1
|
Wu Y, Liu Z, Wang H, Shi H, Yuan W, Wang Y, Liu Y, Lv Y, Qin X, Zheng A, Wang L, Xiao FS. Hydroformylation over Zeolite Catalysts with Solvophobic Micropores. J Am Chem Soc 2025; 147:11301-11308. [PMID: 40106682 DOI: 10.1021/jacs.4c18771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Traditional gas-liquid-solid triphase reactions are often limited by gas solubility and diffusion in the liquid phase. We reported that a solvophobic catalyst with gas-filled micropores could enrich enormous amounts of gas molecules to accelerate Rh-catalyzed hydroformylation. This reaction used siliceous MFI zeolite fixed Rh nanoparticles in a mesitylene solvent. Owing to the shape selectivity, zeolite micropores prevent mesitylene from wetting the solid, allowing the rapid transport and efficient enrichment of gaseous reactants. This catalyst catalyzed ethylene hydroformylation with a propanal production rate significantly higher than those of the generally supported catalysts.
Collapse
Affiliation(s)
- Yuexin Wu
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| | - Zhiqiang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hai Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon and Advanced Semiconductor, Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon and Advanced Semiconductor, Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yifeng Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yating Lv
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Qin
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| | - Anmin Zheng
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| |
Collapse
|
2
|
Wen M, Liu Z, Liu C, Zhuang W. A Computational Mechanistic Study on Copper Autoreduction in Cu-CHA Zeolite Catalysts. Chem Asian J 2025; 20:e202400973. [PMID: 39497549 DOI: 10.1002/asia.202400973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
The activation of Cu-zeolite catalysts is accompanied by an autoreduction reaction, in which a part of Cu(II) species is spontaneously reduced to Cu(I) species. The stoichiometry of autoreduction in which the release of one O2 is accompanied by the reduction of four Cu(II) to Cu(I) has been proposed, but the detailed mechanism of this autoreduction remains unclear. In this work, we used DFT calculations to study the autoreduction mechanism in Cu-CHA zeolites. The two reduction mechanisms of [CuOH]+ to Cu+ in CHA-type zeolite were systematically studied. In Mechanism I, two [CuOH]+ react via dehydration to form [Cu-O-Cu]2+, and the further reaction of two [Cu-O-Cu]2+ to produce O2 is the most critical step, which requires four charge-compensating framework Al in close proximity. In Mechanism II, the production of O2 occurs via [CuO]+ intermediates, and the generation of possible [CuO]+ is the most critical step. The exploration of autoreduction reactions in a variety of Cu-CHA models with different Al sittings shows that the O-O distances between two intermediate precursors, i. e., two [Cu-O-Cu]2+ in Mechanism I, or two [CuO]+ in Mechanism II, are key factors determining the activation barriers of O2 production during autoreduction.
Collapse
Affiliation(s)
- Miao Wen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Zhuyang Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Chong Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
3
|
Zhu C, Li W, Chen T, He Z, Villalobos E, Marini C, Zhou J, Woon Lo BT, Xiao H, Liu L. Boosting the Stability of Subnanometer Pt Catalysts by the Presence of Framework Indium(III) Sites in Zeolite. Angew Chem Int Ed Engl 2024; 63:e202409784. [PMID: 39225426 DOI: 10.1002/anie.202409784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 09/04/2024]
Abstract
Subnanometer metal clusters show advantages over conventional metal nanoparticles in numerous catalytic reactions owing to their high percentage of exposed surface sites, abundance of under-coordinated metal sites and unique electronic structures. However, the applications of subnanometer metal clusters in high-temperature catalytic reactions (>600 °C) are still hindered, because of their low stability under harsh reaction conditions. In this work, we have developed a zeolite-confined bimetallic PtIn catalyst with exceptionally high stability against sintering. A combination of experimental and theoretical studies shows that the isolated framework In(III) species serve as the anchoring sites for Pt species, precluding the migration and sintering of Pt species in the oxidative atmosphere at ≥650 °C. The catalyst comprising subnanometer PtIn clusters exhibits long-term stability of >1000 h during a cyclic reaction-regeneration test for ethane dehydrogenation reaction.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenying Li
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China
| | - Zhe He
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Eduardo Villalobos
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Carlo Marini
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai, 201208, China
| | - Benedict Tsz Woon Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China
| | - Hai Xiao
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Liu Y, Xue W, Liu X, Wei F, Lin X, Lu XF, Lin W, Hou Y, Zhang G, Wang S. Ultrafine Pt Nanoparticles on Defective Tungsten Oxide for Photocatalytic Ethylene Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402004. [PMID: 38686672 DOI: 10.1002/smll.202402004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weichao Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fen Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiahui Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
5
|
Yuan Y, Huang E, Hwang S, Liu P, Chen JG. Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation. Nat Commun 2024; 15:6529. [PMID: 39095363 PMCID: PMC11297129 DOI: 10.1038/s41467-024-50709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Designing highly active and stable catalytic sites is often challenging due to the complex synthesis procedure and the agglomeration of active sites during high-temperature reactions. Here, we report a facile two-step method to synthesize Pt clusters confined by In-modified ZSM-5 zeolite. In-situ characterization confirms that In is located at the extra-framework position of ZSM-5 as In+, and the Pt clusters are stabilized by the In-ZSM-5 zeolite. The resulting Pt clusters confined in In-ZSM-5 show excellent propane conversion, propylene selectivity, and catalytic stability, outperforming monometallic Pt, In, and bimetallic PtIn alloys. The incorporation of In+ in ZSM-5 neutralizes Brønsted acid sites to inhibit side reactions, as well as tunes the electronic properties of Pt clusters to facilitate propane activation and propylene desorption. The strategy of combining precious metal clusters with metal cation-exchanged zeolites opens the avenue to develop stable heterogeneous catalysts for other reaction systems.
