1
|
Tamburino R, Docimo T, Sannino L, Gualtieri L, Palomba F, Valletta A, Ruocco M, Scotti N. Enzyme-Based Biostimulants Influence Physiological and Biochemical Responses of Lactuca sativa L. Biomolecules 2023; 13:1765. [PMID: 38136636 PMCID: PMC10742310 DOI: 10.3390/biom13121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Biostimulants (BSs) are natural materials (i.e., organic or inorganic compounds, and/or microorganisms) having beneficial effects on plant growth and productivity, and able to improve resilience/tolerance to biotic and abiotic stresses. Therefore, they represent an innovative alternative to the phyto- and agrochemicals, being environmentally friendly and a valuable tool to cope with extreme climate conditions. The objective of this study was to investigate the effects of several biomolecules (i.e., Xylanase, β-Glucosidase, Chitinase, and Tramesan), alone or in combinations, on lettuce plant growth and quality. With this aim, the influence of these biomolecules on biomass, pigment content, and antioxidant properties in treated plants were investigated. Our results showed that Xylanase and, to a lesser extent, β-Glucosidase, have potentially biostimulant activity for lettuce cultivation, positively influencing carotenoids, total polyphenols, and ascorbic acid contents; similar effects were found with respect to antioxidative properties. Furthermore, the effect of the more promising molecules (Xylanase and β-Glucosidase) was also evaluated in kiwifruit cultured cells to test their putative role as sustainable input for plant cell biofactories. The absence of phytotoxic effects of both molecules at low doses (0.1 and 0.01 µM), and the significantly enhanced cell biomass growth, indicates a positive impact on kiwifruit cells.
Collapse
Affiliation(s)
- Rachele Tamburino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Teresa Docimo
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Lorenza Sannino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Francesca Palomba
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Nunzia Scotti
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| |
Collapse
|
2
|
Barone D, Iannuzzi CA, Forte IM, Ragosta MC, Cuomo M, Dell’Aquila M, Altieri A, Caporaso A, Camerlingo R, Rigano MM, Monti DM, Barone A, Imbimbo P, Frusciante L, Monda M, D’Angelo M, De Laurentiis M, Giordano A, Alfano L. The hydrophilic extract from a new tomato genotype (named DHO) kills cancer cell lines through the modulation of the DNA damage response induced by Campthotecin treatment. Front Oncol 2023; 13:1117262. [PMID: 37409248 PMCID: PMC10318356 DOI: 10.3389/fonc.2023.1117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction DNA double-strand breaks are the most toxic lesions repaired through the non-homologous and joining (NHEJ) or the homologous recombination (HR), which is dependent on the generation of single-strand tails, by the DNA end resection mechanism. The resolution of the HR intermediates leads to error-free repair (Gene Conversion) or the mutagenic pathways (Single Strand Annealing and Alternative End-Joining); the regulation of processes leading to the resolution of the HR intermediates is not fully understood. Methods Here, we used a hydrophilic extract of a new tomato genotype (named DHO) in order to modulate the Camptothecin (CPT) DNA damage response. Results We demonstrated increased phosphorylation of Replication Protein A 32 Serine 4/8 (RPA32 S4/8) protein in HeLa cells treated with the CPT in combination with DHO extract with respect to CPT alone. Moreover, we pointed out a change in HR intermediates resolution from Gene Conversion to Single Strand Annealing through the modified DNA repair protein RAD52 homolog (RAD52), DNA excision repair protein ERCC-1 (ERCC1) chromatin loading in response to DHO extract, and CPT co-treatment, with respect to the vehicle. Finally, we showed an increased sensitivity of HeLa cell lines to DHO extract and CPT co-treatment suggesting a possible mechanism for increasing the efficiency of cancer therapy. Discussion We described the potential role of DHO extract in the modulation of DNA repair, in response to Camptothecin treatment (CPT), favoring an increased sensitivity of HeLa cell lines to topoisomerase inhibitor therapy.
Collapse
Affiliation(s)
- Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Carmelina Antonella Iannuzzi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Maria Carmen Ragosta
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscana Tumori (ITT), Siena, Italy
| | - Maria Cuomo
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscana Tumori (ITT), Siena, Italy
| | - Milena Dell’Aquila
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscana Tumori (ITT), Siena, Italy
| | - Angela Altieri
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscana Tumori (ITT), Siena, Italy
| | - Antonella Caporaso
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscana Tumori (ITT), Siena, Italy
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Marcellino Monda
- Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Section of Human Physiology, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Margherita D’Angelo
- Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Section of Human Physiology, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscana Tumori (ITT), Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Luigi Alfano
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
3
|
Vitale L, Francesca S, Arena C, D'Agostino N, Principio L, Vitale E, Cirillo V, de Pinto MC, Barone A, Rigano MM. Multitraits evaluation of a Solanum pennellii introgression tomato line challenged by combined abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:518-528. [PMID: 36942418 DOI: 10.1111/plb.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 05/17/2023]
Abstract
Rising daily temperatures and water shortage are two of the major concerns in agriculture. In this work, we analysed the tolerance traits in a tomato line carrying a small region of the Solanum pennellii wild genome (IL12-4-SL) when grown under prolonged conditions of single and combined high temperature and water stress. When exposed to stress, IL12-4-SL showed higher heat tolerance than the cultivated line M82 at morphological, physiological, and biochemical levels. Moreover, under stress IL12-4-SL produced more flowers than M82, also characterized by higher pollen viability. In both lines, water stress negatively affected photosynthesis more than heat alone, whereas the combined stress did not further exacerbate the negative impacts of drought on this trait. Despite an observed decrease in carbon fixation, the quantum yield of PSII linear electron transport in IL12-4-SL was not affected by stress, thereby indicating that photochemical processes other than CO2 fixation acted to maintain the electron chain in oxidized state and prevent photodamage. The ability of IL12-4-SL to tolerate abiotic stress was also related to the intrinsic ability of this line to accumulate ascorbic acid. The data collected in this study clearly indicate improved tolerance to single and combined abiotic stress for IL12-4-SL, making this line a promising one for cultivation in a climate scenario characterized by frequent and long-lasting heatwaves and low rainfall.
