1
|
Vaz‐Rodrigues R, de la Fuente J. Is Zebrafish a Good Model for the Alpha-Gal Syndrome? FASEB J 2025; 39:e70602. [PMID: 40317760 PMCID: PMC12047429 DOI: 10.1096/fj.202500687r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The alpha-Gal syndrome (AGS) is an underdiagnosed tick-borne allergy characterized by both immediate and delayed IgE-mediated anaphylactic reactions to the galactose-alpha-1,3-galactose (alpha-Gal) epitope. Common manifestations include gastrointestinal, cutaneous, and respiratory symptoms appearing 2-6 h after the consumption of mammalian meat or derived products. Zebrafish (Danio rerio) are emerging as essential animal models in biomedical studies, due to their anatomical, genetic, and physiological similarities to humans, with significant applications in toxicology, behavioral research, oncology, and inflammation studies. The mechanisms associated with AGS are sustained by studies in the humanized α1,3GalT-KO C57BL/6 mouse (Mus musculus) and zebrafish animal models for the production of anti-alpha-Gal antibodies in response to tick saliva, the development of allergic reactions in animals sensitized with tick protein extracts following mammalian meat consumption, and the identification of immune mechanisms. The immune mechanisms characterized in both models are associated with a skewed type 2 immune response, triggering Toll-Like receptor (TLR) signaling pathways, IL-4 production, and humoral activity. These results support the use of both models rather than a single one for a more comprehensive characterization of AGS-associated immune mechanisms. In this study, we focused on the use of zebrafish as a model for biomedicine research in immunity, infectious, and allergic diseases, with a particular emphasis on the AGS and the identification of candidate therapeutic interventions. Based on insights from multiple studies, we concluded that zebrafish is a suitable model for studying the AGS, considering the addressed limitations and in combination with the α1,3GalT-KO mouse model.
Collapse
Affiliation(s)
- Rita Vaz‐Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC‐CSIC‐UCLM‐JCCMCiudad RealSpain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC‐CSIC‐UCLM‐JCCMCiudad RealSpain
- Department of Veterinary Pathobiology, College of Veterinary MedicineOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Ann A, Truong S, Peters J, Mootoo DR. Synthesis of alpha-Gal C-disaccharides. Bioorg Med Chem 2024; 112:117903. [PMID: 39236466 DOI: 10.1016/j.bmc.2024.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The synthesis of C-disaccharides of α-d-galactopyranosyl-(1 → 3)-d-galactopyranose (α-Gal), potential tools for studying the biology of α-Gal glycans, is described. The synthetic strategy, centers on the reaction of two easily available precursors 1,2-O-isopropylidene-d-glyceraldehyde and an α-C-glactosyl-E-crotylboronate, which affords a mixture of two diastereomeric anti-crotylation products. The stereoselectivity of this reaction was controlled with (R)- and (S)-TRIP catalysts, and the appropriate diastereomer was transformed to C-linked disaccharides of α-Gal, in which the aglycone segment comprised O-, C- and S-glycoside entities that can enable glycoconjugate synthesis.
