic potency and displayed the most potent antifungal activity against B. cinerea and F. solani, with half maximal effective concentration (EC50) values of 1.07 and 0.78 μg/mL, respectively, substantially surpassing the efficacy of the commercial fungicide hymexazol and comparable to carbendazim. In addition, compound 4k selectively inhibited M. grisea with the lowest EC50 value of 7.77 μg/mL. The in vivo antifungal assay revealed that compound 4a exhibited superior protective efficacy against B. cinerea compared to carbendazim. At the same time, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescent dye staining showed compound 4a exerted its fungicidal activity by damaging the cell wall, cell membrane and mitochondria of B. cinerea. CONCLUSION Modification of vanillin through electron-withdrawing group substitution and hydrophobic substitution, followed by condensation with thiazole-4-carbohydrazide, could result in highly active antifungal derivatives. Among them, compound 4a, which exhibited excellent inhibitory activities in vitro and in vivo, could potentially serve as a lead compound. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ding Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, P. R. China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Institute of Pesticide Science, Northwest A&F University, Yangling, P. R. China
| | - Xiaofang Yao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Wei-Wei Wang
- College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| | - Yu Wang
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Institute of Pesticide Science, Northwest A&F University, Yangling, P. R. China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| | - Wenjun Wu
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Institute of Pesticide Science, Northwest A&F University, Yangling, P. R. China
| | - Zhaonong Hu
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Institute of Pesticide Science, Northwest A&F University, Yangling, P. R. China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
4
|
Lee S, Shin A, Park J, Yun S, Kim M, Lee DW, Kim BS. Synergistic anion-π interactions in peptidomimetic polyethers. Proc Natl Acad Sci U S A 2025; 122:e2419404122. [PMID: 39908103 PMCID: PMC11831155 DOI: 10.1073/pnas.2419404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Anion-π interactions are crucial in various biological processes, such as enzyme catalysis and ion transport. Despite their significance, the exploitation of anion-π interactions in synthetic polymer systems remains underexplored. This study investigates anion-π interactions using chemically well-defined peptidomimetics guided by the composition of mussel foot proteins. Specifically, polyether-based polymers were designed utilizing two functional epoxide monomers-catechol acetonide glycidyl ether and 4,4-dimethyl-2-oxazoline glycidyl ether-to mimic the key amino acids 3,4-dihydroxyphenylalanine and aspartic acid, respectively. A surface forces apparatus was employed to study the anion-π interaction between the polymers, considering the effects of relative monomer composition and pH conditions. The maximum cohesion energy of 15.0 mJ/m2 was observed at an equimolar monomer composition at pH 7. Incorporating a phenyl group instead of the catechol group and introducing competing anions confirmed the dominant role of anion-π interactions. This study highlights the significance of anion-π interactions, posing a high potential in the design and synthesis of functional materials.
Collapse
Affiliation(s)
- Seunghyun Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Aram Shin
- Department of Chemistry, Yonsei University, Seoul03722, Republic of Korea
| | - Jinwoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Sowon Yun
- Department of Chemistry, Yonsei University, Seoul03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul03722, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
5
|
Xiang L, Zhang Y, Zhao Z, Tao Y, Wang W, Liu J, Chen Y, Jiang J, Zhang J, Zeng H. Mechanically Robust, Superlubricating and Antifouling Bilayer Nanocoating for Micro-Bioimplants via a Dual-Function Metal Coordination Approach. ACS NANO 2025; 19:1316-1326. [PMID: 39729076 DOI: 10.1021/acsnano.4c13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure. Contact mechanics and interfacial molecular force measurements confirm the dual role of vanadium (VIII) ions in forming this bilayer: VIII ions bridge the ligand sites to reinforce the protein bottom layer, and simultaneously anchor the end blocks of the designed ABA triblock hydrophilic polymers to form a hydrated, looping top layer. This VIII-enabled structure demonstrates remarkable load-bearing capacity and lubricating performance (i.e., friction coefficient μ on the order of 10-3 over 100 cycles under ∼10 MPa), while it also exhibits excellent resistance to biofouling in complex biological fluids. This work presents a useful strategy for integrating seemingly incompatible properties into ultrathin coatings, offering the potential for customizing multifunctional surfaces for micro-devices/machines toward bioengineering applications.
Collapse
Affiliation(s)
- Li Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yi Tao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, People's Republic of China
| | - Yunfei Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | - Jinyang Jiang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
6
|
Pan M, Sun Z, Zhang Y, Chen J, Zhao Z, He H, Zeng H, Li Q, Gu N. Aggregation-Disruption-Induced Multi-Scale Mediating Strategy for Anticoagulation in Blood-Contacting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412701. [PMID: 39344862 DOI: 10.1002/adma.202412701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Minimally invasive blood-contacting interventional devices are increasingly used to treat cardiovascular diseases. However, the risk of device-related thrombosis remains a significant concern, particularly the formation of cycling thrombi, which pose life-threatening risks. To better understand the interactions between these devices and blood, the initial stages of coagulation contact activation on extrinsic surfaces are investigated. Direct force measurements reveals that activated contact factors stimulate the intrinsic coagulation pathway and promote surface crosslinking of fibrin. Furthermore, fibrin aggregation is disrupted by surface-grafted inhibitors, as confirmed by ex vivo coagulation tests. An engineered serum protein with zwitterion grafts to resist the deposition of biological species such as fibrin, platelets, and red blood cells is also developed. Simultaneously, a protease inhibitor-based coacervate is incorporated into the coating to inhibit the intrinsic pathway effectively. The loaded coacervate can be released and reloaded through modulation of catechol-amine interactions, facilitating material regeneration. The strategy offers a novel multi-scale mediation strategy that simultaneously inhibits nanoscale coagulation factors and resists microscale thrombus aggregation, providing a long-term solution for anticoagulation in blood-contacting devices.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Zhaoyun Sun
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jiangwei Chen
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Qingguo Li
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
7
|
Zhang Y, Zhang J, Yang Q, Song Y, Pan M, Kan Y, Xiang L, Li M, Zeng H. Tuning interfacial molecular asymmetry to engineer protective coatings with superior surface anchoring, antifouling and antibacterial properties. Acta Biomater 2024:S1742-7061(24)00598-1. [PMID: 39395705 DOI: 10.1016/j.actbio.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Multifunctional robust protective coatings that combine biocompatibility, antifouling and antimicrobial properties play an essential role in reducing host reactions and infection on invasive medical devices. However, developing these protective coatings generally faces a paradox: coating materials capable of achieving robust adhesion to substrates via spontaneous deposition inevitably initiate continuous biofoulant adsorption, while those employing strong hydration capability to resist biofoulant attachment have limited substrate binding ability and durability under wear. Herein, we designed a multifunctional terpolymer of poly(dopamine methyacrylamide-co-2-methacryloyloxyethyl phoasphorylcholine-co-2-(dimethylamino)-ethyl methacrylate) (P(DMA-co-MPC-co-DMAEMA)), which integrates desired yet traditionally incompatible functions (i.e., robust adhesion, antifouling, lubrication, and antimicrobial properties). Direct normal and lateral force measurements, dynamic adsorption tests, surface ion conductance mapping were applied to comprehensively investigate the nanomechanics of coating-biofloulant interactions. Catechol groups of DMA act as basal anchors for robust substrate deposition, while the highly hydrated zwitterion of MPC provides apical protection to resist biofouling and wear. Moreover, the antimicrobial property is conferred through the protonation of tertiary amine groups on DMAEMA, inhibiting infection under physiological conditions. This work provides an effective strategy for harmonizing demanded yet incompatible properties in one coating material, with significant implications for the development of multifunctional surfaces towards the advancement of invasive biomedical devices. STATEMENT OF SIGNIFICANCE: Multifunctional robust protective coatings have been widely utilized in invasive medical devices to mitigate host responses and infection. However, modified surface coatings often encounter a trade-off between robust adhesion to substrates and strong hydration capability for antifouling and antimicrobial properties. We propose a universal strategy for surface modification by dopamine-assisted co-deposition with a multifunctional terpolymer of P(DMA-co-MPC-co-DMAEMA) that simultaneously achieves robust adhesion, antifouling, and antimicrobial properties. Through elucidating the nanomechanics with fundamentally understanding the interactions between the coating and biomacromolecules, we highlight the role of DMA for substrate adhesion, MPC for biofouling resistance, and DMAEMA for antimicrobial activity. This approach presents a promising strategy for constructing multifunctional coatings on minimally invasive medical devices by tuning interfacial molecular asymmetricity to reconcile incompatible properties within one coating.