Collapse
Grants
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
- DE-SC0012704 and DE-SC0012653 DOE | LDRD | Brookhaven National Laboratory (BNL)
- DE-SC0012335 DOE | SC | Basic Energy Sciences (BES)
- DE-SC0012335 DOE | SC | Basic Energy Sciences (BES)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
- DE-AC02-05CH11231 DOE | Office of Science (SC)
Collapse
Affiliation(s)
- Yong Yuan
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Erwei Huang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Ishikawa S, Kosugi Y, Kanda Y, Shimoda K, Jing Y, Toyao T, Shimizu KI, Ueda W. Microporosity and Catalytic Activity for Hydrodesulfurization of Pharmacosiderite Mo 4P 3O 16 Synthesized at a Moderate Temperature. Inorg Chem 2024; 63:7780-7791. [PMID: 38625744 DOI: 10.1021/acs.inorgchem.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Pharmacosiderite Mo4P3O16 (Pharma-MoPO) consists of [Mo4O4] cubane unit and [PO4] tetrahedral to form an open framework with a microporous structure similar to that of LTA-type zeolite. Although attractive applications are expected due to its microporous structure and redox-active components, its physicochemical properties have been poorly investigated due to the specificity of its synthesis, which requires a high hydrothermal synthesis temperature of 360 °C. In this study, we succeeded in synthesizing Pharma-MoPO by hydrothermal synthesis at 230 °C, which can be applied using a commercially available autoclave by changing the metal source. Through the study of the solids and liquids obtained after hydrothermal syntheses, the formation process of Pharma-MoPO under our studied synthesis conditions was proposed. Advanced characterizations provided detailed structural information on Pharma-MoPO, including the location site of a countercation NH4+. Pharma-MoPO could adsorb CO2 with the amount close to the number of cages without removing NH4+. Pharma-MoPO exhibited stable catalytic activity for the hydrodesulfurization of thiophene while maintaining its crystal structure, except for the introduction of sulfide by replacing lattice oxygens. Pharmacosiderite Mo4P3O16 was successfully obtained by hydrothermal synthesis at a moderate temperature, and its microporosity for CO2 adsorption and catalytic properties for hydrodesulfurization were discovered.
Collapse
Affiliation(s)
- Satoshi Ishikawa
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yudai Kosugi
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yasuharu Kanda
- Chemical and Biological Engineering Research Unit, College of Information and Systems, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Kosuke Shimoda
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Wataru Ueda
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
7
|
Li X, Li W, Zhang J, Yin W, Xia Y, Xie K. Porous Single-crystalline Centimeter-sized α-Al 2 O 3 Monoliths for Selective and Durable Non-oxidative Dehydrogenation of Ethane. Angew Chem Int Ed Engl 2024; 63:e202315274. [PMID: 38050771 DOI: 10.1002/anie.202315274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Alpha alumina (α-Al2 O3 ) are inert materials with outstanding thermal, chemical and mechanical stability. Herein, we fabricate porous single-crystalline (PSC) α-Al2 O3 monoliths at centimeter scale to endow them with high catalytic activity while maintaining their stability. We reduce PSC α-Al2 O3 monoliths to create oxygen vacancies in lattice and stabilize them by the ordered lattice to construct unsaturated Al-O coordination structures for enhancing the catalytic activity. The generation of oxygen vacancy at 18e wyckoff position contributes to the unsaturated Al-O coordination. As a case study, we demonstrate the outstanding performance with conversion (≈34 %) and selectivity (≈95 %) toward non-oxidative dehydrogenation of ethane to ethylene at 700 °C. We achieve the outstanding performance without obvious degradation even after a continuous operation over 1000 hours at 700 °C.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wenting Li
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jie Zhang
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
| | - Yuanguang Xia
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
| | - Kui Xie
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
8
|
Lu Z, Xu Y, Zhang Z, Sun J, Ding X, Sun W, Tu W, Zhou Y, Yao Y, Ozin GA, Wang L, Zou Z. Wettability Engineering of Solar Methanol Synthesis. J Am Chem Soc 2023; 145:26052-26060. [PMID: 37982690 DOI: 10.1021/jacs.3c07349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Engineering the wettability of surfaces with hydrophobic organics has myriad applications in heterogeneous catalysis and the large-scale chemical industry; however, the mechanisms behind may surpass the proverbial hydrophobic kinetic benefits. Herein, the well-studied In2O3 methanol synthesis photocatalyst has been used as an archetype platform for a hydrophobic treatment to enhance its performance. With this strategy, the modified samples facilitated the tuning of a wide range of methanol production rates and selectivity, which were optimized at 1436 μmol gcat-1 h-1 and 61%, respectively. Based on in situ DRIFTS and temperature-programmed desorption-mass spectrometry, the surface-decorated alkylsilane coating on In2O3 not only kinetically enhanced the methanol synthesis by repelling the produced polar molecules but also donated surface active H to facilitate the subsequent hydrogenation reaction. Such a wettability design strategy seems to have universal applicability, judged by its success with other CO2 hydrogenation catalysts, including Fe2O3, CeO2, ZrO2, and Co3O4. Based on the discovered kinetic and mechanistic benefits, the enhanced hydrogenation ability enabled by hydrophobic alkyl groups unleashes the potential of the surface organic chemistry modification strategy for other important catalytic hydrogenation reactions.