Collapse
Affiliation(s)
- L Vitale
- National Research Council (CNR), Department of Biology, Agriculture and Food Sciences (DiSBA), Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFoM), Portici, Naples, Italy
| | - S Francesca
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - C Arena
- Department of Biology, University of Naples "Federico II", Naples, Italy
- NBFC - National Biodiversity Future Center, Palermo, Italy
| | - N D'Agostino
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - L Principio
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - E Vitale
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - V Cirillo
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - M C de Pinto
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - A Barone
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - M M Rigano
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| |
Collapse
|
4
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Francesca S, Najai S, Zhou R, Decros G, Cassan C, Delmas F, Ottosen CO, Barone A, Rigano MM. Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:32-43. [PMID: 35306328 DOI: 10.1016/j.plaphy.2022.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Drought and heat stresses are the main constrains to agricultural crop production worldwide. Precise and efficient phenotyping is essential to understand the complexity of plant responses to abiotic stresses and to identify the best management strategies to increase plant tolerance. In the present study, two phenotyping platforms were used to investigate the effects of a protein hydrolysate-based biostimulant on the physiological response of two tomato genotypes ('E42' and 'LA3120') subjected to heat, drought, or combined stress. The free amino acids in the biostimulant, or other molecules, stimulated growth in treated plants subjected to combined stress, probably promoting endogenous phytohormonal biosynthesis. Moreover, biostimulant application increased the net photosynthetic rate and maximal efficiency of PSII photochemistry under drought, possibly related to the presence of glycine betaine and aspartic acid in the protein hydrolysate. Increased antioxidant content and a decreased accumulation of hydrogen peroxide, proline, and soluble sugars in treated plants under drought and combined stress further demonstrated that the biostimulant application mitigated the negative effects of abiotic stresses. Generally, the response to biostimulant in plants had a genotype-dependent effect, with 'E42' showing a stronger response to protein hydrolysate application than 'LA3120'. Altogether, in this study a fine and multilevel phenotyping revealed increased plant performances under water-limited conditions and elevated temperatures induced by a protein hydrolysate, thus highlighting the great potential biostimulants have in improving plant resilience to abiotic stresses.
Collapse
Affiliation(s)
- Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - Sabri Najai
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Guillaume Decros
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Cedric Cassan
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33882, Villenave d'Ornon, France
| | - Frederic Delmas
- University of Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | | | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy.
| |
Collapse
|
6
|
Annunziata A, Ferraro G, Cucciolito ME, Imbimbo P, Tuzi A, Monti DM, Merlino A, Ruffo F. Halo complexes of gold( i) containing glycoconjugate carbene ligands: synthesis, characterization, cytotoxicity and interaction with proteins and DNA model systems. Dalton Trans 2022; 51:10475-10485. [DOI: 10.1039/d2dt00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New neutral Au(i) glycoconjugate carbene complexes show stability in aqueous solutions and interact with both DNA and protein model systems. Cytotoxicity studies demonstrate that the activity depends on the halide ancillary ligand.
Collapse
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Giarita Ferraro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Maria Elena Cucciolito
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Paola Imbimbo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Daria Maria Monti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
7
|
D'Elia L, Imbimbo P, Liberti D, Bolinesi F, Mangoni O, Pollio A, Olivieri G, Monti DM. Thermo resistant antioxidants from photoautotrophic microorganisms: screening and characterization. World J Microbiol Biotechnol 2021; 37:215. [PMID: 34762205 DOI: 10.1007/s11274-021-03180-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The demand for natural antioxidants to be used in food industry is increasing, as synthetic antioxidants are toxic and have high production costs. Specifically, food processing and preservation require antioxidants resistant to thermal sterilization processes. In this study, twenty-five strains among microalgae and cyanobacteria were screened as antioxidants producers. The species Enallax sp., Synechococcus bigranulatus and Galdieria sulphuraria showed the highest content of chlorophyll a and total carotenoids. In vitro stability and antioxidant activity of the ethanolic extracts were performed. The results revealed that pigments present in the extracts, obtained from the previously mentioned species, were stable at room temperature and exhibited in vitro free radical scavenging potential with IC50 values of 0.099 ± 0.001, 0.048 ± 0.001 and 0.13 ± 0.02 mg mL-1, respectively. Biocompatibility assay showed that the extracts were not toxic on immortalized cell lines. The antioxidant activity was also tested on a cell-based model by measuring intracellular ROS levels after sodium arsenite treatment. Noteworthy, extracts were able to exert the same protective effect, before and after the pasteurization process. Results clearly indicate the feasibility of obtaining biologically active and thermostable antioxidants from microalgae. Green solvents can be used to obtain thermo-resistant antioxidants from cyanobacteria and microalgae which can be used in the food industry. Thus, the substitution of synthetic pigments with natural ones is now practicable.
Collapse
Affiliation(s)
- Luigi D'Elia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Davide Liberti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Giuseppe Olivieri
- Bioprocess Engineering Group, Wageningen University and Research, Droevendaalsesteeg 1, 6700AA, Wageningen, The Netherlands. .,Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy.
| |
Collapse
|
8
|
Effects of Breaking Methods on the Viscosity, Rheological Properties and Nutritional Value of Tomato Paste. Foods 2021; 10:foods10102395. [PMID: 34681441 PMCID: PMC8535101 DOI: 10.3390/foods10102395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Ultrasound-assisted processing has potential application advantages as an emerging technology for preparing tomato paste. This work explored the influence of ultrasound break at 22 °C (US-Break-22) and 65 °C (US-Break-65) on the viscosity, rheological properties and nutritional values of newly prepared tomato paste, compared with traditional thermal break at 65 °C (Break-65) and 90 °C (Break-90). Results showed that the US-Break-65 paste had the largest apparent viscosity, yield stress, consistency coefficient, solid-like nature, and large amplitude oscillatory shear behavior, followed by the US-Break-22 paste, Break-90 paste, and Break-65 paste. Based on the results of the pectin-related enzymes, particle size, and serum pectin of the pastes, it was revealed that the above-mentioned properties were mainly determined by the particle size and pectin content in their serum. The level of ascorbic acid followed the order of US-Break-22 paste > US-Break-65 paste > Break-65 paste > Break-90 paste. The level of total carotenoids followed the order of US-Break-22 paste ≈ US-Break-65 paste > Break-90 paste ≈ Break-65 paste. The level of total cis-carotenoids followed the order of US-Break-65 paste > US-Break-22 paste > Break-90 paste > Break-65 paste. The level of phenolics and antioxidant activities followed the same order of US-Break-22 paste > US-Break-65 paste > Break-90 paste > Break-65 paste. Overall, the viscosity, rheological properties and nutritional values of the tomato pastes prepared by US-Break-65 and US-Break-22 were significantly higher than those prepared by Break-65 and Break-90. Therefore, ultrasound assisted processing can prepare high quality tomato paste and can be widely implemented in the tomato paste processing industry.
