1
|
Askri SMH, Fu W, Abd El-Rady WA, Adil MF, Sehar S, Ali A, Ullah N, Munawar A, Zhou W, Jiang L, Shamsi IH. Comparative metabolomics elucidates the early defense response mechanisms to Plutella xylostella infestation in Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109678. [PMID: 40007373 DOI: 10.1016/j.plaphy.2025.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Plutella xylostella (diamondback moth; DBM) is a significant pest of Brassica crops, causing billions of dollars in annual global damage and developing resistance to many insecticides. Climate change is increasing the frequency and severity of infestations by influencing the moth's reproduction and expanding its range, leading to increased crop losses. In this study, we examined the early metabolomic responses of four Brassica napus accessions to DBM infestation, focusing on identifying the metabolic basis of tolerance. Phenotypic analysis showed that R4220 and R4415 were highly susceptible, with remaining leaf areas of 27 and 38%, respectively, while the tolerant accessions R4637 and R5064 retained 85 and 91% of their leaf area post-infestation. Metabolomic profiling revealed a distinct separation between tolerant and sensitive accessions under both control and infested conditions. Notably, tolerant accessions exhibited differential accumulation of metabolites, with abundant metabolites belonging to lipid and lipid-like molecules, organic acids and derivatives, and benzenoids. Additionally, 31 metabolites were found to be consistently expressed at higher levels in tolerant accessions as compared to sensitive ones, notably tridecanedioic acid, 3,5-dihydroxyphenylglycine and benzoxazine-6-carboxylic acid. Furthermore, KEGG analysis revealed that pathways such as phenylpropanoid biosynthesis, aminoacyl-tRNA biosynthesis and ABC transporters were enriched, indicating their critical roles in the defense mechanisms. This comprehensive analysis of metabolomic alterations provides valuable insights into the biochemical pathways underpinning insect tolerance in rapeseed, potentially guiding the development of more resilient cultivars and leading a pathway to improve crop farming for sustainable agriculture.
Collapse
Affiliation(s)
- Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Fu
- College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Shenyang, 110034, China
| | - Wessam A Abd El-Rady
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Abid Ali
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Asim Munawar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Wenwu Zhou
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Lixi Jiang
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Artemyeva AM, Kurina AB. Eco-Geographical and Botanical Patterns of Resistance to Lepidoptera Insects in Brassica rapa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:673. [PMID: 38475519 DOI: 10.3390/plants13050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
In the context of the widespread expansion of damage by herbivorous pests of Brassica crops, taking into account the requirements for minimizing pesticide pollution of the environment, it is important to have fundamental knowledge of the geographical features of the distribution of pests and about the botanical confinement of plant resistance in order to develop a strategy for creating new Brassica cultivars with complex resistance to insects. The relevance of our work is related to the study of the variability in the degree of resistance of the extensive genetic diversity of Brassica rapa accessions to the main herbivorous pests of Brassica crops in contrasting ecological and geographical zones of the Russian Federation (Arctic, northwestern, and southern zones). We have studied the distribution and food preferences of Lepidoptera insects (diamondback moth Plutella xylostella and cabbage moth Mamestra brassicae) on a set of 100 accessions from the VIR B. rapa collection (Chinese cabbage, pakchoi, wutacai, zicaitai, mizuna, and leaf and root turnips) in the field in three zones of the Russian Federation. We have found that the diamondback moth and cabbage moth are largely harmful in three zones of the European part of the Russian Federation, although the degree of damage to plants by these insects varies by year of cultivation. On average, for the set studied during the two years of the experiment, the degree of plant damage by both pests in the Arctic zone was low and almost low, and in the northwestern and southern zones, it was medium. It was noted that diamondback moth damage was greater in the northwestern zone in both years and in the southern and Arctic zones in 2021, while in 2022, the degree of cabbage moth damage was slightly higher in the southern and Arctic zones. Under the conditions of field diamondback moth damage, the accessions of Chinese cabbage, wutacai, and mizuna turned out to be the most resistant (the damage score was 1.92-1.99), whereas the accessions of wutacai and pakchoi were the most resistant to the cabbage moth (the damage score was 1.62-1.78). A high variability in the degree of resistance of Brassica crops to Lepidoptera insects from complete resistance to susceptibility was revealed. We have identified sources of resistance to insects, including complex resistance in all study areas, among landraces and some modern cultivars of Chinese cabbage, pakchoi, wutacai, and mizuna from Japan and China, as well as European turnips. The highest susceptibility to pests in the studied set was noted in the accession of root turnip "Hinona" (k-1422, USA) (average damage score of 3.24-3.53 points). We were not able to establish the morphological features of resistant plants or the geographical confinement of the origin of resistance of B. rapa crop accessions.