Collapse
Affiliation(s)
- Zhe Lu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Yangfan Xu
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, 10, Toronto, Ontario M5S 3H6, Canada
| | - Zeshu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
| | - Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Wei Sun
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Yong Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yingfang Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Geoffrey A Ozin
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, 10, Toronto, Ontario M5S 3H6, Canada
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
9
|
Ye L, Ma J, Zhang J, Yin W, Xia Y, Xie K. Insight into the Role and Evidence of Oxygen Vacancies in Porous Single-Crystalline Oxide to Enhance Catalytic Activity and Durability. RESEARCH (WASHINGTON, D.C.) 2023; 6:0233. [PMID: 39882541 PMCID: PMC11776074 DOI: 10.34133/research.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/31/2023] [Indexed: 01/31/2025]
Abstract
Introducing and stabilizing oxygen vacancies in oxide catalysts is considered to be a promising strategy for improving catalytic activity and durability. Herein, we quantitatively create oxygen vacancies in the lattice of porous single-crystalline β-Ga2O3 monoliths by reduction treatments and stabilize them through the long-range ordering of crystal lattice to enhance catalytic activity and durability. The combination analysis of time-of-flight neutron powder diffraction and extended x-ray absorption fine structure discloses that the preferential generation of oxygen vacancy tends to occur at the site of tetrahedral coordination oxygen ions (OIII sites), which contributes to the formation of unsaturated Ga-O coordination in the monoclinic phase. The oxygen vacancies are randomly distributed in lattice even though some of them are present in the form of domain defect in the PSC Ga2O3 monoliths after the reduction treatment. The number of oxygen vacancies in the reduced monoliths gives 2.32 × 1013, 2.87 × 1013, and 3.45 × 1013 mg-1 for the Ga2O2.952, Ga2O2.895, and Ga2O2.880, respectively. We therefore demonstrate the exceptionally high C2H4 selectivity of ~100% at the C2H6 conversion of ~37% for nonoxidative dehydrogenation of C2H6 to C2H4. We further demonstrate the excellent durability even at 620 °C for 240 h of continuous operation.
Collapse
Affiliation(s)
- Lingting Ye
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023, China
| | - Jiaming Ma
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023, China
| | - Jie Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China
| | - Yuanguang Xia
- Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023, China
| |
Collapse
|
10
|
Yuan Y, Zhao Z, Lobo RF, Xu B. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207756. [PMID: 36897033 PMCID: PMC10161086 DOI: 10.1002/advs.202207756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Metal-exchanged zeolites are well-known propane dehydrogenation (PDH) catalysts; however, the structure of the active species remains unresolved. In this review, existing PDH catalysts are first surveyed, and then the current understanding of metal-exchanged zeolite catalysts is described in detail. The case of Ga/H-ZSM-5 is employed to showcase that advances in the understanding of structure-activity relations are often accompanied by technological or conceptional breakthroughs. The understanding of Ga speciation at PDH conditions has evolved owing to the advent of in situ/operando characterizations and to the realization that the local coordination environment of Ga species afforded by the zeolite support has a decisive impact on the active site structure. In situ/operando quantitative characterization of catalysts, rigorous determination of intrinsic reaction rates, and predictive computational modeling are all significant in identifying the most active structure in these complex systems. The reaction mechanism could be both intricately related to and nearly independent of the details of the assumed active structure, as in the two main proposed PDH mechanisms on Ga/H-ZSM-5, that is, the carbenium mechanism and the alkyl mechanism. Perspectives on potential approaches to further elucidate the active structure of metal-exchanged zeolite catalysts and reaction mechanisms are discussed in the final section.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Zhaoqi Zhao
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Raul F. Lobo
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Bingjun Xu
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
11
|
Yuan Y, Lobo RF. Zinc Speciation and Propane Dehydrogenation in Zn/H-ZSM-5 Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Wei F, Xue W, Yu Z, Lu XF, Wang S, Lin W, Wang X. Dynamic cooperations between lattice oxygen and oxygen vacancies for photocatalytic ethane dehydrogenation by a self-restoring LaVO4 catalyst. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Chen P, Liu Y, Xu Y, Guo C, Hu P. Quantitative Evidence to Challenge the Traditional Model in Heterogeneous Catalysis: Kinetic Modeling for Ethane Dehydrogenation over Fe/SAPO-34. JACS AU 2023; 3:165-175. [PMID: 36711091 PMCID: PMC9875371 DOI: 10.1021/jacsau.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
The production of ethylene from ethane dehydrogenation (EDH) is of great importance in the chemical industry, where zeolites are reported to be promising catalysts and kinetic simulations using the energetics from quantum mechanical calculations might provide an effective approach to speed up the development. However, the kinetic simulations with rigorous considerations of the zeolite environment are not yet advanced. In this work, EDH over Fe/SAPO-34 is investigated using quantum mechanical calculations with kinetic simulations. We show that an excellent agreement between the reaction rates from the self-consistent kinetic simulations using the coverage-dependent kinetic model developed in this work and the experimental ones can be achieved. We demonstrate that the adsorbate-adsorbate interactions are of paramount importance to the accuracy of kinetic calculations for zeolite catalysts. Our self-consistent kinetic calculations illustrate that the CH3CH2• radical rather than CH3CH2* is a favored intermediate. Perhaps more importantly, we reveal that the traditional model to describe catalytic reactions in heterogeneous catalysis cannot be used for the kinetics of the system and it may not be appropriate for many real catalytic systems. This work not only builds a framework for accurate kinetic simulations in zeolites, but also emphasizes an important concept beyond the traditional model.
