1
|
Kusmude RR, Yadav VB, Dhiman S. Defluorinative Approach for the Synthesis of Chromones via [4 + 2] Annulation of Difluoro Quinone Methide. J Org Chem 2025; 90:6418-6422. [PMID: 40311071 DOI: 10.1021/acs.joc.5c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
We have developed a transition metal-free defluorinative method for 2-(trifluoromethyl)phenol, which facilitates the synthesis of chromones. This reaction features a previously unexplored [4 + 2] annulation of in situ-generated reactive difluoro quinone methide and 1,3-dicarbonyl compounds. Notably, this distinct mode of reactivity applies to a diverse array of substrates and operates under mild conditions, showcasing scalability.
Collapse
Affiliation(s)
- Rushikesh R Kusmude
- Department of Chemistry, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Vaibhav B Yadav
- Department of Chemistry, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Seema Dhiman
- Department of Chemistry, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
2
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Hooker LV, Bandar JS. Capturing Unstable Carbanionic Intermediates via Halogen Transfer: Base-Promoted Oxidative Coupling Reactions of α,α-Difluoromethylarenes. Angew Chem Int Ed Engl 2025; 64:e202502894. [PMID: 40098196 DOI: 10.1002/anie.202502894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
We describe how the merger of deprotonation, halogenation, and substitution into compatible processes enables the productive functionalization of traditionally unstable carbanionic intermediates. This strategy enables the first oxidative coupling protocol of α,α-difluorobenzylic C─H bonds with heteronucleophiles. Here, transiently generated α,α-difluorobenzylic carbanionic intermediates undergo halogen transfer from 2-bromothiophenes to form electrophilic ArCF2Br compounds for in situ nucleophilic substitution, thereby avoiding α-fluoride elimination pathways that typically plague α-fluorocarbanions. This method streamlines the modular synthesis of α,α-difluorobenzyl(thio)ethers and led to the broader realization that halogen transfer to unstable carbanions is an enabling principle across diverse C(sp2)─H and C(sp3)─H systems.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
4
|
Uchikura T, Akutsu F, Akiyama T. Electron donor-acceptor (EDA) complex mediated visible-light driven sulfur-fluorine bond reduction of pentafluorosulfanyl arenes using potassium iodide. Chem Commun (Camb) 2025; 61:6328-6331. [PMID: 40167480 DOI: 10.1039/d5cc00764j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The reduction of sulfur-fluorine (S-F) bonds in pentafluorosulfanyl arenes, which is mediated by an electron donor-acceptor (EDA) complex, is described. Treatment of pentafluorosulfanyl arenes with allyltributylstannane and potassium iodide under photoirradiation conditions furnished allyl sulfides in up to 81% yield. The S-F bond reduction in pentafluorosulfanyl arenes was realized using only potassium iodide and visible light irradiation.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 15-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Fua Akutsu
- Department of Chemistry, Faculty of Science, Gakushuin University, 15-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 15-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
5
|
Mikeska ER, Makoś MZ, Arehart GA, Glezakou VA, Blakemore JD. Distinguishing Desirable and Undesirable Reactions in Multicomponent Systems for Redox Activation of the Uranyl Ion. Inorg Chem 2025; 64:5827-5845. [PMID: 40112202 DOI: 10.1021/acs.inorgchem.4c02753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Although it has been established that covalent functionalization of the U-O bonds in the uranyl dication (UO22+) generally requires use of strong reductants and electrophiles, little work has examined how interactions between the individual reaction components could affect final outcomes in solution. Here, the patterns of such reactivity have been studied in a UO22+-containing model system supported by a workhorse pentadentate ligand, 2,2'-[(methylimino)bis(2,1-ethanediylnitrilomethylidyne)]bis-phenol. Oxo activation and functionalization have been tested with (i) electrochemical and chemical reduction, and (ii) coordinating and noncoordinating solvents. In acetonitrile, uranyl reduction was achieved cleanly, but treatment of the reduced species with tris(pentafluorophenyl)borane (BCF) resulted in a mixture of products arising from direct electron transfer to BCF. In dichloromethane (CH2Cl2), electrochemical reduction of uranyl was achieved cleanly, but clean chemical reactivity was inaccessible. Despite these challenges, one trinuclear and oxo-deficient uranium-containing product was crystallized from CH2Cl2 solution and characterized; thus, desirable electrophilic reactivity can proceed to some degree in CH2Cl2 with BCF. Computational studies were used to investigate the properties of the trinuclear uranium product and the changes that could be inducible by further reduction. Taken together, the reactivity patterns identified here could inform design of improved systems for actinyl oxo functionalization.
Collapse
Affiliation(s)
- Emily R Mikeska
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Małgorzata Z Makoś
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Grant A Arehart
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | | | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Yang W, White AJP, Crimmin MR. Boron, Aluminum, and Gallium Fluorides as Catalysts for the Defluorofunctionalization of Electron-Deficient Arenes: The Role of NaBAr F4 Promoters. Inorg Chem 2025; 64:6092-6099. [PMID: 40116429 PMCID: PMC11962835 DOI: 10.1021/acs.inorgchem.4c05381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
A series of boron, aluminum, and gallium difluoride complexes [{(ArNCMe)2CH}MF2] (M = B, Al, Ga) are reported as catalysts for the defluorofunctionalization of electron-deficient arenes. Thiodefluorination reactions between TMS-SPh and poly(fluorinated aromatics) proceed under forcing conditions. Evidence is presented for the fluoride entering the catalytic cycle through a metathesis reaction with TMS-SPh to form metal thiolate intermediates, e.g., [{(ArNCMe)2CH}MF(SPh)], which are then nucleophiles for addition to the aromatic substrate, likely through a concerted SNAr mechanism. Attempts to expand the scope of reactivity to include the hydrodefluorination of electron-deficient arenes met with limited success. Activity could, however, be recovered through the addition of NaBArF4 as a catalytic additive (ArF = 3,5-C6H3(CF3)2). NMR titrations suggest that NaBArF4 is capable of coordinating with aluminum and gallium fluoride complexes, most likely through weak M-F---Na interactions (M = Al, Ga), and can play a role in lowering the barrier of metathesis between [{(ArNCMe)2CH}MF2] and Et3SiH to form the group 13 hydrido fluoride [{(ArNCMe)2CH}M(H)F], facilitating catalytic turnover. DFT calculations indicate that this weak interaction leads to a polarization of the M-F bond. The discovery of this additive effect has potentially broad implications in developing new reactivity and applications of thermodynamically stable metal fluorides.
Collapse
Affiliation(s)
- Wenbang Yang
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, U.K.
| | - Andrew J. P. White
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, U.K.
| | - Mark R. Crimmin
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, U.K.
| |
Collapse
|
7
|
Komatsu D, Hanamoto T. First synthesis of (difluoroiodomethyl)thiophenes through double iodation of 2-(difluoromethylene)but-3-yn-1-yl benzyl sulfides. Org Biomol Chem 2025; 23:2883-2890. [PMID: 39981700 DOI: 10.1039/d5ob00152h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The Sonogashira cross-coupling of 2-bromo-3,3-difluoroallyl benzyl sulfide with various terminal acetylenes afforded the corresponding 2-(difluoromethylene)but-3-yn-1-yl benzyl sulfides in acceptable to good yields. Subsequent double iodation of the enyne sulfides in a mixed solvent (CHCl3/EtOH = 50/1) provided promising 4-(difluoroiodomethyl)-3-iodo-2-substituted thiophenes in good to excellent yields.