Collapse
Affiliation(s)
- Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Jiawen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qiang Yang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Song
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostic, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostic, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yajing Kan
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Li Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
| | - Mei Li
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, Nanjing 211166, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
8
|
Li S, Zhao Z, Wang J, Xie L, Pan M, Wu F, Hu Y, Liu J, Zeng H. Molecular Interaction Mechanisms Between Lubricant-Infused Slippery Surfaces and Mussel-Inspired Polydopamine Adhesive and DOPA Moiety. Macromol Rapid Commun 2024; 45:e2400276. [PMID: 39031940 DOI: 10.1002/marc.202400276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Lubricant-infused slippery surfaces have recently emerged as promising antifouling coatings, showing potential against proteins, cells, and marine mussels. However, a comprehensive understanding of the molecular binding behaviors and interaction strength of foulants to these surfaces is lacking. In this work, mussel-inspired chemistry based on catechol-containing chemicals including 3,4-dihydroxyphenylalanine (DOPA) and polydopamine (PDA) is employed to investigate the antifouling performance and repellence mechanisms of fluorinated-based slippery surface, and the correlated interaction mechanisms are probed using atomic force microscopy (AFM). Intermolecular force measurements and deposition experiments between PDA and the surface reveal the ability of lubricant film to inhibit the contact of PDA particles with the substrate. Moreover, the binding mechanisms and bond dissociation energy between a single DOPA moiety and the lubricant-infused slippery surface are quantitatively investigated employing single-molecule force spectroscopy based on AFM (SM-AFM), which reveal that the infused lubricant layer can remarkably influence the dissociation forces and weaken the binding strength between DOPA and underneath per-fluorinated monolayer surface. This work provides new nanomechanical insights into the fundamental antifouling mechanisms of the lubricant-infused slippery surfaces against mussel-derived adhesive chemicals, with important implications for the design of lubricant-infused materials and other novel antifouling platforms for various bioengineering and engineering applications.
Collapse
Affiliation(s)
- Sijia Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jingyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Ying Hu
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
9
|
Wu H, Sun Q, Guo C, Wei X, Wei J, Wu X, Zhong Z, Wang H. Tailoring Surface Engineering with Expanded Precursor Libraries via Rapid Mussel-Inspired Chemistry. Chempluschem 2024; 89:e202400101. [PMID: 38822555 DOI: 10.1002/cplu.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Mussel-inspired coating is a substrate-independent surface modification technology. However, its application is limited by time-consuming, tailoring specific functions require tedious secondary reaction. To overcome those drawbacks, a strategy for the rapid fabrication of diverse coatings by expanding the library of precursors using oxidation coupled with polyamine was proposed. Based on DFT simulations of the reaction pathways, a method was developed to achieve rapid deposition of coatings by coupling oxidation and polyamines, which simultaneously accelerated the oxidation of precursors and polymer chain growth. The feasibility and generalizability of the strategy was validated by the rapid coating of 10 catechol derivatives and polyamines on various substrates. The surface properties of the substrates such as functional group densities, Zeta potential and contact angles can be easily tuned. The tailored surface engineering application of the strategy was demonstrated by the heavy metal adsorbents and superwetting materials prepared through the delicate combination of different building blocks. Our strategy was flexible in terms of diverse surface engineering design which greatly enriched the connotation of mussel-inspired technique.
Collapse
Affiliation(s)
- Hailiang Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Qiang Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Caihong Guo
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, Shanxi Province, 041000, P.R. China
| | - Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Junfu Wei
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| | - Xiaoqing Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Zhili Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| |
Collapse
|
10
|
Hu O, Lu M, Cai M, Liu J, Qiu X, Guo CF, Zhang CY, Qian Y. Mussel-Bioinspired Lignin Adhesive for Wearable Bioelectrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407129. [PMID: 39073194 DOI: 10.1002/adma.202407129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/19/2024] [Indexed: 07/30/2024]
Abstract
As a natural "binder," lignin fixes cellulose in plants to foster growth and longevity. However, isolated lignin has a poor binding ability, which limits its biomedical applications. In this study, inspired by mussel adhesive proteins, acidic/basic amino acids (AAs) are introduced in alkali lignin (AL) to form ionic-π/spatial correlation interactions, followed by demethylation to create catechol residues for enhanced adhesion activity. Atomic force microscopy reveals that catechol residues are the primary adhesion structures, with basic AAs exhibiting superior synergistic effects compared to acidic AAs. Demethylated lysine-grafted AL exhibits the strongest adhesion force toward skin tissue. Molecular dynamic simulation and density functional theory calculations indicate that adhesion against skin tissue mainly results from hydrogen bonds and cation-π interactions, with the adhesion mechanism being based on the Gibbs free energy of the Schiff base reaction. In summary, a biomimetic electrode based on lignin inspired by mussel adhesive proteins is prepared; the presented method offers a straightforward strategy for the development of biomimetic adhesives. Furthermore, this mussel-inspired adhesive can be used as a wearable bioelectrode in biomedical applications.
Collapse
Affiliation(s)
- Oudong Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Mingjin Lu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Minkun Cai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Junyu Liu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Yong Qian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| |
Collapse
|
11
|
Ren H, Zhang Z, Chen X, He C. Stimuli-Responsive Hydrogel Adhesives for Wound Closure and Tissue Regeneration. Macromol Biosci 2024; 24:e2300379. [PMID: 37827713 DOI: 10.1002/mabi.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Sutures and staplers, as gold standards for clinical wound closure, usually cause secondary tissue injury and require professional technicians and equipment. The noninvasive hydrogel adhesives are used in various biomedical applications, such as wound closure, tissue sealing, and tissue regeneration, due to their remarkable properties. Recently-developed hydrogel adhesives, especially stimuli-responsive hydrogels, have shown great potential owing to their advantages in regulating their performance and functions according to the wound situations or external conditions, thus allowing the wounds to heal gradually. However, comprehensive summary on stimuli-responsive hydrogels as tissue adhesives is rarely reported to date. This review focuses on the advances in the design of various stimuli-responsive hydrogel adhesives over the past decade, including the systems responsive to pH, temperature, photo, and enzymes. Their potential biomedical applications, such as skin closure, cardiovascular and liver hemostasis, and gastrointestinal sealing, are emphasized. Meanwhile, the challenges and future development of stimuli-responsive hydrogel adhesives are discussed. This review aims to provide meaningful insights for the further design of next-generation of hydrogel adhesives for wound closure and tissue regeneration.
Collapse
Affiliation(s)
- Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
12
|
Aliakbari E, Nural Y, Zamiri RE, Yabalak E, Mahdavi M, Yousefi V. Design and synthesis of silver nanoparticle anchored poly(ionic liquid)s mesoporous for controlled anticancer drug delivery with antimicrobial effect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:90-102. [PMID: 36201749 DOI: 10.1080/09603123.2022.2131743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Owing to the importance of drug delivery, the synthesis of advanced nanomaterials for targeted drug delivery plays a considerable role in medical treatment. One of the most prominent nanomaterials is PIL, which is used as controlled anticancer drug delivery and significantly improves the half-life and antitumor effect. In this study, a stable and effective drug carrier containing silver nanoparticles was reported for the drug delivery with an antimicrobial effect, and the capability of the drug carrier . PILP was synthesized by radical polymerization, and silver nanoparticles were anchored into PIL voids by in-situ reduction, which developed the adsorption antimicrobial effect and capability of the drug carrier. The synthesized nanocomposite was characterized. The Ag-PILP nanocomposite showed antibacterial activityagainst both E. coli and S. aureus with a MIC of 256 μg/mL, and bactericidal activity against E. coli and S. aureus strains with a MBC of 256 and 512 μg/mL, respectively.