Collapse
Affiliation(s)
- Anna M Artemyeva
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia
| | - Anastasia B Kurina
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia
| |
Collapse
|
3
|
Chen X, Zhang J, Lin Q, Li G, Zhao X. Dispose of Chinese cabbage waste via hydrothermal carbonization: hydrochar characterization and its potential as a soil amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4592-4602. [PMID: 35974264 DOI: 10.1007/s11356-022-22359-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Landfill of waste biomass not only poses a threat to environmental protection but also leads to a great waste of biomass resources. Hydrothermal carbonization (HTC) has been considered a promising method to convert the wet biomass into hydrochar, a high-value-added product with multiple application potentials. The cabbage waste, typical wet waste biomass with a huge production per year, was hydrothermally carbonized under 190 °C and 260 °C, respectively. The results indicated that the majority of nutrients from feedstock were dissolved in spent liquor during HTC, with only a few amounts retained on hydrochar. Temperature showed a more significant impact on hydrochar properties than retention time, which enables hydrochar to be potentially used as a soil conditioner. Particularly, the hydrochar produced at 190 °C could improve plant nutrition in the short term, while that produced at 260 °C may benefit in C sequestration. Moreover, the hydrochar dominated by meso/macropores (> 90%) would be conducive to the storage of plant-available water. But both BTX and VOCs may release during hydrochar application; thus, further field experiments are needed to test the environmental risks of hydrochar when applied as a soil amendment.
Collapse
Affiliation(s)
- Xuejiao Chen
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Jinhong Zhang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qimei Lin
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- Agricultural Resources and Environmental Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guitong Li
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Zhao
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Hyeon H, Jang EB, Yoon WJ, Lee JD, Hyun HB, Jung YH, Min J, Ham YM. Proliferation and Metabolic Profiling of Cynanchum wilfordii Adventitious Roots Using Explants from Different Cultivation Methods. ACS OMEGA 2022; 7:46756-46768. [PMID: 36570270 PMCID: PMC9773952 DOI: 10.1021/acsomega.2c05833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Cynanchum wilfordii root is used in traditional herbal medicine owing to its various pharmacological activities. However, C. wilfordii roots are misused owing to their morphological similarities with C. auriculatum. Adventitious root (AR) culture can prevent such misuse, and the selection of plant materials is an important procedure for producing high-quality ARs. This study aimed to compare the proliferation and metabolic profiles of C. wilfordii ARs in two types of explants from different cultivation methods (either cultivated in open field (ECF) or cultivated on a heap of C. wilfordii (ECH)). After 4 weeks of culture, the proliferation rate and number and length of secondary ARs were determined, and 3/4 Murashige and Skoog (MS) salt medium, 4.92 μM indole-3-butyric acid (IBA), and 5% sucrose were suggested as the best proliferation conditions for ARs originating from both ECF and ECH. Through metabolic profiling, ARs from ECH were found to show higher accumulation patterns for flavonoids, polysaccharides, hydroxyacetophenones, aromatic amino acids, and mono-unsaturated fatty acids, which were ascribed to the activation of flavonoid biosynthesis, the phenylpropanoid pathway, and fatty acid desaturase, stimulated by abiotic stresses. In contrast, ARs from ECF had higher levels of TCA cycle intermediates, amino acids in the aspartate-glutamate pathway, and saturated and polyunsaturated fatty acids, indicating energy metabolism and plant development. Overall, the current study provided information on the optimal conditions for inducing C. wilfordii ARs with higher amounts of bioactive compounds.
Collapse
Affiliation(s)
- Hyejin Hyeon
- Biodiversity
Research Institute, Jeju
Technopark, Seogwipo, Jeju 63608, Republic of Korea
| | - Eun Bi Jang
- Biodiversity
Research Institute, Jeju
Technopark, Seogwipo, Jeju 63608, Republic of Korea
| | - Weon-Jong Yoon
- Biodiversity
Research Institute, Jeju
Technopark, Seogwipo, Jeju 63608, Republic of Korea
| | - Jong-Du Lee
- Biodiversity
Research Institute, Jeju
Technopark, Seogwipo, Jeju 63608, Republic of Korea
| | - Ho Bong Hyun
- Biodiversity
Research Institute, Jeju
Technopark, Seogwipo, Jeju 63608, Republic of Korea
| | - Yong-Hwan Jung
- Biodiversity
Research Institute, Jeju
Technopark, Seogwipo, Jeju 63608, Republic of Korea
| | - Jung Min
- Jeju
Chyeonnyeonyakcho Farming Co., Jeju, Jeju 63052, Republic of
Korea
| | - Young-Min Ham
- Biodiversity
Research Institute, Jeju
Technopark, Seogwipo, Jeju 63608, Republic of Korea
| |
Collapse
|
5
|
Obermeier C, Mason AS, Meiners T, Petschenka G, Rostás M, Will T, Wittkop B, Austel N. Perspectives for integrated insect pest protection in oilseed rape breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3917-3946. [PMID: 35294574 PMCID: PMC9729155 DOI: 10.1007/s00122-022-04074-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.