Collapse
Affiliation(s)
- Daiki Komatsu
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Takeshi Hanamoto
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| |
Collapse
|
8
|
Zhang Q, Yang X, Wang B, She Y, Szekely A, Li Y, Li Y. FeCl 2·4H 2O-Mediated Conversion of the CF 3 Group into a Series of Esters: A Strategy for the Synthesis of Fe II Complexes with In Situ-Formed Ester-Containing Ligands. Inorg Chem 2025; 64:4934-4946. [PMID: 40014872 DOI: 10.1021/acs.inorgchem.4c04876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A practical strategy for the preparation of a series of iron(II) complexes has been developed. This methodology features in situ esterification of the CF3 group on the backbone of the PIP-CF3 ligand (HPIP = 3-(pyridin-2-yl)imidazo[1,5-a]pyridine, PIP-CF3 = 3-(pyridin-2-yl)-1-(trifluoromethyl)imidazo[1,5-a]pyridine) by a wide range of alcohols. Treatment of FeCl2·4H2O with the PIP-CF3 ligand in EtOH under solvothermal conditions leads to the formation of complexes [Fe(PIP-COOEt)2Cl2] (1), [Fe2(PIP-COOEt)2Cl4] (2), and [Fe(PIP-COOEt)Cl2] (2') (PIP-COOEt = ethyl 3-(pyridin-2-yl)imidazo[1,5-a]pyridine-1-carboxylate). EtOH serves as a solvent and is also involved in the esterification of the CF3 group. The esterification protocol features a broad substrate scope. The CF3 moiety of the PIP-CF3 ligand could be esterified by a wide range of alcohol substrates. Compounds [Fe(PIP-COOnPr)2Cl2] (3), [Fe2(PIP-COOnPr)2Cl4] (4), [Fe2(PIP-COOiPr)2Cl4] (5), and [Fe(PIP-CF3)2Cl2]·iPrOH (6·iPrOH) were isolated, and their structures were characterized. The mechanism for the esterification of the CF3 group was proposed by examining the conditions for the esterification transformations.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaohan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Biqin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yeye She
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Aron Szekely
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Yafei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
9
|
Kim HE, Choi JH, Chung WJ. Monodefluorinative Halogenation of Perfluoroalkyl Ketones via Organophosphorus-Mediated Selective C-F Activation. JACS AU 2025; 5:1007-1015. [PMID: 40017785 PMCID: PMC11863160 DOI: 10.1021/jacsau.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Abstract
Through the prosperity of organofluorine chemistry in modern organic synthesis, perfluorinated organic compounds are now abundant and widely available. Consequently, these substances become attractive starting materials for the production of complex, multifunctional fluorinated molecules. However, the inherent challenges associated with the activation and discrimination of the C-F bonds typically lead to overdefluorination as well as functional group incompatibility. To address these problems, our group utilized a rationally designed organophosphorus reagent that promoted mild and selective manipulation of a single C-F bond in trifluoromethyl and pentafluoroethyl ketones via an interrupted Perkow-type reaction, which allowed the replacement of fluorine with more labile and synthetically versatile congeners such as chlorine, bromine, and iodine. The resulting α-haloperfluoroketones have two reactive units with orthogonal properties that would be suitable for the subsequent structural diversification. DFT calculations identified the favorable P-F interaction as the crucial factor from both thermodynamic and kinetic viewpoints.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Won-jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
10
|
Kane DL, Figula BC, Balaraman K, Bertke JA, Wolf C. Cryogenic Organometallic Carbon-Fluoride Bond Functionalization with Broad Functional Group Tolerance. J Am Chem Soc 2025; 147:5764-5774. [PMID: 39912296 PMCID: PMC11848826 DOI: 10.1021/jacs.4c13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The unique properties of fluorinated organic compounds have received intense interest and have conquered a myriad of applications in the chemical and pharmaceutical sciences. Today, an impressive range of alkyl fluorides are commercially available, and there are many practical methods to make them exist. However, the unmatched stability and inertness of the C-F bond have largely limited its synthetic value, which is very different from the widely accepted utility of alkyl chlorides, bromides, and iodides that serve everyday as "workhorse" building blocks in countless carbon-carbon bond forming reactions. This study demonstrates practical and high-yielding functionalization of the C-F bond under mild conditions, i.e., at temperatures as low as -78 °C, in short reaction times and with unconventional chemoselectivity. Cryogenic Csp3-F bond cleavage using fluorophilic organoaluminum compounds together with fast nucleophile transfer of intermediate ate complexes forge carbon-carbon bonds with unactivated primary, secondary, and tertiary alkyl fluorides alike. This method, which exploits the stability of the Al-F bond as the thermodynamic driving force, is highly selective toward Csp3-F bond functionalization, whereas many other functional groups including alkyl chloride, bromide, iodide, aryl halide, alkenyl, alkynyl, difluoroalkyl, trifluoromethyl, ether, ester, hydroxyl, acetal, heteroaryl, nitrile, nitro, and amide groups are tolerated, which is an unexpected reversal of long-standing main group organometallic and alkyl halide cross-coupling reactivity and compatibility patterns. As a result, the strongest single bond in organic chemistry can now be selectively targeted in high-yielding arylation, alkylation, alkenylation, and alkynylation reactions and used in late-stage functionalization applications that are complementary to currently available methods.
Collapse
Affiliation(s)
- D. Lucas Kane
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Bryan C. Figula
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| |
Collapse
|
11
|
Saha P, Jin M, Huang DCY. Defluorinative C-O Coupling between Trifluoromethylarenes and Alcohols via Copper Photoredox Catalysis. Angew Chem Int Ed Engl 2025; 64:e202419591. [PMID: 39743826 DOI: 10.1002/anie.202419591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
Fluorine-containing compounds have shown unparalleled impacts in the realm of functional molecules, and the ability to prepare novel structures has been crucial in unlocking new properties for applications in pharmaceutical and materials science. Herein, we report a copper-catalyzed, photoinduced defluorinative C-O coupling between trifluoromethylarenes and alcohols. This method allows for direct access to a wide selection of difluorobenzylether (ArCF2OR) molecules, including a compound displaying liquid crystal behavior. Through slight modification of the protocol, we were able to generate difluorobenzyliodide (ArCF2I) products, another class of synthetically useful fluorine-bearing molecules. Mechanistic investigations first suggested that ArCF2I can serve as a reservoir to steadily supply the key ArCF2⋅ radical species. Furthermore, experimental evidence supported a mechanism consisting of two collaborative cycles: C-F activation operated by a homoleptic Cu(I) coordinated by two bisphosphine ligands as the photocatalyst and C-O coupling promoted by a Cu(I) ligated by a single bisphosphine ligand. The critical roles of the two salt additives, lithium iodide and zinc acetate, in orchestrating the two cycles were also elucidated. This dual-role copper catalyst demonstrates the power of base metal photoredox catalysis in achieving both substrate activation and chemical bond formation via a single catalytic system.
