1
|
Zhang Z, Zhang Y, Peng H, Yu Q, Kang X, Liu Y, Zheng Y, Cheng F, Wang X, Li F. Decoding TGR5: A comprehensive review of its impact on cerebral diseases. Pharmacol Res 2025; 213:107671. [PMID: 39988005 DOI: 10.1016/j.phrs.2025.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Currently, unraveling the enigmatic realm of drug targets for cerebral disorders poses a formidable challenge. Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1, is a specific bile acid receptor. Widely distributed across various tissues, TGR5 orchestrates a myriad of biological functions encompassing inflammation, energy metabolism, fatty acid metabolism, immune responses, cellular proliferation, apoptosis, and beyond. Alongside its well-documented implications in liver diseases, obesity, type 2 diabetes, tumors, and cardiovascular diseases, a growing body of evidence accentuates the pivotal role of TGR5 in cerebral diseases. Thus, this comprehensive review aimed to scrutinize the current insights into the pathological mechanisms involving TGR5 in cerebral diseases, while contemplating its potential as a promising therapeutic target for cerebral diseases.
Collapse
Affiliation(s)
- Zehan Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yifei Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Hongye Peng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Qingqian Yu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xiangdong Kang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Ying Liu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Feng Li
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| |
Collapse
|
2
|
Deng M, Gao F, Liu T, Zhan W, Quan J, Zhao Z, Wu X, Zhong Z, Zheng H, Chu J. T. gondii excretory proteins promote the osteogenic differentiation of human bone mesenchymal stem cells via the BMP/Smad signaling pathway. J Orthop Surg Res 2024; 19:386. [PMID: 38951811 PMCID: PMC11218376 DOI: 10.1186/s13018-024-04839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.
Collapse
Affiliation(s)
- Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feifei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuolan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Zheng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiaqi Chu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
3
|
Karaca MA, Kancagi DD, Ozbek U, Ovali E, Gok O. Betulin Stimulates Osteogenic Differentiation of Human Osteoblasts-Loaded Alginate-Gelatin Microbeads. Bioengineering (Basel) 2024; 11:553. [PMID: 38927789 PMCID: PMC11201098 DOI: 10.3390/bioengineering11060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such as a limited source of allogenic grafts and tissue rejection in autogenic grafts. However, stem cell therapy has been shown to increase bone regeneration and decrease osteoporotic bone formation. Stem cell therapy combined with betulin (BET) supplementation might be adequate for bone remodeling and new bone tissue generation. In this study, the effect of BET on the viability and osteogenic differentiation of hFOB 1.19 cells was investigated. The cells were encapsulated in alginate-gelatin (AlGel) microbeads. In vitro tests were conducted during the 12 d of incubation. While BET showed cytotoxic activity (>1 µM) toward non-encapsulated hFOB 1.19 cells, encapsulated cells retained their functionality for up to 12 days, even at 5 µM BET. Moreover, the expression of osteogenic markers indicates an enhanced osteo-inductive effect of betulin on encapsulated hFOB 1.19, compared to the non-encapsulated cell culture. The 3D micro-environment of the AlGel microcapsules successfully protects the hFOB 1.19 cells against BET cytotoxicity, allowing BET to improve the mineralization and differentiation of osteoblast cells.
Collapse
Affiliation(s)
- Mehmet Ali Karaca
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Derya Dilek Kancagi
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ugur Ozbek
- Medical Genetics Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ozgul Gok
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
4
|
Yao F, Chen W, Gu W, Xu H, Hou W, Liang G, Zhang Zhu R, Jiang G, Zhang L. Osteoblast Biospecific Extraction Conjugated with HPLC Analysis for Screening Bone Regeneration Active Components from Moutan Cortex. Comb Chem High Throughput Screen 2024; 27:834-844. [PMID: 37287301 DOI: 10.2174/1386207326666230607155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The function of promoting bone regeneration of Moutan Cortex (MC), a traditional Chinese medicine, has been widely known but, the effective components of MC in promoting osteoblast-mediated bone regeneration were still unclear. OBJECTIVE The method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis was established to screen bone regeneration active components from MC. METHODS The fingerprints, washing eluate and desorption eluate of MC extract were analyzed by the established HPLC-DAD method. The established MC3T3-E1 cells membrane chromatography method was used for the bio-specific extraction of MC. The isolated compounds were identified by MS spectrometry. The effects and possible mechanisms of the isolated compounds were evaluated by molecular docking, ALP activity, cell viability by MTT Assay and proteins expression by Western Blot Analysis. RESULTS The active compound responsible for bone regeneration from MC was isolated using the established method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis, and it was identified as 1,2,3,4,6-penta-O-β-galloyl-D-glucose (PGG) by MS spectrometry. It was further demonstrated through molecular docking that PGG could fit well into the functional ALP, BMP2, and Samd1 binding pocket. The proliferation of osteoblasts was promoted, the level of ALP was increased, and the protein expression of BMP2 and Smad1 was increased as shown by further pharmacological verification. CONCLUSION It was concluded that PGG, the bone regeneration active compound from MC, could stimulate the proliferation of osteoblasts to promote osteoblast differentiation, and its mechanism might be related to the BMP/Smad1 pathway.