Collapse
Affiliation(s)
- Christian Obermeier
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Torsten Will
- Insitute for Resistance Research and Stress Tolerance, Julius Kühn Insitute, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| |
Collapse
|
6
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 PMCID: PMC8205867 DOI: 10.1007/s00122-021-03793-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/18/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
7
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 DOI: 10.1007/s00122-021-03793-3.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
8
|
Metabolic Changes in Serum Metabolome of Beagle Dogs Fed Black Ginseng. Metabolites 2020; 10:metabo10120517. [PMID: 33352805 PMCID: PMC7765939 DOI: 10.3390/metabo10120517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
The effects of black ginseng, which has many kinds of biological activities, on dogs was investigated. Serum samples of beagle dogs, which were fed with black ginseng for 8 weeks, were measured using high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectrometry. Acquired NMR data from the serum of dogs fed for 0, 4, and 8 weeks were analyzed by metabolic profiling and multivariate statistical analysis. In statistical analysis and biomarker analysis results of metabolite profiles, formate, glutamine, histidine, isoleucine, leucine, proline, and valine had variable importance in projection (VIP) scores above 1.0 and excellent area under the curve (AUC) values of receiver operating characteristic (ROC) curves above 0.9. In the result of multivariate statistical analysis, the score plot showed the discrimination between before and after feeding of black ginseng. These differences in metabolic profiles are considered to be due to the involvement of metabolic processes following black ginseng administration, such as enhancing immunity and energy metabolism. Through metabolomics analysis, we confirmed the biological efficacy of black ginseng in dogs and also confirmed that metabolomics can be applied to the pet health industry.
Collapse
|
9
|
Park YJ, Baek SA, Kim JK, Park SU. Integrated Analysis of Transcriptome and Metabolome in Cirsium japonicum Fisch ex DC. ACS OMEGA 2020; 5:29312-29324. [PMID: 33225162 PMCID: PMC7675961 DOI: 10.1021/acsomega.0c04001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 05/29/2023]
Abstract
Cirsium japonicum Fisch ex DC belongs to the Compositae family and has been used as a folk remedy source in Asian countries because of its health-promoting properties. It is known that C. japonicum contains flavonoids, furans, long-chain alcohols, sterols, and volatile oils. Nevertheless, the molecular mechanism of secondary metabolite biosynthesis remains poorly understood. Therefore, transcriptome analysis and metabolic profiling were performed using different parts of C. japonicum to investigate phenylpropanoid metabolism. Based on the BLASTX search results, we identified 29 orthologs of enzymes responsible for phenylpropanoid biosynthesis. Additionally, 75 metabolites were identified in C. japonicum. Most of the flavonoid biosynthetic genes were significantly expressed ranging from 2.6- to 500-fold higher in the flowers than those in the leaves. Correspondently, the total content of flavonols was 21-fold higher in the flowers than in the roots. However, the total level of flavones showed 58-fold higher amounts in the leaves than in the flowers. Additionally, the total content of flavanols was 19-fold higher in the leaves than in the roots. The results of this study provide transcriptomic and metabolic information to elucidate the tissue-specific phenylpropanoid metabolism of C. japonicum.
Collapse
Affiliation(s)
- Yun Ji Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Seung-A Baek
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
- Department
of Smart Agriculture Systems, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
10
|
Yoon D, Choi BR, Lee YS, Han KS, Kim D, Lee DY. Serum Metabonomic Research of the Anti-Hypertensive Effects of Ogaja on Spontaneously Hypertensive Rats. Metabolites 2020; 10:metabo10100404. [PMID: 33053871 PMCID: PMC7601199 DOI: 10.3390/metabo10100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 11/16/2022] Open
Abstract
Our previous studies have shown that Ogaja Acanthopanax sessiliflorus has an important role in decreasing blood pressure, but its biochemical change characteristic has not been clarified completely at the metabolic level. Therefore, in this study, a combination method of nuclear magnetic resonance (NMR) spectroscopy-based metabonomics and multivariate statistical analyses was employed to explore the metabolic changes of serum samples from spontaneously hypertensive rats treated with Ogaja extracts. In the results of multivariate statistical analysis, the spontaneously hypertensive rat (SHR) groups treated with Ogaja were separated from the SHR group. The group of SHR treated with 200 mg/kg Ogaja was clustered with the positive control (captopril) group, and the 400 and 600 mg/kg Ogaja treatment SHR groups were clustered together. Quantified metabolites were statistically analyzed to find the metabolites showing the effects of Ogaja. Succinate and betaine had variable importance in projection (VIP) scores over 2.0. Succinate, which is related to renin release, and betaine, which is related to lowering blood pressure, increased dose-dependently.
