1
|
Cherif AO, Aderrabba M, Moussa F, Ben Messaouda M. Fatty acids profile in three cultivars of Tunisian apricot oilseeds ( Prunus armeniaca L.): impact of maturity. Nat Prod Res 2025; 39:2734-2750. [PMID: 38329076 DOI: 10.1080/14786419.2024.2309659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Profiling's of oil yield and fatty acid were monitored during maturation of three different accession of Tunisian apricots (AprB, AprC and AprO) among different days after flowering (DAF) and grown in two different geographical regions of Tunisia. The first results show that a quick distribution started in immature oilseeds apricot and continued until their full maturity. Nine fatty acids were identified in apricot oilseeds such as palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, gadoleic and margaric acids. Palmitic, oleic and linoleic acids were determined as major fatty acids in apricot oil varieties. Interestingly, the content of each fatty acid in the three accessions of apricot varied significantly (p < 0.05) during seeds development and especially in wild apricot AprB. PCA analysis in AprB demonstrate that at the time-date of 41 DAF, the production of fatty acids is in its maximum and could have numerous future therapeutics applications.
Collapse
Affiliation(s)
- Aicha O Cherif
- Institut Supérieur des Sciences Infirmières de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Molécules et Applications, University of Carthage, IPEST, Laboratoire Matériaux, La Marsa, Tunisia
| | - Manef Aderrabba
- Molécules et Applications, University of Carthage, IPEST, Laboratoire Matériaux, La Marsa, Tunisia
| | - Fathi Moussa
- IUT d'Orsay, plateau de Moulon, Laboratoire d'Etude des Techniques et Instruments d'Analyse Moléculaire, Orsay, France
| | - Mhamed Ben Messaouda
- Molécules et Applications, University of Carthage, IPEST, Laboratoire Matériaux, La Marsa, Tunisia
| |
Collapse
|
2
|
Fedko M, Siger A, Szydłowska-Czerniak A, Rabiej-Kozioł D, Tymczewska A, Włodarczyk K, Kmiecik D. The Effect of High-Temperature Heating on Amounts of Bioactive Compounds and Antiradical Properties of Refined Rapeseed Oil Blended with Rapeseed, Coriander and Apricot Cold-Pressed Oils. Foods 2024; 13:2336. [PMID: 39123528 PMCID: PMC11311388 DOI: 10.3390/foods13152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cold-pressed oils are rich sources of bioactive substances, which may protect triacylglycerols from degradation during frying. Nevertheless, these substances may decompose under high temperature. This work considers the content of bioactive substances in blends and their changes during high-temperature heating. Blends of refined rapeseed oil with 5% or 25% in one of three cold-pressed oils (rapeseed, coriander and apricot) were heated at 170 or 200 °C in a thin layer on a pan. All non-heated blends and cold-pressed oils were tested for fatty acid profile, content and composition of phytosterols, tocochromanols, chlorophyll and radical scavenging activity (RSA) analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the stability of phytosterols, tocochromanols, DPPH and ABTS values was determined in heated blends. All tocochromanols were lost during the heating process, in particular, at 200 °C. However, there were some differences between homologues. α-Tocopherol and δ-tocopherol were the most thermolabile and the most stable, respectively. Phytosterols were characterized by very high stability at both temperatures. We observed relationships between ABTS and DPPH values and contents of total tocochromanols and α-tocopherol. The obtained results may be useful in designing a new type of fried food with improved health properties and it may be the basis for further research on this topic.
Collapse
Affiliation(s)
- Monika Fedko
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dobrochna Rabiej-Kozioł
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Katarzyna Włodarczyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| |
Collapse
|
3
|
Gou N, Chen C, Huang M, Zhang Y, Bai H, Li H, Wang L, Wuyun T. Transcriptome and Metabolome Analyses Reveal Sugar and Acid Accumulation during Apricot Fruit Development. Int J Mol Sci 2023; 24:16992. [PMID: 38069317 PMCID: PMC10707722 DOI: 10.3390/ijms242316992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The apricot (Prunus armeniaca L.) is a fruit that belongs to the Rosaceae family; it has a unique flavor and is of important economic and nutritional value. The composition and content of soluble sugars and organic acids in fruit are key factors in determining the flavor quality. However, the molecular mechanism of sugar and acid accumulation in apricots remains unclear. We measured sucrose, fructose, glucose, sorbitol, starch, malate, citric acid, titratable acid, and pH, and investigated the transcriptome profiles of three apricots (the high-sugar cultivar 'Shushanggan', common-sugar cultivar 'Sungold', and low-sugar cultivar 'F43') at three distinct developmental phases. The findings indicated that 'Shushanggan' accumulates a greater amount of sucrose, glucose, fructose, and sorbitol, and less citric acid and titratable acid, resulting in a better flavor; 'Sungold' mainly accumulates more sucrose and less citric acid and starch for the second flavor; and 'F43' mainly accumulates more titratable acid, citric acid, and starch for a lesser degree of sweetness. We investigated the DEGs associated with the starch and sucrose metabolism pathways, citrate cycle pathway, glycolysis pathway, and a handful of sugar transporter proteins, which were considered to be important regulators of sugar and acid accumulation. Additionally, an analysis of the co-expression network of weighted genes unveiled a robust correlation between the brown module and sucrose, glucose, and fructose, with VIP being identified as a hub gene that interacted with four sugar transporter proteins (SLC35B3, SLC32A, SLC2A8, and SLC2A13), as well as three structural genes for sugar and acid metabolism (MUR3, E3.2.1.67, and CSLD). Furthermore, we found some lncRNAs and miRNAs that regulate these genes. Our findings provide clues to the functional genes related to sugar metabolism, and lay the foundation for the selection and cultivation of high-sugar apricots in the future.
Collapse
Affiliation(s)
- Ningning Gou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Mengzhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Yujing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Haikun Bai
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| |
Collapse
|
4
|
Gros Q, Wolniaczyk M, Duval J, West C, Horie S, Toyota Y, Funada Y, Lesellier E. Comparison of the triglyceride composition of vegetable samples with ultra-high efficiency / low-pressure supercritical fluid chromatography – mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Uruc K, Tekin A, Sahingil D, Hayaloglu A. An alternative plant-based fermented milk with kefir culture using apricot (Prunus armeniaca L.) seed extract: Changes in texture, volatiles and bioactivity during storage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Farag MA, Bahaa Eldin A, Khalifa I. Valorization and extraction optimization of Prunus seeds for food and functional food applications: A review with further perspectives. Food Chem 2022; 388:132955. [DOI: 10.1016/j.foodchem.2022.132955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/06/2023]
|
7
|
Kopčeková J, Kolesárová A, Schwarzová M, Kováčik A, Mrázová J, Gažarová M, Lenártová P, Chlebo P, Kolesárová A. Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020857. [PMID: 35055679 PMCID: PMC8775948 DOI: 10.3390/ijerph19020857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
The objective of the present study was to evaluate the effect of short-term consumption of bitter apricot seeds phytonutrients on cardiovascular risk factors with a special focus on LDL cholesterol subfractions using the Lipoprint system. A group of 34 adult volunteers (21 female/13 male) consumed 60 mg kg−1 of body weight of bitter apricot seeds daily for 42 days. Subjects were divided into two groups: one with normal cholesterol levels (NTC) and one with elevated total cholesterol levels (ETC). Blood serum levels of total cholesterol (T-C), low-density cholesterol (LDL-C), high-density cholesterol (HDL-C), and triglycerides (TG) did not change significantly (p > 0.05) in NTC group. However, there were significant decreasing of T-C (p ˂ 0.05) and LDL-C (p < 0.01) in ETC group. The LDL1, LDL2, and atherogenic LDL3−7 subfractions progressively decreased after 42 days of apricot seeds consumption in ETC group (p < 0.05). Apricot seeds consumption was associated with a significant increase in the mean LDL particle size especially in ETC group (p ˂ 0.01). The results of the present study support the hypothesis that daily consumption of bitter apricot seeds for 42 days positively modified the lipoprotein profile in the group with elevated total cholesterol.