Collapse
Affiliation(s)
- Priya Saha
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (ICReDD List-PF), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Dennis Chung-Yang Huang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
12
|
Li Y, Peng R, Ma Z, Wang Z, Zhu C. Mild defluorinative N-acrylation of amines with (trifluoromethyl)alkenes: synthesis of α-arylacrylamides. Org Biomol Chem 2025; 23:679-687. [PMID: 39606947 DOI: 10.1039/d4ob01554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A practical and efficient method for the N-acrylation of amines with (trifluoromethyl)alkenes is achieved via the cleavage of three C(sp3)-F bonds, affording a diverse range of useful tertiary and secondary α-arylacrylamides in high yields. This protocol features mild conditions, is transition-metal free, operationally simple, gram-scalable, and compatible with valuable functional groups, and has a broad substrate scope. Mechanistic studies indicate that exchange of an oxygen atom happens between H2O and NaOH, and that the oxygen atom is incorporated into the α-arylacrylamides via the ipso-defluorooxylation of the (trifluoromethyl)alkene. This method is also applied in the late-stage N-acrylation of pharmaceuticals.
Collapse
Affiliation(s)
- Yuqi Li
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhaolong Ma
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
| | - Zhihui Wang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
| | - Chuanle Zhu
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Muta K, Okamoto K, Nakayama H, Wada S, Nagaki A. Defluorinative functionalization approach led by difluoromethyl anion chemistry. Nat Commun 2025; 16:416. [PMID: 39774136 PMCID: PMC11707236 DOI: 10.1038/s41467-024-52842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 01/11/2025] Open
Abstract
Organofluorine compounds have greatly benefited the pharmaceutical, agrochemical, and materials sectors. However, they are plagued by concerns associated with Per- and Polyfluoroalkyl Substances. Additionally, the widespread use of the trifluoromethyl group is facing imminent regulatory scrutiny. Defluorinative functionalization, which converts the trifluoromethyl to the difluoromethyl motifs, represents the most efficient synthetic strategy. However, general methods for robust C(sp3)-F bond transformations remain elusive due to challenges in selectivity and functional group tolerance. Here, we present a method for C(sp3)-F bond defluorinative functionalization of the trifluoromethyl group via difluoromethyl anion in flow. This new approach tames the reactive difluoromethyl anion, enabling diverse functional group transformations. Our methodology offers a versatile platform for drug and agrochemical discovery, overcoming the limitations associated with fluorinated motifs.
Collapse
Affiliation(s)
- Kensuke Muta
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
- Central Glass Co. Ltd., New-STEP Research Center, Kawagoe City, Saitama, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Hiroki Nakayama
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Shuto Wada
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
14
|
Söderström M, Olaniran Håkansson E, Odell LR. Defluorinative thio-functionalization: direct synthesis of methyl-dithioesters from trifluoromethylarenes. Chem Commun (Camb) 2024; 61:145-148. [PMID: 39620856 DOI: 10.1039/d4cc05540c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A new functional group transformation allowing the synthesis of methyl-dithioesters from readily available trifluoromethyl arenes via defluorinative functionalization has been developed. This microwave-assisted method is operationally simple, rapid, and eliminates the need for pre-functionalization while accommodating a broad range of functional groups. In addition, it does not rely on highly odorous thiol sources, and utilizes the commercially available reagent BF3SMe2 complex as a multifunctional Lewis acid/sulfur source/defluorination and demethylation agent. Finally, this approach is suitable for late-stage functionalizations, as shown by the transformation of pharmaceuticals leflunomide, flufenamic acid and celecoxib into novel methyl-dithioester derivatives.
Collapse
Affiliation(s)
- Marcus Söderström
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
15
|
Trifonov AL, Dilman AD. Interaction of Difluorocarbene with the Thiocyanate Anion: Access to a Silicon Reagent Bearing the Isothiocyanate Group. Org Lett 2024; 26:10589-10593. [PMID: 39588677 DOI: 10.1021/acs.orglett.4c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The reaction between (bromodifluoromethyl)trimethylsilane (TMSCF2Br) and potassium thiocyanate providing TMSCF2NCS is described. The process involves the interaction of difluorocarbene with the nitrogen atom of the thiocyanate anion. The obtained silicon reagent served as a source of the fluorinated group and difluorocarbene in the reaction with N-alkyl imines, affording 2-(difluoromethylthio)-4-fluoroimidazoles.
Collapse
Affiliation(s)
- Alexey L Trifonov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
16
|
Campos PRO, Alberto EE. Pnictogen and Chalcogen Salts as Alkylating Agents. CHEM REC 2024; 24:e202400139. [PMID: 39548904 DOI: 10.1002/tcr.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Indexed: 11/18/2024]
Abstract
Alkylation reactions and their products are considered crucial in various contexts. Synthetically, the alkylation of a nucleophile is usually promoted using hazardous alkyl halides. Here, we aim to highlight the potential of pnictogen (ammonium or phosphonium) and chalcogen salts (sulfonium, selenonium, and telluronium) to function as alkylating agents. These compounds can be considered as non-volatile electrophilic alkyl reservoirs. We will center our discussion on the strategies developed in recent years to expand the synthetic utility of these salts in terms of transferable alkyl groups, substrate scope, and product selectivity.
Collapse
Affiliation(s)
- Philipe Raphael O Campos
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| | - Eduardo E Alberto
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Li Y, Peng R, Zhu C. Modular Synthesis of α-Aryl Acrylamido Carboxylic Acids by Triple C-F Bond Cleavage of (Trifluoromethyl)alkenes with Unprotected Amino Acids. Org Lett 2024; 26:8295-8300. [PMID: 39311230 DOI: 10.1021/acs.orglett.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A straightforward and efficient strategy for the construction of tertiary and secondary α-aryl acrylamido carboxylic acids is reported. This N-acrylation protocol of unprotected amino acids is achieved by triple C-F bond cleavage of (trifluoromethyl)alkenes. This method features mild conditions, is operationally simple, is free of transition metals and racemization, can be used on a gram scale, and is compatible with various functional moieties. Mechanistic studies indicate that oxygen atom exchange happens among H2O, NaOH, and amino acids, and the oxygen atom of the amide moiety of the product is incorporated by the ipso-defluorooxylation of (trifluoromethyl)alkene.
Collapse
Affiliation(s)
- Yuqi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Li S, Li X, Zhao K, Yang X, Xu J, Xu HJ. Defluorinative Haloalkylation of Unactivated Alkenes Enabled by Dual Photoredox and Copper Catalysis. J Org Chem 2024; 89:13518-13529. [PMID: 39253778 DOI: 10.1021/acs.joc.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A three-component defluorinative haloalkylation of alkenes with trifluoromethyl compounds and TBAX (X = Cl, Br) via dual photoredox/copper catalysis is reported. The mild conditions are compatible with a wide array of activated trifluoromethyl aromatics bearing diverse substituents, and various nonactivated terminal and internal alkenes, enabling straightforward access to synthetically valuable γ-gem-difluoroalkyl halides with high efficiency. Mechanistic studies indicate that the [Cu] complexes not only serve as XAT catalysts but also facilitate the SET reduction of trifluoromethyl groups by photocatalysts. Additionally, the resulting alkyl halide products can serve as versatile conversion intermediates for the synthesis of a diverse range of γ-gem-difluoroalkyl compounds.