Collapse
|
9
|
Scientometric and Methodological Analysis of the Recent Literature on the Health-Related Effects of Tomato and Tomato Products. Foods 2021; 10:foods10081905. [PMID: 34441682 PMCID: PMC8393598 DOI: 10.3390/foods10081905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The health benefits of tomato, a vegetable consumed daily in human diets, have received great attention in the scientific community, and a great deal of experiments have tested their utility against several diseases. Herein, we present a scientometric analysis of recent works aimed to estimate the biological effects of tomato, focusing on bibliographic metadata, type of testers, target systems, and methods of analysis. A remarkably variable array of strategies was reported, including testers obtained by standard and special tomatoes, and the use of in vitro and in vivo targets, both healthy and diseased. In vitro, 21 normal and 36 cancer human cell lines derived from 13 different organs were used. The highest cytotoxic effects were reported on cancer blood cells. In vivo, more experiments were carried out with murine than with human systems, addressing healthy individuals, as well as stressed and diseased patients. Multivariate analysis showed that publications in journals indexed in the agriculture category were associated with the use of fresh tomatoes; conversely, medicine and pharmacology journals were associated with the use of purified and formulate testers. Studies conducted in the United States of America preferentially adopted in vivo systems and formulates, combined with blood and tissue analysis. Researchers in Italy, China, India, and Great Britain mostly carried out in vitro research using fresh tomatoes. Gene expression and proteomic analyses were associated with China and India. The emerging scenario evidences the somewhat dichotomic approaches of plant geneticists and agronomists and that of cell biologists and medicine researchers. A higher integration between these two scientific communities would be desirable to foster the assessment of the benefits of tomatoes to human health.
Collapse
|
10
|
A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. PLANTS 2021; 10:plants10040783. [PMID: 33923424 PMCID: PMC8073256 DOI: 10.3390/plants10040783] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Abiotic stresses adversely affect crop production causing yield reductions in important crops, including tomato (Solanum lycopersicum L.). Among the different abiotic stresses, drought is considered to be the most critical one, since limited water availability negatively impacts plant growth and development, especially in arid and semi-arid areas. The aim of this study was to understand how biostimulants may interact with critical physiological response mechanisms in tomato under limited water availability and to define strategies to improve tomato performances under drought stress. We investigated the physiological responses of the tomato genotype ‘E42’ grown in open fields under optimal conditions (100% irrigation) and limited water availability (50% irrigation) treated or not with a novel protein hydrolysate-based biostimulant (CycoFlow, Agriges, BN, Italy). Plants treated with the protein hydrolysate showed a better water status and pollen viability, which also resulted in higher yield under drought stress compared to untreated plants. The treatment with the biostimulant had also an effect on antioxidant contents and activity in leaves and fruits depending on the level of irrigation provided. Altogether, these results indicate that the application of protein hydrolysates on tomato improved plant performances under limited water availability and in different experimental fields.
Collapse
|
11
|
Francesca S, Cirillo V, Raimondi G, Maggio A, Barone A, Rigano MM. A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2021. [PMID: 33923424 DOI: 10.3390/iecps2020-08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Abiotic stresses adversely affect crop production causing yield reductions in important crops, including tomato (Solanum lycopersicum L.). Among the different abiotic stresses, drought is considered to be the most critical one, since limited water availability negatively impacts plant growth and development, especially in arid and semi-arid areas. The aim of this study was to understand how biostimulants may interact with critical physiological response mechanisms in tomato under limited water availability and to define strategies to improve tomato performances under drought stress. We investigated the physiological responses of the tomato genotype 'E42' grown in open fields under optimal conditions (100% irrigation) and limited water availability (50% irrigation) treated or not with a novel protein hydrolysate-based biostimulant (CycoFlow, Agriges, BN, Italy). Plants treated with the protein hydrolysate showed a better water status and pollen viability, which also resulted in higher yield under drought stress compared to untreated plants. The treatment with the biostimulant had also an effect on antioxidant contents and activity in leaves and fruits depending on the level of irrigation provided. Altogether, these results indicate that the application of protein hydrolysates on tomato improved plant performances under limited water availability and in different experimental fields.
Collapse
Affiliation(s)
- Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
12
|
Genomic Dissection of a Wild Region in a Superior Solanum pennellii Introgression Sub-Line with High Ascorbic Acid Accumulation in Tomato Fruit. Genes (Basel) 2020; 11:genes11080847. [PMID: 32722275 PMCID: PMC7466095 DOI: 10.3390/genes11080847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
The Solanum pennellii introgression lines (ILs) have been exploited to map quantitative trait loci (QTLs) and identify favorable alleles that could improve fruit quality traits in tomato varieties. Over the past few years, ILs exhibiting increased content of ascorbic acid in the fruit have been selected, among which the sub-line R182. The aims of this work were to identify the genes of the wild donor S. pennellii harbored by the sub-line and to detect genes controlling ascorbic acid accumulation by using genomics tools. A Genotyping-By-Sequencing (GBS) approach confirmed that no wild introgressions were present in the sub-line besides one region on chromosome 7. By using a dense single nucleotide polymorphism (SNP) map obtained by RNA sequencing (RNA-Seq), the wild region of the sub-line was finely identified; thus, defining 39 wild genes that replaced 33 genes of the ILs genetic background (cv. M82). The differentially expressed genes mapping in the region and the variants detected among the cultivated and the wild alleles evidenced the potential role of the novel genes present in the wild region. Interestingly, one upregulated gene, annotated as a major facilitator superfamily protein, showed a novel structure in R182, with respect to the parental lines. These genes will be further investigated using gene editing strategies.