Collapse
Affiliation(s)
- Jana Kopčeková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
- Correspondence: ; Tel.: +421-37-641-4225
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| | - Marianna Schwarzová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (A.K.)
| | - Jana Mrázová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Martina Gažarová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Petra Lenártová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Peter Chlebo
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Adriana Kolesárová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (A.K.)
| |
Collapse
|
8
|
The content of carotenoids and tocochromanols in bitter, semi-sweet and sweet apricots depending on different harvest times and geographical regions. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Al-Juhaimi FY, Ghafoor K, Özcan MM, Uslu N, Babiker EE, Ahmed IAM, Alsawmahi ON. Phenolic Compounds, Antioxidant Activity and Fatty Acid Composition of Roasted Alyanak Apricot Kernel. J Oleo Sci 2021; 70:607-613. [PMID: 33840664 DOI: 10.5650/jos.ess20294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oil recovery from Alyanak apricot kernel was 36.65% in control (unroasted) and increased to 43.77% in microwave-roasted kernels. The total phenolic contents in extracts from apricot kernel were between 0.06 (oven-roasted) and 0.20 mg GAE/100 g (microwave-roasted) while the antioxidant activity varied between 2.55 (oven-roasted) and 19.34% (microwave-roasted). Gallic acid, 3,4-dihydroxybenzoic acid, (+)-catechin and 1,2-dihydroxybenzene were detected as the key phenolic constituents in apricot kernels. Gallic acid contents varied between 0.53 (control) and 1.10 mg/100 g (microwave-roasted) and 3,4-dihydroxybenzoic acid contents were between 0.10 (control) and 0.35 mg/100 g (microwave-roasted). Among apricot oil fatty acids, palmitic acid contents ranged from 4.38 (oven-roasted) to 4.76% (microwave-roasted); oleic acid contents were between 65.73% (oven-roasted) and 66.15% (control) and linoleic acid contents varied between 26.55 (control) and 27.12% (oven-roasted).
Collapse
Affiliation(s)
- Fahad Y Al-Juhaimi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Kashif Ghafoor
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, University of Selçuk
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture, University of Selçuk
| | - Elfadıl E Babiker
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Isam A Mohamed Ahmed
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Omer N Alsawmahi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| |
Collapse
|
10
|
Xie L, Zhang T, Zheng L, Xie D, Jin J, Wang X, Jin Q. Chemical Compositions and Oxidative Stabilities of
Ginkgo biloba
Kernel Oils from Four Cultivated Regions in China. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liangliang Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- College of Biological and Chemical Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Liyou Zheng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Dan Xie
- College of Biological and Chemical Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
11
|
Evaluation of Protein and Antioxidant Content in Apricot Kernels as a Sustainable Additional Source of Nutrition. SUSTAINABILITY 2021. [DOI: 10.3390/su13094742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apricot fruits are a favorite for consumption; however, their kernels are a rich source of nutritionally interesting substances, too. Nevertheless, in processing of apricots, the kernels remain often unused. In this study, 32 cultivars of different origin were analyzed for their protein content and content of secondary metabolites (phenolics and flavonoids). The weight and taste of kernels were assessed and these data were summarized for an evaluation of the attractiveness of the studied apricot kernels. Results showed that the protein content of kernels ranged from 14.56% to 28.77% and did not depend on the origin or weight of kernel, or taste. In addition, total phenolic (63.5–1277.3 mg GAE/100 g DW) and total flavonoid (0–153.1 mg CE/100 g DW) contents and antioxidant capacity (483.4–2348.4 mg TE/100 g DW) were measured in kernels. In conclusion, the Czech hybrids LE-5959, LE-5500 and French cultivar Koolgat are prospective for kernel processing and consumption because of their high protein content and sweet taste. Hybrid LI-3-6, originating in China, showed high protein content as well but because of bitter taste could be useful rather in medicine.
Collapse
|
12
|
A comparative investigation on physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oils from different japonica rice (Oryza sativa L.) varieties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Deng P, Cui B, Zhu H, Phommakoun B, Zhang D, Li Y, Zhao F, Zhao Z. Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot ( Prunus armeniaca L.) Kernel Development. Foods 2021; 10:foods10020397. [PMID: 33670310 PMCID: PMC7918717 DOI: 10.3390/foods10020397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
To reveal the accumulation pattern of cyanogenic glycosides (amygdalin and prunasin) in bitter apricot kernels to further understand the metabolic mechanisms underlying differential accumulation during kernel development and ripening and explore the association between cyanogenic glycoside accumulation and the physical, chemical and biochemical indexes of fruits and kernels during fruit and kernel development, dynamic changes in physical characteristics (weight, moisture content, linear dimensions, derived parameters) and chemical and biochemical parameters (oil, amygdalin and prunasin contents, β-glucosidase activity) of fruits and kernels from ten apricot (Prunus armeniaca L.) cultivars were systematically studied at 10 day intervals, from 20 days after flowering (DAF) until maturity. High variability in most of physical, chemical and biochemical parameters was found among the evaluated apricot cultivars and at different ripening stages. Kernel oil accumulation showed similar sigmoid patterns. Amygdalin and prunasin levels were undetectable in the sweet kernel cultivars throughout kernel development. During the early stages of apricot fruit development (before 50 DAF), the prunasin level in bitter kernels first increased, then decreased markedly; while the amygdalin level was present in quite small amounts and significantly lower than the prunasin level. From 50 to 70 DAF, prunasin further declined to zero; while amygdalin increased linearly and was significantly higher than the prunasin level, then decreased or increased slowly until full maturity. The cyanogenic glycoside accumulation pattern indicated a shift from a prunasin-dominated to an amygdalin-dominated state during bitter apricot kernel development and ripening. β-glucosidase catabolic enzyme activity was high during kernel development and ripening in all tested apricot cultivars, indicating that β-glucosidase was not important for amygdalin accumulation. Correlation analysis showed a positive correlation of kernel amygdalin content with fruit dimension parameters, kernel oil content and β-glucosidase activity, but no or a weak positive correlation with kernel dimension parameters. Principal component analysis (PCA) showed that the variance accumulation contribution rate of the first three principal components totaled 84.56%, and not only revealed differences in amygdalin and prunasin contents and β-glucosidase activity among cultivars, but also distinguished different developmental stages. The results can help us understand the metabolic mechanisms underlying differential cyanogenic glycoside accumulation in apricot kernels and provide a useful reference for breeding high- or low-amygdalin-content apricot cultivars and the agronomic management, intensive processing and exploitation of bitter apricot kernels.