Collapse
Affiliation(s)
- Fei Yao
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Wei Chen
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Weiwei Gu
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
- Department of Pharmacy, Yancheng City Dafeng People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Heng Xu
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Wenyue Hou
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Guoqiang Liang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Ruixian Zhang Zhu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Guorong Jiang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Lurong Zhang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
5
|
Yang M, Cheng S, Ma W, Wu D, El-Seedi HR, Wang Z, Du M. Myosin heavy chain-derived peptide of Gadus morhua promotes proliferation and differentiation in osteoblasts and bone formation and maintains bone homeostasis in ovariectomized mice. Food Funct 2023. [PMID: 37183435 DOI: 10.1039/d2fo04083b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gadus morhua is an important commercial fish rich in nutrients required for daily metabolism. However, the regulation of G. morhua peptides (GMP) on osteoblast growth remains unclear. In order to clarify the regulatory effects of GMP on osteoblasts, the effects of GMP on the growth of MC3T3-E1 cells were investigated, and the osteogenic peptides were identified and screened. The results showed that GMP promoted the proliferation and differentiation of osteoblasts by regulating the BMP/WNT signaling pathway at concentrations of 1-100 μg mL-1. Molecular docking studies showed that a decapeptide, MNKKREAEFQ (P-GM-1), had a high affinity for integrins 3VI4 and 1L5G (-CDOCKER interaction energy: 161.30, 212.27 kcal mol-1). Additionally, the proliferation rate of MC3T3-E1 cells was increased by 27%, and ALP activity was significantly increased under P-GM-1 treatment (100 μg mL-1). Moreover, P-GM-1 promotes bone formation, maintains bone homeostasis, and prevents osteoporosis in ovariectomized mice by regulating the BMP/Smad signaling pathway. This study confirmed the potential of GMP in the regulation of bone mineral density and provided a certain theoretical basis for the development of anti-osteoporosis active factors from GMP.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Wuchao Ma
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Di Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE 751 24 Uppsala, Sweden
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| |
Collapse
|
6
|
Rasool N, Negi D, Singh Y. Thiol-Functionalized, Antioxidant, and Osteogenic Mesoporous Silica Nanoparticles for Osteoporosis. ACS Biomater Sci Eng 2023. [PMID: 37172017 DOI: 10.1021/acsbiomaterials.3c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Osteoporosis is a chronic bone disorder characterized by decreased bone mass, leading to brittle bones and fractures. Oxidative stress has been identified as the most profound trigger for the initiation and progression of osteoporosis. Current treatment strategies do not induce new bone formation and fail to address a high level of reactive oxygen species (ROS). Mesoporous silica nanoparticles (MSNs) have been explored in bone tissue regeneration owing to their inherent osteogenic property, but they lack antioxidant and cell adhesion properties, required in such applications. We have developed thiolated, bioactive mesoporous silica nanoparticles (MSN-SH) to address this challenge. MSNs were fabricated using the Stöber method, and 11% of the surface was functionalized post-synthesis with thiol groups using MPTMS to obtain MSN-SH. The particle size measured by the dynamic light scattering technique was found to be around 300 nm. The surface morphology was investigated using HR-TEM, and their physical and chemical properties were characterized using various spectroscopic techniques. They exhibited more than 90% antioxidant activity, neutralized ROS formed in cells, and provided protection against ROS-induced cell damage. The cell viability assay in murine osteoblast precursor cells (MC3T3) showed that MSN-SH is cell-proliferative in nature with 140% cell viability. Osteogenic potential was evaluated by measuring the ALP activities, calcium deposition, and gene expression levels of osteogenic markers, such as RUNX2, ALP, OCN, and OPN, and results revealed that MSN-SH increases calcium deposition and induces osteogenesis through upregulation of osteogenic genes and markers without the involvement of any osteogenic supplements. Besides promoting osteogenesis, MSN-SH was found to inhibit osteoclastogenesis. The nanomaterial was found to be regenerative in nature, and it stimulated migration of osteoblast cells and caused a complete wound closure within 48 h. We were able to achieve a multifunctional nanomaterial by simply modifying the surface. MSNs have been explored for bone tissue engineering/osteoporosis as a composite system incorporating metals, like gold and cerium, or as a nanocarrier loaded with growth factors or active drugs. This study offers a simple and economical method to enhance the existing properties of MSNs and impart new activities by a single-step surface modification. It can be concluded that MSN-SH holds promise as a complementary and alternate treatment for osteoporosis along with the standardized therapy.