Collapse
|
13
|
Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introgression lines (ILs) of eggplant (Solanum melongena) represent a resource of high value for breeding and the genetic analysis of important traits. We have conducted a phenotypic evaluation in two environments (open field and screenhouse) of 16 ILs from the first set of eggplant ILs developed so far. Each of the ILs carries a single marker-defined chromosomal segment from the wild eggplant relative S. incanum (accession MM577) in the genetic background of S. melongena (accession AN-S-26). Seventeen agronomic traits were scored to test the performance of ILs compared to the recurrent parent and of identifying QTLs for the investigated traits. Significant morphological differences were found between parents, and the hybrid was heterotic for vigour-related traits. Despite the presence of large introgressed fragments from a wild exotic parent, individual ILs did not display differences with respect to the recipient parent for most traits, although significant genotype × environment interaction (G × E ) was detected for most traits. Heritability values for the agronomic traits were generally low to moderate. A total of ten stable QTLs scattered across seven chromosomes was detected. For five QTLs, the S. incanum introgression was associated with higher mean values for plant- and flower-related traits, including vigour prickliness and stigma length. For one flower- and four fruit-related-trait QTLs, including flower peduncle and fruit pedicel lengths and fruit weight, the S. incanum introgression was associated with lower mean values for fruit-related traits. Evidence of synteny to other previously reported in eggplant populations was found for three of the fruit-related QTLs. The other seven stable QTLs are new, demonstrating that eggplant ILs are of great interest for eggplant breeding under different environments.
Collapse
|
14
|
The Use of a Plant-Based Biostimulant Improves Plant Performances and Fruit Quality in Tomato Plants Grown at Elevated Temperatures. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030363] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abiotic stresses can cause a substantial decline in fruit quality due to negative impacts on plant growth, physiology and reproduction. The objective of this study was to verify if the use of a biostimulant based on plant and yeast extracts, rich in amino acids and that contains microelements (boron, zinc and manganese) can ensure good crop yield and quality in tomato plants grown at elevated temperatures (up to 42 °C). We investigated physiological responses of four different tomato landraces that were cultivated under plastic tunnel and treated with the biostimulant CycoFlow. The application of the biostimulant stimulated growth (plants up to 48.5% taller) and number of fruits (up to 105.3%). In plants treated with the biostimulant, antioxidants contents were higher compared to non-treated plants, both in leaves and in fruits. In particular, the content of ascorbic acid increased after treatments with CycoFlow. For almost all the traits studied, the effect of the biostimulant depended on the genotype it was applied on. Altogether, the use of the biostimulant on tomato plants led to better plant performances at elevated temperatures, that could be attributed also to a stronger antioxidant defence system, and to a better fruit nutritional quality.
Collapse
|
15
|
Gürbüz Çolak N, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110393. [PMID: 32005398 DOI: 10.1016/j.plantsci.2019.110393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The nutritional value of a crop lies not only in its protein, lipid, and sugar content but also involves compounds such as the antioxidants lycopene, β-carotene and vitamin C. In the present study, wild tomato Solanum pimpinellifolium LA 1589 was assessed for its potential to improve antioxidant content. This wild species was found to be a good source of alleles for increasing β-carotene, lycopene, vitamin C and vitamin E contents in cultivated tomato. Characterization of an LA 1589 interspecific inbred backcross line (IBL) mapping population revealed many individuals with transgressive segregation for the antioxidants confirming the usefulness of this wild species for breeding of these traits. Molecular markers were used to identify QTLs for the metabolites in the IBL population. In total, 64 QTLs were identified for the antioxidants and their locations were compared to the map positions of previously identified QTLs for confirmation. Four (57 %) of the carotenoid QTLs, four (36 %) of the vitamin QTLs, and 11 (25 %) of the phenolic acid QTLs were supported by previous studies. Furthermore, several potential candidate genes were identified for vitamins C and E and phenolic acids loci. These candidate genes might be used as markers in breeding programs to increase tomato's antioxidant content.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | | | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey.
| |
Collapse
|
16
|
Cheng G, Chang P, Shen Y, Wu L, El-Sappah AH, Zhang F, Liang Y. Comparing the Flavor Characteristics of 71 Tomato ( Solanum lycopersicum) Accessions in Central Shaanxi. FRONTIERS IN PLANT SCIENCE 2020; 11:586834. [PMID: 33362814 PMCID: PMC7758415 DOI: 10.3389/fpls.2020.586834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/06/2020] [Indexed: 05/21/2023]
Abstract
Flavor is an important quality of mature tomato fruits. Compared with heirloom tomatoes, modern commercial tomato cultivars are considerably less flavorful. This study aimed to compare the flavor of 71 tomato accessions (8 pink cherry, PC; 11 red cherry, RC; 15 pink large-fruited, PL; and 37 red large-fruited, RL) using hedonism scores and odor activity values. Taste compounds were detected using high-performance liquid chromatography. Volatiles were detected using gas chromatography-olfactometry-mass spectrometry. The flavor of tomato accessions can be evaluated using the DTOPSIS analysis method. According to the results of DTOPSIS analysis, 71 tomato accessions can be divided into 4 classes. Tomato accessions PL11, PC4, PC2, PC8, RL35, RC6, and RC10 had better flavor; accessions PC4, PC8, RC10, RL2, and RL35 had better tomato taste; and accessions PL11, PC2, and RC6 had better tomato odor. The concentrations of total soluble solids, fructose, glucose, and citric acid were shown to positively contribute to tomato taste. Tomato odor was mainly derived from 15 volatiles, namely, 1-hexanol, (Z)-3-hexen-1-ol, hexanal, (E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, (E,E)-2,4-decadienal, (Z)-3,7-dimethyl-2,6-octadieal, 2,6,6-timethyl-1-cyclohexene-1-carboxaldehyde, (2E)-3-(3-pentyl-2-oxiranyl)acrylaldehyde, 6-methyl-5-hepten-2-one, (E)-6,10-dimetyl-5,9-undecadien-2-one, methyl salicylate, 4-allyl-2-methoxyphenol, and 2-isobutylthiazole. Significant positive correlations (P < 0.05) were detected between the compound concentrations and flavor scores. The above-mentioned compounds can be used as parameters for the evaluation of flavor characteristics and as potential targets to improve the flavor quality of tomato varieties.