Collapse
Affiliation(s)
- Peng Chen
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
| | - Ying Liu
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
| | - Yarong Xu
- Research
Institute of Urumqi Petrochina Chemical Company, Urumqi83000, China
| | - Chenxi Guo
- Department
of 5T Technology, Zhejiang SUPCON Technology
Co., Ltd., Hangzhou310053, China
| | - P. Hu
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
- School
of Chemistry and Chemical Engineering, The
Queen’s University of Belfast, BelfastBT9 5AG, United Kingdom
| |
Collapse
|
14
|
Liu L, Li H, Zhou H, Chu S, Liu L, Feng Z, Qin X, Qi J, Hou J, Wu Q, Li H, Liu X, Chen L, Xiao J, Wang L, Xiao FS. Rivet of cobalt in siliceous zeolite for catalytic ethane dehydrogenation. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Pan J, Lee J, Li M, Trump BA, Lobo RF. Comparative investigation of Ga- and In-CHA in the non-oxidative ethane dehydrogenation reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Wang C, Han Y, Tian M, Li L, Lin J, Wang X, Zhang T. Main-Group Catalysts with Atomically Dispersed In Sites for Highly Efficient Oxidative Dehydrogenation. J Am Chem Soc 2022; 144:16855-16865. [PMID: 36006855 DOI: 10.1021/jacs.2c04926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metal oxides are well-known catalysts for oxidative dehydrogenation thanks to their excellent ability to activate alkanes. However, they suffer from an inferior alkene yield due to the trade-off between the conversion and selectivity induced by more reactive alkenes than alkanes, which obscures the optimization of catalysts. Herein, we attempt to overcome this challenge by activating a selective main-group indium oxide considered to be inactive for oxidative dehydrogenation in conventional wisdom. Atomically dispersed In sites with the local structure of [InOH]2+ anchored by substituting the protons of supercages in HY are enclosed to be active centers that enable the activation of ethane with a metal-normalized turnover number of almost one magnitude higher than those of their supported In2O3 counterparts. Furthermore, the structure of isolated [InOH]2+ sites could be stabilized by in situ formed H2O from the selective oxidation of hydrogen by In2O3 nanoparticles. As a result, the as-designed main-group In catalysts exhibit 80% ethene selectivity at 80% ethane conversion, thus achieving 60% ethene yield due to active isolated [InOH]2+ sites and selective In2O3 nanoparticles, outperforming state-of-the-art transition metal oxide catalysts. This study unlocks new opportunities for the utilization of main-group elements and could pave the way toward a more rational design of catalysts for highly efficient selective oxidation catalysis.
Collapse
Affiliation(s)
- Chaojie Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Yujia Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Ming Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| |
Collapse
|
18
|
Yuan Y, Lee JS, Lobo RF. Ga +-Chabazite Zeolite: A Highly Selective Catalyst for Nonoxidative Propane Dehydrogenation. J Am Chem Soc 2022; 144:15079-15092. [PMID: 35793461 DOI: 10.1021/jacs.2c03941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ga-chabazite zeolites (Ga-CHA) have been found to efficiently catalyze propane dehydrogenation with high propylene selectivity (96%). In situ Fourier transform infrared spectroscopy and pulse titrations are employed to determine that upon reduction, surface Ga2O3 is reduced and diffuses into the zeolite pores, displacing the Brønsted acid sites and forming extra-framework Ga+ sites. This isolated Ga+ site reacts reversibly with H2 to form GaHx (2034 cm-1) with an enthalpy of formation of ∼-51.2 kJ·mol-1, a result supported by density functional theory calculations. The initial C3H8 dehydrogenation rates decrease rapidly (40%) during the first 100 min and then decline slowly afterward, while the C3H6 selectivity is stable at ∼96%. The reduction in the reaction rate is correlated with the formation of polycyclic aromatics inside the zeolite (using UV-vis spectroscopy) indicating that the accumulation of polycyclic aromatics is the main cause of the deactivation. The carbon species formed can be easily oxidized at 600 °C with complete recovery of the PDH catalytic properties. The correlations between GaHx vs Ga/Al ratio and PDH rates vs Ga/Al ratio show that extra-framework Ga+ is the active center catalyzing propane dehydrogenation. The higher reaction rate on Ga+ than In+ in CHA zeolites, by a factor of 43, is the result of differences in the stabilization of the transition state due to the higher stability of Ga3+ vs In3+. The uniformity of the Ga+ sites in this material makes it an excellent model for the molecular understanding of metal cation-exchanged hydrocarbon interactions in zeolites.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jason S Lee
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Raul F Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Ma J, Xing F, Nakaya Y, Shimizu KI, Furukawa S. Nickel-Based High-Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022; 61:e202200889. [PMID: 35470948 DOI: 10.1002/anie.202200889] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/07/2022]
Abstract
Acetylene semihydrogenation is a key technology for producing polymer-grade ethylene from crude ethylene. Ni-based catalysts are promising alternatives to noble-metals for this process. However, achieving high catalytic activity and selectivity remains a big challenge. We report a novel catalyst design based on high-entropy intermetallics (HEI), which provide thermally stable isolated Ni without excess counterpart metals and achieve exceptionally high performance. Intermetallic NiGa was multi-metalized to a (NiFeCu)(GaGe), where the Ni and Ga sites were partially substituted with Fe/Cu and Ge, respectively, without altering the parent CsCl-type structure. The NiFeCuGaGe/SiO2 HEI catalyst completely inhibited ethylene overhydrogenation even at complete acetylene conversion, and exhibited five-times higher activity than other 3d-transition-metal-based catalysts. The DFT study showed that the surface energy decreased by multi-metallization, which drastically weakened ethylene adsorption.