Collapse
Affiliation(s)
- Ping Deng
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Bei Cui
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Hailan Zhu
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Buangurn Phommakoun
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Dan Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Yiming Li
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Fei Zhao
- Beijing Agricultural Technology Extension Station, Beijing 100029, China;
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
- Correspondence:
| |
Collapse
|
14
|
Turrini F, Zunin P, Boggia R. Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several " Specialty" or " Gourmet" Oils. Foods 2021; 10:foods10010183. [PMID: 33477589 PMCID: PMC7831336 DOI: 10.3390/foods10010183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
A comprehensive data collection of authentic "specialty" or "gourmet" oils, namely cold-pressed industrial virgin oils, was performed. Eight different botanical species, i.e., Almond, Apricot, Avocado, Hazelnut, Mosqueta rose, Rosehip, Sunflower, and Walnut oils were studied plus Olive oil as the gold standard of cold-pressed virgin oils. Two different analytical approaches are proposed to rapidly verify the botanical species of the oil-based raw material. The first approach is based on a multivariate statistical analysis of conventional analytical data, namely their fatty acid composition. These data have been re-elaborated in a multivariate way by Principal Component Analysis (PCA) and classification methods. The second approach proposes a fast and non-destructive spectrophotometric analysis to determine the color of these oils to discriminate among different species. In this regard, the raw diffuse reflectance spectra (380-780 nm) obtained by a UV-Vis spectrophotometer with an integrating sphere was considered and elaborated by chemometrics. This information was compared with the results obtained by the most common approach based on the CIELab parameters. A data fusion of chromatographic and spectral data was also investigated. Either fatty acid composition or color of these oils demonstrated to be two promising markers of their botanical authenticity.
Collapse
|
15
|
Zielińska A, Kubasiewicz K, Wójcicki K, Silva AM, Nunes FM, Szalata M, Słomski R, Eder P, Souto EB. Two- and Three-Dimensional Spectrofluorimetric Qualitative Analysis of Selected Vegetable Oils for Biomedical Applications. Molecules 2020; 25:molecules25235608. [PMID: 33260612 PMCID: PMC7730717 DOI: 10.3390/molecules25235608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Vegetable oils obtained from different plants are known for their beneficial effects on prophylaxis and supportive treatment of a great deal of inflammatory-mediated conditions. Their wide range of saturated and unsaturated fatty acids, and the presence of other ingredients (e.g., tocopherols, chlorophylls), provide them with anti-inflammatory, antioxidant and anticancer properties, which are worth being exploited. In this study, we have carried out the spectrofluorometric analysis of selected vegetable oils, namely apricot (Prunus armeniaca) kernel oil; blueberry (Vaccinium spp.) seed oil; argan (Argania spinosa) nut oil; kiwi (Actinidia deliciosa) seed oil; grape (Vitis vinifera) seed oil; evening primrose (Oenothera biennis) oil and meadowfoam (Limnanthes alba) seed oil, with the purpose to detect their fluorescent ingredients for further identification and bioactivity comparison. The obtained two- (2D) and three-dimensional (3D) emission spectra offered a complete description of the fluorescent components of the mixture and revealed different features for studied oils.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.Z.); (R.S.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Konrad Kubasiewicz
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Krzysztof Wójcicki
- Institute of Quality Science, Poznań University of Economics and Business, Aleje Niepodległości 10, 61-875 Poznań, Poland;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Department of Chemistry, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Chemistry Research Centre—Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Marlena Szalata
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (A.Z.); (R.S.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-239-488-400
| |
Collapse
|
16
|
Faqeerzada MA, Lohumi S, Kim G, Joshi R, Lee H, Kim MS, Cho BK. Hyperspectral Shortwave Infrared Image Analysis for Detection of Adulterants in Almond Powder with One-Class Classification Method. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5855. [PMID: 33081195 PMCID: PMC7589775 DOI: 10.3390/s20205855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 11/16/2022]
Abstract
The widely used techniques for analyzing the quality of powdered food products focus on targeted detection with a low-throughput screening of samples. Owing to potentially significant health threats and large-scale adulterations, food regulatory agencies and industries require rapid and non-destructive analytical techniques for the detection of unexpected compounds present in products. Accordingly, shortwave-infrared hyperspectral imaging (SWIR-HSI) for high throughput authenticity analysis of almond powder was investigated in this study. Two different varieties of almond powder, adulterated with apricot and peanut powder at different concentrations, were imaged using the SWIR-HSI system. A one-class classifier technique, known as data-driven soft independent modeling of class analogy (DD-SIMCA), was used on collected data sets of pure and adulterated samples. A partial least square regression (PLSR) model was further developed to predict adulterant concentrations in almond powder. Classification results from DD-SIMCA yielded 100% sensitivity and 89-100% specificity for different validation sets of adulterated samples. The results obtained from the PLSR analysis yielded a high determination coefficient (R2) and low error values (<1%) for each variety of almond powder adulterated with apricot; however, a relatively higher error rates of 2.5% and 4.4% for the two varieties of almond powder adulterated with peanut powder, which indicates the performance of quantitative analysis model could vary with sample condition, such as variety, originality, etc. PLSR-based concentration mapped images visually characterized the adulterant (apricot) concentration in the almond powder. These results demonstrate that the SWIR-HSI technique combined with the one-class classifier DD-SIMCA can be used effectively for a high-throughput quality screening of almond powder regarding potential adulteration.
Collapse
Affiliation(s)
- Mohammad Akbar Faqeerzada
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (M.A.F.); (S.L.); (R.J.)
| | - Santosh Lohumi
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (M.A.F.); (S.L.); (R.J.)
| | - Geonwoo Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Powder Mill Road, BARC-East, Bldg 303, BARC-East, Beltsville, MD 20705, USA;
| | - Rahul Joshi
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (M.A.F.); (S.L.); (R.J.)
| | - Hoonsoo Lee
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea;
| | - Moon Sung Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Powder Mill Road, BARC-East, Bldg 303, BARC-East, Beltsville, MD 20705, USA;
| | - Byoung-Kwan Cho
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (M.A.F.); (S.L.); (R.J.)
- Department of Smart Agriculture System, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
17
|
Hrichi S, Rigano F, Chaabane-Banaoues R, Oulad El Majdoub Y, Mangraviti D, Di Marco D, Babba H, Dugo P, Mondello L, Mighri Z, Cacciola F. Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts. Foods 2020; 9:E896. [PMID: 32650361 PMCID: PMC7404456 DOI: 10.3390/foods9070896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
Apart from its essential oil, Prunus armeniaca L. kernel extract has received only scarce attention. The present study aimed to describe the lipid and polyphenolic composition of the dichloromethane, chloroform, ethyl acetate, and ethanol extracts on the basis of hot extraction, performing analysis by gas chromatography and high-performance liquid chromatography coupled with mass spectrometry. A total of 6 diacylglycerols (DAGs) and 18 triacylglycerols (TAGs) were detected as being present in all extracts, with the predominance of OLL (dilinoleyl-olein), OOL (dioleoyl-linolein), and OOO (triolein), with percentages ranging from 19.0-32.8%, 20.3-23.6%, and 12.1-20.1%, respectively. In further detail, the extraction with ethyl acetate (medium polarity solvent) gave the highest signal for all peaks, followed by chloroform and dichloromethane (more apolar solvent), while the extraction with ethanol (polar solvent) was the least efficient. Ethanol showed very poor signal for the most saturated TAGs, while dichloromethane showed the lowest percentages of DAGs. Accordingly, the screening of the total fatty acid composition revealed the lowest percentage of linoleic acid (C18:2n6) in the dichloromethane extract, which instead contained the highest amount (greater than 60%) of oleic acid (C18:1n9). Polyphenolic compounds with pharmacological effects (anti-tumor, anti-coagulant, and inflammatory), such as coumarin derivative and amygdalin, occurred at a higher amount in ethyl acetate and ethanol extracts.