Collapse
Affiliation(s)
- Shiyu Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinguang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kuikui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinyu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
19
|
Csókás D, Coles M, Toh ZH, Young RD. Evidence for a kinetic FLP reaction pathway in the activation of benzyl chlorides by alkali metal-phosphine pairs. Dalton Trans 2024; 53:14582-14586. [PMID: 39162088 DOI: 10.1039/d4dt02028f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Kinetic frustrated Lewis pairs (FLP) allow facile cleavage of a number of E-H bonds (E = H, Si, C, B) where both the Lewis base and Lewis acid are involved in the bond activation transition state. More recently, kinetic FLP systems have been extended to the cleavage of C-X (X = F, Cl, Br) bonds. We report on the role of sodium tetrakis(pentafluorophenyl)borate in the benzylation of triarylphosphines, where the sodium cation and phosphine support a kinetic FLP type transition state.
Collapse
Affiliation(s)
- Dániel Csókás
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Max Coles
- School of Chemistry and Molecular Biosciences, University of Queensland, 68 Cooper Road, Australia 4067.
| | - Zhi Hao Toh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, University of Queensland, 68 Cooper Road, Australia 4067.
| |
Collapse
|
20
|
Zhu M, Wang QL, Huang H, Mao G, Deng GJ. General Defluoroalkylation of Trifluoromethylarenes with Both Electron-Donating and -Withdrawing Alkenes. J Org Chem 2024; 89:12591-12609. [PMID: 39141011 DOI: 10.1021/acs.joc.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The incorporation of gem-difluoromethylene units into organic molecules remains a formidable challenge. Conventional methodologies for constructing aryldifluoromethyl derivatives relied on the use of high-functional fluorinating regents under harsh conditions. Herein, we report general and efficient photoredox catalytic systems for defluoroalkylation of readily available trifluoromethylarenes through selective C-F cleavage to deliver gem-difluoromethyl radicals which proceed through reductive addition to both electron-donating and withdrawing alkenes under transition-metal free conditions. Mechanistic studies reveal that thiol serves as both photocatalyst and HAT reagent under visible light irradiation. This synergistic photocatalysis and HAT catalysis protocol exhibits ample and salient features such as high chemo- and regioselectivity, broad substrate scope, amenable gram-scale synthesis and late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Mengqi Zhu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiao-Lin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
21
|
Barrett C, Alagaratnam A, Knieb A, Koch CJ, Prakash GKS. Azidodifluoromethanide (N 3CF 2-): In Situ Generation and Nucleophilic Addition to Aldehydes. Org Lett 2024; 26:6385-6389. [PMID: 39023917 DOI: 10.1021/acs.orglett.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A facile one-pot approach for the azidodifluoromethylation of aldehydes via in situ-generated azidodifluoromethenide (N3CF2-) utilizing commercially available TMSCF2Br and NaN3 is disclosed. The formed O-silyl ether products are obtained in yields of up to 91% in short reaction times at ambient temperature. Examples of both inter- and intramolecular [3 + 2] azide-alkyne cycloaddition reactions of the installed azidodifluoromethyl handles are also presented, demonstrating the prospective synthetic and biochemical functionality and utility.
Collapse
Affiliation(s)
- Colby Barrett
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Anushan Alagaratnam
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Alexander Knieb
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
22
|
Ford J, Ortalli S, Gouverneur V. The 18F-Difluoromethyl Group: Challenges, Impact and Outlook. Angew Chem Int Ed Engl 2024; 63:e202404957. [PMID: 38640422 DOI: 10.1002/anie.202404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
The difluoromethyl functionality has proven useful in drug discovery, as it can modulate the properties of bioactive molecules. For PET imaging, this structural motif has been largely underexploited in (pre)clinical radiotracers due to a lack of user-friendly radiosynthetic routes. This Minireview provides an overview of the challenges facing radiochemists and summarises the efforts made to date to access 18F-difluoromethyl-containing radiotracers. Two distinct approaches have prevailed, the first of which relies on 18F-fluorination. A second approach consists of a 18F-difluoromethylation process, which uses 18F-labelled reagents capable of releasing key reactive intermediates such as the [18F]CF2H radical or [18F]difluorocarbene. Finally, we provide an outlook for future directions in the radiosynthesis of [18F]CF2H compounds and their application in tracer radiosynthesis.
Collapse
Affiliation(s)
- Joseph Ford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sebastiano Ortalli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
23
|
Uchikura T, Akutsu F, Tani H, Akiyama T. Photoreduction of Trifluoromethyl Group: Lithium Ion Assisted Fluoride-Coupled Electron Transfer from EDA Complex. Chemistry 2024; 30:e202400658. [PMID: 38600038 DOI: 10.1002/chem.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Photoinduced single-electron reduction is an efficient method for the mono-selective activation of the C-F bond on a trifluoromethyl group to construct a difluoroalkyl group. We have developed an electron-donor-acceptor (EDA) complex mediated single-electron transfer (EDA-SET) of α,α,α-trifluoromethyl arenes in the presence of lithium salt to give α,α-difluoroalkylarenes. The C-F bond reduction was realized by lithium iodide and triethylamine, two common feedstock reagents. Mechanistic studies revealed the generation of a α,α-difluoromethyl radical by single-electron reduction and defluorination, followed by the radical addition to alkenes. Lithium salt interacted with the fluorine atom to promote the photoinduced reduction mediated by the EDA complex. Computational studies indicated that the lithium-assisted defluorination and the single-electron reduction occurred concertedly. We call this phenomenon fluoride-coupled electron transfer (FCET). FCET is a novel approach to C-F bond activation for the synthesis of organofluorine compounds.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Fua Akutsu
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Haruna Tani
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| |
Collapse
|
24
|
Jia J, Zhumagazy S, Zhu C, Lee SC, Alsharif S, Yue H, Rueping M. Selective Mono-Defluorinative Cross-Coupling of Trifluoromethyl arenes via Multiphoton Photoredox Catalysis. Chemistry 2024; 30:e202302927. [PMID: 38573029 DOI: 10.1002/chem.202302927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 04/05/2024]
Abstract
A new cross-coupling of trifluoromethyl arenes has been realized via multiphoton photoredox catalysis. Trifluoromethyl arenes were demonstrated to undergo selective mono-defluorinative alkylation under mild reaction conditions providing access to a series of valuable α,α-difluorobenzylic compounds. The reaction shows broad substrate scope and general functional group tolerance. In addition to the electron-deficient trifluoromethyl arenes that are easily reduced to the corresponding radical anion, more challenging electron-rich substrates were also successfully applied. Steady-State Stern-Volmer quenching studies indicated that the trifluoromethyl arenes were reduced by the multiphoton excited Ir-based photocatalyst.