Collapse
Affiliation(s)
- Nahida Rasool
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
7
|
Zainol Abidin IZ, Johari AN, Yazid MD, Zainal Ariffin Z, Eziwar Dyari HR, Zainal Ariffin SH. Osteogenic Potential and Bioactive Profiles of Piper sarmentosum Ethanolic Extract-Treated Stem Cells. Pharmaceuticals (Basel) 2023; 16:ph16050708. [PMID: 37242491 DOI: 10.3390/ph16050708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Piper sarmentosum is a well-known traditional herbal plant in various diseases treatments. Multiple scientific studies have also reported various biological activities exhibited by the plant's extract, such as antimicrobial, anticarcinogenic and antihyperglycemic activities, and, in addition, a bone protective effect in ovariectomized rats has been reported. However, no known Piper sarmentosum extract is involved in osteoblast differentiation using stem cells. Our study aims to identify the potential of P. sarmentosum ethanolic extract to induce osteoblast differentiation of human peripheral blood stem cells. Prior to the assay, the proliferation ability of the cells was observed for 14 days and the presence of hematopoietic stem cells in the culture was determined by the expression of SLAMF1 and CD34 genes. During the differentiation assay, the cells were treated with P. sarmentosum ethanolic extract for 14 days. Osteoblast differentiation was examined using an (alkaline phosphatase) ALP assay, by monitoring the expression of osteogenic gene markers and by von Kossa staining. The untreated cells served as the negative control, while cells treated with 50 µg/mL ascorbic acid and 10 mM β-glycerophosphate acted as the positive control. Finally, the determination of the compound profile was performed using a gas chromatography-mass spectrometry (GC-MS) analysis. The isolated cells were able to proliferate for 14 days during the proliferation assay. The expression of hematopoietic stem cell markers was also upregulated during the 14 days assay. Following the differentiation induction, the ALP activity exhibited a significant increase (p < 0.05) from day 3 of the differentiation assay. A molecular analysis also showed that the osteogenic markers ALP, RUNX2, OPN and OCN were upregulated compared to the positive control. The presence of mineralized cells with a brownish-stained morphology was observed, indicating the mineralization process increased in a time-dependent manner regardless of the concentration used. There were 54 compounds observed in the GC-MS analysis, including β-asarones, carvacrol and phytol, which have been shown to possess osteoinductive capacities. Our results demonstrate that the ethanolic extract of P. sarmentosum can induce osteoblast differentiation of peripheral blood stem cells. The extract contains potent compounds which can potentially induce the differentiation of bone cells, i.e., osteoblasts.
Collapse
Affiliation(s)
| | - Anis Nabilah Johari
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia
| | | | - Herryawan Ryadi Eziwar Dyari
- Department of Earth Sciences and Environmental, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
8
|
Equisetum arvense Inhibits Alveolar Bone Destruction in a Rat Model with Lipopolysaccharide (LPS)-Induced Periodontitis. Int J Dent 2022; 2022:7398924. [PMID: 36794024 PMCID: PMC9925265 DOI: 10.1155/2022/7398924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Equisetum arvense extract (EA) exerts various biological effects, including anti-inflammatory activity. The effect of EA on alveolar bone destruction has not been reported; therefore, we aimed to determine whether EA could inhibit alveolar bone destruction associated with periodontitis in a rat model in which periodontitis was induced using lipopolysaccharide from Escherichia coli (E. coli-LPS). Methods Physiological saline or E. coli-LPS or E. coli-LPS/EA mixture was topically administered into the gingival sulcus of the upper molar region of the rats. After 3 days, periodontal tissues of the molar region were collected. Immunohistochemistry was performed for cathepsin K, receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG). The cathepsin K-positive osteoclasts along the alveolar bone margin were counted. EA effects on the expression of the factors regulating osteoclastogenesis in osteoblasts with E. coli-LPS-stimulation were also examined in vitro. Results Treatment with EA significantly reduced the number of osteoclasts by decreasing the RANKL-expression and increasing OPG-expression in the periodontal ligament in the treatment group compared to the E. coli-LPS group. The in vitro study showed that the upregulation of p-IκB kinase α and β (p-IKKα/β), p-NF-κB p65, TNF-α, interleukin-6, and RANKL and downregulation of semaphorin 3A (Sema3A), β-catenin, and OPG in the osteoblasts with E. coli-LPS-stimulation improved with EA-treatment. Conclusion These findings demonstrated that topical EA suppressed alveolar bone resorption in the rat model with E. coli-LPS-induced periodontitis by maintaining a balance in RANKL/OPG ratio via the pathways of NF-κB, Wnt/β-catenin, and Sema3A/Neuropilin-1. Therefore, EA possesses the potential to prevent bone destruction through inhibiting osteoclastogenesis attributed to cytokine burst under plaque accumulation.