Collapse
Affiliation(s)
- Guoting Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Peipei Chang
- Institute of Agricultural Sciences, Dezhou, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Liting Wu
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Ahmed H. El-Sappah
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- *Correspondence: Fei Zhang,
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- Yan Liang,
| |
Collapse
|
17
|
Gao R, Ye F, Wang Y, Lu Z, Yuan M, Zhao G. The spatial-temporal working pattern of cold ultrasound treatment in improving the sensory, nutritional and safe quality of unpasteurized raw tomato juice. ULTRASONICS SONOCHEMISTRY 2019; 56:240-253. [PMID: 31101259 DOI: 10.1016/j.ultsonch.2019.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
In considering the adverse nutritional and flavor consequences of thermal pasteurization on fruit juices, freshly squeezed and unpasteurized fruit juices, commonly called raw juices, are of increasing demand as they are served in bars, restaurants and at home. Apparently, due to lack of controlled processing regime as did in a juice factory, the raw juice often undergoes a rapid phase separation and is at the risk of microbial unsafety. To this end, an attempt of cold ultrasound treatment (CUT, 87.52 W/cm2, 10 °C) was implemented to a raw tomato juice up to 30 min. Appreciatively, the physical stability, nutritional value and microbial safety substantially improved. On a CUT time scale, cloud stability and total phenolic content continuously increased; the total plate count was adversely altered; the rheological parameters (viscosity, thixotropy and shear-thinning tendency) and total carotenoids obtained shared a parabolic changing pattern but peaked at 15 min and 10 min, respectively. Finally, the ascorbic acid sharply increased at an earlier stage (5 min), and then remained stable throughout the whole process. Notably, the occurrences of these improvements are of spatial-temporal nature and resulted from different cavitation induced stress fields. At the initial stage, CUT chiefly worked via the mechanical field with the particles in pulp phase, making them smaller and releasing the soluble materials into serum phase. When the particles larger than approximately of 160 μm were completely disintegrated, the CUT entered its second stage and mainly functioned in the serum phase via both mechanical and chemical fields. As a result, the serum pectin and carotenoids were depolymerized and degraded, respectively. The present results are valuable in uncovering the mechanism and kinetics underlying the ultrasound treatment of fruit juices and the present CUT is highly recommended due to its high maneuverability and excellent performance.
Collapse
Affiliation(s)
- Ruiping Gao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yulin Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhiqiang Lu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Maoyi Yuan
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Center of Regional Foods, Chongqing 400715, People's Republic of China.
| |
Collapse
|
18
|
D'Amelia V, Raiola A, Carputo D, Filippone E, Barone A, Rigano MM. A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits. Sci Rep 2019; 9:3699. [PMID: 30842571 PMCID: PMC6403429 DOI: 10.1038/s41598-019-40142-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/11/2019] [Indexed: 11/08/2022] Open
Abstract
Carotenoid accumulation in tomato (Solanum lycopersicum) fruits is influenced by environmental stimuli and hormonal signals. However, information on the relative regulatory mechanisms are scanty since many molecular players of the carotenoid biosynthetic pathway are still unknown. Here, we reported a basic Helix-Loop-Helix transcription factor, named SlARANCIO (SlAR), whose silencing influences carotenoid accumulation in tomato fruits. The SlAR gene was found in the S. pennellii introgression line (IL) 12-4SL that holds the carotenoid QTL lyc12.1. We observed that the presence of the wild region in a cultivated genetic background led to a decrease in total carotenoid content of IL12-4SL fruits. To get insights into the function of SlAR, a quick reverse genetic approach was carried out. Virus-induced gene silencing of SlAR in S. lycopersicum M82 and MicroTom fruits reproduced the same phenotype observed in IL12-4SL, i.e. decreased content of lycopene and total carotenoids. Vice versa, the overexpression of SlAR in Nicotiana benthamiana leaves increased the content of total carotenoids and chlorophylls. Our results, combined with public transcriptomic data, highly suggest that SlAR acts indirectly on the carotenoid pathway and advances current knowledge on the molecular regulators controlling lyc12.1 and, potentially, precursors of carotenoid biosynthesis.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Edgardo Filippone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy.
| |
Collapse
|
19
|
Calafiore R, Aliberti A, Ruggieri V, Olivieri F, Rigano MM, Barone A. Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. FRONTIERS IN PLANT SCIENCE 2019; 10:190. [PMID: 30853967 PMCID: PMC6395448 DOI: 10.3389/fpls.2019.00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
The Solanum pennellii Introgression Line (IL) population can be exploited to identify favorable alleles that can improve yield and fruit quality traits in commercial tomato varieties. Over the past few years, we have selected ILs that exhibit increased content of antioxidant compounds in the fruit compared to the cultivar M82, which represents the genetic background in which the different wild regions of the S. pennellii ILs were included. Recently, we have identified seven sub-lines of the IL7-3 accumulating different amounts of antioxidants in the ripe fruit. Since the wild region carried on chromosome 7 induces a low fruit production in IL7-3, the first aim of the present work was to evaluate yield performances of the selected sub-lines in three experimental fields located in the South of Italy. Another aim was to confirm in the same lines the high levels of antioxidants and evaluate other fruit quality traits. On red ripe fruit, the levels of soluble solids content, firmness, and ascorbic acid (AsA) were highly variable among the sub-lines grown in three environmental conditions, evidencing a significant genotype by environment interaction for soluble solids and AsA content. Only one sub-line (coded R182) exhibited a significantly higher firmness, even though no differences were observed for this trait between the parental lines M82 and IL7-3. The same sub-line showed significantly higher AsA content compared to M82, thus resembling IL7-3. Even though IL7-3 always exhibited a significantly lower yield, all the sub-lines showed yield variability over the three trials. Interestingly, the sub-line R182, selected for its better performances in terms of fruit quality, in all the trials showed a production comparable to that of the control line M82. A group of species-specific molecular markers was tested on R182 and on the parental genotypes in order to better define the wild genomic regions carried by the elite line R182. In these regions three candidate genes that could increase the level of AsA in the fruit were identified. In the future, the line R182 could be used as pre-breeding material in order to obtain new varieties improved for nutritional traits.