Collapse
Affiliation(s)
- Soukaina Hrichi
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia; (S.H.); (Z.M.)
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
| | - Raja Chaabane-Banaoues
- Laboratory of Medical and molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy of Monastir, Department of Clinical Biology, University of Monastir, Monastir 5000, Tunisia; (R.C.-B.); (H.B.)
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
| | - Domenica Mangraviti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
| | - Davide Di Marco
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Hamouda Babba
- Laboratory of Medical and molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy of Monastir, Department of Clinical Biology, University of Monastir, Monastir 5000, Tunisia; (R.C.-B.); (H.B.)
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Zine Mighri
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia; (S.H.); (Z.M.)
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
18
|
Cherif AO, Messaouda MB, Person MD, Abderrabba M, Moussa F. Triacylglycerols Profiles Established by UHPLC-ESI-MS in Developing Sweet, Semi-sweet and Bitter Seeds from Tunisian Oilseeds Apricot (Prunus armeniaca L.). J Oleo Sci 2020; 69:597-604. [PMID: 32493885 DOI: 10.5650/jos.ess19210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present research is to investigate the effect of three harvest date on the composition of apricot seed. Indeed, triacylglycerols (TAGs) content and composition were studied in developing Tunisian apricot varieties bitter (Bargoug), semi-sweet (Oud Rhayem) and sweet (Chechi Bazza) cultivars at intervals of early (14 DAP), mid phase (28 DAP) and full phase (55 DAP) of oil accumulation by UHPLC-ESI-MS method. Eleven molecular species of triacylglycerols were detected and identified as LLL, LLO, LLP, LOO, LLS/LOP, LPP, OOO, LOS, OOP, POP and OOS. At 14 DAP, LLO was the major TAGs molecular species with 35.4-52.6% (maximum reached in semi-sweet apricot). Others major TAGs were founded at lower content as LOO (17.5-40.3%) and OOO (5.7-12.7%). However, among maturity, three distinct profiles of TAGs molecular species were observed: bitter apricot was significantly richer in OOO molecular species than cultivars ones. However, semi-sweet and sweet cultivars were richer in LLO and LOO molecular species at different time-dates. These latter may provide a schedule for harvesting Tunisian apricot seeds with high quality of oil content.
Collapse
Affiliation(s)
- Aicha O Cherif
- Université of Carthage, Laboratory Materials, Molecules and Applications, IPEST.,University of Tunis El Manar, Higher Institute of Nursing Sciences of Tunis
| | | | - Marine De Person
- LETIAM, -Lip (Sys)², EA 7357, Univ Paris-Sud, Université Paris-Saclay, IUT d'Orsay
| | - Manef Abderrabba
- Université of Carthage, Laboratory Materials, Molecules and Applications, IPEST
| | - Fathi Moussa
- LETIAM, -Lip (Sys)², EA 7357, Univ Paris-Sud, Université Paris-Saclay, IUT d'Orsay
| |
Collapse
|
19
|
Alves E, Simoes A, Domingues MR. Fruit seeds and their oils as promising sources of value-added lipids from agro-industrial byproducts: oil content, lipid composition, lipid analysis, biological activity and potential biotechnological applications. Crit Rev Food Sci Nutr 2020; 61:1305-1339. [PMID: 32393054 DOI: 10.1080/10408398.2020.1757617] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thousands of tons of fruit seeds are discarded every year worldwide as agro-industrial byproducts. Fruit seeds have a high oil content, are rich in monounsaturated fatty acids (FA) and in n-6 and n-3 polyunsaturated essential FA. Sterols, phospholipids, glycolipids, carotenoids, tocopherols and polyphenols are other seed phytochemicals that make them interesting from a commercial viewpoint. Fruit seeds have high potential as raw material for several industries, but their lipid profile remains poorly studied. Current analytical approaches for the analysis of lipids that are based on high-performance liquid chromatography and high-resolution mass spectrometry allow the separation and analysis of compounds with the accurate identification and structural characterization of molecular species in very small quantities. Even though lipidomic analysis of fruit seeds' lipids is still in its infancy, it will bring a new look over these value-added byproducts. This review covers the following topics: (a) the lipid content of various fruit seed oils; (b) their lipid composition (FA, triacylglycerol, sterol, phospholipid and glycolipid profiles), (c) current and future analytical methodologies for the analysis of lipids in fruit seeds; (d) biological activities of fruit seeds' extracts; and (e) potential biotechnological applications of fruit seed oils for their commercial valorization based on lipids.
Collapse
Affiliation(s)
- Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| | - Abigail Simoes
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal.,Centre for Environmental and Marine Studies, CESAM, Ecomare, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| |
Collapse
|
20
|
Stryjecka M, Kiełtyka-Dadasiewicz A, Michalak M, Rachoń L, Głowacka A. Chemical Composition and Antioxidant Properties of Oils from the Seeds of Five Apricot (Prunus armeniaca L.) Cultivars. J Oleo Sci 2019; 68:729-738. [PMID: 31292346 DOI: 10.5650/jos.ess19121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oils from five cultivars of apricot (Prunus armeniaca L.) grown in Poland were analysed for characteristics of chemical and biological activity. The extracted oils had an average iodine value (g of I/100 g of oil) of 99.2; a refractive index of (40°C) 1.4675; a saponification value of 189 mg of KOH/g of oil; and 0.68% unsaponifiable matter. As regards the oxidation state, the specific extinction values of the oils at 232 and 268 nm were 2.55 and 0.94, respectively, while the peroxide value was 1.40 meq O2/kg and the p-anisidine value was 1.42. Oleic acid (70.70%) was the predominant fatty acid found in the oils, followed by linoleic (22.41%), palmitic (3.14%), stearic (1.4%), linolenic (0.90%), and palmitoleic (0.70%) acid. The content of α-, γ-, and δ- tocopherols in the oils from the five apricot cultivars was 19.6-40.0, 315.4-502.3, and 28.3-58.5 mg/kg, respectively. The antioxidant capacity of the apricot kernel oils, measured using the FRAP assay, ranged from 1.07 to 1.38 mM Fe2+/L, while total polyphenols and β-carotene content were 0.85-1.22 mM gallic acid/L and 42.3-66.8 μg/g, respectively. The results indicate that among the cultivars tested, the 'Somo' cultivar grown in Poland provides the most oil, with the highest antioxidant activity. The results of our study demonstrate that apricot seeds are a potential source of oil that can have both dietary and cosmetic applications.