Collapse
|
9
|
Sardar A, Gautam S, Sinha S, Rai D, Tripathi AK, Dhaniya G, Mishra PR, Trivedi R. Nanoparticles of naturally occurring PPAR-γ inhibitor betulinic acid ameliorates bone marrow adiposity and pathological bone loss in ovariectomized rats via Wnt/β-catenin pathway. Life Sci 2022; 309:121020. [PMID: 36191680 DOI: 10.1016/j.lfs.2022.121020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
AIMS Postmenopausal osteoporosis is one of the world's biggest yet unnoticed health issues. After ovariectomy, declined estrogen level significantly contributes to the elevation of bone marrow adiposity and bone loss leading to osteoporosis. Therapeutics to prevent osteoporosis addressing various aspects are now in short supply. In this study we made an approach to synthesize nanoparticles of naturally occurring PPAR-γ inhibitor, betulinic acid (BA/NPs) and tested the same in altered bone metabolisms developed after ovariectomy. MAIN METHODS The osteogenic efficacy of BA/NPs was established in human and rat primary osteoblast cells using qRT-PCR and immunoblot analysis. Furthermore, lineage allocations of multipotent bone marrow stromal cells were evaluated. Various aspects of altered bone metabolism after ovariectomy such as bone marrow adiposity and pathological bone loss were evaluated using μCT and histological assessments. KEY FINDINGS BA/NPs exert potential osteogenic efficacy by modulating RUNX2 and BMP2. Mechanistically BA/NPs regulate osteoblastogenesis through Wnt/β-catenin signaling. Further, BA/NPs showed the potential to inhibit the differentiation of multipotent BMSCs towards adipogenesis while favouring the osteogenic lineage. In the in vivo study, increased bone marrow adiposity was reduced in ovariectomized rats after BA/NPs treatment as assessed by histology and μCT analysis. Loss of bone mineral density as a hallmark of pathological bone loss was also abrogated by BA/NPs. SIGNIFICANCE Our findings imply that BA/NPs could be used further as a viable drug lead to counteract various pathophysiological challenges after menopause.
Collapse
Affiliation(s)
- Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalini Gautam
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shradha Sinha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Rai
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Geeta Dhaniya
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Wang K, Kong X, Du M, Yu W, Wang Z, Xu B, Yang J, Xu J, Liu Z, Cheng Y, Gan J. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TβRI-p38-MAPK-Depending RUNX2 Activation. Nutrients 2022; 14:1940. [PMID: 35565907 PMCID: PMC9105634 DOI: 10.3390/nu14091940] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023] Open
Abstract
DEDEQIPSHPPR, the calcium-binding peptide (CBP) identified in soy yogurt, was proven to be a potential cofactor in osteoporosis prevention in our previous study, but the mechanism was unknown. In this study, the activity of alkaline phosphatase (ALP) and osteocalcin (OCN), the regulation of RUNX2, and the expression of TβRI were investigated to elucidate the underlying mechanism. The results show that CBP upregulated ALP activity and OCN concentration and increased the expression of RUNX2 and the activation of the MAPK signaling pathway. Similarly, the expression of osteogenesis-related genes in osteoblasts also increased upon CBP treatment. Moreover, the CBP-induced enhancement of ALP activity and phosphorylation levels in the p38 pathway was inhibited by treatment with a p38 inhibitor (SB203538) and TβRI inhibitor (SB431542), respectively, suggesting that p38 and TβRI were involved in the osteogenic action. Based on the signaling pathways, the intracellular calcium concentration was significantly elevated by CBP, which was correlated with the increased behavioral functions and the relative fluorescence intensity of the bone mass. These findings suggest that CBP stimulates osteoblast differentiation and bone mineralization through the activation of RUNX2 via mechanisms related to the TβRI-p38-MAPK signaling pathways, further highlighting CBP's important potential for treating osteoporosis.