Collapse
Affiliation(s)
- Alex Ann
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Steven Truong
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Jiwani Peters
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
4
|
Montoya AL, Gil ER, Vinales I, Estevao IL, Taboada P, Torrico MC, Torrico F, Marco JD, Almeida IC, Michael K. Big is not better: Comparing two alpha-Gal-bearing glycotopes in neoglycoproteins as biomarkers for Leishmania (Viannia) braziliensis infection. Carbohydr Res 2024; 536:109015. [PMID: 38198982 PMCID: PMC11366264 DOI: 10.1016/j.carres.2023.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The protozoan parasite Leishmania (Viannia) braziliensis is among Latin America's most widespread Leishmania species and is responsible for tegumentary leishmaniasis (TL). This disease has multiple clinical presentations, with cutaneous leishmaniasis (CL) being the most frequent. It manifests as one or a few localized skin ulcers, which can spread to other body areas. Hence, early diagnosis and treatment, typically with pentavalent antimonials, is critical. Traditional diagnostic methods, like parasite culture, microscopy, or the polymerase chain reaction (PCR) for detection of the parasite DNA, have limitations due to the uneven distribution of parasites in biopsy samples. Nonetheless, studies have revealed high levels of parasite-specific anti-α-Gal antibodies in L. (V.) braziliensis-infected patients. Previously, we demonstrated that the neoglycoprotein NGP28b, consisting of the L. (Leishmania) major type-2 glycoinositolphospholipid (GIPL)-3-derived trisaccharide Galpα1,6Galpα1,3Galfβ conjugated to bovine serum albumin (BSA) via a linker, acts as a reliable serological biomarker (BMK) for L. (V.) braziliensis infection in Brazil. This indicates the presence of GIPL-3 or a similar structure in this parasite, and its terminal trisaccharide either functions as or is part of an immunodominant glycotope. Here, we explored whether extending the trisaccharide with a mannose unit would enhance its efficacy as a biomarker for the serological detection of L. (V.) braziliensis. We synthesized the tetrasaccharide Galpα1,6Galpα1,3Galfβ1,3Manpα(CH2)3SH (G31SH) and conjugated it to maleimide-functionalized BSA to afford NGP31b. When we assessed the efficacy of NGP28b and NGP31b by chemiluminescent enzyme-linked immunosorbent assay on a cohort of CL patients with L. (V.) braziliensis infection from Bolivia and Argentina against a healthy control group, both NGPs exhibited similar or identical sensitivity, specificity, and accuracy. This finding implies that the mannose moiety at the reducing end is not part of the glycotope recognized by the parasite-specific anti-α-Gal antibodies in patients' sera, nor does it exert a relevant influence on the terminal trisaccharide's conformation. Moreover, the mannose does not seem to inhibit glycan-antibody interactions. Therefore, NGP31b is a viable and dependable BMK for the serodiagnosis of CL caused by L. (V.) braziliensis.
Collapse
Affiliation(s)
- Alba L Montoya
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Eileni R Gil
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Irodiel Vinales
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Paola Taboada
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Mary Cruz Torrico
- Universidad Mayor de San Simón, Faculty of Medicine, and Fundación CEADES, Cochabamba, Bolivia
| | - Faustino Torrico
- Universidad Mayor de San Simón, Faculty of Medicine, and Fundación CEADES, Cochabamba, Bolivia
| | - Jorge Diego Marco
- Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Salta, Argentina
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Katja Michael
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
5
|
Abal M, Balouz V, Lopez R, Giorgi ME, Marino C, Cruz CV, Altcheh J, Buscaglia CA. An α-Gal antigenic surrogate as a biomarker of treatment evaluation in Trypanosoma cruzi-infected children. A retrospective cohort study. PLoS Negl Trop Dis 2024; 18:e0011910. [PMID: 38236916 PMCID: PMC10826959 DOI: 10.1371/journal.pntd.0011910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Proper evaluation of therapeutic responses in Chagas disease is hampered by the prolonged persistence of antibodies to Trypanosoma cruzi measured by conventional serological tests and by the lack of sensitivity of parasitological tests. Previous studies indicated that tGPI-mucins, an α-Gal (α-d-Galp(1→3)-β-d-Galp(1→4)-d-GlcNAc)-rich fraction obtained from T. cruzi trypomastigotes surface coat, elicit a strong and protective antibody response in infected individuals, which disappears soon after successful treatment. The cost and technical difficulties associated with tGPI-mucins preparation, however, preclude its routine implementation in clinical settings. METHODS/PRINCIPLE FINDINGS We herein developed a neoglycoprotein consisting of a BSA scaffold decorated with several units of a synthetic α-Gal antigenic surrogate (α-d-Galp(1→3)-β-d-Galp(1→4)-β-d-Glcp). Serological responses to this reagent, termed NGP-Tri, were monitored by means of an in-house enzyme-linked immunosorbent assay (α-Gal-ELISA) in a cohort of 82 T. cruzi-infected and Benznidazole- or Nifurtimox-treated children (3 days to 16 years-old). This cohort was split into 3 groups based on the age of patients at the time of treatment initiation: Group 1 comprised 24 babies (3 days to 5 months-old; median = 26 days-old), Group 2 comprised 31 children (7 months to 3 years-old; median = 1.0-year-old) and Group 3 comprised 26 patients (3 to 16 years-old; median = 8.4 years-old). A second, control cohort (Group 4) included 39 non-infected infants (3 days to 5 months-old; median = 31 days-old) born to T. cruzi-infected mothers. Despite its suboptimal seroprevalence (58.4%), α-Gal-ELISA yielded shorter median time values of negativization (23 months [IC 95% 7 to 36 months] vs 60 months [IC 95% 15 to 83 months]; p = 0.0016) and higher rate of patient negative seroconversion (89.2% vs 43.2%, p < 0.005) as compared to conventional serological methods. The same effect was verified for every Group, when analyzed separately. Most remarkably, 14 out of 24 (58.3%) patients from Group 3 achieved negative seroconversion for α-Gal-ELISA while none of them were able to negativize for conventional serology. Detailed analysis of patients showing unconventional serological responses suggested that, in addition to providing a novel tool to shorten follow-up periods after chemotherapy, the α-Gal-ELISA may assist in other diagnostic needs in pediatric Chagas disease. CONCLUSIONS/SIGNIFICANCE The tools evaluated here provide the cornerstone for the development of an efficacious, reliable, and straightforward post-therapeutic marker for pediatric Chagas disease.
Collapse
Affiliation(s)
- Manuel Abal
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina
| | - Rosana Lopez
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), and CONICET, Buenos Aires, Argentina
| | - M. Eugenia Giorgi
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), and CONICET, Buenos Aires, Argentina
| | - Carla Marino
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), and CONICET, Buenos Aires, Argentina
| | - Cintia V. Cruz
- Servicio de Parasitología-Chagas, Hospital de Niños ’Dr Ricardo Gutierrez’, and Instituto Multidisciplinario en Investigaciones Pediátricas (IMIPP) CONICET-GCBA, Buenos Aires, Argentina
- Mahidol Oxford Research Unit (MORU), Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Jaime Altcheh
- Servicio de Parasitología-Chagas, Hospital de Niños ’Dr Ricardo Gutierrez’, and Instituto Multidisciplinario en Investigaciones Pediátricas (IMIPP) CONICET-GCBA, Buenos Aires, Argentina
- Fundación para el estudio de las infecciones parasitarias y enfermedad de Chagas (FIPEC foundation), Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina
| |
Collapse
|
6
|
de Lederkremer RM, Giorgi ME, Marino C. The α-Galactosyl Carbohydrate Epitope in Pathogenic Protozoa. ACS Infect Dis 2022; 8:2207-2222. [PMID: 36083842 DOI: 10.1021/acsinfecdis.2c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The α-gal epitope, which refers to the carbohydrate α-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-d-GlcNAc-R, was first described in the glycoconjugates of mammals other than humans. Evolution caused a mutation that resulted in the inactivation of the α-1,3-galactosyltransferase gene. For that reason, humans produce antibodies against α-d-Galp containing glycoproteins and glycolipids of other species. We summarize here the glycoconjugates with α-d-Galp structures in Trypanosoma, Leishmania, and Plasmodium pathogenic protozoa. These were identified in infective stages of Trypanosoma cruzi and in Plasmodium sporozoites. In Leishmania, α-d-Galp is linked differently in the glycans of glycoinositolphospholipids (GIPLs). Chemically synthesized neoglycoconjugates have been proposed as diagnostic tools and as antigens for vaccines. Several syntheses reported for the α-gal trisaccharide, also called the Galili epitope, and the glycans of GIPLs found in Leishmania, the preparation of neoglycoconjugates, and the studies in which they were involved are also included in this Review.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| | - María Eugenia Giorgi