Collapse
Affiliation(s)
| | | | | | | | | | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
20
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
21
|
Sacco A, Raiola A, Calafiore R, Barone A, Rigano MM. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genomics 2019; 20:43. [PMID: 30646856 PMCID: PMC6332538 DOI: 10.1186/s12864-019-5428-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 01/31/2023] Open
Abstract
Background Tomato is an economically important crop with fruits that are a significant source of bioactive compounds such as ascorbic acid and phenolics. Nowadays, the majority of the enzymes of the biosynthetic pathways and of the structural genes controlling the production and the accumulation of antioxidants in plants are known; however, the mechanisms that regulate the expression of these genes are yet to be investigated. Here, we analyzed the transcriptomic changes occurring during ripening in the fruits of two tomato cultivars (E1 and E115), characterized by a different accumulation of antioxidants, in order to identify candidate genes potentially involved in the biosynthesis of ascorbic acid and phenylpropanoids. Results RNA sequencing analyses allowed identifying several structural and regulator genes putatively involved in ascorbate and phenylpropanoids biosynthesis in tomato fruits. Furthermore, transcription factors that may control antioxidants biosynthesis were identified through a weighted gene co-expression network analysis (WGCNA). Results obtained by RNA-seq and WGCNA analyses were further confirmed by RT-qPCR carried out at different ripening stages on ten cultivated tomato genotypes that accumulate different amount of bioactive compounds in the fruit. These analyses allowed us to identify one pectin methylesterase, which may affect the release of pectin-derived D-Galacturonic acid as metabolic precursor of ascorbate biosynthesis. Results reported in the present work allowed also identifying one L-ascorbate oxidase, which may favor the accumulation of reduced ascorbate in tomato fruits. Finally, the pivotal role of the enzymes chalcone synthases (CHS) in controlling the accumulation of phenolic compounds in cultivated tomato genotypes and the transcriptional control of the CHS genes exerted by Myb12 were confirmed. Conclusions By using transcriptomic analyses, candidate genes encoding transcription factors and structural genes were identified that may be involved in the accumulation of ascorbic acid and phenylpropanoids in tomato fruits of cultivated genotypes. These analyses provided novel insights into the molecular mechanisms controlling antioxidants accumulation in ripening tomato fruits. The structural genes and regulators here identified could also be used as efficient genetic markers for selecting high antioxidants tomato cultivars. Electronic supplementary material The online version of this article (10.1186/s12864-019-5428-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Sacco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Roberta Calafiore
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy.
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
22
|
Petruk G, Gifuni I, Illiano A, Roxo M, Pinto G, Amoresano A, Marzocchella A, Piccoli R, Wink M, Olivieri G, Monti DM. Simultaneous production of antioxidants and starch from the microalga Chlorella sorokiniana. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Esua OJ, Chin NL, Yusof YA, Sukor R. Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chem 2018; 270:113-122. [PMID: 30174024 DOI: 10.1016/j.foodchem.2018.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
The effects of a novel technology utilizing a simultaneous combination of Ultraviolet-C radiation and ultrasound energy postharvest treatment on tomato bioactive compounds during 28 days' storage period was investigated by varying Ultraviolet-C radiation intensities of 639.37 or 897.16 µW/cm2 at a constant ultrasound intensity of 13.87 W/L from a 40 kHz-1 kW transducer. A minimal treatment time of 240 s at Ultraviolet-C dosage of 2.15 kJ/m2 was observed to provoke a considerable increase in bioactive compounds content, proportionated to treatment time. Although treatment led to temperature increase in the system reaching 39.33 °C due to heat generation by ultrasonic cavitation, the extractability and biosynthesis of phytochemicals were enhanced resulting in 90%, 30%, 60%, 20%, and 36% increases in lycopene, total phenols, vitamin C, hydrophilic and lipophilic antioxidant activities respectively. Results present the potential use of the combined non-thermal technologies as post-harvest treatment to improve bioactive compounds and antioxidant activity during storage.
Collapse
Affiliation(s)
- Okon Johnson Esua
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Agricultural and Food Engineering, University of Uyo, Uyo, Akwa Ibom 520101, Nigeria.
| | - Nyuk Ling Chin
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Rashidah Sukor
- Department of Food Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
24
|
Xu XY, Shen XT, Yuan XJ, Zhou YM, Fan H, Zhu LP, Du FY, Sadilek M, Yang J, Qiao B, Yang S. Metabolomics Investigation of an Association of Induced Features and Corresponding Fungus during the Co-culture of Trametes versicolor and Ganoderma applanatum. Front Microbiol 2018; 8:2647. [PMID: 29375514 PMCID: PMC5767234 DOI: 10.3389/fmicb.2017.02647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/19/2017] [Indexed: 11/26/2022] Open
Abstract
The co-culture of Trametes versicolor and Ganoderma applanatum is a model of intense basidiomycete interaction, which induces many newly synthesized or highly produced features. Currently, one of the major challenges is an identification of the origin of induced features during the co-culture. Herein, we report a 13C-dynamic labeling analysis used to determine an association of induced features and corresponding fungus even if the identities of metabolites were not available or almost nothing was known of biochemical aspects. After the co-culture of T. versicolor and G. applanatum for 10 days, the mycelium pellets of T. versicolor and G. applanatum were sterilely harvested and then mono-cultured in the liquid medium containing half fresh medium with 13C-labeled glucose as carbon source and half co-cultured supernatants collected on day 10. 13C-labeled metabolome analyzed by LC-MS revealed that 31 induced features including 3-phenyllactic acid and orsellinic acid were isotopically labeled in the mono-culture after the co-culture stimulation. Twenty features were derived from T. versicolor, 6 from G. applanatum, and 5 features were synthesized by both T. versicolor and G. applanatum. 13C-labeling further suggested that 12 features such as previously identified novel xyloside [N-(4-methoxyphenyl)formamide 2-O-beta-D-xyloside] were likely induced through the direct physical interaction of mycelia. Use of molecular network analysis combined with 13C-labeling provided an insight into the link between the generation of structural analogs and producing fungus. Compound 1 with m/z 309.0757, increased 15.4-fold in the co-culture and observed 13C incorporation in the mono-culture of both T. versicolor and G. applanatum, was purified and identified as a phenyl polyketide, 2,5,6-trihydroxy-4, 6-diphenylcyclohex-4-ene-1,3-dione. The biological activity study indicated that this compound has a potential to inhibit cell viability of leukemic cell line U937. The current work sets an important basis for further investigations including novel metabolites discovery and biosynthetic capacity improvement.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Ting Shen
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Jie Yuan
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yuan-Ming Zhou
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Li-Ping Zhu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Feng-Yu Du
- School of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Song Yang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
25
|
Rigano MM, Lionetti V, Raiola A, Bellincampi D, Barone A. Pectic enzymes as potential enhancers of ascorbic acid production through the D-galacturonate pathway in Solanaceae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:55-63. [PMID: 29241567 DOI: 10.1016/j.plantsci.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 05/24/2023]
Abstract
The increase of L-Ascorbic Acid (AsA) content in tomato (Solanum lycopersicum) is a common goal in breeding programs due to its beneficial effect on human health. To shed light into the regulation of fruit AsA content, we exploited a Solanum pennellii introgression line (IL12-4-SL) harbouring one quantitative trait locus that increases the content of total AsA in the fruit. Biochemical and transcriptomic analyses were carried out in fruits of IL12-4-SL in comparison with the cultivated line M82 at different stages of ripening. AsA content was studied in relation with pectin methylesterase (PME) activity and the degree of pectin methylesterification (DME). Our results indicated that the increase of AsA content in IL12-4-SL fruits was related with pectin de-methylesterification/degradation. Specific PME, polygalacturonase (PG) and UDP-D-glucuronic-acid-4-epimerase (UGlcAE) isoforms were proposed as components of the D-galacturonate pathway leading to AsA biosynthesis. The relationship between AsA content and PME activity was also exploited in PMEI tobacco plants expressing a specific PME inhibitor (PMEI). Here we report that tobacco PMEI plants, altered in PME activity and degree of pectin methylesterification, showed a reduction in low methylesterified pectic domains and exhibited a reduced AsA content. Overall, our results provide novel biochemical and genetic traits for increasing antioxidant content by marker-assisted selection in the Solanaceae family.