Collapse
Affiliation(s)
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin
| | - Monika Michalak
- Department of Dermatology and Cosmetology, Institute of Medical Sciences, Faculty of Medicine and Health Sciences, Jan Kochanowski University in Kielce
| | - Leszek Rachoń
- Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin
| | - Aleksandra Głowacka
- Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin
| |
Collapse
|
21
|
Purification of Amygdalin from the Concentrated Debitterizing-Water of Apricot Kernelsusing XDA-1 Resin. Processes (Basel) 2019. [DOI: 10.3390/pr7060359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, six macroporous resins were screened on their adsorption and de-adsorption characteristics for the amygdalin in the debitterizing wastewater concentrate (DWC). The results indicate that the XDA-1 resin exerts good adsorption and de-adsorption capacities on the amygdalin. In order to further confirm its feasibility, the factors affecting the capacity of adsorption and de-adsorption, and its adsorption mechanisms were also investigated. The results suggest that the optimum purification conditions were as follows: loading concentration of samples with 78.05 mg/mL, flow rate of 2 mL/min, and de-adsorption with 80% ethanol solution. The recovery rate was 88.75% and the relative content achieved 61.58% after purification by XDA-1 resin. The Freundlich model can be used to describe the entirety of the exothermic and physical adsorption processes. In summary, the conclusion which can be made from this research is that the wastewater generated from the debitterizing of apricot kernels can be well treated by resin to recycle the amygdalin and reduce its pollution to environment.
Collapse
|
22
|
Karaboğa I, Ovalı MA, Yılmaz A, Alpaslan M. Gastroprotective effect of apricot kernel oil in ethanol-induced gastric mucosal injury in rats. Biotech Histochem 2018; 93:601-607. [PMID: 30234391 DOI: 10.1080/10520295.2018.1511064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We investigated the gastroprotective effect of apricot kernel oil on ethanol induced gastric ulcer in rats. Male Wistar albino rats were divided into control, ethanol and apricot kernel oil + ethanol groups. The fatty acid composition of apricot kernel oil was determined using GC-MS. A gastric ulcer index was defined as the area percentage of the gastric mucosa consisting of ulcerated tissue. Gastric tissue was investigated by TUNEL staining for apoptosis, immunohistochemical iNOS staining, measurement of gastric IL-10 and IL-6 expression by ELISA and assays of catalase, malondialdehyde and superoxide dismutase. The ethanol group exhibited a higher gastric ulcer score, increased IL-6 level, increased number of inducible nitric oxide synthase-positive and TUNEL positive cells, and a higher MDA level compared to the control group. The apricot kernel oil + ethanol group exhibited significantly fewer gastric lesions compared to the ethanol group. Apricot kernel oil protects rat gastric mucosa against ethanol induced injury by its anti-inflammatory, anti-oxidative and anti-apoptotic effects, and might be useful for reducing the severity of gastric ulcers.
Collapse
Affiliation(s)
- I Karaboğa
- a Department of Emergency and Disaster Management, School of Health , Namık Kemal University , Tekirdag , Turkey
| | - M A Ovalı
- b Department of Physiology, Faculty of Medicine , Canakkale Onsekiz Mart University , Canakkale , Turkey
| | - A Yılmaz
- c Department of Medical Biochemistry, Faculty of Medicine , Namık Kemal University , Tekirdag , Turkey
| | - M Alpaslan
- d Department of Nutrition and Dietetics, School of Health , Namık Kemal University , Tekirdag , Turkey
| |
Collapse
|
23
|
Kostadinović Veličkovska S, Catalin Moţ A, Mitrev S, Gulaboski R, Brühl L, Mirhosseini H, Silaghi-Dumitrescu R, Matthäus B. Bioactive compounds and "in vitro" antioxidant activity of some traditional and non-traditional cold-pressed edible oils from Macedonia. Journal of Food Science and Technology 2018; 55:1614-1623. [PMID: 29666513 DOI: 10.1007/s13197-018-3050-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
The bioactive compounds and "in vitro" antioxidant activity measured by three antioxidant assays of some traditional and non-traditional cold-pressed edible oils from Macedonia were object of this study. The fatty acid composition showed dominance of monounsaturated oleic acid in "sweet" and "bitter" apricot kernel oils with percentages of 66.7 ± 0.5 and 57.8 ± 0.3%, respectively. The most dominant fatty acid in paprika seed oil was polyunsaturated linoleic acid with abundance of 69.6 ± 2.3%. The most abundant tocopherol was γ-tocopherol with the highest quantity in sesame seed oil (57.6 ± 0.1 mg/100 g oil). Paprika seed oil, sesame seed oil and sweet apricot oil were the richest source of phytosterols. DPPH assay was the most appropriate for the determination of the antioxidant activity of cold-pressed sunflower oil due to high abundance of α-tocopherol with a level of 22.8 ± 1.1 mg/100 g of oil. TEAC assay is the best for the determination of the antioxidant activity of sesame seed oil and paprika seed oils as the richest sources of phenolic compounds. β-carotene assay was the most suitable assay for oils obtained from high pigmented plant material. Triacylglycerols and phytosterol profiles can be used as useful markers for the origin, variety and purity of the oils.
Collapse
Affiliation(s)
- Sanja Kostadinović Veličkovska
- 1Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania.,2Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia.,3Federal Research Institute for Nutrition and Food, Department for Safety and Quality of Cereals, Max Rubner-Institut, Schützenberg 12, 32756 Detmold, Germany
| | - Augustin Catalin Moţ
- 1Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Saša Mitrev
- 2Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia
| | - Rubin Gulaboski
- 2Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia
| | - Ludger Brühl
- 3Federal Research Institute for Nutrition and Food, Department for Safety and Quality of Cereals, Max Rubner-Institut, Schützenberg 12, 32756 Detmold, Germany
| | - Hamed Mirhosseini
- 4Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400 Sri Serdang, Selangor Malaysia
| | - Radu Silaghi-Dumitrescu
- 1Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Bertrand Matthäus
- 3Federal Research Institute for Nutrition and Food, Department for Safety and Quality of Cereals, Max Rubner-Institut, Schützenberg 12, 32756 Detmold, Germany
| |
Collapse
|
24
|
AL Juhaimi F, Musa Özcan M, Ghafoor K, Babiker EE. The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils. Food Chem 2018; 243:414-419. [DOI: 10.1016/j.foodchem.2017.09.100] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
|
25
|
|
26
|
Kiralan M, Kayahan M, Kiralan SS, Ramadan MF. Effect of thermal and photo oxidation on the stability of cold-pressed plum and apricot kernel oils. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-017-2932-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Ghorab H, Lammi C, Arnoldi A, Kabouche Z, Aiello G. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC–MS/MS. Food Chem 2018; 239:935-945. [DOI: 10.1016/j.foodchem.2017.07.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/09/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
|
28
|
Górnaś P, Ramos MJ, Montano MC, Rudzińska M, Radziejewska‐Kubzdela E, Grygier A. Fruit Pits Recovered from 14 Genotypes of Apricot (
Prunus armeniaca
L.) as Potential Biodiesel Feedstock. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture Latvia University of AgricultureGraudu 1Dobele LV‐3701Latvia
| | - María J. Ramos
- Department of Chemical Engineering Institute of Chemical and Environmental TechnologyAvd. Camilo José Cela 1A13005 Ciudad RealSpain
| | - Maria C. Montano
- Department of Chemical Engineering Institute of Chemical and Environmental TechnologyAvd. Camilo José Cela 1A13005 Ciudad RealSpain
| | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition Institute of Food Technology of Plant Origin Poznań University of Life SciencesWojska Polskiego 3160‐624 PoznańPoland
| | - Elżbieta Radziejewska‐Kubzdela
- Faculty of Food Science and Nutrition Institute of Food Technology of Plant Origin Poznań University of Life SciencesWojska Polskiego 3160‐624 PoznańPoland
| | - Anna Grygier
- Faculty of Food Science and Nutrition Institute of Food Technology of Plant Origin Poznań University of Life SciencesWojska Polskiego 3160‐624 PoznańPoland
| |
Collapse
|
29
|
Kopčeková J, Kolesárová A, Gažarová M, Lenártová P, Mrázová J, Kolesárová A. Effect of short-term consumption bitter apricot seeds on the body composition in healthy population. POTRAVINARSTVO 2017. [DOI: 10.5219/718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of fat in different areas of the body is important since accumulation of fat within the abdominal cavity represents a much more severe cardiovascular risk than accumulation in subcutaneous adipose tissues. Apricot seeds contain a wide variety of bioactive compounds and that consumption can decrease blood pressure and total blood cholesterol levels, fight oxidative stress and maintain body weight. The aim of the study was to analyse body composition: body fat mass (BFM), fat free mass (FFM), skeletal muscle mass (SMM), body fat percentage (%BFM), visceral fat area (VFA), total body water (TBW) - intracellular water (ICW) and extracellular water (ECW) and to evaluate the changes that occur after 6-weeks consumption of bitter apricot seeds. The study group finally consisted of 34 healthy adults volunteers (21 females and 13 males). Volunteers were recruited from the general population of Slovakia. Respondents were 23 - 65 years old, where the average age of women was 40.65 ±11.31 years and the average age of men was 36.91 ±9.98 years. All participants were asked to consume 60 mg.kg-1 of body weight of bitter apricot seeds daily during 6 weeks. Body composition was diagnosed by multi-frequency bioelectrical impedance analysis (MFBIA) by InBody 720 (Biospace Co., Korea), which measures the total impedance at frequencies of 1, 5, 50, 100, 500, 1000 kHz. At baseline mean body weight was 85.78 ±14.66 and 62.84 ±12.19 kg in the male and female participants, respectively. After 6 weeks of consumation we observed non-significant decreasing of mean body weight. The mean BFM was 19.25 ±8.81 kg in the male group and 19.47 ±7.21 kg in the female group. After six weeks, BFM decreased non-significantly (on average 0.5 kg) in both groups. The mean FFM at baseline was 43.37 ±5.98 and 66.54 ±7.98 kg in the female and male participants, respectively. The statistical analysis confirmed that the increase of FFM (43.37 ±5.98 kg to 43.56 ±5.80 kg) in the female were statistically significant (p <0.05). VFA was greater in the men (82.04 ±39.82 cm2 at baseline and 78.65 ±39.79 cm2 after 6 weeks) comparison to women (79.82 ±29.03 cm2 at baseline and 78.29 ±29.90 cm2 after 6 weeks). The mean of TBW in males before the start of study was 48.78 ±5.77 kg and 47.88 ±5.57 kg after 6 weeks of consumption. The results of study show the small weight loss in the both group. Therefore, the results from this study indicate that daily consumption of bitter apricot seeds produce measurable health benefits, but further studies are also required.
Collapse
|
30
|
Tocopherols, Tocotrienols and Carotenoids in Kernel Oils Recovered from 15 Apricot (Prunus armeniaca L.) Genotypes. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2978-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
He Z, Zhu H, Li W, Zeng M, Wu S, Chen S, Qin F, Chen J. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars. Food Chem 2016; 209:196-202. [PMID: 27173552 DOI: 10.1016/j.foodchem.2016.04.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/01/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
The chemical compositions of cold pressed kernel oils of seven Torreya grandis cultivars from China were analyzed in this study. The contents of the chemical components of T. grandis kernels and kernel oils varied to different extents with the cultivar. The T. grandis kernels contained relatively high oil and protein content (45.80-53.16% and 10.34-14.29%, respectively). The kernel oils were rich in unsaturated fatty acids including linoleic (39.39-47.77%), oleic (30.47-37.54%) and eicosatrienoic acid (6.78-8.37%). The kernel oils contained some abundant bioactive substances such as tocopherols (0.64-1.77mg/g) consisting of α-, β-, γ- and δ-isomers; sterols including β-sitosterol (0.90-1.29mg/g), campesterol (0.06-0.32mg/g) and stigmasterol (0.04-0.18mg/g) in addition to polyphenols (9.22-22.16μgGAE/g). The results revealed that the T. grandis kernel oils possessed the potentially important nutrition and health benefits and could be used as oils in the human diet or functional ingredients in the food industry.
Collapse
Affiliation(s)
- Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haidong Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wangling Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shengfang Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
32
|
Uluata S, Altuntaş Ü, Özçelik B. Biochemical Characterization of Arbequina Extra Virgin Olive Oil Produced in Turkey. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2811-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Górnaś P, Rudzińska M, Raczyk M, Mišina I, Soliven A, Lācis G, Segliņa D. Impact of Species and Variety on Concentrations of Minor Lipophilic Bioactive Compounds in Oils Recovered from Plum Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:898-905. [PMID: 26730611 DOI: 10.1021/acs.jafc.5b05330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The profile of bioactive compounds (carotenoids, tocopherols, tocotrienols, phytosterols, and squalene) in oils recovered from the kernels of 28 plum varieties of hexaploid species Prunus domestica L. and diploid plums Prunus cerasifera Ehrh. and their crossbreeds were studied. Oil yields in plum kernels of both P. cerasifera and P. domestica was in wide ranges of 22.6-53.1 and 24.2-46.9% (w/w) dw, respectively. The contents of total tocochromanols, carotenoids, phytosterols, and squalene was significantly affected by the variety and ranged between 70.7 and 208.7 mg/100 g of oil, between 0.41 and 3.07 mg/100 g of oil, between 297.2 and 1569.6 mg/100 g of oil, and between 25.7 and 80.4 mg/100 g of oil, respectively. Regardless of the cultivar, β-sitosterol and γ-tocopherol were the main minor lipophilic compounds in plum kernel oils and constituted between 208.5 and 1258.7 mg/100 g of oil and between 60.5 and 182.0 mg/100 g of oil, respectively. Between the studied plum species, significant differences were recorded for δ-tocopherol (p = 0.007), 24-methylenecycloartanol (p = 0.038), and citrostadienol (p = 0.003), but they were insufficient for discrimination by PCA.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Latvia University of Agriculture , Graudu 1, Dobele, LV-3701 Latvia
| | - Magdalena Rudzińska
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences , Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Marianna Raczyk
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences , Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Inga Mišina
- Institute of Horticulture, Latvia University of Agriculture , Graudu 1, Dobele, LV-3701 Latvia
| | - Arianne Soliven
- Australian Centre for Research on Separation Sciences (ACROSS), School of Science and Health, Western Sydney University (Parramatta) , Sydney, NSW, 2150 Australia
| | - Gunārs Lācis
- Institute of Horticulture, Latvia University of Agriculture , Graudu 1, Dobele, LV-3701 Latvia
| | - Dalija Segliņa
- Institute of Horticulture, Latvia University of Agriculture , Graudu 1, Dobele, LV-3701 Latvia
| |
Collapse
|
34
|