Collapse
Affiliation(s)
- Ehsan Aliakbari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Reza Eghdam Zamiri
- Department of Radiation Oncology, Shahid Madani Hospital, Tabriz University of Medical Science, Tabriz, Iran
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey
| | - Mehri Mahdavi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Yousefi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Chen J, Peng Q, Liu J, Zeng H. Mussel-Inspired Cation-π Interactions: Wet Adhesion and Biomimetic Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17600-17610. [PMID: 38039395 DOI: 10.1021/acs.langmuir.3c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Cation-π interaction is one of the most important noncovalent interactions identified in biosystems, which has been proven to play an essential role in the strong adhesion of marine mussels. In addition to the well-known catecholic amino acid, l-3,4-dihydroxyphenylalanine, mussel foot proteins are rich in various aromatic moieties (e.g., tyrosine, phenylalanine, and tryptophan) and cationic residues (e.g., lysine, arginine, and histidine), which favor a series of short-range cation-π interactions with adjustable strengths, serving as a prototype for the development of high-performance underwater adhesives. This work highlights our recent advances in understanding and utilizing cation-π interactions in underwater adhesives, focusing on three aspects: (1) the investigation of the cation-π interaction mechanisms in mussel foot proteins via force-measuring techniques; (2) the modulation of cation-π interactions in mussel mimetic polymers with the variation of cations, anions, and aromatic groups; (3) the design of wet adhesives based on these revealed principles, leading to functional materials in the form of films, coacervates, and hydrogels with biomedical and engineering applications. This review provides valuable insights into the development and optimization of smart materials based on cation-π interactions.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
14
|
Wang D, Xiao Z, He J, Xu W, Wang J. Strong Synergistic Molecular Interaction in Catanionic Surfactant Mixtures: Unravelling the Role of the Benzene Ring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12649-12661. [PMID: 37651421 DOI: 10.1021/acs.langmuir.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Noncovalent interactions play a crucial role in driving the formation of diverse self-assembled structures in surfactant systems. Surfactants containing a benzene ring structure are an important subset of surfactants. These surfactants exhibit unique colloid and interfacial properties, which give rise to fascinating transformations in the aggregate structures. These transformations are directly influenced by specific noncovalent interactions facilitated by the benzene ring structure including cation-π and π-π interactions. Investigating catanionic surfactant systems that incorporate benzene ring structures provides valuable insights into the distinct noncovalent interactions observed in mixed surfactant systems. Our approach involved studying the enthalpy change ΔH during the titration process, utilizing isothermal titration calorimetry (ITC). Simultaneously, we employed cryogenic transmission electron microscopy (cryo-TEM) to observe the corresponding self-assembly structures. To gain further insight, we delved into the noncovalent interactions of the mixed systems by analyzing the molecular environments variations through chemical shifts of the aggregates using proton magnetic resonance (1H NMR). The intermolecular interaction was also confirmed by the two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY). We conducted a systematic study of the effects of NaCl concentrations, molar ratios, and molecular structures of surfactants on aggregate structures. The existence forms of surfactants are closely linked to the shape of the titration curve and the transition of the aggregate structures. When cationic surfactants were titrated into sodium dodecylbenzenesulfonate (SDBS) micelle solutions, the dominant cation-π interaction leads to the direct formation of vesicle structures. Conversely, when the SDBS system is titrated into benzyldimethyldodecylammonium chloride (DDBAC) micelles, a delicate balance of multiple noncovalent interactions, including cation-π, π-π, hydrophobic, and electrostatic forces, results in a range of aggregate structure transformations such as worm-like micelles and vesicular structures.
Collapse
Affiliation(s)
- Dianlin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China
| | - Zili Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jiang He
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jingyi Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
15
|
Morales AH, Hero JS, Ledesma AE, Perez HA, Navarro MC, Gómez MI, Romero CM. Interfacial Hyperactivation of Candida rugosa Lipase onto Ca 2Fe 2O 5 Nanoparticles: pH and Ionic Strength Fine-Tuning to Modulate Protein-Support Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12004-12019. [PMID: 37585874 DOI: 10.1021/acs.langmuir.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The current study provides a comprehensive look of the adsorption process of Candida rugosa lipase (CRL) on Ca2Fe2O5 iron oxide nanoparticles (NPs). Protein-support interactions were identified across a broad range of pH and ionic strengths (mM) through a response surface methodology, surface charge determination, and spectroscopic and in silico analyses. The maximum quantity of immobilized protein was achieved at an ionic strength of 50 mM and pH 4. However, this condition did not allow for the greatest hydrolytic activity to be obtained. Indeed, it was recorded at acidic pH, but at 150 mM, where evaluation of the recovered activity revealed hyperactivation of the enzyme. These findings were supported by adsorption isotherms performed under different conditions. Based on zeta potential measurements, electrostatic interactions contributed differently to protein-support binding under the conditions tested, showing a strong correlation with experimentally determined immobilization parameters. Raman spectra revealed an increase in hydrophobicity around tryptophan residues, whereas the enzyme immobilization significantly reduced the phenylalanine signal in CRL. This suggests that this residue was involved in the interaction with Ca2Fe2O2 and molecular docking analysis confirmed these findings. Fluorescence spectroscopy showed distinct behaviors in the CRL emission patterns with the addition of Ca2Fe2O5 at pH 4 and 7. The calculated thermodynamic parameters indicated that the contact would be mediated by hydrophobic interactions at both pHs, as well as by ionic ones at pH 4. In this approach, this work adds to our understanding of the design of biocatalysts immobilized in iron oxide NPs.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - Hugo A Perez
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| |
Collapse
|
16
|
Chen J, Li J, Liu X, He Z, Shi G. An anomalous anion transfer order in graphene oxide membranes induced by anion-π interactions. Phys Chem Chem Phys 2023; 25:13260-13264. [PMID: 37161531 DOI: 10.1039/d3cp00986f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective transport of anions across membranes has become an important goal in chemistry and biology. Here, we found an anomalous anion transfer order within the graphene oxide membrane: Cl- > Br- > F- > I-. This is at odds with the conventional ranking of the transfer order, which usually decreases as the radii of the anions increase, i.e., F- > Cl- > Br- > I-. The abnormal transportation of F- can be ascribed to the strong anion-π interactions between F- and graphene oxide sheets. Such unexpectedly strong anion-π interaction resulted in the lower movement of F- in the graphene oxide membrane and caused the anomalous anion transfer order. Our findings not only provide experimental evidence of anion-π interactions, but also improve our understanding of anion-π interactions in the selective transport of anions across a two-dimensional membrane.