Collapse
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
20
|
Huang M, Maeno Z, Toyao T, Shimizu KI. Ga speciation and ethane dehydrogenation catalysis of Ga-CHA and MOR: Comparative investigation with Ga-MFI. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Iizuka T, Miura T, Sano M, Hayashi T, Hanaya M, Miyake T. Dehydrogenation of Ethane to Ethylene on Pt/Zincosilicate. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Song S, Yang K, Zhang P, Wu Z, Li J, Su H, Dai S, Xu C, Li Z, Liu J, Song W. Silicalite-1 Stabilizes Zn-Hydride Species for Efficient Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Kun Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Peng Zhang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
23
|
Ma J, Xing F, Nakaya Y, Shimizu K, Furukawa S. Nickel‐Based High‐Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Yuki Nakaya
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Ken‐ichi Shimizu
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Shinya Furukawa
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Department of Research Promotion Japan Science and Technology Agency Chiyoda Tokyo 102-0076 Japan
| |
Collapse
|
24
|
Wang J, Liu M, Li J, Wang C, Zhang X, Zheng Y, Li X, Xu L, Guo X, Song C, Zhu X. Elucidating the Active-Phase Evolution of Fe-Based Catalysts during Isobutane Dehydrogenation with and without CO 2 in Feed Gas. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiapei Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Min Liu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junjie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Chuanfu Wang
- National Institute of Clean-and-low-carbon Energy (NICE), Beijing 102211, P. R. China
| | - Xinbao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yingbin Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiujie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Longya Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- EMS Energy Institute, Department of Energy & Mineral Engineering and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Xiangxue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
25
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
26
|
Yuan Y, Lobo RF. Propane dehydrogenation over extra-framework In(i) in chabazite zeolites. Chem Sci 2022; 13:2954-2964. [PMID: 35382476 PMCID: PMC8905846 DOI: 10.1039/d1sc05866e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In2O3 is formed on the external surface of the zeolite crystal after the addition of In(NO3)3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In+ species (In-CHA). A stoichiometric ratio of 1.5 of formed H2O to consumed H2 during H2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO2, 10In/Al2O3 (i.e., 10 wt% indium) and bulk In2O3, in which In2O3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H2 temperature-programmed reduction (H2-TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation and stabilization of In+ cations in extra-framework positions, and prevent the deep reduction of In2O3 to In(0). In+ cations in the CHA zeolite can be oxidized with O2 to form indium oxide species and can be reduced again with H2 quantitatively. At comparable conversion, In-CHA shows better stability and C3H6 selectivity (∼85%) than In2O3, 10In/SiO2 and 10In/Al2O3, consistent with a low C3H8 dehydrogenation activation energy (94.3 kJ mol-1) and high C3H8 cracking activation energy (206 kJ mol-1) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In+ cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| | - Raul F Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
27
|
Tsoukalou A, Serykh AI, Willinger E, Kierzkowska A, Abdala PM, Fedorov A, Müller CR. Hydrogen dissociation sites on indium-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wang W, Wu Y, Liu T, Zhao Y, Qu Y, Yang R, Xue Z, Wang Z, Zhou F, Long J, Yang Z, Han X, Lin Y, Chen M, Zheng L, Zhou H, Lin X, Wu F, Wang H, Yang Y, Li Y, Dai Y, Wu Y. Single Co Sites in Ordered SiO2 Channels for Boosting Nonoxidative Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenyu Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yafei Zhao
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunteng Qu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhenggang Xue
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyuan Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangyao Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangping Long
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiao Han
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing 100049, China
| | - Huang Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingen Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuen Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
29
|
Pan L, Wu S, Huang Z, Zhang S, Wang L, Zhang J. MoO 3-modified SAPO-34 for photocatalytic nonoxidative coupling of methane. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00502f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect of the acidity of SAPO-34 and metal-centered sites of MoO3 enhanced the activation of the C–H bond. Regulating the formation of catalytic sites and the acidity of catalysts are critical to improving the activity and stability.
Collapse
Affiliation(s)
- Lihan Pan
- Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shiqun Wu
- Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhan Huang
- Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shengwei Zhang
- Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jinlong Zhang
- Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
30
|
Muhlenkamp JA, LiBretto NJ, Miller JT, Hicks JC. Ethane dehydrogenation performance and high temperature stability of silica supported cobalt phosphide nanoparticles. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01737c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt phosphide catalysts exhibit remarkable stability and selectivity for ethane dehydrogenation.
Collapse
Affiliation(s)
- Jessica A. Muhlenkamp
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Nicole J. LiBretto
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jason C. Hicks
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
31
|
Huang M, Yasumura S, Li L, Toyao T, Maeno Z, Shimizu KI. High-loading Ga-exchanged MFI zeolites as selective and coke-resistant catalysts for nonoxidative ethane dehydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01799c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A high-loading Ga-exchanged MFI zeolite was developed for efficient ethane dehydrogenation. Its high catalytic performance is ascribed to both the low amount of Brønsted acid sites and the major formation of [GaH2]+ ions among isolated Ga hydrides.