Collapse
Affiliation(s)
- Jiaqi Jia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Serik Zhumagazy
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shao-Chi Lee
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salman Alsharif
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Lye K, Young RD. A review of frustrated Lewis pair enabled monoselective C-F bond activation. Chem Sci 2024; 15:2712-2724. [PMID: 38404400 PMCID: PMC10882520 DOI: 10.1039/d3sc06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Frustrated Lewis pair (FLP) bond activation chemistry has greatly developed over the last two decades since the seminal report of metal-free reversible hydrogen activation. Recently, FLP systems have been utilized to allow monoselective C-F bond activation (at equivalent sites) in polyfluoroalkanes. The problem of 'over-defluorination' in the functionalization of polyfluoroalkanes (where multiple fluoro-positions are uncontrollably functionalized) has been a long-standing chemical problem in fluorocarbon chemistry for over 80 years. FLP mediated monoselective C-F bond activation is complementary to other solutions developed to address 'over-defluorination' and offers several advantages and unique opportunities. This perspective highlights some of these advantages and opportunities and places the development of FLP mediated C-F bond activation into the context of the wider effort to overcome 'over-defluorination'.
Collapse
Affiliation(s)
- Kenneth Lye
- Department of Chemistry, National University of Singapore 117543 Singapore
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
26
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
27
|
Bonfante S, Lorber C, Lynam JM, Simonneau A, Slattery JM. Metallomimetic C-F Activation Catalysis by Simple Phosphines. J Am Chem Soc 2024; 146:2005-2014. [PMID: 38207215 PMCID: PMC10811696 DOI: 10.1021/jacs.3c10614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Delivering metallomimetic reactivity from simple p-block compounds is highly desirable in the search to replace expensive, scarce precious metals by cheap and abundant elements in catalysis. This contribution demonstrates that metallomimetic catalysis, involving facile redox cycling between the P(III) and P(V) oxidation states, is possible using only simple, cheap, and readily available trialkylphosphines without the need to enforce unusual geometries at phosphorus or use external oxidizing/reducing agents. Hydrodefluorination and aminodefluorination of a range of fluoroarenes was realized with good to very good yields under mild conditions. Experimental and computational mechanistic studies show that the phosphines undergo oxidative addition of the fluoroaromatic substrate via a Meisenheimer-like transition state to form a fluorophosphorane. This undergoes a pseudotransmetalation step with a silane, via initial fluoride transfer from P to Si, to give experimentally observed phosphonium ions. Hydride transfer from a hydridosilicate counterion then leads to a hydridophosphorane, which undergoes reductive elimination of the product to reform the phosphine catalyst. This behavior is analogous to many classical transition-metal-catalyzed reactions and so is a rare example of both functional and mechanistically metallomimetic behavior in catalysis by a main-group element system. Crucially, the reagents used are cheap, readily available commercially, and easy to handle, making these reactions a realistic prospect in a wide range of academic and industrial settings.
Collapse
Affiliation(s)
- Sara Bonfante
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - Christian Lorber
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - Jason M. Lynam
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Antoine Simonneau
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - John M. Slattery
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
28
|
Yeganeh-Salman A, Yeung J, Miao L, Stephan DW. Coordination chemistry and FLP reactivity of 1,1- and 1,2-bis-boranes. Dalton Trans 2024; 53:1178-1189. [PMID: 38108120 DOI: 10.1039/d3dt03660j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Coordination chemistry and frustrated Lewis pair (FLP) chemistry have been most commonly studied using monodentate Lewis acids. In this paper, we examine the corresponding reactions employing the 1,1- and 1,2-bis-boranes, PhCH2CH(B(C6F5)2)21 and Me3SiCH(B(C6F5)2)CH2B(C6F5)22, respectively. Coordination of isocyanide to these species results in the formation of the products RCH(B(C6F5)2CNtBu)CH2(B(C6F5)2CNtBu) (R = Ph 3, Me3Si 4). The rearrangement of 1 to give the 1,2-bis-borane adduct 3 was probed and attributed to a donor-induced retrohydroboration and subsequent hydroboration. The analogous reaction of 1 is evident in efforts to use the Gutman-Beckett method to assess its Lewis acidity. However, in combination with tBu3P, bis-boranes 1 and 2 form FLPs and react with H2 to give [tBu3PH][PhCH2CH(B(C6F5)2)2(μ-H)] 5a and [tBu3PH][Me3SiCH(B(C6F5)2)CH2(B(C6F5)2)(μ-H)] 6, respectively. Reactions of 1 and 2 with various donors and PhCCH were shown to give deprotonation and addition products, depending on the nature of the base. However, in the case of 1, products resulting from retrohydroboration, and subsequent hydroboration are evident. Several of these alkyne products are crystallographically characterized.
Collapse
Affiliation(s)
- Amir Yeganeh-Salman
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
| | - Jason Yeung
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
| | - Linkun Miao
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, P. R. China
| |
Collapse
|
29
|
Chen M, Cui Y, Chen X, Shang R, Zhang X. C-F bond activation enables synthesis of aryl difluoromethyl bicyclopentanes as benzophenone-type bioisosteres. Nat Commun 2024; 15:419. [PMID: 38199996 PMCID: PMC10781780 DOI: 10.1038/s41467-023-44653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bioisosteric design has become an essential approach in the development of drug molecules. Recent advancements in synthetic methodologies have enabled the rapid adoption of this strategy into drug discovery programs. Consequently, conceptionally innovative practices would be appreciated by the medicinal chemistry community. Here we report an expeditous synthetic method for synthesizing aryl difluoromethyl bicyclopentane (ADB) as a bioisostere of the benzophenone core. This approach involves the merger of light-driven C-F bond activation and strain-release chemistry under the catalysis of a newly designed N-anionic-based organic photocatalyst. This defluorinative coupling methodology enables the direct conversion of a wide variety of commercially available trifluoromethylaromatic C-F bonds (more than 70 examples) into the corresponding difluoromethyl bicyclo[1.1.1]pentanes (BCP) arenes/difluoromethyl BCP boronates in a single step. The strategy can also be applied to [3.1.1]and [4.1.1]propellane systems, providing access to analogues with different geometries. Moreover, we have successfully used this protocol to rapidly prepare ADB-substituted analogues of the bioactive molecule Adiporon. Biological testing has shown that the ADB scaffold has the potential to enhance the pharmacological properties of benzophenone-type drug candidates.
Collapse
Affiliation(s)
- Mingshuo Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Yuang Cui
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China.
| |
Collapse
|
30
|
Huang J, Gao Q, Zhong T, Chen S, Lin W, Han J, Xie J. Photoinduced copper-catalyzed C-N coupling with trifluoromethylated arenes. Nat Commun 2023; 14:8292. [PMID: 38092783 PMCID: PMC10719352 DOI: 10.1038/s41467-023-44097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective defluorinative functionalization of trifluoromethyl group (-CF3) is an attractive synthetic route to the pharmaceutically privileged fluorine-containing moiety. Herein, we report a strategy based on photoexcited copper catalysis to activate the C-F bond of di- or trifluoromethylated arenes for divergent radical C-N coupling with carbazoles and aromatic amines. The use of different ligands can tune the reaction products diversity. A range of substituted, structurally diverse α,α-difluoromethylamines can be obtained from trifluoromethylated arenes via defluorinative C-N coupling with carbazoles, while an interesting double defluorinative C-N coupling is ready for difluoromethylated arenes. Based on this success, a carbazole-centered PNP ligand is designed to be an optimal ligand, enabling a copper-catalyzed C-N coupling for the construction of imidoyl fluorides from aromatic amines through double C-F bond functionalization. Interestingly, a 1,2-difluoroalkylamination strategy of styrenes is also developed, delivering γ,γ-difluoroalkylamines, a bioisostere to β-aminoketones, in synthetically useful yields. The DFT studies reveal an inner-sphere electron transfer mechanism for Cu-catalyzed selective activation of C(sp3)-F bonds.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Lin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
31
|
Li SY, Yang XY, Shen PH, Xu L, Xu J, Zhang Q, Xu HJ. Selective Defluoroalkylation and Hydrodefluorination of Trifluoromethyl Groups Photocatalyzed by Dihydroacridine Derivatives. J Org Chem 2023. [PMID: 38054778 DOI: 10.1021/acs.joc.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The selective functionalization of trifluoromethyl groups through C-F cleavage poses a significant challenge due to the high bond energy of the C(sp3)-F bonds. Herein, we present dihydroacridine derivatives as photocatalysts that can functionalize the C-F bond of trifluoromethyl groups with various alkenes under mild conditions. Mechanistic studies and DFT calculations revealed that upon irradiation, the dihydroacridine derivatives exhibit high reducibility and function as photocatalysts for reductive defluorination. This process involves a sequential single-electron transfer mechanism. This research provides valuable insights into the properties of dihydroacridine derivatives as photocatalysts, highlighting the importance of maintaining a planar conformation and a large conjugated system for optimal catalytic activity. These findings facilitate the efficient catalytic reduction of inert chemical bonds.