Collapse
|
11
|
Huang X, Lv M, Xu H. Semisynthesis of novel N-acyl/sulfonyl derivatives of 5(3,5)-(di)halogenocytisines/cytisine and their pesticidal activities against Mythimna separata Walker, Tetranychus cinnabarinus Boisduval, and Sitobion avenae Fabricius. PEST MANAGEMENT SCIENCE 2019; 75:2598-2609. [PMID: 30740869 DOI: 10.1002/ps.5375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND To discover novel natural product-based pesticidal agents for crop protection, a series of N-acyl/sulfonyl derivatives of 5(3,5)-(di)halogenocytisines/cytisine were prepared by structural modifications of cytisine. Their pesticidal activities were evaluated against three typically crop-threatening agricultural pests, Mythimna separata Walker, Tetranychus cinnabarinus Boisduval, and Sitobion avenae Fabricius. RESULTS Compound 5f exhibited the promising pesticidal activities against three tested pests. All N-phenylsulfonylcytisine derivatives showed potent acaricidal activity. Compound 5j exhibited 2.5-fold more potent acaricidal activity than cytisine, and showed good control effects. Intermediates 2, and 3/3' displayed pronounced aphicidal activity. Some interesting results of structure-activity relationships were also obtained. CONCLUSION These results demonstrate that compounds 5f and 5j could be further modified as pesticidal agents. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobo Huang
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A & F University, Yangling, People's Republic of China
| | - Min Lv
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A & F University, Yangling, People's Republic of China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A & F University, Yangling, People's Republic of China
- College of Chemistry and Pharmacy, Northwest A & F University, Yangling, People's Republic of China
| |
Collapse
|
12
|
Baek SA, Im KH, Park SU, Oh SD, Choi J, Kim JK. Dynamics of Short-Term Metabolic Profiling in Radish Sprouts ( Raphanus sativus L.) in Response to Nitrogen Deficiency. PLANTS 2019; 8:plants8100361. [PMID: 31547524 PMCID: PMC6843509 DOI: 10.3390/plants8100361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Nitrogen (N) is a macronutrient important for the survival of plants. To investigate the effects of N deficiency, a time-course metabolic profiling of radish sprouts was performed. A total of 81 metabolites—including organic acids, inorganic acid, amino acids, sugars, sugar alcohols, amines, amide, sugar phosphates, policosanols, tocopherols, phytosterols, carotenoids, chlorophylls, and glucosinolates—were characterized. Principal component analysis and heat map showed distinction between samples grown under different N conditions, as well as with time. Using PathVisio, metabolic shift in biosynthetic pathways was visualized using the metabolite data obtained for 7 days. The amino acids associated with glucosinolates accumulated as an immediate response against –N condition. The synthesis of pigments and glucosinolates was decreased, but monosaccharides and γ-tocopherol were increased as antioxidants in radish sprouts grown in –N condition. These results indicate that in radish sprouts, response to N deficiency occurred quickly and dynamically. Thus, this metabolic phenotype reveals that radish responds quickly to N deficiency by increasing the content of soluble sugars and γ-tocopherol, which acts as a defense mechanism after the germination of radish seeds.