Collapse
Affiliation(s)
- Junjie Chen
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Jie Li
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xing Liu
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Zhenglin He
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| |
Collapse
|
17
|
Chen J, Zeng H. Designing Bio-Inspired Wet Adhesives through Tunable Molecular Interactions. J Colloid Interface Sci 2023; 645:591-606. [PMID: 37167909 DOI: 10.1016/j.jcis.2023.04.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Marine organisms, such as mussels and sandcastle worms, can master rapid and robust adhesion in turbulent seawater, becoming leading archetypes for the design of underwater adhesives. The adhesive proteins secreted by the organisms are rich in catecholic amino acids along with ionic and amphiphilic moieties, which mediate the adaptive adhesion mainly through catechol chemistry and coacervation process. Catechol allows a broad range of molecular interactions both at the adhesive-substrate interface and within the adhesive matrix, while coacervation promotes the delivery and surface spreading of the adhesive proteins. These natural design principles have been translated to synthetic systems toward the development of biomimetic adhesives with water-resist adhesion and cohesion. This review provides an overview of the recent progress in bio-inspired wet adhesives, focusing on two aspects: (1) the elucidation of the versatile molecular interactions (e.g., electrostatic interactions, metal coordination, hydrogen bonding, and cation-π/anion-π interactions) used by natural adhesives, mainly through nanomechanical characterizations; and (2) the rational designs of wet adhesives based on these biomimetic strategies, which involve catechol-functionalized, coacervation-induced, and hydrogen bond-based approaches. The emerging applications (e.g., tissue glues, surgical implants, electrode binders) of the developed biomimetic adhesives in biomedical, energy, and environmental fields are also discussed, with future research directions proposed.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
18
|
Li F, Yang F, Guan C, Wei P, He D, Li Q, Wang L, Yuan M. Preparation and Cytotoxicity Evaluation of Folic Acid-Modified YF8-OA Self-Assembled Lipid Prodrug Nanoparticles. Pharm Dev Technol 2023; 28:452-459. [PMID: 37104639 DOI: 10.1080/10837450.2023.2206487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
This study aimed to improve the use of YF8, a matrine derivative obtained through chemical transformation of matrine extracted from Sophora alopecuroides. YF8 has demonstrated improved cytotoxicity compared to matrine, but its hydrophobic nature hinders its application. To overcome this, the lipid prodrug YF8-OA was synthesized by linking oleic acid (OA) to YF8 through an ester bond. Although YF8-OA could self-assemble into unique nanostructures in water, it was not sufficiently stable. To enhance the stability of YF8-OA lipid prodrug nanoparticles (LPs), we employed the strategy of PEGylation using DSPE-mPEG2000 or DSPE-mPEG2000 conjugated with folic acid (FA). This resulted in the formation of uniform spherical nanoparticles with greatly improved stability and a maximum drug load capacity upto 58.63%. Cytotoxicity was evaluated in A549, HeLa, and HepG2 cell lines. The results showed that in HeLa cells, the IC50 value of YF8-OA/LPs with FA-modified PEGylation was significantly lower than that of YF8-OA/LPs modified by PEGylation alone. However, no significant enhancement was observed in A549 and HepG2 cells. In conclusion, the lipid prodrug YF8-OA can form nanoparticles in aqueous solution to address its poor water solubility. Modification with FA resulted in further enhanced cytotoxicity, providing a potential avenue for exerting the antitumor activity of matrine analogs.
Collapse
Affiliation(s)
- Fu Li
- School of Medicine, Guangxi University, Nanning, China
| | - Fangfang Yang
- Guangxi - ASEAN Food Inspection and Testing Center, Nanning, China
| | - Chenxi Guan
- School of Medicine, Guangxi University, Nanning, China
| | - Pengcheng Wei
- School of Medicine, Guangxi University, Nanning, China
| | - Dongqiong He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Qingwen Li
- Zhejiang Jingxin Pharmaceutical Co., Ltd., Xinchang, China
| | - Lisheng Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Mingqing Yuan
- School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Wang B, Qiao C, Wang YL, Dong X, Zhang W, Lu Y, Yuan J, Zeng H, Wang H. Multifunctional Underwater Adhesive Film Enabled by a Single-Component Poly(ionic liquid). ACS NANO 2023; 17:5871-5879. [PMID: 36926859 DOI: 10.1021/acsnano.2c12767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tremendous efforts have been devoted to exploiting synthetic wet adhesives for real-life applications. However, developing low-cost, robust, and multifunctional wet adhesive materials remains a considerable challenge. Herein, a wet adhesive composed of a single-component poly(ionic liquid) (PIL) that enables fast and robust underwater adhesion is reported. The PIL adhesive film possesses excellent stretchability and flexibility, enabling its anchoring on target substrates regardless of deformation and water scouring. Surface force measurements show the PIL can achieve a maximum adhesion of 56.7 mN·m-1 on diverse substrates (both hydrophilic and hydrophobic substrates) in aqueous media, within ∼30 s after being applied. The adhesion mechanisms of the PIL were revealed via the force measurements, and its robust wet adhesive capacity was ascribed to the synergy of different non-covalent interactions, such as of hydrogen bonding, cation-π, electrostatic, and van der Waals interactions. Surprisingly, this PIL adhesive film exhibited impressive underwater sound absorption capacity. The absorption coefficient of a 0.7 mm-thick PIL film to 4-30 kHz sound waves could be as high as 0.80-0.92. This work reports a multifunctional PIL wet adhesive that has promising applications in many areas and provides deep insights into interfacial interaction mechanisms underlying the wet adhesion capability of PILs.
Collapse
Affiliation(s)
- Binmin Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Xiaoxiao Dong
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yan Lu
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
20
|
Akamatsu M. Inner and Interfacial Environmental Nanoarchitectonics of Supramolecular Assemblies Formed by Amphiphiles: from Emergence to Application. J Oleo Sci 2023; 72:105-116. [PMID: 36740247 DOI: 10.5650/jos.ess22364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inner and interfacial environments of self-assemblies provide fascinating nano-space for selective and efficient chemical reactions and processes. In biological systems, various chemical reactions, molecular recognition, and transport occur precisely and selectively by virtue of effective molecular interactions on biological membranes and proteins. Considering these advantages and the concept of nanoarchitectonics, we demonstrated that the photochromism of a lophine dimer was accelerated by using confined nano-spaces formed by surfactant micelles. The photoresponsive micelles were used for the rapid controlled release of a model drug upon ultraviolet light irradiation. Furthermore, selective ion recognition inside the self-assembled molecular films at the interfaces was investigated. The anion-π interaction between the anion and an electron-deficient aromatic ring was evaluated on a solid substrate modified with a naphthalenediimide (NDI) analog. Force curve measurements afforded a quantitative analysis of anion-π interactions on the NDI film. The strength of anion-π interactions is regulated by the electric fields on the electrode. An optical probe was developed to visualize the distribution of Cs ions in the soil, plant bodies, and aqueous media using an optode system. Advances in the development of molecular functional systems are expected based not only on molecular structures but also on the spaces and environments produced by them.
