1
|
Lu Y, You XY, Zhang Q, Lu QT, Hou JL, Cai Q. Enantioselective Total Synthesis of Fortimicin B. Angew Chem Int Ed Engl 2025; 64:e202424235. [PMID: 40079796 DOI: 10.1002/anie.202424235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Fortimicins, featuring a pseudodisaccharide scaffold, are an unusual class of aminoglycosides (AGs) with potent efficacy against several aminoglycoside-resistant bacterial strains. Notably, these molecules also exhibit lower inherent ototoxicity and nephrotoxicity than common aminoglycosides. Consequently, fortimicins are a promising type of protoypical molecules for the development of the next generation of aminoglycoside antibiotics. Here, we report the asymmetric total synthesis of fortimicin B in 12 steps (longest linear sequence, LLS) from readily available starting materials. An enantioselective Cu(II)-catalyzed inverse-electron-demand Diels-Alder (IEDDA) reaction of 2-pyrones and N-substituted 2-oxazolones was developed for the efficient synthesis of the fortamine fragment, which previously required a lengthy multistep synthesis owing to its complex stereochemistry. The 6-epi-purpurosamine B fragment was efficiently synthesized through a Cr(II)/Co(I)-mediated C─C bond coupling between aldehydes and alkyl halides. Within these two fragments, the stereoselective construction of the α-glycosidic bond of fortimicin B was realized via the gold(I)-catalyzed glycosylation. Overall, this study provides an efficient synthetic platform for future investigations into the structure-activity relationships of fortimicins.
Collapse
Affiliation(s)
- Yang Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Xin-Yu You
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qianwei Zhang
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qi-Tao Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Quan Cai
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| |
Collapse
|
2
|
Kasdekar N, Spieker MR, Vasella A, Hobbie SN, Crich D. Synthesis of Methyl Aprabiosaminide and 2-Hydroxyapramycin from Apramycin. Org Lett 2025; 27:1918-1922. [PMID: 39950696 PMCID: PMC11877507 DOI: 10.1021/acs.orglett.5c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
We describe a protocol for the selective cleavage of the 2-deoxystreptamine ring from the structurally unusual aminoglycoside antibiotic apramycin, enabling for the first time the preparation of aprabiosamine derivatives. We further describe reglycosylation of the aprabiosamine core with a selectively protected optically pure streptamine derivative, giving, after deprotection, 2-hydroxyapramycin, the first apramycin derivative functionalized at the 2 position.
Collapse
Affiliation(s)
- Niteshlal Kasdekar
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Michael R. Spieker
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 East Green Street, Athens, Georgia 30602, United States
| | - Andrea Vasella
- Organic
Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Sven N. Hobbie
- Division
of Clinical Bacteriology and Mycology, University
Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate
Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Kasdekar N, Spieker MR, Crich D. Practical Synthesis from Streptomycin and Regioselective Partial Deprotections of (-)-(1 R,2 S,3 R,4 R,5 S,6 S)-1,3-Di(deamino)-1,3-diazido-2,5,6-tri- O-benzylstreptamine. J Org Chem 2024; 89:4225-4231. [PMID: 38427951 PMCID: PMC10949228 DOI: 10.1021/acs.joc.3c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
We describe the gram-scale synthesis of (-)-(1R,2S,3R,4R,5S,6S)-1,3-di(diamino)-1,3-diazido-2,5,6-tri-O-benzylstreptamine from streptomycin by (i) hydrolysis of the two streptomycin guanidine residues, (ii) reprotection of the amines as azides, (iii) protection of all alcohols as benzyl ethers, and (iv) glycosidic bond cleavage with HCl in methanol. Protocols for regioselective monodebenzylation and regioselective reduction of a single azide in the product are also described, providing four optically pure building blocks for exploitation in novel aminoglycoside synthesis.