Collapse
Affiliation(s)
- Seung-A Baek
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Kyung-Hoan Im
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sung-Dug Oh
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Jaehyuk Choi
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
13
|
Yoon D, Choi BR, Ma S, Lee JW, Jo IH, Lee YS, Kim GS, Kim S, Lee DY. Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC-QTOF/MS, and GC × GC-TOF/MS. Molecules 2019; 24:molecules24132381. [PMID: 31252608 PMCID: PMC6651322 DOI: 10.3390/molecules24132381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
(1) Background: The ability to determine the age of ginseng is very important because the price of ginseng depends on the cultivation period. Since morphological observation is subjective, a new scientific and systematic method for determining the age of ginseng is required. (2) Methods: Three techniques were used for a metabolomics approach. High-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy was used to analyze powdered ginseng samples without extraction. Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and gas chromatography quadrupole time-of-fight mass spectrometry (GC-TOF/MS) were used to analyze the extracts of 4-, 5-, and 6-year-old ginseng. (3) Results: A metabolomics approach has the potential to discriminate the age of ginseng. Among the primary metabolites detected from NMR spectroscopy, the levels of fumarate and choline showed moderate prediction with an area under the curve (AUC) value of more than 0.7. As a result of UPLC-QTOF/MS-based profiling, 61 metabolites referring to the VIP (variable importance in the projection) score contributed to discriminating the age of ginseng. The results of GC×GC-TOF/MS showed clear discrimination of 4-, 5-, and 6-year-old ginseng using orthogonal partial least-squares discriminant analysis (OPLS-DA) to 100% of the discrimination rate. The results of receiver operating characteristic (ROC) analysis, 16 metabolites between 4- and 5-year-old ginseng, and 18 metabolites between 5- and 6-year-old ginseng contributed to age discrimination in all regions. (4) Conclusions: These results showed that metabolic profiling and multivariate statistical analyses can distinguish the age of ginseng. Especially, it is meaningful that ginseng samples from different areas had the same metabolites for age discrimination. In future studies, it will be necessary to identify the unknown variables and to collaboratively study with other fields the biochemistry of aging in ginseng.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Seohee Ma
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jae Won Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| |
Collapse
|
14
|
Sarkate A, Saini SS, Teotia D, Gaid M, Mir JI, Roy P, Agrawal PK, Sircar D. Comparative metabolomics of scab-resistant and susceptible apple cell cultures in response to scab fungus elicitor treatment. Sci Rep 2018; 8:17844. [PMID: 30552373 PMCID: PMC6294756 DOI: 10.1038/s41598-018-36237-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/16/2018] [Indexed: 01/13/2023] Open
Abstract
Apple scab disease caused by the fungus Venturia inaequalis is a devastating disease that seriously affects quality and yield of apples. In order to understand the mechanisms involved in scab resistance, we performed gas chromatography-mass spectrometry based metabolomics analysis of the cell culture of scab resistant cultivar 'Florina' and scab susceptible cultivar 'Vista Bella' both prior -to and -following treatment with V. inaequalis elicitor (VIE). A total 21 metabolites were identified to be altered significantly in 'Florina' cell cultures upon VIE-treatment. Among 21 metabolites, formation of three new specialized metabolites aucuparin, noraucuparin and eriobofuran were observed only in resistant cultivar 'Florina' after the elicitor treatment. The score plots of principal component analysis (PCA) exhibited clear discrimination between untreated and VIE-treated samples. The alteration in metabolite levels correlated well with the changes in the transcript levels of selected secondary metabolite biosynthesis genes. Aucuparin, noraucuparin and eriobofuran isolated from the 'Florina' cultures showed significant inhibitory effect on the conidial germination of V. inaequalis. The results expand our understanding of the metabolic basis of scab-resistance in apple and therefore are of interest in apple breeding programs to fortify scab resistance potential of commercially grown apple cultivars.
Collapse
Affiliation(s)
- Amol Sarkate
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Deepa Teotia
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Javid Iqbal Mir
- Plant Biotechnology Department, Central Institute of Temperate Horticulture (ICAR-CITH) Srinagar, 190 005, J&K, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Debabrata Sircar
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
15
|
Cuong DM, Kim JK, Bong SJ, Baek SA, Jeon J, Park JS, Park SU. Comparative analysis of glucosinolates and metabolite profiling of green and red mustard ( brassica juncea) hairy roots. 3 Biotech 2018; 8:382. [PMID: 30148032 PMCID: PMC6104223 DOI: 10.1007/s13205-018-1393-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022] Open
Abstract
Here, accumulation of glucosinolates and expression of glucosinolates biosynthesis genes in green and red mustard hairy roots were identified and quantified by HPLC and qRT-PCR analyses. The total glucosinolates content of green mustard hairy root (10.09 µg/g dry weight) was 3.88 times higher than that of red mustard hairy root. Indolic glucosinolates (glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) in green mustard were found at 30.92, 6.95, and 5.29 times higher than in red mustard hairy root, respectively. Conversely, levels of glucotropaeolin (aromatic glucosinolate) was significantly higher in red mustard than in green mustard. Accumulation of glucoraphasatin, an aliphatic glucosinolate, was only observed only in red mustard hairy roots. Quantitative real-time PCR analysis showed that the expression level of genes related to aliphatic and aromatic glucosinolate biosynthesis were higher in red mustard, exception BjCYP83B. The expression of BjCYP79B2, which encodes a key enzyme involved in the indolic glucosinolate biosynthetic pathway, was higher in green mustard than in red mustard. Additionally, to further distinguish between green mustard and red mustard hairy roots, hydrophilic and lipophilic compounds were identified by gas chromatography-mass spectrometry and subjected to principal component analysis. The results indicated that core primary metabolites and glucosinolate levels were higher in the hairy roots of green mustard than in those of red mustard.