Collapse
Affiliation(s)
- Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy
| | - Daniela Bellincampi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy.
| |
Collapse
|
26
|
Malvidin and cyanidin derivatives from açai fruit ( Euterpe oleracea Mart. ) counteract UV-A-induced oxidative stress in immortalized fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:42-51. [DOI: 10.1016/j.jphotobiol.2017.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022]
|
27
|
Del Giudice R, Petruk G, Raiola A, Barone A, Monti DM, Rigano MM. Carotenoids in fresh and processed tomato (Solanum lycopersicum) fruits protect cells from oxidative stress injury. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1616-1623. [PMID: 27434883 DOI: 10.1002/jsfa.7910] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lipophilic antioxidants in tomato (Solanum lycopersicum) fruits exert important functions in reducing the risk of human diseases. Here the effect of thermal processing on the antioxidant activity of lipophilic extracts from the commercial tomato hybrid 'Zebrino' was analysed. Carotenoid content and lipophilic antioxidant activity were determined and the ability of tomato extracts in rescuing cells from oxidative stress was assessed. RESULTS Lipophilic antioxidant activity was completely retained after heat treatment and extracts were able to mitigate the detrimental effect induced by oxidative stress on different cell lines. Lycopene alone was able to rescue cells from oxidative stress, even if to a lower extent compared with tomato extracts. These results were probably due to the synergistic effect of tomato compounds in protecting cells from oxidative stress injury. CONCLUSION The current study provides valuable insights into the health effect of the dietary carotenoids present in fresh and processed tomato fruits. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia 4, I-80126, Naples, Italy
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia 4, I-80126, Naples, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, I-80055, Portici, Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, I-80055, Portici, Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia 4, I-80126, Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, I-80055, Portici, Naples, Italy
| |
Collapse
|
28
|
Rigano MM, Raiola A, Docimo T, Ruggieri V, Calafiore R, Vitaglione P, Ferracane R, Frusciante L, Barone A. Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato ( Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions. FRONTIERS IN PLANT SCIENCE 2016; 7:1484. [PMID: 27757117 PMCID: PMC5047917 DOI: 10.3389/fpls.2016.01484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/20/2016] [Indexed: 05/02/2023]
Abstract
Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux toward the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82. These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways toward the biosynthesis of phenolic acids in the pyramided lines. Moreover, analyses here carried out suggest the presence in the introgression regions of novel regulatory proteins, such as one Myb4 detected on chromosome 7 and one bHLH detected in chromosome 12. Overall our data indicate that structural and regulatory genes identified in this study might have a key role for the manipulation of the phenylpropanoid metabolic pathway in tomato fruit.
Collapse
Affiliation(s)
- Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Teresa Docimo
- Istituto di Bioscienze e BioRisorse, UOS Portici, Consiglio Nazionale delle RicercheNaples, Italy
| | - Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Roberta Calafiore
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| |
Collapse
|
29
|
Petruk G, Raiola A, Del Giudice R, Barone A, Frusciante L, Rigano MM, Monti DM. An ascorbic acid-enriched tomato genotype to fight UVA-induced oxidative stress in normal human keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:284-9. [PMID: 27599115 DOI: 10.1016/j.jphotobiol.2016.08.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/20/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022]
Abstract
UVA radiations contribute up to 95% of the total UV exposure and are known to induce cell damage, leading to apoptosis. Since the benefic effects of ascorbic acid on human health are well known, a new tomato genotype (named DHO4), highly rich in ascorbic acid, has been recently obtained. Here, we compared the effects of ascorbic acid and hydrophilic DHO4 extracts in protecting human keratinocytes exposed to UVA stress. Keratinocytes were pre-incubated with ascorbic acid or with extracts from the ascorbic acid enriched tomato genotype and irradiated with UVA light. Then, ROS production, intracellular GSH and lipid peroxidation levels were quantified. Western blots were carried out to evaluate mitogen-activated protein kinases cascade, activation of caspase-3 and inflammation levels. We demonstrated that ROS, GSH and lipid peroxidation levels were not altered in cell exposed to UVA stress when cells were pre-treated with ascorbic acid or with tomato extracts. In addition, no evidence of apoptosis and inflammation were observed in irradiated pre-treated cells. Altogether, we demonstrated the ability of an ascorbic acid enriched tomato genotype to counteract UVA-oxidative stress on human keratinocytes. This protective effect is due to the high concentration of vitamin C that acts as free radical scavenger. This novel tomato genotype may be used as genetic material in breeding schemes to produce improved varieties with higher antioxidant levels.