Collapse
Affiliation(s)
- Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science.,Research Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
21
|
Ban W, Yang Q, Huang W, Li X, Wang Z, Chen S, Xiang L, Yan B. Mussel-Inspired Catechol-Grafted Quaternized Chitosan Flocculant for Efficiently Treating Suspended Particles and Refractory Soluble Organic Pollutants. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzheng Ban
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Wenhuan Huang
- Chunliang Oil Production Plant of Shengli Oilfield, Sinopec, Binzhou City, Shandong256504, China
| | - Xingliang Li
- Gansu Tobacco Industry Co., Ltd, Lanzhou730050, China
| | - Zhicai Wang
- Gansu Tobacco Industry Co., Ltd, Lanzhou730050, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Li Xiang
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing211189, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
22
|
Chen J, Zeng H. Mussel-Inspired Reversible Molecular Adhesion for Fabricating Self-Healing Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12999-13008. [PMID: 36260819 DOI: 10.1021/acs.langmuir.2c02372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nature offers inspiration for the development of high-performance synthetic materials. Extensive studies on the universal adhesion and self-healing behavior of mussel byssus reveal that a series of reversible molecular interactions occurring in byssal plaques and threads play an essential role, and the mussel-inspired chemistry can serve as a versatile platform for the design of self-healing materials. In this Perspective, we provide an overview of the recent progress in the detection, quantification, and utilization of mussel-inspired reversible molecular interactions, which includes the elucidation of their binding mechanisms via force-measuring techniques and the development of self-healing materials based on these dynamic interactions. Both conventional catechol-medicated interactions and newly discovered chemistry beyond the catechol groups are discussed, providing insights into the design strategies of advanced self-healing materials via mussel-inspired chemistry.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
23
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
24
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
25
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
26
|
Geng H, Zhang P, Peng Q, Cui J, Hao J, Zeng H. Principles of Cation-π Interactions for Engineering Mussel-Inspired Functional Materials. Acc Chem Res 2022; 55:1171-1182. [PMID: 35344662 DOI: 10.1021/acs.accounts.2c00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supramolecular assembly is commonly driven by noncovalent interactions (e.g., hydrogen bonding, electrostatic, hydrophobic, and aromatic interactions) and plays a predominant role in multidisciplinary research areas ranging from materials design to molecular biology. Understanding these noncovalent interactions at the molecular level is important for studying and designing supramolecular assemblies in chemical and biological systems. Cation-π interactions, initially found through their influence on protein structure, are generally formed between electron-rich π systems and cations (mainly alkali, alkaline-earth metals, and ammonium). Cation-π interactions play an essential role in many biological systems and processes, such as potassium channels, nicotinic acetylcholine receptors, biomolecular recognition and assembly, and the stabilization and function of biomacromolecular structures. Early fundamental studies on cation-π interactions primarily focused on computational calculations, protein crystal structures, and gas- and solid-phase experiments. With the more recent development of spectroscopic and nanomechanical techniques, cation-π interactions can be characterized directly in aqueous media, offering opportunities for the rational manipulation and incorporation of cation-π interactions into the design of supramolecular assemblies. In 2012, we reported the essential role of cation-π interactions in the strong underwater adhesion of Asian green mussel foot proteins deficient in l-3,4-dihydroxyphenylalanine (DOPA) via direct molecular force measurements. In another study in 2013, we reported the experimental quantification and nanomechanics of cation-π interactions of various cations and π electron systems in aqueous solutions using a surface forces apparatus (SFA).Over the past decade, much progress has been achieved in probing cation-π interactions in aqueous solutions, their impact on the underwater adhesion and cohesion of different soft materials, and the fabrication of functional materials driven by cation-π interactions, including surface coatings, complex coacervates, and hydrogels. These studies have demonstrated cation-π interactions as an important driving force for engineering functional materials. Nevertheless, compared to other noncovalent interactions, cation-π interactions are relatively less investigated and underappreciated in governing the structure and function of supramolecular assemblies. Therefore, it is imperative to provide a detailed overview of recent advances in understanding of cation-π interactions for supramolecular assembly, and how these interactions can be used to direct supramolecular assembly for various applications (e.g., underwater adhesion). In this Account, we present very recent advances in probing and applying cation-π interactions for mussel-inspired supramolecular assemblies as well as their structural and functional characteristics. Particular attention is paid to experimental characterization techniques for quantifying cation-π interactions in aqueous solutions. Moreover, the parameters responsible for modulating the strengths of cation-π interactions are discussed. This Account provides useful insights into the design and engineering of smart materials based on cation-π interactions.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
27
|
Hu M, Zhang J, Liu Y, Zheng X, Li X, Li X, Yang H. Highly Conformal Polymers for Ambulatory Electrophysiological Sensing. Macromol Rapid Commun 2022; 43:e2200047. [PMID: 35419904 DOI: 10.1002/marc.202200047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Indexed: 11/08/2022]
Abstract
Stable ambulatory electrophysiological sensing is widely utilized for smart e-healthcare monitoring, clinical diagnosis of cardiovascular diseases, treatment of neurological diseases, and intelligent human-machine interaction. As the favorable signal interaction platform of electrophysiological sensing, the conformal property of on-skin electrodes is an extremely crucial factor that can affect the stability of long-term ambulatory electrophysiological sensing. From the perspective of materials, to realize conformal contact between electrodes and skin for stable sensing, highly conformal polymers are strongly demanding and attracting ever-growing attention. In this review, we focused on the recent progress of highly conformal polymers for ambulatory electrophysiological sensing, including their synthetic methods, conformal property, and potential applications. Specifically, three main types of highly conformal polymers for stable long-term electrophysiological signals monitoring were proposed, including nature silk fibroin based conformal polymers, marine mussels bio-inspired conformal polymers, and other conformal polymers such as zwitterionic polymers and polyacrylamide. Furthermore, the future challenges and opportunities of preparing highly conformal polymers for on-skin electrodes were also highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingshuang Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Jun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Yixuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xinran Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xiangxiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Ximing Li
- Chest hospital, Tianjin University, Tianjin, 300072, China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| |
Collapse
|
28
|
Zhang C, Xiang L, Zhang J, Liu C, Wang Z, Zeng H, Xu ZK. Revisiting the adhesion mechanism of mussel-inspired chemistry. Chem Sci 2022; 13:1698-1705. [PMID: 35282627 PMCID: PMC8827048 DOI: 10.1039/d1sc05512g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m-1, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| | - Chang Liu
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong Hong Kong 999077 China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Zhi-Kang Xu
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
29
|
Yan B, Lv Z, Chen S, Xiang L, Gong L, Xiang J, Fan H, Zeng H. Probing Anion - π interactions between fluoroarene and carboxylate anion in aqueous solutions. J Colloid Interface Sci 2022; 615:778-785. [PMID: 35176544 DOI: 10.1016/j.jcis.2022.01.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Despite the much progress in developing π-conjugated fluoroarene moieties based functional materials in which anion - π interactions are commonly involved, it remains challenging to quantitatively characterize the nanomechanical interaction mechanism of these anion - π systems, particularly in aqueous solutions. In this study, we reported the first experimental quantification of the nanomechanics of anion - π interactions between π-conjugated fluoroarene moieties and carboxylate anions in aqueous solutions through direct molecular force measurements, with a special focus on the impact of the anion species, concentration and of the substitution effect of aromatic side group. The results using surface forces apparatus (SFA) and single-molecule force spectroscopy (SMFS) provide complementary evidences to demonstrate that the robust and reversible adhesion measured between the fluoroarene π systems and carboxylate anions was mainly attributed to anion - π interaction. Moreover, their nanomechanical properties were also systematically scrutinized, with the interaction strength being found to be significantly determined by the contact time, the type of fluoroarene systems (PFST > DFST) and the type of anions and ion concentration (HPO42- > CO32- > I- > Cl- ≈ NO3- > F-).
Collapse
Affiliation(s)
- Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zezhong Lv
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jun Xiang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haojun Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
30
|
Biomimetic functional hydrogel particles with enhanced adhesion characteristics for applications in fracture conformance control. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Balamurugan K, Pisabarro MT. Stabilizing Role of Water Solvation on Anion-π Interactions in Proteins. ACS OMEGA 2021; 6:25350-25360. [PMID: 34632193 PMCID: PMC8495695 DOI: 10.1021/acsomega.1c03264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 05/31/2023]
Abstract
In this work, anion-π interactions between sulfate groups (SO4 2-) and protein aromatic amino acids (AAs) (histidine protonated (HisP), histidine neutral (HisN), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) in an aqueous environment have been analyzed using quantum chemical (QC) calculations and molecular dynamics (MD) simulations. Sulfates can occur naturally in solution and can be contained in biomolecules playing relevant roles in their biological function. In particular, the presence of sulfate groups in glycosaminoglycans such as heparin and heparan sulfate has been shown to be relevant for protein and cellular communication and, consequently, for tissue regeneration. Therefore, anion-π interactions between sulfate groups and aromatic residues represent a relevant aspect to investigate. QC results show that such an anion-π mode of interaction between SO4 2- and aromatic AAs is only possible in the presence of water molecules, in the absence of any other cooperative non-covalent interactions. Protonated histidine stands out in terms of its enhancement in the magnitude of interaction strength on solvation. Other AAs such as non-protonated histidine, tyrosine, and phenylalanine can stabilize anion-π interactions on solvation, albeit with weak interaction energy. Tryptophan does not exhibit any anion-π mode of interaction with SO4 2-. The order of magnitude of the interaction of aromatic AAs with SO4 2- on microsolvation is HisP > HisN > Tyr > Trp > Phe. Atoms in molecules (AIM) analysis illustrates the significance of water molecules in stabilizing the divalent SO4 2- anion over the π surface of the aromatic AAs. MD simulation analysis shows that the order of magnitude of the interaction of SO4 2- with aromatic AAs in macroscopic solvation is HisP > HisN, Tyr, Trp > Phe, which is very much in line with the QC results. Spatial distribution function analysis illustrates that protonated histidine alone is capable of establishing the anion-π interaction with SO4 2- in the solution phase. This study sheds light on the understanding of anion-π interactions between SO4 2- and aromatic AAs such as His and Tyr observed in protein crystal structures and the significance of water molecules in stabilizing such interactions, which is not feasible otherwise.