Collapse
Affiliation(s)
- Shi-Yu Li
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Xin-Yu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Peng-Hui Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
32
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
33
|
Zhang X, Deng J, Ji Y, Li R, Sivaguru P, Song Q, Karmakar S, Bi X. Defluorinative 1,3-Dienylation of Fluoroalkyl N-Triftosylhydrazones with Homoallenols. Chemistry 2023; 29:e202302562. [PMID: 37695246 DOI: 10.1002/chem.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A silver-catalyzed regioselective defluorinative 1,3-dienylation of trifluoromethyl phenyl N-triftosylhydrazones using homoallenols as 1,3-dienyl sources provides a variety of α-(di)fluoro-β-vinyl allyl ketones with excellent functional group tolerance in moderate to good yields. The reaction proceeds through a silver carbene-initiated sequential etherification and Claisen type [3,3]-sigmatropic rearrangement cascade. The synthetic utility of this protocol was demonstrated through the downstream synthetic elaboration toward diverse synthetically useful building blocks.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiahua Deng
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rong Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Swastik Karmakar
- Department of Chemistry, Basirhat College, West Bengal State University, Basirhat, 743412, West Bengal, India
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Csókás D, Mondal B, Đokić M, Gupta R, Lee BJY, Young RD. Stereoselective Synthesis of Fluoroalkanes via FLP Mediated Monoselective C─F Activation of Geminal Difluoroalkanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305768. [PMID: 37907424 PMCID: PMC10754124 DOI: 10.1002/advs.202305768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/02/2023]
Abstract
A method of desymmetrization of geminal difluoroalkanes using frustrated Lewis pair (FLP) mediated monoselective C-F activation where a chiral sulfide is the Lewis base component is reported. The stereoselective reaction provides generally high yields of diastereomeric sulfonium salts with dr of up to 95:5. The distribution of diastereomers is found to be thermodynamically controlled via facile sulfide exchange. The use of enantiopure chiral sulfides allows for high stereospecificity in nucleophilic substitution reactions and the formation of stereoenriched products.
Collapse
Affiliation(s)
- Dániel Csókás
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- Research Centre for Natural SciencesInstitute of Organic ChemistryBudapest1117Hungary
| | - Bivas Mondal
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Miloš Đokić
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Richa Gupta
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Beatrice J. Y. Lee
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Rowan D. Young
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt Lucia4067Australia
| |
Collapse
|
35
|
Ma T, Wei XP, Wang XC, Qiao XX, Li G, He Y, Zhao XJ. Highly Enantioselective Synthesis of 3 a-Fluorofuro[3,2- b]indolines via Organocatalytic Aza-Friedel-Crafts Reaction/Selective C-F Bond Activation. Org Lett 2023. [PMID: 38014969 DOI: 10.1021/acs.orglett.3c03445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fluoroalkylated compounds are of high interest in drug discovery and have inspired the evolution of diverse C-F bond activation methodologies. However, the selective activation of polyfluorinated compounds remains challenging. Herein, we describe an unprecedented strategy for synthesizing enantioenriched fluorofuro[3,2-b]indolines through the organocatalytic aza-Friedel-Crafts reaction coupled with selective C-F bond activation. These reactions feature excellent enantioselectivities (≤96% ee) and yields (≤96%) as well as good functional group compatibility. Mechanistic investigations by means of 19F nuclear magnetic resonance experiments provided sufficient support for silica gel as the key medium in this transformation.
Collapse
Affiliation(s)
- Tao Ma
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xing-Pin Wei
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xin-Chun Wang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiu-Xiu Qiao
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Ganpeng Li
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
36
|
Wang M, Shanmugam M, McInnes EJL, Shaver MP. Light-Induced Polymeric Frustrated Radical Pairs as Building Blocks for Materials and Photocatalysts. J Am Chem Soc 2023; 145:24294-24301. [PMID: 37890166 PMCID: PMC10636756 DOI: 10.1021/jacs.3c09075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Polymeric frustrated Lewis pairs, or poly(FLP)s, have served to bridge the gap between functional polymer science and main group catalysis, pairing the uniqueness of sterically frustrated Lewis acids and bases with a polymer scaffold to create self-healing gels and recyclable catalysts. However, their utilization in radical chemistry is unprecedented. In this paper, we disclose the synthesis of polymeric frustrated radical pairs, or poly(FRP)s, by in situ photoinduction of FLP moieties, where their Lewis acidic and basic centers are tuned to promote single electron transfer (SET). Through systematic manipulation of the chemical structure, we demonstrate that inclusion of ortho-methyl groups on phosphine monomers is crucial to enable SET. The generation of radicals is evidenced by monitoring the stable polymeric phosphine radical cations via UV/vis and EPR spectroscopy. These new poly(FRP)s enable both catalytic hydrogenation and radical-mediated photocatalytic perfluoroalkylations. These polymeric radical systems open new avenues to design novel functional polymers for catalysis and photoelectrical chemistry.
Collapse
Affiliation(s)
- Meng Wang
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, U.K.
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Muralidharan Shanmugam
- Photon
Science Institute, Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Photon
Science Institute, Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| | - Michael P. Shaver
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, U.K.
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
37
|
Yue WJ, Martin R. α-Difluoroalkylation of Benzyl Amines with Trifluoromethylarenes. Angew Chem Int Ed Engl 2023; 62:e202310304. [PMID: 37596243 DOI: 10.1002/anie.202310304] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
An α-difluoroalkylation of benzyl amines with trifluoromethylarenes is disclosed herein. This protocol is characterized by its operational simplicity, excellent chemoselectivity and broad scope-even with advanced synthetic intermediates-, thus offering a new entry point to medicinally-relevant α-difluoroalkylated amines from simple, yet readily accessible, precursors.