Collapse
Affiliation(s)
- Niteshlal Kasdekar
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Michael R. Spieker
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 East Green Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
5
|
Otsuka Y, Umemura E, Takamiya Y, Ishibashi T, Hayashi C, Yamada K, Igarashi M, Shibasaki M, Takahashi Y. Aprosamine Derivatives Active against Multidrug-Resistant Gram-Negative Bacteria. ACS Infect Dis 2023; 9:886-898. [PMID: 36893496 DOI: 10.1021/acsinfecdis.2c00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Novel aprosamine derivatives were synthesized for the development of aminoglycoside antibiotics active against multidrug-resistant Gram-negative bacteria. The synthesis of aprosamine derivatives involved glycosylation at the C-8' position and subsequent modification (epimerization and deoxygenation at the C-5 position and 1-N-acylation) of the 2-deoxystreptamine moiety. All 8'-β-glycosylated aprosamine derivatives (3a-h) showed excellent antibacterial activity against carbapenem-resistant Enterobacteriaceae and 16S ribosomal RNA methyltransferase-producing multidrug-resistant Gram-negative bacteria compared to the clinical drug, arbekacin. The antibacterial activity of 5-epi (6a-d) and 5-deoxy derivatives (8a,b and 8h) of β-glycosylated aprosamine was further enhanced. On the other hand, the derivatives (10a,b and 10h) in which the amino group at the C-1 position was acylated with (S)-4-amino-2-hydroxybutyric acid showed excellent activity (MICs 0.25-0.5 μg/mL) against resistant bacteria that produce the aminoglycoside-modifying enzyme, aminoglycoside 3-N-acetyltransferase IV, which induces high resistance against parent apramycin (MIC > 64 μg/mL). In particular, 8b and 8h showed approximately 2- to 8-fold antibacterial activity against carbapenem-resistant Enterobacteriaceae and 8- to 16-fold antibacterial activity against resistant Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, compared to apramycin. Our results showed that aprosamine derivatives have immense potential in the development of therapeutic agents for multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yasunari Otsuka
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Eijiro Umemura
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yukimi Takamiya
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Teruhisa Ishibashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Chigusa Hayashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Keiko Yamada
- Pharmaceutical Analysis Laboratories, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 788 Kayama, Odawara-shi 250-0852, Kanagawa, Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yoshiaki Takahashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
6
|
Pirrone MG, Ande C, Haldimann K, Hobbie SN, Vasella A, Böttger EC, Crich D. Importance of Co-operative Hydrogen Bonding in the Apramycin-Ribosomal Decoding A-Site Interaction. ChemMedChem 2023; 18:e202200486. [PMID: 36198651 PMCID: PMC10092258 DOI: 10.1002/cmdc.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Indexed: 01/24/2023]
Abstract
An intramolecular hydrogen bond between the protonated equatorial 7'-methylamino group of apramycin and the vicinal axial 6'-hydroxy group acidifies the 6'-hydroxy group leading to a strong hydrogen bond to A1408 in the ribosomal drug binding pocket in the decoding A site of the small ribosomal subunit. In 6'-epiapramycin, the trans-nature of the 6'-hydroxy group and the 7'-methylamino group results in a much weaker intramolecular hydrogen bond, and a consequently weaker cooperative hydrogen bonding network with A1408, resulting overall in reduced inhibition of protein synthesis and antibacterial activity.
Collapse
Affiliation(s)
- Michael G. Pirrone
- Department of Pharmaceutical and Biomedical SciencesUniversity of Georgia250 West Green Street30602Athens, GAUSA
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical SciencesUniversity of Georgia250 West Green Street30602Athens, GAUSA
| | - Klara Haldimann
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - Sven N. Hobbie
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - Andrea Vasella
- Organic Chemistry InstituteETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Erik C. Böttger
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical SciencesDepartment of ChemistryComplex Carbohydrate Research CenterUniversity of Georgia250 West Green Street30602Athens, GAUSA
| |
Collapse
|
7
|
Lubriks D, Haldimann K, Hobbie SN, Vasella A, Suna E, Crich D. Synthesis, Antibacterial and Antiribosomal Activity of the 3 C-Aminoalkyl Modification in the Ribofuranosyl Ring of Apralogs (5- O-Ribofuranosyl Apramycins). Antibiotics (Basel) 2022; 12:antibiotics12010025. [PMID: 36671225 PMCID: PMC9854789 DOI: 10.3390/antibiotics12010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The synthesis and antiribosomal and antibacterial activity of both anomers of a novel apralog, 5-O-(5-amino-3-C-dimethylaminopropyl-D-ribofuranosyl)apramycin, are reported. Both anomers show excellent activity for the inhibition of bacterial ribosomes and that of MRSA and various wild-type Gram negative pathogens. The new compounds retain activity in the presence of the aminoglycoside phosphoryltransferase aminoglycoside modifying enzymes that act on the primary hydroxy group of typical 4,5-(2-deoxystreptamine)-type aminoglycoside and related apramycin derivatives. Unexpectedly, the two anomers have comparable activity both for the inhibition of bacterial ribosomes and of the various bacterial strains tested.