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| | - Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| |
Collapse
|
7
|
Montoya AL, Carvajal EG, Ortega-Rodriguez U, Estevao IL, Ashmus RA, Jankuru SR, Portillo S, Ellis CC, Knight CD, Alonso-Padilla J, Izquierdo L, Pinazo MJ, Gascon J, Suarez V, Watts DM, Malo IR, Ramsey JM, Alarcón De Noya B, Noya O, Almeida IC, Michael K. A Branched and Double Alpha-Gal-Bearing Synthetic Neoglycoprotein as a Biomarker for Chagas Disease. Molecules 2022; 27:5714. [PMID: 36080480 PMCID: PMC9457857 DOI: 10.3390/molecules27175714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi and affects 6-7 million people worldwide. The diagnosis is still challenging, due to extensive parasite diversity encompassing seven genotypes (TcI-VI and Tcbat) with diverse ecoepidemiological, biological, and pathological traits. Chemotherapeutic intervention is usually effective but associated with severe adverse events. The development of safer, more effective therapies is hampered by the lack of biomarker(s) (BMKs) for the early assessment of therapeutic outcomes. The mammal-dwelling trypomastigote parasite stage expresses glycosylphosphatidylinositol-anchored mucins (tGPI-MUC), whose O-glycans are mostly branched with terminal, nonreducing α-galactopyranosyl (α-Gal) glycotopes. These are absent in humans, and thus highly immunogenic and inducers of specific CD anti-α-Gal antibodies. In search for α-Gal-based BMKs, here we describe the synthesis of neoglycoprotein NGP11b, comprised of a carrier protein decorated with the branched trisaccharide Galα(1,2)[Galα(1,6)]Galβ. By chemiluminescent immunoassay using sera/plasma from chronic CD (CCD) patients from Venezuela and Mexico and healthy controls, NGP11b exhibited sensitivity and specificity similar to that of tGPI-MUC from genotype TcI, predominant in those countries. Preliminary evaluation of CCD patients subjected to chemotherapy showed a significant reduction in anti-α-Gal antibody reactivity to NGP11b. Our data indicated that NGP11b is a potential BMK for diagnosis and treatment assessment in CCD patients.
Collapse
Affiliation(s)
- Alba L. Montoya
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Elisa G. Carvajal
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Uriel Ortega-Rodriguez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Igor L. Estevao
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Roger A. Ashmus
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sohan R. Jankuru
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Susana Portillo
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Cameron C. Ellis
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Colin D. Knight
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Veronica Suarez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Douglas M. Watts
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Iliana R. Malo
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Belkisyolé Alarcón De Noya
- Sección de Inmunología, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Oscar Noya
- Seccion de Biohelmintiasis, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Katja Michael
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
8
|
Viana SM, Montoya AL, Carvalho AM, de Mendonça BS, Portillo S, Olivas JJ, Karimi NH, Estevao IL, Ortega-Rodriguez U, Carvalho EM, Dutra WO, Maldonaldo RA, Michael K, de Oliveira CI, Almeida IC. Serodiagnosis and therapeutic monitoring of New-World tegumentary leishmaniasis using synthetic type-2 glycoinositolphospholipid-based neoglycoproteins. Emerg Microbes Infect 2022; 11:2147-2159. [PMID: 36039908 PMCID: PMC9518598 DOI: 10.1080/22221751.2022.2114852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