Collapse
Affiliation(s)
- Do Manh Cuong
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon, 22012 South Korea
| | - Sun Ju Bong
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Seung A Baek
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon, 22012 South Korea
| | - Jin Jeon
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Jong Seok Park
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| |
Collapse
|
16
|
Sun G, Zhang J, Jin S, Zhang J. Synthesis and insecticidal activities of 5-deoxyavermectin B2a oxime ester derivatives. RSC Adv 2018; 8:3774-3781. [PMID: 35542930 PMCID: PMC9078043 DOI: 10.1039/c7ra13258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/15/2018] [Indexed: 12/28/2022] Open
Abstract
Three series of avermectin B2a oxime ester derivatives were synthesized using avermectin B2a as starting material. All of the compounds were characterized by 1H NMR, 13C NMR, and HRMS. Bioassay results indicated that some of the derivatives (8b, 8c, 8d, 8f, 11k, 11l, 14c, 14j) showed potent insecticidal activities against Myzus persicae, Caenorhabditis elegans, or Tetranychus cinnabarinus. As shown by initial insecticidal activity data, compound 8d showed excellent activities (>90%) against M. persicae and C. elegans, which were more potent than that of avermectin B2a. Compound 8d might be a lead compound for designing new avermectin B2a derivatives.
Collapse
Affiliation(s)
- Guoshao Sun
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 P. R. China
| | - Jingjing Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 P. R. China
| | - Shuhui Jin
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 P. R. China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 P. R. China
| |
Collapse
|
17
|
Sogbohossou EOD, Achigan-Dako EG, Maundu P, Solberg S, Deguenon EMS, Mumm RH, Hale I, Van Deynze A, Schranz ME. A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae). HORTICULTURE RESEARCH 2018; 5:2. [PMID: 29423232 PMCID: PMC5798814 DOI: 10.1038/s41438-017-0001-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/23/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
Despite an increasing awareness of the potential of "orphan" or unimproved crops to contribute to food security and enhanced livelihoods for farmers, coordinated research agendas to facilitate production and use of orphan crops by local communities are generally lacking. We provide an overview of the current knowledge on leafy vegetables with a focus on Gynandropsis gynandra, a highly nutritious species used in Africa and Asia, and highlight general and species-specific guidelines for participatory, genomics-assisted breeding of orphan crops. Key steps in genome-enabled orphan leafy vegetables improvement are identified and discussed in the context of Gynandropsis gynandra breeding, including: (1) germplasm collection and management; (2) product target definition and refinement; (3) characterization of the genetic control of key traits; (4) design of the 'process' for cultivar development; (5) integration of genomic data to optimize that 'process'; (6) multi-environmental participatory testing and end-user evaluation; and (7) crop value chain development. The review discusses each step in detail, with emphasis on improving leaf yield, phytonutrient content, organoleptic quality, resistance to biotic and abiotic stresses and post-harvest management.
Collapse
Affiliation(s)
- E. O. Deedi Sogbohossou
- Biosystematics Group, Wageningen University, Postbus 647 6700AP, Wageningen, The Netherlands
- Laboratory of Genetics, Horticulture and Seed Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 2549 Abomey-Calavi, Benin
| | - Enoch G. Achigan-Dako
- Laboratory of Genetics, Horticulture and Seed Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 2549 Abomey-Calavi, Benin
| | - Patrick Maundu
- Kenya Resource Center for Indigenous Knowledge (KENRIK), Centre for Biodiversity, National Museums of Kenya, Museum Hill, P.O. Box 40658, Nairobi, 00100 Kenya
| | - Svein Solberg
- World Vegetable Center (AVRDC), P.O. Box 42, Shanhua, Tainan 74199 Taiwan
| | | | - Rita H. Mumm
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL 61801 USA
| | - Iago Hale
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University, Postbus 647 6700AP, Wageningen, The Netherlands
| |
Collapse
|
18
|
Cui S, Wang L, Qiu J, Liu Z, Geng X. Comparative metabolomics analysis of Callosobruchus chinensis larvae under hypoxia, hypoxia/hypercapnia and normoxia. PEST MANAGEMENT SCIENCE 2017; 73:1267-1276. [PMID: 27718517 DOI: 10.1002/ps.4455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Insect tolerance to low oxygen (hypoxia) and high carbon dioxide (hypercapnia) is critical for insect control. On the basis of bioassay, metabolism profiles were built to investigate adaptive mechanisms in bean weevil under hypoxia (2% O2 ), hypoxia/hypercapnia (2% O2 + 18% CO2 ) and normoxia (control, 20% O2 + 80% N2 ) using gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). RESULTS The growth and development of bean weevils were significantly suppressed by the two hypoxia conditions; hypercapnia enhanced the mortality, but after 24 days of exposure, the surviving insects emerged as adults earlier than those under hypoxia only. Metabolism profiles also showed striking differences in metabolites among the treatment and control groups, both quantitatively and qualitatively. Pairwise comparisons of the three groups showed that 61 metabolites changed significantly, 40 in the hypoxia group and 37 in the hypoxia/hypercapnia group relative to the control group, while only 16 were shared equally by the hypoxia and hypoxia/hypercapnia groups. Increased metabolites were mainly carbohydrates, amino acids and organic acids, while free fatty acids were decreased. Furthermore, the changes were strengthened by the addition of hypercapnia, but excluding free fatty acids. CONCLUSION The findings show that bean weevil has high tolerance to hypoxia or even hypoxia/hypercapnia at biologically achievable levels and provide more direct evidence for stored product insect mechanism regulation under hypoxia stress, especially free fatty acid regulation by hypercapnia but not by hypoxia. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sufen Cui