Collapse
Affiliation(s)
- Mengwen Huang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Lingcong Li
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
32
|
Sun Q, Wang N, Yu J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104442. [PMID: 34611941 DOI: 10.1002/adma.202104442] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.
Collapse
Affiliation(s)
- Qiming Sun
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jihong Yu
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
33
|
Chen X, Jia Z, Huang F, Diao J, Liu H. Atomically dispersed metal catalysts on nanodiamond and its derivatives: synthesis and catalytic application. Chem Commun (Camb) 2021; 57:11591-11603. [PMID: 34657938 DOI: 10.1039/d1cc05202k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomically dispersed metal catalysts (ADMCs) have attracted increasing interest in the field of heterogeneous catalysis. As sub-nanometric catalysts, ADMCs have exhibited remarkable catalytic performance in many reactions. ADMCs are classified into two categories: single atom catalysts (SACs) and atomically dispersed clusters with a few atoms. To stabilize the highly active ADMCs, nanodiamond (ND) and its derivatives (NDDs) are promising supports. In this Feature Article, we have introduced the advantages of NDDs with a highly curved surface and tunable surface properties. The controllable defective sites and oxygen functional groups are known as the anchoring sites for ADMCs. Tunable surface acid-base properties enable ADMCs supported on NDDs to exhibit unique selectivity towards target products and an extended lifetime in many reactions. In addition, we have firstly overviewed the recent advances in the synthesis strategies for effectively fabricating ADMCs on NDDs, and further discussed how to achieve the atomic dispersion of metal precursors and stabilize the as-formed metal atoms against migration and agglomeration based on NDDs. And then, we have also systematically summarized the advantages of ADMCs supported on NDDs in reactions, including hydrogenation, dehydrogenation, aerobic oxidation and electrochemical reaction. These reactions can also effectively guide the design of ADMCs. The recent progress in understanding the effect of structure of active centers and metal-support interactions (MSIs) on the catalytic performance of ADMCs is particularly highlighted. At last, the possible research directions in ADMCs are forecasted.
Collapse
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China.,Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.
| | - Zhimin Jia
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China.,Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.
| | - Fei Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China.,Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.
| |
Collapse
|
34
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
35
|
Xu Y, Yu W, Zhang H, Xin J, He X, Liu B, Jiang F, Liu X. Suppressing C–C Bond Dissociation for Efficient Ethane Dehydrogenation over the Isolated Co(II) Sites in SAPO-34. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Wenda Yu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Hao Zhang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Jian Xin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohui He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| |
Collapse
|
36
|
Yasumura S, Ueda T, Ide H, Otsubo K, Liu C, Tsunoji N, Toyao T, Maeno Z, Shimizu KI. Local structure and NO adsorption/desorption property of Pd 2+ cations at different paired Al sites in CHA zeolite. Phys Chem Chem Phys 2021; 23:22273-22282. [PMID: 34644369 DOI: 10.1039/d1cp02668b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, Pd-exchanged CHA zeolites (Pd-CHA) have attracted attention as promising passive NOx adsorbers (PNAs) for reducing NOx emissions during the cold start period of a vehicle engine. In this work, the relationship between the local structures and the NO adsorption/desorption properties of the Pd cations in CHA zeolites was investigated. Pd cation formation and NO adsorption were theoretically explored by density functional theory (DFT) calculations for different paired Al sites in six-/eight-membered rings (6MR/8MR). Furthermore, we prepared a series of Pd-CHAs with different Pd loadings (0.5-5.4 wt%) and evaluated their NO adsorption/desorption properties by in situ infrared (IR) spectroscopy and temperature-programmed desorption (TPD) measurements. The increase in the Pd loading resulted in a shift in the NO desorption temperature toward a higher temperature regime. This phenomenon was ascribed to the increase in the proportion of less stable Pd cations, resulting in improved NO adsorption. Furthermore, the effect of Al distribution on the NO adsorption property of Pd-CHA was examined using CHA zeolites containing different proportions of paired Al sites in 6MR while maintaining similar Si/Al ratios (Si/Al = 12.0-16.5). The present study, based on a combination of theoretical and experimental techniques, shows that the NO adsorption/desorption properties over Pd-CHA can be tuned by controlling the Pd loading amount and the type of paired Al sites.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Taihei Ueda
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Hajime Ide
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Katsumasa Otsubo
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Chong Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan. .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan. .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
37
|
Bychko I, Abakumov A, Nikolenko A, Selyshchev OV, Zahn DRT, Khavrus VO, Tang J, Strizhak P. Ethane Direct Dehydrogenation over Carbon Nanotubes and Reduced Graphene Oxide. ChemistrySelect 2021. [DOI: 10.1002/slct.202102493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Igor Bychko