Rudzińska M, Górnaś P, Raczyk M, Soliven A. Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: the variety as a key factor. Nat Prod Res 2016; 31:84-88. [DOI: 10.1080/14786419.2015.1135146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | - Paweł Górnaś
- Latvia State Institute of Fruit-Growing, Dobele, Latvia
| | - Marianna Raczyk
- Faculty of Food Science and Nutrition, Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | - Arianne Soliven
- Australian Centre for Research on Separation Science (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), Sydney, Australia
| |
Collapse
|
35
|
Zhu M, Wen X, Zhao J, Liu F, Ni Y, Ma L, Li J. Effect of Industrial Chemical Refining on the Physicochemical Properties and the Bioactive Minor Components of Peanut Oil. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2776-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Rai I, Bachheti RK, Saini CK, Joshi A, Satyan RS. A review on phytochemical, biological screening and importance of Wild Apricot (Prunus armeniaca L.). ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13596-015-0215-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Matthaus B, Özcan MM, Al Juhaimi F. Fatty acid composition and tocopherol content of the kernel oil from apricot varieties (Hasanbey, Hacihaliloglu, Kabaasi and Soganci) collected at different harvest times. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2533-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Zhou B, Wang Y, Kang J, Zhong H, Prenzler PD. The quality and volatile-profile changes of Longwangmo apricot (Prunus armeniacaL.) kernel oil prepared by different oil-producing processes. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Zhou
- School of Food Science and Engineering; Central South University of Forestry and Technology; Changsha P. R. China
- National Engineering Laboratory for Rice and By-products Processing; Changsha P. R. China
- Hunan Province Key Laboratory of Grain, Oil Processing and Quality Control; Changsha P. R. China
| | - Yan Wang
- School of Food Science and Engineering; Central South University of Forestry and Technology; Changsha P. R. China
- National Engineering Laboratory for Rice and By-products Processing; Changsha P. R. China
- Hunan Province Key Laboratory of Grain, Oil Processing and Quality Control; Changsha P. R. China
| | - Jingjing Kang
- School of Food Science and Engineering; Central South University of Forestry and Technology; Changsha P. R. China
- National Engineering Laboratory for Rice and By-products Processing; Changsha P. R. China
- Hunan Province Key Laboratory of Grain, Oil Processing and Quality Control; Changsha P. R. China
| | - Haiyan Zhong
- School of Food Science and Engineering; Central South University of Forestry and Technology; Changsha P. R. China
- National Engineering Laboratory for Rice and By-products Processing; Changsha P. R. China
- Hunan Province Key Laboratory of Grain, Oil Processing and Quality Control; Changsha P. R. China
| | - Paul D. Prenzler
- School of Agricultural and Wine Sciences; Charles Sturt University; Wagga Wagga NSW Australia
| |
Collapse
|
39
|
Kostadinović Veličkovska S, Brühl L, Mitrev S, Mirhosseini H, Matthäus B. Quality evaluation of cold-pressed edible oils from Macedonia. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400623] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ludger Brühl
- Max Rubner-Institut; Working Group for Lipid Research; Detmold Germany
| | - Saša Mitrev
- Faculty of Agriculture; University “Goce Delčev”; Štip Macedonia
| | - Hamed Mirhosseini
- Department of Food Technology; Faculty of Food Science and Technology; Universiti Putra Malaysia; Selangor Malaysia
| | - Bertrand Matthäus
- Max Rubner-Institut; Working Group for Lipid Research; Detmold Germany
| |
Collapse
|
40
|
Górnaś P, Mišina I, Grāvīte I, Soliven A, Kaufmane E, Segliņa D. Tocochromanols composition in kernels recovered from different apricot varieties: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. Nat Prod Res 2015; 29:1222-7. [DOI: 10.1080/14786419.2014.997727] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Paweł Górnaś
- Latvia State Institute of Fruit-Growing, Graudu 1, Dobele LV-3701, Latvia
| | - Inga Mišina
- Latvia State Institute of Fruit-Growing, Graudu 1, Dobele LV-3701, Latvia
| | - Ilze Grāvīte
- Latvia State Institute of Fruit-Growing, Graudu 1, Dobele LV-3701, Latvia
| | - Arianne Soliven
- Department of Natural Products and Pharmacognosy, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Edīte Kaufmane
- Latvia State Institute of Fruit-Growing, Graudu 1, Dobele LV-3701, Latvia
| | - Dalija Segliņa
- Latvia State Institute of Fruit-Growing, Graudu 1, Dobele LV-3701, Latvia
| |
Collapse
|
41
|
Ameliorative effect of pumpkin oil (Cucurbita pepo L.) against alcohol-induced hepatotoxicity and oxidative stress in albino rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2014. [DOI: 10.1016/j.bjbas.2014.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
42
|
Hassanien MMM, Abdel-Razek AG, Rudzińska M, Siger A, Ratusz K, Przybylski R. Phytochemical contents and oxidative stability of oils from non-traditional sources. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300475] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - Magdalena Rudzińska
- Poznan University of Life Sciences; Faculty of Food Sciences and Nutrition; Poznan Poland
| | - Aleksander Siger
- Poznan University of Life Sciences; Faculty of Food Sciences and Nutrition; Poznan Poland
| | - Katarzyna Ratusz
- Warsaw University of Life Sciences - SGGW; Faculty of Food Sciences; Warsaw Poland
| | - Roman Przybylski
- Poznan University of Life Sciences; Faculty of Food Sciences and Nutrition; Poznan Poland
| |
Collapse
|
43
|
Dhar P, Tayade AB, Kumar J, Chaurasia OP, Srivastava RB, Singh SB. Nutritional profile of phytococktail from trans-Himalayan plants. PLoS One 2013; 8:e83008. [PMID: 24376624 PMCID: PMC3871620 DOI: 10.1371/journal.pone.0083008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/07/2013] [Indexed: 01/24/2023] Open
Abstract
We estimated the nutritive value, vitamin content, amino acid composition, fatty acid content, and mineral profile of a phytococktail comprising sea buckthorn (Hippophae rhamnoides), apricot (Prunus armeniaca), and roseroot (Rhodiola imbricata) from trans-Himalaya. The free vitamin forms in the phytococktail were determined by rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS). Vitamin E and B-complex vitamins were detected as the principle vitamins. Reversed-phase high performance liquid chromatography (RP-HPLC) with pre-column derivatization was used for identification and quantification of amino acids. Eight essential and eleven non-essential amino acids were quantified, and the content ranged between 76.33 and 9485.67 µg/g. Among the essential amino acids, L-methionine, L-phenylalanine, L-lysine, L-leucine, and L-histidine were found to be the dominant contributors. We also quantified the fatty acids in the phytococktail by using gas chromatography coupled with a flame ionization detector (GC-FID) with fatty acid methyl esters (FAMEs) derivatization. The analysis revealed the presence of 4 major fatty acids contributing to the total lipid content. Palmitic acid was found to be the rich source of saturated fatty acid (SFA) and constituted ∼31% of the total lipid content. Among the unsaturated fatty acids (UFAs), palmitoleic acid (43.47%), oleic acid (20.89%), and linoleic acid (4.31%) were prominent. The mineral profiling was carried out by inductively coupled plasma optical emission spectrometer (ICP-OES), and it was found to contain a number of important dietary mineral elements. The harsh climatic conditions, difficult terrain, and logistic constraints at high altitude regions of Indian trans-Himalayan cold desert lead to the scarcity of fresh fruits and vegetables. Therefore, the source of multiple vitamins, essential amino acids, fatty acids, and dietary minerals from the phytococktail would provide great health benefit in the stressful environment and could be used as a high value nutritional supplement.