American tegumentary leishmaniasis (TL) caused by Leishmania braziliensis is characterized by a spectrum of clinical presentations, ranging from localized cutaneous ulcers (CL), mucosal (ML), or disseminated (DL) disease, to a subclinical (SC) asymptomatic form. Current diagnosis based on parasite culture and/or microscopy lacks sensitivity and specificity. Previous studies showed that patients with CL and ML have very high levels of Leishmania-specific anti-α-Gal antibodies. However, the native parasite α-Gal glycotope(s) is(are) still elusive, thus they have not yet been explored for a more accurate TL diagnosis. Using a chemiluminescent immunoassay, we evaluated the seroreactivity of TL patients across its clinical spectrum, and of endemic (EC) and nonendemic healthy controls (NEC) against three synthetic neoglycoproteins (NGP29b, NGP30b, and NGP28b), respectively comprising the L. major-derived type-2 glycoinositolphospholipid (GIPL)-1 (Galfβ1,3Manα), GIPL-2 (Galα1,3Galfβ1,3Manα), and GIPL-3 (Galα1,6Galα1,3Galfβ) glycotopes. Contrary to NGP29b and NGP30b, NGP28b exhibited high sensitivity and specificity to a CL serum pool. More importantly, NGP28b reacted strongly and specifically with individual sera from distinct clinical forms of TL, especially with SC sera, with 94% sensitivity and 97% specificity, by post-two-graph receiver-operating characteristic curve analysis. Contrary to NGP29b, NGP28b showed low cross-reactivity with Chagas disease and control (NEC/EC) sera. Additionally, seroreactivity of CL patients against NGP28b was significantly decreased after successful chemotherapy, indicating that L. braziliensis-specific anti-α-Gal antibodies may serve as an early biomarker of cure in CL. Our data also points towards the applicability of L. major type-2 GIPL-3-derived Galα1,6Galα1,3Galfβ glycotope for the serological diagnosis of American TL, particularly of the subclinical form.
Collapse
Affiliation(s)
- Sayonara M Viana
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, Brazil
| | - Alba L Montoya
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Augusto M Carvalho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, Brazil
| | | | - Susana Portillo
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Janet J Olivas
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Nasim H Karimi
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Uriel Ortega-Rodriguez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Edgar M Carvalho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, Salvador, BA, Brazil
| | - Walderez O Dutra
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, Salvador, BA, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rosa A Maldonaldo
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Katja Michael
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, Salvador, BA, Brazil
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, U.S.A
| |
Collapse
|
9
|
Kreft L, Schepers A, Hils M, Swiontek K, Flatley A, Janowski R, Mirzaei MK, Dittmar M, Chakrapani N, Desai MS, Eyerich S, Deng L, Niessing D, Fischer K, Feederle R, Blank S, Schmidt-Weber CB, Hilger C, Biedermann T, Ohnmacht C. A novel monoclonal IgG1 antibody specific for Galactose-alpha-1,3-galactose questions alpha-Gal epitope expression by bacteria. Front Immunol 2022; 13:958952. [PMID: 35990627 PMCID: PMC9391071 DOI: 10.3389/fimmu.2022.958952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The alpha-Gal epitope (α-Gal) with the determining element galactose-α1,3-galactose can lead to clinically relevant allergic reactions and rejections in xenotransplantation. These immune reactions can develop because humans are devoid of this carbohydrate due to evolutionary loss of the enzyme α1,3-galactosyltransferase (GGTA1). In addition, up to 1% of human IgG antibodies are directed against α-Gal, but the stimulus for the induction of anti-α-Gal antibodies is still unclear. Commensal bacteria have been suggested as a causal factor for this induction as α-Gal binding tools such as lectins were found to stain cultivated bacteria isolated from the intestinal tract. Currently available tools for the detection of the definite α-Gal epitope, however, are cross-reactive, or have limited affinity and, hence, offer restricted possibilities for application. In this study, we describe a novel monoclonal IgG1 antibody (27H8) specific for the α-Gal epitope. The 27H8 antibody was generated by immunization of Ggta1 knockout mice and displays a high affinity towards synthetic and naturally occurring α-Gal in various applications. Using this novel tool, we found that intestinal bacteria reported to be α-Gal positive cannot be stained with 27H8 questioning whether commensal bacteria express the native α-Gal epitope at all.