Collapse
|
32
|
Hao LT, Park S, Choy S, Kim YM, Lee SW, Ok YS, Koo JM, Hwang SY, Hwang DS, Park J, Oh DX. Strong, Multifaceted Guanidinium-Based Adhesion of Bioorganic Nanoparticles to Wet Biological Tissue. JACS AU 2021; 1:1399-1411. [PMID: 34604850 PMCID: PMC8479763 DOI: 10.1021/jacsau.1c00193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Gluing dynamic, wet biological tissue is important in injury treatment yet difficult to achieve. Polymeric adhesives are inconvenient to handle due to rapid cross-linking and can raise biocompatibility concerns. Inorganic nanoparticles adhere weakly to wet surfaces. Herein, an aqueous suspension of guanidinium-functionalized chitin nanoparticles as a biomedical adhesive with biocompatible, hemostatic, and antibacterial properties is developed. It glues porcine skin up to 3000-fold more strongly (30 kPa) than inorganic nanoparticles at the same concentration and adheres at neutral pH, which is unachievable with mussel-inspired adhesives alone. The glue exhibits an instant adhesion (2 min) to fully wet surfaces, and the glued assembly endures one-week underwater immersion. The suspension is lowly viscous and stable, hence sprayable and convenient to store. A nanomechanic study reveals that guanidinium moieties are chaotropic, creating strong, multifaceted noncovalent bonds with proteins: salt bridges comprising ionic attraction and bidentate hydrogen bonding with acidic moieties, cation-π interactions with aromatic moieties, and hydrophobic interactions. The adhesion mechanism provides a blueprint for advanced tissue adhesives.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research
Center for Bio-based Chemistry, Korea Research
Institute of Chemical Technology (KRICT), Ulsan 44429, Republic
of Korea
- Advanced
Materials and Chemical Engineering, University
of Science and Technology (UST), Daejeon 34113, Republic
of Korea
| | - Sohee Park
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seunghwan Choy
- Biomedical
Institute for Convergence, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Young-Min Kim
- Division
of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung-Woo Lee
- Division
of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department
of Life Sciences, Pohang University of Science
and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program,
Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Jun Mo Koo
- Research
Center for Bio-based Chemistry, Korea Research
Institute of Chemical Technology (KRICT), Ulsan 44429, Republic
of Korea
| | - Sung Yeon Hwang
- Research
Center for Bio-based Chemistry, Korea Research
Institute of Chemical Technology (KRICT), Ulsan 44429, Republic
of Korea
- Advanced
Materials and Chemical Engineering, University
of Science and Technology (UST), Daejeon 34113, Republic
of Korea
| | - Dong Soo Hwang
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeyoung Park
- Research
Center for Bio-based Chemistry, Korea Research
Institute of Chemical Technology (KRICT), Ulsan 44429, Republic
of Korea
- Advanced
Materials and Chemical Engineering, University
of Science and Technology (UST), Daejeon 34113, Republic
of Korea
| | - Dongyeop X. Oh
- Research
Center for Bio-based Chemistry, Korea Research
Institute of Chemical Technology (KRICT), Ulsan 44429, Republic
of Korea
- Advanced
Materials and Chemical Engineering, University
of Science and Technology (UST), Daejeon 34113, Republic
of Korea
| |
Collapse
|
33
|
Wu M, Peng QY, Han LB, Zeng HB. Self-healing Hydrogels and Underlying Reversible Intermolecular Interactions. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2631-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Zou K, Song Z, Gao X, Liu H, Luo Z, Chen J, Deng X, Chen L, Zou G, Hou H, Ji X. Molecularly Compensated Pre-Metallation Strategy for Metal-Ion Batteries and Capacitors. Angew Chem Int Ed Engl 2021; 60:17070-17079. [PMID: 33847038 DOI: 10.1002/anie.202103569] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/06/2021] [Indexed: 11/08/2022]
Abstract
The use of a sacrificial cathode additive as a pre-metallation method could ensure adequate metal sources for advanced energy storage devices. However, this pre-metallation technique suffers from the precise regulation of decomposition potential of additive. Herein, a molecularly compensated pre-metallation (Li/Na/K) strategy has been achieved through Kolbe electrolysis, in which the electrochemical oxidation potential of a metal carboxylate is manipulated by the bonding energy of the oxygen-metal (O-M) moiety. The electron-donating effect of the substituent and the low charge density of the cation can dramatically weaken the O-M bond strength, further bringing out the reduced potential. Thus, sodium acetate exhibits a superior pre-sodiation feature for sodium-ion battery accompanied with a large irreversible specific capacity of 301.8 mAh g-1 , remarkably delivering 70.6 % enhanced capacity retention in comparison to the additive-free system after 100 cycles. This methodology has been extended to construct a high-performance lithium-ion battery and a lithium/sodium/potassium-ion capacitor.
Collapse
Affiliation(s)
- Kangyu Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zirui Song
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xu Gao
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huanqing Liu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zheng Luo
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jun Chen
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xinglan Deng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
35
|
Gong H, Zhang C, Ogaki T, Inuzuka H, Hashizume D, Miyajima D. Azacalix[3]triazines: A Substructure of Triazine‐Based Graphitic Carbon Nitride Featuring Anion‐π Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hao Gong
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Takuya Ogaki
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku Sakai Osaka 599-8531 Japan
| | - Hiroyuki Inuzuka
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Daigo Miyajima
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
36
|
Zou K, Song Z, Gao X, Liu H, Luo Z, Chen J, Deng X, Chen L, Zou G, Hou H, Ji X. Molecularly Compensated Pre‐Metallation Strategy for Metal‐Ion Batteries and Capacitors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kangyu Zou
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Zirui Song
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Xu Gao
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Huanqing Liu
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Zheng Luo
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Jun Chen
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Xinglan Deng
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| |
Collapse
|
37
|
Wang W, Zeng Z, Xiang L, Liu C, Diaz-Dussan D, Du Z, Asha AB, Yang W, Peng YY, Pan M, Narain R, Liu J, Zeng H. Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS NANO 2021; 15:9913-9923. [PMID: 34037373 DOI: 10.1021/acsnano.1c01199] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing effective internal wound dressing materials is important for postoperative tissue regeneration while remains a challenge due to the poor biological environment-adaptability of conventional materials. Here, we report an example of injectable self-healing hydrogel based on gastric environment-adaptive supramolecular assembly, and have explored its application for gastric perforation healing. By leveraging the gastric environment-modulated supramolecular interactions, the self-assembled hydrogel network is orchestrated with sensitive thermo-responsibility, injectability, printability and rapid self-healing capability. The hydrogel dressing can effectively inhibit the attachment of microorganisms and demonstrates outstanding antibiofouling property. In vivo rat model further demonstrates the as-prepared hydrogel dressing simplifies the surgical procedures, reduces postoperative complications as well as enhances the healing process of gastric perforation compared with the conventional treatment. This work provides useful insights into the development of biological environment-adaptive functional materials for various biomedical applications.