Collapse
Affiliation(s)
- Dmitrijs Lubriks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| |
Collapse
|
8
|
Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J. Ototoxicity in childhood: Recommendations of the CODEPEH (Commission for the Early Detection of Childhood Hearing Loss) for prevention and early diagnosis. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2022; 73:255-265. [PMID: 35872300 DOI: 10.1016/j.otoeng.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
Ototoxicity is defined as the damage, reversible or irreversible, produced in the inner ear by various substances that are called ototoxic and that can cause hearing loss and/or an alteration of the vestibular system. Permanent hearing loss significantly affects quality of life and is especially important in children. The lack or delay in its detection is frequent, since it often progresses in an inconspicuous manner until it affects communication and overall development. This impact can be minimized by following a strategy of audiological monitoring of ototoxicity, which allows for its early detection and treatment. This document recommends that children who are going to be treated with cisplatin or aminoglycosides be monitored. This CODEPEH review and recommendation document focuses on the early detection, prophylaxis, otoprotection, monitoring and treatment of ototoxicity caused by aminoglycosides and platinum-based antineoplastics in the paediatric population.
Collapse
|
9
|
Ototoxicidad en la edad pediátrica: recomendaciones de la CODEPEH (Comisión para la Detección Precoz de la Hipoacusia infantil) para su prevención y diagnóstico precoz. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2022. [DOI: 10.1016/j.otorri.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Li G, Row KH. Single-drop microextraction technique for the determination of antibiotics in environmental water. J Sep Sci 2021; 45:883-895. [PMID: 34919334 DOI: 10.1002/jssc.202100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
Growing concerns related to antibiotic residues in environmental water have encouraged the development of rapid, sensitive, and accurate analytical methods. Single-drop microextraction has been recognized as an efficient approach for the isolation and preconcentration of several analytes from a complex sample matrix. Thus, single-drop microextraction techniques are cost-effective and less harmful to the environment, subscribing to green analytical chemistry principles. Herein, an overview and the current advances in single-drop microextraction for the determination of antibiotics in environmental water are presented were included. In particular, two main approaches used to perform single-drop microextraction (direct immersion-single-drop microextraction and headspace-single-drop microextraction) are reviewed. Furthermore, the impressive analytical features and future perspectives of single-drop microextraction are discussed in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, P. R. China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402751, Korea
| |
Collapse
|
11
|
Lubriks D, Zogota R, Sarpe VA, Matsushita T, Sati GC, Haldimann K, Gysin M, Böttger EC, Vasella A, Suna E, Hobbie SN, Crich D. Synthesis and Antibacterial Activity of Propylamycin Derivatives Functionalized at the 5''- and Other Positions with a View to Overcoming Resistance Due to Aminoglycoside Modifying Enzymes. ACS Infect Dis 2021; 7:2413-2424. [PMID: 34114793 DOI: 10.1021/acsinfecdis.1c00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Propylamycin (4'-deoxy-4'-propylparomomycin) is a next generation aminoglycoside antibiotic that displays increased antibacterial potency over the parent, coupled with reduced susceptibility to resistance determinants and reduced ototoxicity in the guinea pig model. Propylamycin nevertheless is inactivated by APH(3')-Ia, a specific aminoglycoside phosphotransferase isozyme that acts on the primary hydroxy group of the ribofuranosyl moiety (at the 5''-position). To overcome this problem, we have prepared and studied the antibacterial and antiribosomal activity of various propylamycin derivatives carrying amino or substituted amino groups at the 5''-position in place of the vulnerable hydroxy group. We find that the introduction of an additional basic amino group at this position, while overcoming the action of the aminoglycoside phosphoryltransferase isozymes acting at the 5''-position as anticipated, results in a significant drop in selectivity for the bacterial over the eukaryotic ribosomes that is predictive of increased ototoxicity. In contrast, 5''-deoxy-5''-formamidopropylamycin retains the excellent across-the-board levels of antibacterial activity of propylamycin itself, while circumventing the action of the offending aminoglycoside phosphotransferase isozymes and affording even greater selectivity for the bacterial over the eukaryotic ribosomes. Other modifications to address the susceptibility of propylamycin to the APH(3')-Ia isozyme including deoxygenation at the 3'-position and incorporation of a 6',5''-bis(hydroxyethylamino) modification offer no particular advantage.