Collapse
Affiliation(s)
- Luisa Kreft
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Dittmar
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Li Deng
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- German Center of Lung Research (DZL), Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
10
|
Montoya AL, Gil ER, Heydemann EL, Estevao IL, Luna BE, Ellis CC, Jankuru SR, Alarcón de Noya B, Noya O, Zago MP, Almeida IC, Michael K. Specific Recognition of β-Galactofuranose-Containing Glycans of Synthetic Neoglycoproteins by Sera of Chronic Chagas Disease Patients. Molecules 2022; 27:411. [PMID: 35056727 PMCID: PMC8781757 DOI: 10.3390/molecules27020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022] Open
Abstract
Chagas disease (CD) can be accurately diagnosed by detecting Trypanosoma cruzi in patients' blood using polymerase chain reaction (PCR). However, parasite-derived biomarkers are of great interest for the serological diagnosis and early evaluation of chemotherapeutic efficacy when PCR may fail, owing to a blood parasite load below the method's limit of detection. Previously, we focused on the detection of specific anti-α-galactopyranosyl (α-Gal) antibodies in chronic CD (CCD) patients elicited by α-Gal glycotopes copiously expressed on insect-derived and mammal-dwelling infective parasite stages. Nevertheless, these stages also abundantly express cell surface glycosylphosphatidylinositol (GPI)-anchored glycoproteins and glycoinositolphospholipids (GIPLs) bearing nonreducing terminal β-galactofuranosyl (β-Galf) residues, which are equally foreign to humans and, therefore, highly immunogenic. Here we report that CCD patients' sera react specifically with synthetic β-Galf-containing glycans. We took a reversed immunoglycomics approach that entailed: (a) Synthesis of T. cruzi GIPL-derived Galfβ1,3Manpα-(CH2)3SH (glycan G29SH) and Galfβ1,3Manpα1,2-[Galfβ1,3]Manpα-(CH2)3SH (glycan G32SH); and (b) preparation of neoglycoproteins NGP29b and NGP32b, and their evaluation in a chemiluminescent immunoassay. Receiver-operating characteristic analysis revealed that NGP32b can distinguish CCD sera from sera of healthy individuals with 85.3% sensitivity and 100% specificity. This suggests that Galfβ1,3Manpα1,2-[Galfβ1,3]Manpα is an immunodominant glycotope and that NGP32b could potentially be used as a novel CCD biomarker.
Collapse
Affiliation(s)
- Alba L. Montoya
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (A.L.M.); (E.R.G.); (E.L.H.); (S.R.J.)
| | - Eileni R. Gil
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (A.L.M.); (E.R.G.); (E.L.H.); (S.R.J.)
| | - Emily L. Heydemann
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (A.L.M.); (E.R.G.); (E.L.H.); (S.R.J.)
| | - Igor L. Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (I.L.E.); (B.E.L.); (C.C.E.)
| | - Bianca E. Luna
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (I.L.E.); (B.E.L.); (C.C.E.)
| | - Cameron C. Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (I.L.E.); (B.E.L.); (C.C.E.)
| | - Sohan R. Jankuru
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (A.L.M.); (E.R.G.); (E.L.H.); (S.R.J.)
| | - Belkisyolé Alarcón de Noya
- Sección de Inmunología, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas 1041-A, Venezuela; (B.A.d.N.); (O.N.)
| | - Oscar Noya
- Sección de Inmunología, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas 1041-A, Venezuela; (B.A.d.N.); (O.N.)
- Centro para Estudios Sobre Malaria, Instituto de Altos Estudios “Dr. Arnoldo Gabaldón”, Instituto Nacional de Higiene Rafael Rangel, Ministerio del Poder Popular para la Salud, Caracas 1041-A, Venezuela
| | - Maria Paola Zago
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta 4400, Argentina;
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (I.L.E.); (B.E.L.); (C.C.E.)
| | - Katja Michael
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA; (A.L.M.); (E.R.G.); (E.L.H.); (S.R.J.)
| |
Collapse
|