Collapse
Affiliation(s)
- Wen-Jun Yue
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
38
|
Yoshida S. C-F Transformations of Benzotrifluorides by the Activation of Ortho-Hydrosilyl Group. CHEM REC 2023; 23:e202200308. [PMID: 36762730 DOI: 10.1002/tcr.202200308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Single C-F transformations of aromatic trifluoromethyl compounds are challenging issues due to the strong C-F bond. We have recently developed selective methods for single C-F transformations such as allylation of o-hydrosilyl-substituted benzotrifluorides through the hydride abstraction with trityl cations. Single C-F thiolation and azidation of o-(hydrosilyl)benzotrifluorides were achieved using trityl sulfides and trityl azide catalyzed by Yb(OTf)3 . Treatment of o-(hydrosilyl)benzotrifluorides with trityl chloride resulted in single C-F chlorination. The resulting fluorosilyl group served in further transformations including protonation, halogenation, and Hiyama cross-coupling with C-Si cleavage. We also synthesized benzyl fluorides by LiAlH4 -reduction of the resulting fluorosilanes and further C-F transformations. These methods enabled us to prepare a broad range of organofluorines from simple benzotrifluorides through C-F and C-Si transformations.
Collapse
Affiliation(s)
- Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
39
|
Mancinelli JP, Kong WY, Guo W, Tantillo DJ, Wilkerson-Hill SM. Borane-Catalyzed C-F Bond Functionalization of gem-Difluorocyclopropenes Enables the Synthesis of Orphaned Cyclopropanes. J Am Chem Soc 2023; 145:17389-17397. [PMID: 37494703 DOI: 10.1021/jacs.3c05278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.
Collapse
Affiliation(s)
- Joseph P Mancinelli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
40
|
Sun LW, Hu YF, Ji WJ, Zhang PY, Ma M, Shen ZL, Chu XQ. Selective and Controllable Defluorophosphination and Defluorophosphorylation of Trifluoromethylated Enones: An Auxiliary Function of the Carbonyl Group. Org Lett 2023; 25:3745-3749. [PMID: 37167193 DOI: 10.1021/acs.orglett.3c01215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The auxiliary function of a carbonyl group in the tunable defluorophosphination and defluorophosphorylation of trifluoromethylated enones with P(O)-containing compounds was demonstrated. Controlled replacement of one or two fluorine atoms in trifluoromethylated enones while maintaining high chemo- and stereoselectivity was achieved under mild conditions, thus enabling diversity-oriented synthesis of skeletally diverse organophosphorus libraries─(Z)-difluoro-1,3-dien-1-yl phosphinates, (1Z,3E)-4-phosphoryl-4-fluoro-buta-1,3-dien-1-yl phosphinates, and (E)-4-phosphoryl-4-fluoro-1,3-but-3-en-1-ones─in good yields with excellent functional group tolerance.
Collapse
Affiliation(s)
- Li-Wen Sun
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ya-Fei Hu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Jun Ji
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng-Yuan Zhang
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
41
|
Csókás D, Gupta R, Prasad PK, Goh KKK, Young RD. Insights into the Mechanism of Aluminum-Catalyzed Halodefluorination. J Org Chem 2023; 88:4397-4404. [PMID: 36926911 DOI: 10.1021/acs.joc.2c03005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Aluminum has been reported to catalyze halodefluorination reactions, where aliphatic fluorine is substituted with a heavier halogen. Although it is known that stoichiometric aluminum halide can perform this reaction, the role of catalytic aluminum halide and organyl alane reagents is not well understood. We investigate the mechanism of the halodefluorination reaction using catalytic aluminum halide and stoichiometric trimethylsilyl halide. We explore the use of B(C6F5)3 as a catalyst to benchmark pathways where aluminum acts either as a Lewis acid catalyst in cooperation with trimethylsilyl halide or as an independent halodefluorination reagent which is subsequently regenerated by trimethylsilyl halide. Computational and experimental results indicate that aluminum acts as an independent halodefluorination reagent and that reactivity trends observed between different halide reagents can be attributed to relative barriers in halide delivery to the organic fragment, which is the rate-limiting step in both the aluminum halide- and B(C6F5)3-catalyzed pathways.
Collapse
Affiliation(s)
- Dániel Csókás
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Richa Gupta
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Pragati K Prasad
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Kelvin K K Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Rowan D Young
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia 4072
| |
Collapse
|
42
|
Hendy CM, Pratt CJ, Jui NT, Blakey SB. Defluoroalkylation of Trifluoromethylarenes with Hydrazones: Rapid Access to Benzylic Difluoroarylethylamines. Org Lett 2023; 25:1397-1402. [PMID: 36848497 PMCID: PMC10012270 DOI: 10.1021/acs.orglett.3c00126] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Here, we report an efficient and modular approach toward the formation of difluorinated arylethylamines from simple aldehyde-derived N,N-dialkylhydrazones and trifluoromethylarenes (CF3-arenes). This method relies on selective C-F bond cleavage via reduction of the CF3-arene. We show that a diverse set of CF3-arenes and CF3-heteroarenes react smoothly with a range of aryl and alkyl hydrazones. The β-difluorobenzylic hydrazine product can be selectively cleaved to form the corresponding benzylic difluoroarylethylamines.
Collapse
Affiliation(s)
- Cecilia M Hendy
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Cameron J Pratt
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nathan T Jui
- Loxo Oncology, Boulder, Colorado 80301, United States
| | - Simon B Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
43
|
Shen ZJ, Zhu C, Zhang X, Yang C, Rueping M, Guo L, Xia W. Organoboron Reagent-Controlled Selective (Deutero)Hydrodefluorination. Angew Chem Int Ed Engl 2023; 62:e202217244. [PMID: 36525004 DOI: 10.1002/anie.202217244] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
(Deuterium-labeled) CF2 H- and CFH2 -moieties are of high interest in drug discovery. The high demand for the incorporation of these fluoroalkyl moieties into molecular structures has witnessed significant synthetic progress, particularly in the (deutero)hydrodefluorination of CF3 -containing compounds. However, the controllable replacement of fluorine atoms while maintaining high chemoselectivity remains challenging. Herein, we describe the development of a selective (deutero)hydrodefluorination reaction via electrolysis. The reaction exhibits a remarkable chemoselectivity control, which is enabled by the addition of different organoboron sources. The procedure is operationally simple and scalable, and provides access in one step to high-value building blocks for application in medicinal chemistry. Furthermore, density functional theory (DFT) calculations have been carried out to investigate the reaction mechanism and to rationalize the chemoselectivity observed.