Collapse
Affiliation(s)
| | - Rimants Zogota
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Vikram A. Sarpe
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Girish C. Sati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur J Med Chem 2021; 223:113633. [PMID: 34171659 DOI: 10.1016/j.ejmech.2021.113633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrates are an important energy source and play numerous key roles in all living organisms. Carbohydrates chemistry involved in diagnosis and treatment of diseases has been attracting increasing attention. Carbohydrates could be one of the major focuses of new drug discovery. Currently, however, carbohydrate-containing drugs account for only a small percentage of all drugs in clinical use, which does not match the important roles of carbohydrates in the organism. In other words, carbohydrates are a relatively untapped source of new drugs and therefore may offer exciting novel therapeutic opportunities. Here, we presented an overview of the application of carbohydrates in approved small molecule drugs and emphasized and evaluated the roles of carbohydrates in those drugs. The potential development direction of carbohydrate-containing drugs was presented after summarizing the advantages and challenges of carbohydrates in the development of new drugs.
Collapse
Affiliation(s)
- Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Xiaofei Qin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Qi Wang
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, 570312, China
| | - Qi Xu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology Shandong Academy of Sciences, Jinan, China
| | - Jie Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Yudong Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Tingting Zhang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Zimmermann A, Jaber QZ, Koch J, Riebe S, Vallet C, Loza K, Hayduk M, Steinbuch KB, Knauer SK, Fridman M, Voskuhl J. Luminescent Amphiphilic Aminoglycoside Probes to Study Transfection. Chembiochem 2021; 22:1563-1567. [PMID: 33410196 PMCID: PMC8248372 DOI: 10.1002/cbic.202000725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Indexed: 12/26/2022]
Abstract
We report the characterization of amphiphilic aminoglycoside conjugates containing luminophores with aggregation-induced emission properties as transfection reagents. These inherently luminescent transfection vectors are capable of binding plasmid DNA through electrostatic interactions; this binding results in an emission "on" signal due to restriction of intramolecular motion of the luminophore core. The luminescent cationic amphiphiles effectively transferred plasmid DNA into mammalian cells (HeLa, HEK 293T), as proven by expression of a red fluorescent protein marker. The morphologies of the aggregates were investigated by microscopy as well as ζ-potential and dynamic light-scattering measurements. The transfection efficiencies using luminescent cationic amphiphiles were similar to that of the gold-standard transfection reagent Lipofectamine® 2000.
Collapse
Affiliation(s)
- Alexander Zimmermann
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Qais Z. Jaber
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Johannes Koch
- Center for Medical Biotechnology (ZMB)University of Duisburg EssenUniversitätsstrasse 245141EssenGermany
| | - Steffen Riebe
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Cecilia Vallet
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Matthias Hayduk
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Kfir B. Steinbuch
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Shirley K. Knauer
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Micha Fridman
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Jens Voskuhl
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| |
Collapse
|
14
|
Li D, Zhao H, Cui ZK, Tian G. The Role of Nrf2 in Hearing Loss. Front Pharmacol 2021; 12:620921. [PMID: 33912042 PMCID: PMC8072655 DOI: 10.3389/fphar.2021.620921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
Hearing loss is a major unresolved problem in the world, which has brought a heavy burden to society, economy, and families. Hair cell damage and loss mediated by oxidative stress are considered to be important causes of hearing loss. The nuclear factor erythroid 2–related factor 2 (Nrf2) is a major regulator of antioxidant capacity and is involved in the occurrence and development of a series of toxic and chronic diseases associated with oxidative stress. In recent years, studies on the correlation between hearing loss and Nrf2 target have continuously broadened our knowledge, and Nrf2 has become a new strategic target for the development and reuse of hearing protection drugs. This review summarized the correlation of Nrf2 in various types of hearing loss, and the role of drugs in hearing protection through Nrf2 from the literature.