Collapse
Affiliation(s)
- Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126 Naples, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy
| | - Rita Del Giudice
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126 Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy.
| |
Collapse
|
30
|
Impact of Wild Loci on the Allergenic Potential of Cultivated Tomato Fruits. PLoS One 2016; 11:e0155803. [PMID: 27182705 PMCID: PMC4868316 DOI: 10.1371/journal.pone.0155803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/14/2016] [Indexed: 11/21/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most extensively consumed vegetables but, unfortunately, it is also able to induce allergic reactions. In the past, it has been shown that the choice of tomato cultivar significantly influenced the allergic reaction of tomato allergic subjects. In this study we investigated the allergenic potential of the cultivated tomato line M82 and of two selected lines carrying small chromosome regions from the wild species Solanum pennellii (i.e. IL7-3 and IL12-4). We evaluated the positive interactions of IgEs of allergic subjects in order to investigate the different allergenic potential of the lines under investigation. We used proteomic analyses in order to identify putative tomato allergens. In addition, bioinformatic and transcriptomic approaches were applied in order to analyse the structure and the expression profiles of the identified allergen-encoding genes. These analyses demonstrated that fruits harvested from the two selected introgression lines harbour a different allergenic potential as those from the cultivated genotype M82. The different allergenicity found within the three lines was mostly due to differences in the IgE recognition of a polygalacturonase enzyme (46 kDa), one of the major tomato allergens, and of a pectin methylesterase (34 kDa); both the proteins were more immunoreactive in IL7-3 compared to IL12-4 and M82. The observed differences in the allergenic potential were mostly due to line-dependent translational control or post-translational modifications of the allergens. We demonstrated, for the first time, that the introgression from a wild species (S. pennellii) in the genomic background of a cultivated tomato line influences the allergenic properties of the fruits. Our findings could support the isolation of favorable wild loci promoting low allergenic potential in tomato.
Collapse
|
31
|
Ma Y, Kan G, Zhang X, Wang Y, Zhang W, Du H, Yu D. Quantitative Trait Loci (QTL) Mapping for Glycinin and β-Conglycinin Contents in Soybean (Glycine max L. Merr.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3473-83. [PMID: 27070305 DOI: 10.1021/acs.jafc.6b00167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Compared to β-conglycinin, glycinin contains 3-4 times the methionine and cysteine (sulfur-containing amino acids), accounting for approximately 40 and 30%, respectively, of the total storage protein in soybean. Increasing the soybean storage protein content while improving the ratio of glycinin to β-conglycinin is of great significance for soybean breeding and soy food products. The objective of this study is to analyze the genetic mechanism regulating the glycinin and β-conglycinin contents of soybean by using a recombinant inbred line (RIL) population derived from a cross between Kefeng No. 1 and Nannong 1138-2. Two hundred and twenty-one markers were used to map quantitative trait loci (QTLs) for glycinin (11S) and β-conglycinin (7S) contents, the ratio of glycinin to β-conglycinin (RGC), and the sum of glycinin and β-conglycinin (SGC). A total of 35 QTLs, 3 pairs of epistatic QTLs, and 5 major regions encompassing multiple QTLs were detected. Genes encoding the subunits of β-conglycinin were localized to marker intervals sat_418-satt650 and sat_196-sat_303, which are linked to RGC and SGC; marker sat_318, associated with 11S, 7S, and SGC, was located near Glyma10g04280 (Gy4), which encodes a subunit of glycinin. These results, which take epistatic interactions into account, will improve our understanding of the genetic basis of 11S and 7S contents and will lay a foundation for marker-assisted selection (MAS) breeding of soybean and improving the quality of soybean products.
Collapse
Affiliation(s)
- Yujie Ma
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing 210095, China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing 210095, China
| | - Xinnan Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing 210095, China
| | - Yongli Wang
- Biofuels Institute, School of the Environment, Jiangsu University , Zhenjiang 212013, China
| | - Wei Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing 210095, China
| | - Hongyang Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing 210095, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing 210095, China
| |
Collapse
|
32
|
Calafiore R, Ruggieri V, Raiola A, Rigano MM, Sacco A, Hassan MI, Frusciante L, Barone A. Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:397. [PMID: 27092148 PMCID: PMC4824784 DOI: 10.3389/fpls.2016.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
|
33
|
Raiola A, Del Giudice R, Monti DM, Tenore GC, Barone A, Rigano MM. Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes. Molecules 2015; 21:E33. [PMID: 26712729 PMCID: PMC6274111 DOI: 10.3390/molecules21010033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 12/23/2022] Open
Abstract
Tomato, as a fresh or processed product, has a high nutritional value due to its content of bioactive components such as phenolic compounds. Few studies describe the effect of processing on antioxidant content and the cancer cell growth inhibition activity. In this study we determined the phenolic and ascorbic acid content of three yellow tomato varieties, before and after thermal processing. Moreover, we determined the antioxidative power and tested the effects of tomato extracts on three human cancer cell lines. We found that the amount of phenolic acids (chlorogenic acid and caffeic acid) decreased in all the samples after processing, whereas the flavonoid content increased after the heat treatment in two samples. A cytotoxic effect of tomato extracts was observed only after processing. This result well correlates with the flavonoid content after processing and clearly indicates that processed yellow tomatoes have a high content of bioactive compounds endowed with cytotoxicity towards cancer cells, thus opening the way to obtain tomato-based functional foods.
Collapse
Affiliation(s)
- Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy.
| | - Rita Del Giudice
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126 Naples, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy.
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy.
| |
Collapse
|
34
|
Del Giudice R, Raiola A, Tenore GC, Frusciante L, Barone A, Monti DM, Rigano MM. Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
35
|
Cai S, Han Z, Huang Y, Chen ZH, Zhang G, Dai F. Genetic Diversity of Individual Phenolic Acids in Barley and Their Correlation with Barley Malt Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7051-7. [PMID: 26173650 DOI: 10.1021/acs.jafc.5b02960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phenolic acids have been quite extensively studied in food science research because of their antioxidative effect. In this study, the genotypic difference and genetic control of phenolic acids, and their correlation with malt quality, were investigated in barley. Ferulic acid (FA) and p-coumaric acid (p-CA) were identified as two main phenolic acids, showing wide variations among 68 barley genotypes. The mean content of FA and p-CA were 2.15 μg g(-1) and 1.10 μg g(-1) in grains and 4.07 μg g(-1) and 1.44 μg g(-1) in malt, respectively. After malting, FA and p-CA were increased significantly in 55 and 37 genotypes and were reduced in 2 and 14 genotypes, respectively. Both malt FA and p-CA were positively correlated with soluble N content and Kolbach index and negatively correlated with malt extract and viscosity. The results indicated that the effect of malting on the change of an individual phenolic acid is genotype independent. Association mapping identified that 8 markers on Chromosomes 1H, 2H, 4H, and 7H are associated with grain p-CA and 4 markers on Chromosomes 3H and 7H are linked with grain FA. However, only a single marker on Chromosome 3H was found to be associated with malt FA. Moreover, a lack of overlapping markers between grain and malt indicated the genetic diversity of phenolic acids in barley grain and malt. Our results strengthen the understanding of phenolic acids in barley and their responses to the malting process.
Collapse
Affiliation(s)
- Shengguan Cai
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Han
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Yuqing Huang
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|