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangping Qiu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Geng
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci Rep 2017; 7:1947. [PMID: 28512315 PMCID: PMC5434009 DOI: 10.1038/s41598-017-02138-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Gut bacteria play a significant role in host insect. This study evaluated detail difference of midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible and field-caught populations of diamondback moth, and studied phenomics of the predominant midgut bacterium Enterococcus mundtii. Cultivable bacteria revealed that E. mundtii and Carnobacterium maltaromaticum dominated the bacterial populations from deltamethrin-resistant and deltamethrin-susceptible larval midguts, whereas E. mundtii was predominant in field-caught population. Illumina sequencing analysis indicated that 97% of the midgut bacteria were from the phyla Firmicutes, Proteobacteria and Cyanobacteria. Both resistant and susceptible populations had more Enterococcus and Carnobacterium. Enterococcus, Carnobacterium, Bacillus, and Pseudomonas were predominant in the field-caught population. A phenomics analysis revealed that E. mundtii was able to metabolize 25.26% of the tested carbon sources, 100% of the nitrogen sources, 100% of the phosphorus sources and 97.14% of the sulfur sources, had a wide range of osmolytes and pH conditions, and showed active deaminase activity but no decarboxylase activity. This is the first report regarding different populations of DBM midgut bacteria analyzed using both high-throughput DNA sequencing and cultivation methods, and also first report concerning the phenomics of E. mundtii. The phenomics of E. mundtii provide a basis for the future study of gut bacteria functions.
Collapse
|
20
|
Huang JL, Lv M, Xu H. Semisynthesis of some matrine ether derivatives as insecticidal agents. RSC Adv 2017. [DOI: 10.1039/c7ra00954b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Compounds 4i and 4k exhibited more potent insecticidal activities than matrine against Plutella xylostella and Mythimna separata. These matrine derivatives may be considered as promising insecticidal candidates.
Collapse
Affiliation(s)
- Jiu-Lin Huang
- Research Institute of Pesticidal Design & Synthesis
- College of Chemistry & Pharmacy/Plant Protection
- Northwest A&F University
- Yangling 712100
- China
| | - Min Lv
- Research Institute of Pesticidal Design & Synthesis
- College of Chemistry & Pharmacy/Plant Protection
- Northwest A&F University
- Yangling 712100
- China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis
- College of Chemistry & Pharmacy/Plant Protection
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
21
|
Li WH, Jin DC, Li FL, Cheng Y, Jin JX. Metabolic phenomics of bacterium Pantoea sp. from larval gut of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Symbiosis 2016. [DOI: 10.1007/s13199-016-0453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Cai H, Bai Y, Wei H, Lin S, Chen Y, Tian H, Gu X, Murugan K. Effects of tea saponin on growth and development, nutritional indicators, and hormone titers in diamondback moths feeding on different host plant species. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 131:53-59. [PMID: 27265827 DOI: 10.1016/j.pestbp.2015.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/19/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
The diamondback moth (DBM) is an important worldwide pest. This insect has been studied for several decades; however, its control remains problematic. Numerous chemical insecticides have become ineffective and chemical residues constitute an important problem. In the present study, we determined the mortality of 3rd instar DBM larvae feeding on three different host plant species and exposed to various concentrations of tea saponin (TS). In addition, we evaluated growth and development parameters, nutritional indicators, and juvenile hormone (JH) and molting hormone (MH) titers in 2nd instar larvae exposed to LC20 and LC50 doses of TS. We found that treatment of DBM larvae with LC20 and LC50 doses of TS led to lower growth rates, decreased feed consumption, reduced frass production, lower pupal weights, reduced percentage pupation, slower adult emergence percentages, and diminished fecundity, but prolonged durations of the larval and pupal periods. The efficiency of conversion of ingested and digested food increased, but the approximate digestibility did not differ significantly between treatments and controls. JH and MH titers were higher after TS treatment; these increases varied according to the host species and TS concentration. Our results indicate that TS represents a potential new alternative insecticide based on its natural origin, low cost, and minimum environmental impact.