Collapse
Affiliation(s)
- Dafei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
15
|
Jaber QZ, Fridman M. Fresh Molecular Concepts to Extend the Lifetimes of Old Antimicrobial Drugs. CHEM REC 2021; 21:631-645. [PMID: 33605532 DOI: 10.1002/tcr.202100014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Antimicrobial drug development generally initiates with target identification and mode of action studies. Often, emergence of resistance and/or undesired side effects that are discovered only after prolonged clinical use, result in discontinuation of clinical use. Since the cost and time required for improvement of existing drugs are considerably lower than those required for the development of novel drugs, academic and pharmaceutical company researchers pursue this direction. In this account we describe selected examples of how chemical probes generated from antimicrobial drugs and chemical and enzymatic modifications of these drugs have been used to modify modes of action, block mechanisms of resistance, or reduce side effects, improving performance. These examples demonstrate how new and comprehensive mechanistic insights can be translated into fresh concepts for development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
16
|
Sonousi A, Quirke JCK, Waduge P, Janusic T, Gysin M, Haldimann K, Xu S, Hobbie SN, Sha SH, Schacht J, Chow CS, Vasella A, Böttger EC, Crich D. An Advanced Apralog with Increased in vitro and in vivo Activity toward Gram-negative Pathogens and Reduced ex vivo Cochleotoxicity. ChemMedChem 2021; 16:335-339. [PMID: 33007139 PMCID: PMC7855274 DOI: 10.1002/cmdc.202000726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/13/2022]
Abstract
We describe the convergent synthesis of a 5-O-β-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3') mechanism that disables other 5-O-β-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC50 ) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Jonathan C K Quirke
- Department of Pharmacy and Biomedical Sciences and Department of Chemistry and Complex Carbohydrate Research Center, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - Prabuddha Waduge
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Tanja Janusic
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Shan Xu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - David Crich
- Department of Pharmacy and Biomedical Sciences and Department of Chemistry and Complex Carbohydrate Research Center, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
17
|
Logviniuk D, Fridman M. Serum Prevents Interactions between Antimicrobial Amphiphilic Aminoglycosides and Plasma Membranes. ACS Infect Dis 2020; 6:3212-3223. [PMID: 33174428 DOI: 10.1021/acsinfecdis.0c00588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antimicrobial cationic amphiphiles have broad-spectrum activity, and microbes do not readily develop resistance to these agents, highlighting their clinical and industrial potential. Cationic amphiphiles perturb the integrity of membranes leading to cell death, and the lack of discrimination between microbial and mammalian plasma membranes is thought to be one of the main barriers of using these agents for the treatment of systemic infections. Here, we describe the synthesis and study of 20 antimicrobial cationic amphiphiles that are derivatives of the aminoglycoside nebramine with different numbers of alkyl chain ethers that differ in length and degree of unsaturation. We determined antifungal activities and evaluated hemoglobin release from red blood cells as a measure of membrane selectivity and analyzed how serum influences these activities. Microscopic images revealed morphological transformations of red blood cells from the normal double-disc shape to empty ghost cells upon treatment with the cationic amphiphiles. Antifungal activity, hemolysis, and morphological changes in red blood cells decreased as the percentage of serum in the culture medium was increased. In images of red blood cells treated with fluorescently labeled amphiphilic nebramine probes, the accumulation of the cationic amphiphiles in the membranes decreased as serum concentration increased. This suggests that, in addition to its known effect of preventing the deformability of red blood cells, serum prevents interactions between cationic amphiphiles and the plasma membrane. The results of this study indicate that biological activities of cationic amphiphiles are abrogated in serum. Thus, these agents are suitable for external and industrial uses but probably not for effective treatment of systemic infections.
Collapse
Affiliation(s)
- Dana Logviniuk
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
18
|
Jospe-Kaufman M, Siomin L, Fridman M. The relationship between the structure and toxicity of aminoglycoside antibiotics. Bioorg Med Chem Lett 2020; 30:127218. [PMID: 32360102 PMCID: PMC7194799 DOI: 10.1016/j.bmcl.2020.127218] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Aminoglycoside antibiotics, used to treat persistent gram-negative infections, tuberculosis, and life-threatening infections in neonates and patients with cystic fibrosis, can infer acute kidney injury and irreversible hearing loss. The full repertoire of cellular targets and processes leading to the toxicity of aminoglycosides is not fully resolved, making it challenging to devise rational directions to circumvent their adverse effects. As a result, there has been very limited effort to rationally address the issue of aminoglycoside-induced toxicity. Here we provide an overview of the reported effects of aminoglycosides on cells of the inner ear and on kidney tubular epithelial cells. We describe selected examples for structure–toxicity relationships established by evaluation of both natural and semisynthetic aminoglycosides. The various assays and models used to evaluate these antibiotics and recent progress in development of safer aminoglycoside antibiotics are discussed.
Collapse
Affiliation(s)
- Moriah Jospe-Kaufman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liza Siomin
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|