Collapse
Affiliation(s)
- Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Zicheng Zeng
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, People's Republic of China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Cong Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, People's Republic of China
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, 200040 Shanghai, People's Republic of China
| | - Anika B Asha
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, People's Republic of China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, T6G 1H9 Edmonton, Canada
| |
Collapse
|
38
|
Gong H, Zhang C, Ogaki T, Inuzuka H, Hashizume D, Miyajima D. Azacalix[3]triazines: A Substructure of Triazine-Based Graphitic Carbon Nitride Featuring Anion-π Interactions. Angew Chem Int Ed Engl 2021; 60:16377-16381. [PMID: 33955147 DOI: 10.1002/anie.202104467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Graphitic carbon nitride (GCN) has garnered broad research interest due to its unique catalytic properties. However, GCN, prepared by general methods, possesses myriad structural defects and it has been difficult to elucidate their intrinsic physical properties. We report the development of azacalix[3]triazines (AC3Ts), a substructure of triazine-based GCN (Tz-GCN). Despite the electron-deficient natures of triazine, AC3Ts capture protons as organic superbases. We reveal the unique anion-π interactions of AC3Ts that alters the ionization potentials of AC3Ts. To the best of our knowledge, these features have not yet been recognized for Tz-GCN. These unveiled features of AC3Ts are expected to expand the usage scope and possibilities for GCNs.
Collapse
Affiliation(s)
- Hao Gong
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Takuya Ogaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyuki Inuzuka
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daigo Miyajima
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
39
|
Ma C, Sun J, Li B, Feng Y, Sun Y, Xiang L, Wu B, Xiao L, Liu B, Petrovskii VS, Bin Liu, Zhang J, Wang Z, Li H, Zhang L, Li J, Wang F, Gӧstl R, Potemkin II, Chen D, Zeng H, Zhang H, Liu K, Herrmann A. Ultra-strong bio-glue from genetically engineered polypeptides. Nat Commun 2021; 12:3613. [PMID: 34127656 PMCID: PMC8203747 DOI: 10.1038/s41467-021-23117-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
The development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue's robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.
Collapse
Affiliation(s)
- Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, China.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jing Sun
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yang Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Baiheng Wu
- Institute of Process Equipment, College of energy engineering, Zhejiang University, Hangzhou, China
| | - Lingling Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Baimei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Vladislav S Petrovskii
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jinrui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hongyan Li
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Lei Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Robert Gӧstl
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany.,National Research South Ural State University, Chelyabinsk, Russian Federation
| | - Dong Chen
- Institute of Process Equipment, College of energy engineering, Zhejiang University, Hangzhou, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China. .,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands. .,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
40
|
Narayanan A, Kaur S, Kumar N, Tsige M, Joy A, Dhinojwala A. Cooperative Multivalent Weak and Strong Interfacial Interactions Enhance the Adhesion of Mussel-Inspired Adhesives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sukhmanjot Kaur
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
41
|
Rajagopal R, Hong MK, Ziegler LD, Erramilli S, Narayan O. Conjugate Acid–Base Interaction Driven Phase Transition at a 2D Air–Water Interface. J Phys Chem B 2021; 125:6330-6337. [DOI: 10.1021/acs.jpcb.1c02388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Rajagopal
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - M. K. Hong
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - L. D. Ziegler
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - S. Erramilli
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Onuttom Narayan
- Physics Department, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
42
|
Akamatsu M, Kimura A, Yamanaga K, Sakai K, Sakai H. Anion-π interaction at the solid/water interfaces. Chem Commun (Camb) 2021; 57:4650-4653. [PMID: 33861227 DOI: 10.1039/d1cc01186c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion-π interaction has been found to play a key role in interfacial phenomena. In this study, we evaluated the anion-π interactions at the solid/water interface. Anion adsorption originating from anion-π interaction at the interfaces followed the hydration energy and the presence of conjugated systems of the anions by the QCM measurements. Force curve measurements revealed that the single-molecule force of anion-π interaction between an NDI unit and the negatively charged surface of the cantilever was ∼40 pN. To the best of our knowledge, this is the first example of obtaining a single-molecule force for anion-π interactions.
Collapse
Affiliation(s)
- Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayumi Kimura
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Yamanaga
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
43
|
Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater Sci Eng 2021; 7:4048-4076. [PMID: 33792286 DOI: 10.1021/acsbiomaterials.0c01677] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.
Collapse
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
44
|
Xie L, Cui X, Liu J, Lu Q, Huang J, Mao X, Yang D, Tan J, Zhang H, Zeng H. Nanomechanical Insights into Versatile Polydopamine Wet Adhesive Interacting with Liquid-Infused and Solid Slippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6941-6950. [PMID: 33523622 DOI: 10.1021/acsami.0c22073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mussel-inspired polydopamine (PDA) can be readily deposited on almost all kinds of substrates and possesses versatile wet adhesion. Meanwhile, slippery surfaces have attracted much attention for their self-cleaning capabilities. It remains unclear how the versatile PDA adhesive would interact with slippery surfaces. In this work, both liquid-infused poly(tetrafluoroethylene) (PTFE) (LI-PTFE) and solid slippery surfaces (i.e., self-assembly of small thiol-terminated organosilane, polysiloxane covalently attached to substrates) were fabricated to investigate their capability to prevent PDA deposition. It was found that PDA particles could be easily deposited on a PTFE membrane and the two types of solid slippery surfaces, which resulted in the alternation of their surface wettability and slippery behavior of water droplets. Adhesion was detected between a PDA-coated silica colloidal probe and the PTFE membrane or solid slippery surfaces through quantitative force measurements using an atomic force microscope (AFM), mainly due to van der Waals (vdW) and hydrophobic interactions, which led to the PDA deposition phenomenon. In contrast, LI-PTFE with a thin liquid lubricant film could effectively prevent PDA deposition, with negligible changes in surface morphology, wettability, and slippery characteristics. Although PDA particles could be loosely attached to the lubricant/water interface for LI-PTFE based on the capillary adhesion measured by AFM, they could be readily removed by gentle rinsing with water, as demonstrated by the ultralow friction over LI-PTFE as compared to PTFE using lateral force microscopy (LFM). Our results indicate that LI-PTFE possesses excellent antifouling and self-cleaning properties even when interacting with the versatile PDA wet adhesives. This work provides new insights into the deposition of PDA on slippery surfaces and their interaction mechanism at the nanoscale, with useful implications for the design and development of novel slippery surfaces.