Collapse
Affiliation(s)
- Hongjiao Cai
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxia Dian Road, Fuzhou 350002, China; Fishery College, Jimei University, 43 Yindou Road, Xiame 361021, China
| | - Yan Bai
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxia Dian Road, Fuzhou 350002, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, 247 Wusi Road, Fuzhou 350003, China.
| | - Shuo Lin
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, 247 Wusi Road, Fuzhou 350003, China
| | - Yixin Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, 247 Wusi Road, Fuzhou 350003, China
| | - Houjun Tian
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, 247 Wusi Road, Fuzhou 350003, China
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxia Dian Road, Fuzhou 350002, China.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
23
|
Park SY, Lee SY, Yang JW, Lee JS, Oh SD, Oh S, Lee SM, Lim MH, Park SK, Jang JS, Cho HS, Yeo Y. Comparative analysis of phytochemicals and polar metabolites from colored sweet potato ( Ipomoea batatas L.) tubers. Food Sci Biotechnol 2016; 25:283-291. [PMID: 30263269 DOI: 10.1007/s10068-016-0041-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/11/2023] Open
Abstract
We determined the phytochemical diversity, including carotenoids, flavonoids, anthocyanins, and phenolic acids, in sweet potatoes (Ipomoea batatas L.) with distinctive flesh colors (white, orange, and purple) and identified hydrophilic primary metabolites. Carotenoid content was considerably higher in orange-fleshed sweet potatoes, wherein β-carotene was the most plentiful, and anthocyanins were detected only in purple-fleshed sweet potatoes. The levels of phenolic acids and flavonoids were relatively higher in purple-fleshed sweet potatoes than those in the other two varieties. Forty-one primary and 18 secondary metabolite profiles were subjected to multivariate statistical analyses, which fully distinguished among the varieties and separated orange- and purple-fleshed sweet potatoes from white-fleshed sweet potatoes based on the high levels of sugars, sugar alcohols, and secondary metabolites. This is the first study to determine comprehensive metabolic differences among different color-fleshed sweet potatoes and provides useful information for genetic manipulation of sweet potatoes to influence primary and secondary metabolism.
Collapse
Affiliation(s)
- Soo-Yun Park
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - So Young Lee
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Jung Wook Yang
- 2Bioenergy Crop Research Institute, Rural Development Administration, Muan, Jeonnam, 58545 Korea
| | - Joon-Seol Lee
- 2Bioenergy Crop Research Institute, Rural Development Administration, Muan, Jeonnam, 58545 Korea
| | - Sung-Dug Oh
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Seonwoo Oh
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Si Myung Lee
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Myung-Ho Lim
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Soon Ki Park
- 3School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Jae-Seon Jang
- 4Department of Food & Nutrition, Gachon University, Seongnam, Gyeonggi, 13120 Korea
| | - Hyun Suk Cho
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| | - Yunsoo Yeo
- 1National Academy of Agricultural Science, Rural Development Administration, Jeonju, Jeonbuk, 54874 Korea
| |
Collapse
|
24
|
Park YJ, Thwe AA, Li X, Kim YJ, Kim JK, Arasu MV, Al-Dhabi NA, Park SU. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8862-9. [PMID: 26402168 DOI: 10.1021/acs.jafc.5b02525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Aye Aye Thwe
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Xiaohua Li
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Yeon Jeong Kim
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University , Incheon 406-772, Korea
| | | | | | - Sang Un Park
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| |
Collapse
|
25
|
Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S. Recent progress in the use of 'omics technologies in brassicaceous vegetables. FRONTIERS IN PLANT SCIENCE 2015; 6:244. [PMID: 25926843 PMCID: PMC4396356 DOI: 10.3389/fpls.2015.00244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/26/2015] [Indexed: 05/21/2023]
Abstract
Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub-optimal irradiation. This review covers recent applications of 'omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Monika Schreiner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Melanie Wiesner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| |
Collapse
|
26
|
Park Y, Kim Y. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:56-63. [PMID: 24973793 DOI: 10.1016/j.jinsphys.2014.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant.
Collapse
Affiliation(s)
- Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|