Collapse
Affiliation(s)
- Priyanka Dhar
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, Leh-Ladakh, Jammu and Kashmir, India
| | - Amol B. Tayade
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, Leh-Ladakh, Jammu and Kashmir, India
| | - Jatinder Kumar
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, Leh-Ladakh, Jammu and Kashmir, India
| | - Om P. Chaurasia
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, Leh-Ladakh, Jammu and Kashmir, India
- * E-mail:
| | - Ravi B. Srivastava
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, Leh-Ladakh, Jammu and Kashmir, India
| | - Shashi B. Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India
| |
Collapse
|
44
|
Using offline HPLC-GC-FID 4-Desmethylsterols Concentration Profiles, Combined with Chemometric Tools, to Discriminate Different Vegetable Oils. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9773-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Anwar F, Manzoor M, Ashraf M, Alkharfy KM. Physico-chemical characteristics of seed oils extracted from different apricot ( Prunus armeniaca L.) varieties from Pakistan. GRASAS Y ACEITES 2012. [DOI: 10.3989/gya.095011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Uluata S, Özdemir N. Antioxidant Activities and Oxidative Stabilities of Some Unconventional Oilseeds. J AM OIL CHEM SOC 2012; 89:551-559. [PMID: 22467958 PMCID: PMC3311859 DOI: 10.1007/s11746-011-1955-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/05/2011] [Accepted: 10/07/2011] [Indexed: 11/28/2022]
Abstract
The oils of some unconventional oilseeds (hemp, radish, terebinth, stinging nettle, laurel) were obtained by a cold-press method in which the total oil content, fatty acids, tocopherol isomers, some metal contents (Ca, Mg, Fe, Cu), antioxidant activity and oxidative stability were determined. The total oil content was determined ranging between 30.68 and 43.12%, and the oil samples had large amounts of unsaturated fatty acids, with oleic acid and linoleic acid. Of all the oils, terebinth seed oil had the highest α-tocopherol content (102.21 ± 1.01 mg/kg oil). Laurel oilseed had the highest antiradical activity in both the DPPH and ABTS assays. The peroxide value of the non-oxidized oils ranged between 0.51 and 3.73 mequiv O(2)/kg oil. The TBARS value of the non-oxidized oils ranged between 0.68 ± 0.02 and 6.43 ± 0.48 mmol MA equiv/g oil. At 110 °C, the Rancimat induction period of the oils ranged between 1.32 and 43.44 h. The infrared spectra of the samples were recorded by FTIR spectroscopy. The absorbance values of the spectrum bands were observed and it was determined that some of the chemical groups of oxidized oils caused changes in absorbance. As a result of the present research, the analyzed oils could be evaluated as an alternative to traditionally consumed vegetable oils or as additives to them.
Collapse
Affiliation(s)
- Sibel Uluata
- Department of Food Technology, Inonu University, 44280 Malatya, Turkey
| | - Nurhayat Özdemir
- Department of Chemistry, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
47
|
Comparison of fatty acid profiles and contents of seed oils recovered from dessert and cider apples and further Rosaceous plants. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1709-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Zhang J, Gu HD, Zhang L, Tian ZJ, Zhang ZQ, Shi XC, Ma WH. Protective effects of apricot kernel oil on myocardium against ischemia–reperfusion injury in rats. Food Chem Toxicol 2011; 49:3136-41. [DOI: 10.1016/j.fct.2011.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 11/28/2022]
|
49
|
Prada F, Ayala-Diaz IM, Delgado W, Ruiz-Romero R, Romero HM. Effect of fruit ripening on content and chemical composition of oil from three oil palm cultivars (Elaeis guineensis Jacq.) grown in Colombia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10136-10142. [PMID: 21894914 DOI: 10.1021/jf201999d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A series of physical and chemical changes occur as oil palm fruits ripen in the bunch. We evaluated changes in lipid content in the mesocarp and fruits, and the chemical composition of fatty acids (FA), triacylglycerol (TAG), tocols, and carotenes of the lipids extracted from fruits of three commercial tenera cultivars, namely, Deli×La Mé, Deli×Ekona, and Deli×Avros, planted in two different geographical regions in Colombia, during the ripening process 12, 14, 16, 18, 20, 22, and 24 weeks after anthesis (WAA). It was found that 12 WAA the mesocarp contained less than 6% of total lipids. Oil content increased rapidly after 16 WAA, reaching the maximum oil content of 55% in fresh mesocarp and 47% in fresh fruits at 22 WAA, which was found the optimal time for harvesting. Changes in FA and TAG showed that total polyunsaturated fatty acids (PUFA) and triunsaturated triacylglycerols (TUTAG) decreased, while total saturated fatty acids (SFA) and disaturated triacylglycerols (DSTAG) increased, over the ripening period. Changes in FA were mainly observed in palmitic, oleic, linoleic, and linolenic acids, and in POP, POO, POL, and OLL for the TAGs evaluated. Levels of tocols changed depending on whether they were tocopherols or tocotrienols. In the earliest stages tocopherols were predominant but decreased rapidly from 6600 mg kg(-1) of oil at 14 WAA to 93 mg kg(-1) of oil at 22 WAA. Tocotrienols appeared at the same time as oil synthesis started, and became the main source of total tocols, equivalent to 87% in total lipids extracted.
Collapse
Affiliation(s)
- Fausto Prada
- Oil Palm Biology and Breeding Program, Oil Palm Research Center-Cenipalma, Calle 20A # 43A-50, piso 4, Bogotá D.C., Colombia
| | | | | | | | | |
Collapse
|
50
|
Abdel-Rahman MK. Can apricot kernels fatty acids delay the atrophied hepatocytes from progression to fibrosis in dimethylnitrosamine (DMN)-induced liver injury in rats? Lipids Health Dis 2011; 10:114. [PMID: 21736706 PMCID: PMC3155902 DOI: 10.1186/1476-511x-10-114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/07/2011] [Indexed: 01/22/2023] Open
Abstract
Background and aims The present study was aimed to analyze the chemical composition of ground apricot kernel (GAK) and examine its effect on hepatic fibrosis in vivo induced by dimethylnitrosamine (DMN) in rats. Methods and results Hepatic fibrosis was induced by intraperitoneal injections of 10 mg/kg DMN for 3 consecutive days each week over a period of 4 wk. The rats were randomly assigned to five groups of nine rats each: the negative control group (NC), the hepatic fibrosis group (PC), hepatic fibrosis supplemented with GAK (0.5 mg/kg/BW/rat), hepatic fibrosis supplemented with GAK (1 mg/kg/BW/rat) and hepatic fibrosis supplemented with GAK (1.5 mg/kg/BW/rat). Rats were killed, blood was collected and livers were excised for biochemical measurements and histological examination. Results indicate that the diet supplemented with GAK led to improving liver function, lipid peroxides, and liver CAT, SOD and GSH. These results were confirmed by liver histology. Hierarchically high levels f GAK (1.5 mg/kg/BW/rat) gave the best results compared to other tested levels. Conclusion This study demonstrates that GAK administration specifically (1.5 mg/kg/BW/rat) can effectively improve liver fibrosis caused by DMN, and may be used as a therapeutic option and preventive measure against hepatic fibrosis. Furthermore, a human trial would be applied specially GAK is a part of Egyptian diet. The act of why high amounts of GAK was improved biochemical values compared to low or moderate levels tested in this study may be due to increase levels of oleic acid and other polyphenols in apricot kernels
Collapse
|