Collapse
Affiliation(s)
- Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jing Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiuyi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jinglin Tan
- School of Chemical and Environmental Engineering, Jiujiang University, Jiujiang 332005, China
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
45
|
Xie L, Liu F, Liu J, Zeng H. A Nanomechanical Study on Deciphering the Stickiness of SARS-CoV-2 on Inanimate Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58360-58368. [PMID: 33337873 PMCID: PMC7770894 DOI: 10.1021/acsami.0c16800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 05/05/2023]
Abstract
The SARS-CoV-2 virus that causes the COVID-19 epidemic can be transmitted via respiratory droplet-contaminated surfaces or fomites, which urgently requires a fundamental understanding of intermolecular interactions of the coronavirus with various surfaces. The corona-like component of the outer surface of the SARS-CoV-2 virion, named spike protein, is a key target for the adsorption and persistence of SARS-CoV-2 on various surfaces. However, a lack of knowledge in intermolecular interactions between spike protein and different substrate surfaces has resulted in ineffective preventive measures and inaccurate information. Herein, we quantified the surface interaction and adhesion energy of SARS-CoV-2 spike protein with a series of inanimate surfaces via atomic force microscopy under a simulated respiratory droplet environment. Among four target surfaces, polystyrene was found to exhibit the strongest adhesion, followed by stainless steel (SS), gold, and glass. The environmental factors (e.g., pH and temperature) played a role in mediating the spike protein binding. According to systematic quantification on a series of inanimate surfaces, the adhesion energy of spike protein was found to be (i) 0-1 mJ/m2 for hydrophilic inorganics (e.g., silica and glass) due to the lack of hydrogen bonding, (ii) 2-9 mJ/m2 for metals (e.g., alumina, SS, and copper) due to the variation of their binding capacity, and (iii) 6-11 mJ/m2 for hydrophobic polymers (e.g., medical masks, safety glass, and nitrile gloves) due to stronger hydrophobic interactions. The quantitative analysis of the nanomechanics of spike proteins will enable a protein-surface model database for SARS-CoV-2 to help generate effective preventive strategies to tackle the epidemic.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemical
and Materials Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Fenglin Liu
- Institute of Biomedical and Health Engineering,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Jifang Liu
- Sixth Affiliated
Hospital of Guangzhou Medical University, Qingyuan People’s
Hospital, Guangzhou Medical University, Guangdong 511500, China
| | - Hongbo Zeng
- Department of Chemical
and Materials Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
46
|
Yi J, Nguyen KCT, Wang W, Yang W, Pan M, Lou E, Major PW, Le LH, Zeng H. Mussel-Inspired Adhesive Double-Network Hydrogel for Intraoral Ultrasound Imaging. ACS APPLIED BIO MATERIALS 2020; 3:8943-8952. [PMID: 35019570 DOI: 10.1021/acsabm.0c01211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontal diseases could be diagnosed through intraoral ultrasound imaging with the advantages of simple operation procedures, low cost, and low safety risks. A couplant is normally placed between transducers and tissues for better ultrasound image quality. If applied intraorally, the couplants should possess good stability in water and robust mechanical properties, as well as strong adhesiveness to transducers and tissues. However, commercial couplants, such as Aquaflex (AF) cannot fulfill these requirements. In this work, inspired by the mussel adhesion mechanism, we reported a poly(vinyl alcohol)-polyacrylamide-polydopamine (PVA-PAM-PDA) hydrogel synthesized by incorporating PDA into the PAM-PVA double-network for intraoral ultrasound imaging. The hydrogel maintains good stability in water as well as exceptional mechanical properties and can adhere to different substrates (i.e., metal, glass, and porcine skin) without losing the original adhesion strength after multiple adhesion-strip cycles. Besides, when applied to porcine mandibular incisor imaging, the PVA-PAM-PDA hydrogel possesses good image quality for diagnosis as AF does. This work provides practical insights into the fabrication of multifunctional hydrogel-based interfaces between human tissues and medical devices for disease diagnosis applications.
Collapse
Affiliation(s)
- Jiaqiang Yi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kim-Cuong T Nguyen
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Edmond Lou
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Paul W Major
- School of Dentistry, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada.,School of Dentistry, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
47
|
Weber F, Sagstuen E, Zhong QZ, Zheng T, Tiainen H. Tannic Acid Radicals in the Presence of Alkali Metal Salts and Their Impact on the Formation of Silicate-Phenolic Networks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52457-52466. [PMID: 33180456 PMCID: PMC7735676 DOI: 10.1021/acsami.0c16946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Polyphenolic molecules have become attractive building blocks for bioinspired materials due to their adhesive characteristics, capacity to complex ions, redox chemistry, and biocompatibility. For the formation of tannic acid (TA) surface modifications based on silicate-phenolic networks, a high ionic strength is required. In this study, we investigated the effects of NaCl, KCl, and LiCl on the formation of TA coatings and compared it to the coating formation of pyrogallol (PG) using a quartz-crystal microbalance. We found that the substitution of NaCl with KCl inhibited the TA coating formation through the high affinity of K+ to phenolic groups resulting in complexation of TA. Assessment of the radical formation of TA by electron paramagnetic resonance spectroscopy showed that LiCl resulted in hydrolysis of TA forming gallic acid radicals. Further, we found evidence for interactions of LiCl with the Siaq crosslinker. In contrast, the coating formation of PG was only little affected by the substitution of NaCl with LiCl or KCl. Our results demonstrate the interaction potential between alkali metal salts and phenolic compounds and highlight their importance in the continuous deposition of silicate-phenolic networks. These findings can be taken as guidance for future biomedical applications of silicate-phenolic networks involving monovalent ions.
Collapse
Affiliation(s)
- Florian Weber
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0317, Norway
| | - Einar Sagstuen
- Department
of Physics, University of Oslo, Oslo 0317, Norway
| | - Qi-Zhi Zhong
- Centre
of Excellence in Convergent Bio-Nano Science and Technology, Department
of Chemical Engineering, The University
of Melbourne, Melbourne 3010, Australia
| | - Tian Zheng
- Materials
Characterisation and Fabrication Platform, Department of Chemical
Engineering, The University of Melbourne, Melbourne 3010, Australia
| | - Hanna Tiainen
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
48
|
Zhang W, Shi M, Heng Z, Zhang W, Pan B. Soft Particles Enable Fast and Selective Water Transport through Graphene Oxide Membranes. NANO LETTERS 2020; 20:7327-7332. [PMID: 32876458 DOI: 10.1021/acs.nanolett.0c02724] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The intercalation strategy is successfully applied in tuning the interlayer distance of 2D membranes for efficient desalination and ion sieving. However, it is difficult to pursue a intercalant that is few nanometers in size and suitable for further chemical modification . Here, for the first time, we report the intercalation of soft particles-polyacrylonitrile gel particles (PAN GPs) inside the graphene oxide (GO) membranes, which allows for a tunable interlayer distance via the deformation of soft particles. Furthermore, the base-induced hydrophobic/hydrophilic structure of PAN GPs facilitates the water diffusion through the GO membrane. A fast and selective water permeation was observed through separation Cu-EDTA2-from water, with the permeance of 4-13 times higher than the reported 2D membranes. Intercalation of soft particles represents a promising strategy to fabricate high-performance 2D membranes.
Collapse
Affiliation(s)
- Wenbin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, P.R. China
| | - Mengqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, P.R. China
| | - Zhongxuan Heng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, P.R. China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, P.R. China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 163 Xianlin Road, Nanjing 210023, P.R. China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, P.R. China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 163 Xianlin Road, Nanjing 210023, P.R. China
| |
Collapse
|
49
|
Zhang L, Liu M, Zhang Y, Pei R. Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules 2020; 21:3966-3983. [DOI: 10.1021/acs.biomac.0c01069] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
50
|
Xiang L, Zhang J, Gong L, Zeng H. Surface forces and interaction mechanisms of soft thin films under confinement: a short review. SOFT MATTER 2020; 16:6697-6719. [PMID: 32648881 DOI: 10.1039/d0sm00924e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface forces of soft thin films under confinement in fluids play an important role in diverse biological and technological applications, such as bio-adhesion, lubrication and micro- and nano-electromechanical systems. Understanding the involved interaction mechanisms underlying the adhesion behaviors and tribological performances (i.e., friction and lubrication) of various confined soft thin films is significant in the development of both fundamental science and practical technologies. In this review, the fundamentals of surface forces are briefly presented. The widely utilized force measurement techniques including surface forces apparatus (SFA), atomic force microscopy (AFM) and spacer layer interferometry tribometer techniques are introduced. The advances in the fundamental understanding of a wide range of adhesion and tribological phenomena have been reviewed, in terms of the intermolecular and surface interaction mechanisms involved. The influences of various factors such as confined film properties, experimental conditions (e.g., normal load, and sliding velocity) and environmental variables (e.g., salts, salinity, additives and pH) on the adhesion, friction or lubrication forces of confined soft thin films are presented. The correlation between adhesion hysteresis and friction/lubrication behaviors has been discussed. Some of the challenging issues remaining and future perspectives are also provided.
Collapse
Affiliation(s)
- Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|