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine Nauky Ave. 31 03028 Kyiv Ukraine
| | - Alexander Abakumov
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine Nauky Ave. 31 03028 Kyiv Ukraine
| | - Andrii Nikolenko
- Department V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine Institution Nauky Ave. 41 Kyiv 03028 Ukraine
| | - O. V. Selyshchev
- Semiconductor Physics Chemnitz University of Technology D-09107 Chemnitz Germany
| | - D. R. T. Zahn
- Semiconductor Physics Chemnitz University of Technology D-09107 Chemnitz Germany
| | - Vyacheslav O. Khavrus
- Leibniz Institute for Solid State and Materials Research Dresden Helmholtzstr. 20 D01069 Dresden Germany
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology National Base of International Sci. & Tech. Cooperation on Hybrid Materials Qingdao University 308 Ningxia Road Qingdao 266071 P. R. China
| | - Peter Strizhak
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine Nauky Ave. 31 03028 Kyiv Ukraine
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology National Base of International Sci. & Tech. Cooperation on Hybrid Materials Qingdao University 308 Ningxia Road Qingdao 266071 P. R. China
| |
Collapse
|
38
|
Liu L, Corma A. Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Yuan Y, Brady C, Lobo RF, Xu B. Understanding the Correlation between Ga Speciation and Propane Dehydrogenation Activity on Ga/H-ZSM-5 Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Casper Brady
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Raul F. Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Wu L, Fu Z, Ren Z, Wei J, Gao X, Tan L, Tang Y. Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment. ChemCatChem 2021. [DOI: 10.1002/cctc.202100752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lizhi Wu
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Zhiyuan Fu
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Zhuangzhuang Ren
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Jinhe Wei
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Xinhua Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University 750021 Yinchuan P. R. China
| | - Li Tan
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Yu Tang
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| |
Collapse
|
41
|
Pan Y, Bhowmick A, Wu W, Zhang Y, Diao Y, Zheng A, Zhang C, Xie R, Liu Z, Meng J, Liu D. Titanium Silicalite-1 Nanosheet-Supported Platinum for Non-oxidative Ethane Dehydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Antara Bhowmick
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Wei Wu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yuan Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yuxia Diao
- Research Institute of Petroleum Processing, SINOPEC, 18 Xueyuan Road, Beijing 10083, China
| | - Aiguo Zheng
- Research Institute of Petroleum Processing, SINOPEC, 18 Xueyuan Road, Beijing 10083, China
| | - Chen Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Rongxuan Xie
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zixiao Liu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jianqiang Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
42
|
Chen J, Zhang M, Shu J, Yuan M, Yan W, Bai P, He L, Shen N, Gong S, Zhang D, Li J, Hu J, Li R, Wu G, Chai Z, Yu J, Wang S. Electron Beam Irradiation‐Induced Formation of Defect‐Rich Zeolites under Ambient Condition within Minutes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
- Shanghai Institute of Applied Physics No. 2019 Jialuo Road, Jiading District Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Shu
- Analysis and Testing Center Soochow University Suzhou 215123 China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Pu Bai
- Luoyang Jalon Micro-Nano New Materials Co., Ltd. Henan 471900 China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Nannan Shen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Shicheng Gong
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Jiangtao Hu
- Shanghai Institute of Applied Physics No. 2019 Jialuo Road, Jiading District Shanghai 201800 China
| | - Rong Li
- Shanghai Institute of Applied Physics No. 2019 Jialuo Road, Jiading District Shanghai 201800 China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics No. 2019 Jialuo Road, Jiading District Shanghai 201800 China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| |
Collapse
|
43
|
Chen J, Zhang M, Shu J, Yuan M, Yan W, Bai P, He L, Shen N, Gong S, Zhang D, Li J, Hu J, Li R, Wu G, Chai Z, Yu J, Wang S. Electron Beam Irradiation-Induced Formation of Defect-Rich Zeolites under Ambient Condition within Minutes. Angew Chem Int Ed Engl 2021; 60:14858-14863. [PMID: 33851777 DOI: 10.1002/anie.202103766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Zeolites are a well-known family of microporous aluminosilicate crystals with a wide range of applications. Their industrial synthetic method under hydrothermal condition requires elevated temperature and long crystallization time and is therefore quite energy-consuming. Herein, we utilize high-energy electron beam irradiation generated by an industrial accelerator as a distinct type of energy source to activate the formation reaction of Na-A zeolite. The initial efforts afford an attractive reaction process that can be achieved under ambient conditions and completed within minutes with almost quantitative yield, leading to notable energy saving of one order of magnitude compared to the hydrothermal reaction. More importantly, electron beam irradiation simultaneously exhibits an etching effect during the formation of zeolite generating a series of crystal defects and additional pore windows that can be controlled by irradiation dose. These observations give rise to significantly enhanced surface area and heavy metal removal capabilities in comparison with Na-A zeolite synthesized hydrothermally. Finally, we show that this method can be applied to many other types of zeolites.