Collapse
Affiliation(s)
- Zheng-Jia Shen
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
44
|
Shigeno M, Shishido Y, Soga A, Nozawa-Kumada K, Kondo Y. Defluorinative Transformation of (2,2,2-Trifluoroethyl)arenes Catalyzed by the Phosphazene Base t-Bu-P2. J Org Chem 2023; 88:1796-1802. [PMID: 36689669 DOI: 10.1021/acs.joc.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we demonstrated that 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P2) catalyzes the defluorinative functionalization reactions of (2,2,2-trifluoroethyl)arenes with alkanenitriles to produce monofluoroalkene products. The reaction proceeds through HF elimination from a (2,2,2-trifluoroethyl)arene to form a gem-difluorostyrene intermediate, which is followed by nucleophilic addition of an alkanenitrile and elimination of a fluoride anion. The catalysis is compatible with a variety of functional groups.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Amane Soga
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
45
|
Gupta R, Csókás D, Lye K, Young RD. Experimental and computational insights into the mechanism of FLP mediated selective C-F bond activation. Chem Sci 2023; 14:1291-1300. [PMID: 36756325 PMCID: PMC9891352 DOI: 10.1039/d2sc05632a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Frustrated Lewis pairs (FLP) comprising of B(C6F5)3 (BCF) and 2,4,6-triphenylpyridine (TPPy), P(o-Tol)3 or tetrahydrothiophene (THT) have been shown to mediate selective C-F activation in both geminal and chemically equivalent distal C-F sites. In comparison to other reported attempts of C-F activation using BCF, these reactions appear surprisingly facile. We investigate this reaction through a combination of experimental and computational chemistry to understand the mechanism of the initial C-F activation event and the origin of the selectivity that prevents subsequent C-F activation in the monoactivated salts. We find that C-F activation likely occurs via a Lewis acid assisted SN1 type pathway as opposed to a concerted FLP pathway (although the use of an FLP is important to elevate the ground state energy), where BCF is sufficiently Lewis acidic to overcome the kinetic barrier for C-F activation in benzotrifluorides. The resultant intermediate salts of the form [ArCF2(LB)][BF(C6F5)3] (LB = Lewis base) are relatively thermodynamically unstable, and an equilibrium operates between the fluorocarbon/FLP and their activation products. As such, the use of a fluoride sequestering reagent such as Me3SiNTf2 is key to the realisation of the forward C-F activation reaction in benzotrifluorides. Selectivity in this reaction can be attributed to both the installation of bulky Lewis bases geminal to residual C-F sites and from electronic re-ordering of kinetic barriers (of C-F sites in products and starting materials) arising from the electron withdrawing nature of the pyridinium, phosphonium and sulfonium groups.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Dániel Csókás
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Kenneth Lye
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Rowan D. Young
- Department of Chemistry, National University of Singapore3 Science Drive 3117543Singapore,School of Chemistry and Molecular Biosciences, The University of QueenslandSt Lucia, 4072QueenslandAustralia
| |
Collapse
|
46
|
Wagay SA, Khan L, Ali R. Recent Advancements in Ion-Pair Receptors. Chem Asian J 2023; 18:e202201080. [PMID: 36412231 DOI: 10.1002/asia.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Over the past two decades, non-covalent chemistry has introduced various promising artificial receptors and revolutionized the host-guest chemistry. These versatile receptors have particularly been entertained in sensing and recognizing of diverse neutral molecules and/or ionic entities (e. g. anions, cations and ion-pair) of particular interest. Notably, supramolecular chemistry had given birth to a plethora of important molecules, explored in the chemical, biological, environmental, and pharmacological world to resolve the critical issues related to the human health while keeping environmental concerns in mind. Amongst the various types of supramolecular monotopic receptors (anions, cations, and neutral molecules), heteroditopic receptors (ion-pair receptors) consisting of distinct binding sites in one system for both cation and anion, have gained much interest from the scientific community in recent past because of their unique binding abilities. Interestingly, these promising artificial receptors have shown potential applications in sensing, recognition, transport and extraction processes besides their uses in salt/waste purification. Bearing the importance of these systems in mind, we intended to report the recent developments in ion-pair chemistry. Herein, we divided the whole document into three main sections; first one describes the introduction and history of the ion-pairs receptors. The second portion highlights the synthesis and applications of ion-pair receptors in sensing, recognition, molecular machines, photoswitching behaviour, extraction and transport properties, whereas the last part of this manuscript provides concluding remarks as well as future prospects of ion-pair receptors. We hope that this manuscript will be helpful to stimulating researchers around the globe to find out the hidden opportunities in this and related areas.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Lubna Khan
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| |
Collapse
|
47
|
Kynman AE, Elghanayan LK, Desnoyer AN, Yang Y, Sévery L, Di Giuseppe A, Tilley TD, Maron L, Arnold PL. Controlled monodefluorination and alkylation of C(sp 3)-F bonds by lanthanide photocatalysts: importance of metal-ligand cooperativity. Chem Sci 2022; 13:14090-14100. [PMID: 36540817 PMCID: PMC9728647 DOI: 10.1039/d2sc04192h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/05/2022] [Indexed: 08/01/2023] Open
Abstract
The controlled functionalization of a single fluorine in a CF3 group is difficult and rare. Photochemical C-F bond functionalization of the sp3-C-H bond in trifluorotoluene, PhCF3, is achieved using catalysts made from earth-abundant lanthanides, (CpMe4)2Ln(2-O-3,5- t Bu2-C6H2)(1-C{N(CH)2N(iPr)}) (Ln = La, Ce, Nd and Sm, CpMe4 = C5Me4H). The Ce complex is the most effective at mediating hydrodefluorination and defluoroalkylative coupling of PhCF3 with alkenes; addition of magnesium dialkyls enables catalytic C-F bond cleavage and C-C bond formation by all the complexes. Mechanistic experiments confirm the essential role of the Lewis acidic metal and support an inner-sphere mechanism of C-F activation. Computational studies agree that coordination of the C-F substrate is essential for C-F bond cleavage. The unexpected catalytic activity for all members is made possible by the light-absorbing ability of the redox non-innocent ligands. The results described herein underscore the importance of metal-ligand cooperativity, specifically the synergy between the metal and ligand in both light absorption and redox reactivity, in organometallic photocatalysis.
Collapse
Affiliation(s)
- Amy E Kynman
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Luca K Elghanayan
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Addison N Desnoyer
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Yan Yang
- LPCNO, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Sévery
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Andrea Di Giuseppe
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Laurent Maron
- LPCNO, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Polly L Arnold
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
48
|
Li XX, Wang JS, You XX, Zhong RL, Su ZM. Theoretical Insight into the Multiple Roles of LiHMDS in Pd-Catalyzed Borylation of Fluorobenzene. J Org Chem 2022; 87:16039-16046. [PMID: 36379013 DOI: 10.1021/acs.joc.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jian-Sen Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Xiao-Xia You
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Rong-Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
49
|
Nishimoto Y, Yasuda M. Lewis Acid-mediated Carbon-Fluorine Bond Transformation: Substitution of Fluorine and Insertion into a Carbon-Fluorine Bond. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| |
Collapse
|
50
|
Balaraman K, Kyriazakos S, Palmer R, Thanzeel FY, Wolf C. Selective Csp 3-F Bond Functionalization with Lithium Iodide. SYNTHESIS-STUTTGART 2022; 54:4320-4328. [PMID: 36330045 PMCID: PMC9624501 DOI: 10.1055/s-0041-1738383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A highly efficient method for C-F bond functionalization of a broad variety of activated and unactivated aliphatic substrates with inexpensive lithium iodide is presented. Primary, secondary, tertiary, benzylic, propargylic and α-functionalized alkyl fluorides react in chlorinated or aromatic solvents at room temperature or upon heating to the corresponding iodides which are isolated in 91-99% yield. The reaction is selective for aliphatic monofluorides and can be coupled with in situ nucleophilic iodide replacements to install carbon-carbon, carbon-nitrogen and carbon-sulfur bonds with high yields. Alkyl difluorides, trifluorides, even in activated benzylic positions, are inert under the same conditions and aryl fluoride bonds are also tolerated.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | | | - Rachel Palmer
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - F Yushra Thanzeel
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| |
Collapse
|