Collapse
Affiliation(s)
- Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.,Shanghai Institute of Applied Physics, No. 2019 Jialuo Road, Jiading District, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Pu Bai
- Luoyang Jalon Micro-Nano New Materials Co., Ltd., Henan, 471900, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Nannan Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shicheng Gong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiangtao Hu
- Shanghai Institute of Applied Physics, No. 2019 Jialuo Road, Jiading District, Shanghai, 201800, China
| | - Rong Li
- Shanghai Institute of Applied Physics, No. 2019 Jialuo Road, Jiading District, Shanghai, 201800, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, No. 2019 Jialuo Road, Jiading District, Shanghai, 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
44
|
Docherty SR, Rochlitz L, Payard PA, Copéret C. Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach. Chem Soc Rev 2021; 50:5806-5822. [PMID: 33972978 PMCID: PMC8111541 DOI: 10.1039/d0cs01424a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The selective conversion of light alkanes (C2–C6 saturated hydrocarbons) to the corresponding alkene is an appealing strategy for the petrochemical industry in view of the availability of these feedstocks, in particular with the emergence of Shale gas. Here, we present a review of model dehydrogenation catalysts of light alkanes prepared via surface organometallic chemistry (SOMC). A specific focus of this review is the use of molecular strategies for the deconvolution of complex heterogeneous materials that are proficient in enabling dehydrogenation reactions. The challenges associated with the proposed reactions are highlighted, as well as overriding themes that can be ascertained from the systematic study of these challenging reactions using model SOMC catalysts. Alkane dehydrogenation over heterogeneous catalysts has attracted renewed attention in recent years. Here, well-defined catalysts based on isolated metal sites and supported Pt-alloys prepared via SOMC are discussed and compared to classical systems.![]()
Collapse
Affiliation(s)
- Scott R Docherty
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Pierre-Adrien Payard
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| |
Collapse
|
45
|
Ziemba M, Schumacher L, Hess C. Reduction Behavior of Cubic In 2O 3 Nanoparticles by Combined Multiple In Situ Spectroscopy and DFT. J Phys Chem Lett 2021; 12:3749-3754. [PMID: 33844536 DOI: 10.1021/acs.jpclett.1c00892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Indium oxide (In2O3) has emerged as a highly active catalyst for methanol synthesis by CO2 hydrogenation. In this work we elucidate the reduction behavior and oxygen dynamics of cubic In2O3 nanoparticles by in situ Raman and UV-vis spectra in combination with density functional theory (DFT) calculations. We demonstrate that application of UV and visible Raman spectroscopy enables, first, a complete description of the In2O3 vibrational structure fully consistent with theory and, second, the first theoretical identification of the nature of defect-related bands in reduced In2O3. Combining these findings with quasi in situ XPS and in situ UV-vis measurements allows the temperature-dependent structural dynamics of In2O3 to be unraveled. While the surface of a particle is not in equilibrium with its bulk at room temperature, oxygen exchange between the bulk and the surface occurs at elevated temperatures, leading to an oxidation of the surface and an increase in oxygen defects in the bulk. Our results demonstrate the potential of combining different in situ spectroscopic methods with DFT to elucidate the complex redox behavior of In2O3 nanoparticles.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Leon Schumacher
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Christian Hess
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
46
|
De S, Ould-Chikh S, Aguilar A, Hazemann JL, Zitolo A, Ramirez A, Telalovic S, Gascon J. Stable Cr-MFI Catalysts for the Nonoxidative Dehydrogenation of Ethane: Catalytic Performance and Nature of the Active Sites. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samy Ould-Chikh
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Antonio Aguilar
- Institut Neel, UPR 2940 CNRS − Université Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Neel, UPR 2940 CNRS − Université Grenoble Alpes, F-38000 Grenoble, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L’orme des Merisiers, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
47
|
Yasumura S, Ide H, Ueda T, Jing Y, Liu C, Kon K, Toyao T, Maeno Z, Shimizu KI. Transformation of Bulk Pd to Pd Cations in Small-Pore CHA Zeolites Facilitated by NO. JACS AU 2021; 1:201-211. [PMID: 34467284 PMCID: PMC8395613 DOI: 10.1021/jacsau.0c00112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 06/13/2023]
Abstract
Atomic dispersion of metal species has attracted attention as a unique phenomenon that affects adsorption properties and catalytic activities and that can be used to design so-called single atom materials. In this work, we describe atomic dispersion of bulk Pd into small pores of CHA zeolites. Under 4% NO flow at 600 °C, bulk Pd metal on the outside of CHA zeolites effectively disperses, affording Pd2+ cations on Al sites with concomitant formation of N2O, as revealed by microscopic and spectroscopic characterizations combined with mass spectroscopy. In the present method, even commercially available submicrosized Pd black can be used as a Pd source, and importantly, 4.1 wt % of atomic Pd2+ cations, which is the highest loading amount reported so far, can be introduced into CHA zeolites. The structural evolution of bulk Pd metal is also investigated by in situ X-ray absorption spectroscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), as well as ab initio thermodynamic analysis using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Hajime Ide
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Taihei Ueda
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Chong Liu
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kenichi Kon
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
48
|
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev 2021; 50:3315-3354. [DOI: 10.1039/d0cs00814a] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes recent advances in the propane dehydrogenation process in terms of emerging technologies, catalyst development and new chemistry.
Collapse
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Tingting Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
49
|
Dai Y, Gao X, Wang Q, Wan X, Zhou C, Yang Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev 2021; 50:5590-5630. [DOI: 10.1039/d0cs01260b] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal and metal oxide catalysts for non-oxidative ethane/propane dehydrogenation are outlined with respect to catalyst synthesis, structure–property relationship and catalytic mechanism.
Collapse
Affiliation(s)
- Yihu Dai
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xing Gao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiaojuan Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiaoyue Wan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chunmei Zhou
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yanhui Yang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
50
|
Du YJ, Hu WD, Wang CM, Zhou J, Yang G, Wang YD, Yang WM. First-principles microkinetic analysis of Lewis acid sites in Zn-ZSM-5 for alkane dehydrogenation and its implication to methanol-to-aromatics conversion. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02318c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stabilities and dehydrogenation activities of butane and cyclohexane on four different Zn sites in ZSM-5 zeolite were theoretically revealed. ZnOH+ was identified as the most active site at low temperature and the activity increases with the sequence of dehydrogenation.
Collapse
Affiliation(s)
- Yu-Jue Du
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Wen-De Hu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Chuan-Ming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Guang Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Yang-Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Wei-Min Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| |
Collapse
|