Collapse
Affiliation(s)
- Kuaitian Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Wei Yu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Bo Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jianrong Yang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jingru Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Zhili Liu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| |
Collapse
|
12
|
Yu S, Li D, Zhang N, Ni S, Sun M, Wang L, Xiao H, Liu D, Liu J, Yu Y, Zhang Z, Yeung STY, Zhang S, Lu A, Zhang Z, Zhang B, Zhang G. Drug discovery of sclerostin inhibitors. Acta Pharm Sin B 2022; 12:2150-2170. [PMID: 35646527 PMCID: PMC9136615 DOI: 10.1016/j.apsb.2022.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA, the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis; however, it conferred high cardiovascular risk in clinical trials. Furthermore, romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.
Collapse
|
13
|
Jiang H, Zhong J, Li W, Dong J, Xian CJ, Shen YK, Yao L, Wu Q, Wang L. Gentiopicroside promotes the osteogenesis of bone mesenchymal stem cells by modulation of β-catenin-BMP2 signalling pathway. J Cell Mol Med 2021; 25:10825-10836. [PMID: 34783166 PMCID: PMC8642693 DOI: 10.1111/jcmm.16410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is characterized by increased bone fragility, and the drugs used at present to treat osteoporosis can cause adverse reactions. Gentiopicroside (GEN), a class of natural compounds with numerous biological activities such as anti‐resorptive properties and protective effects against bone loss. Therefore, the aim of this work was to explore the effect of GEN on bone mesenchymal stem cells (BMSCs) osteogenesis for a potential osteoporosis therapy. In vitro, BMSCs were exposed to GEN at different doses for 2 weeks, whereas in vivo, ovariectomized osteoporosis was established in mice and the therapeutic effect of GEN was evaluated for 3 months. Our results in vitro showed that GEN promoted the activity of alkaline phosphatase, increased the calcified nodules in BMSCs and up‐regulated the osteogenic factors (Runx2, OSX, OCN, OPN and BMP2). In vivo, GEN promoted the expression of Runx2, OCN and BMP2, increased the level of osteogenic parameters, and accelerated the osteogenesis of BMSCs by activating the BMP pathway and Wnt/β‐catenin pathway, effect that was inhibited using the BMP inhibitor Noggin and Wnt/β‐catenin inhibitor DKK1. Silencing the β‐catenin gene and BMP2 gene blocked the osteogenic differentiation induced by GEN in BMSCs. This block was also observed when only β‐catenin was silenced, although the knockout of BMP2 did not affect β‐catenin expression induced by GEN. Therefore, GEN promotes BMSC osteogenesis by regulating β‐catenin‐BMP signalling, providing a novel strategy in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Huaji Jiang
- Department of Orthopaedic, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan, China.,Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jialiang Zhong
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenjun Li
- Department of Orthopaedic, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Jianghui Dong
- UniSA Clinical& Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- UniSA Clinical& Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lufeng Yao
- Department of Foot and Ankle Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Qiang Wu
- Department of Orthopaedic, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Liping Wang
- UniSA Clinical& Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
14
|
Senamontree S, Lakthan T, Charoenpanich P, Chanchao C, Charoenpanich A. Betulinic acid decreases lipid accumulation in adipogenesis-induced human mesenchymal stem cells with upregulation of PGC-1α and UCP-1 and post-transcriptional downregulation of adiponectin and leptin secretion. PeerJ 2021; 9:e12321. [PMID: 34721992 PMCID: PMC8520689 DOI: 10.7717/peerj.12321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Controlling cellular functions, including stem cell growth and differentiation, can be the key for the treatment of metabolic disorders, such as type II diabetes mellitus (T2DM). Previously identified as peroxisome proliferator-activated receptor gamma (PPARγ) antagonist, betulinic acid (BA) may have the capability to control stem cell homeostasis, benefiting T2DM treatment. In this study, the effects of BA on osteogenesis and adipogenesis mechanisms of human mesenchymal stem cells (hMSCs) were investigated. Results We observed that BA increased hMSC osteogenesis by enhancing the alkaline phosphatase activity, calcium deposition, and mRNA expressions of osteogenic markers, namely, runt-related transcription factor 2, osteocalcin, and osteopontin. In addition, BA decreased hMSC adipogenesis with the decrease in glycerol-3-phosphate dehydrogenase activity, reduced intracellular lipid accumulations, down-regulated CCAAT-enhancer-binding protein alpha, and suppressed post-transcriptional adiponectin and leptin secretion. BA increased the brown adipocyte characteristics with the increase in the ratio of small lipid droplets and glucose uptake. Furthermore, the mRNA expressions of brown adipocyte markers, namely, PPARγ coactivator one alpha, uncoupling protein 1, and interleukin-6 increased. Conclusions Our results uncovered the mechanisms of how BA improved glucose and lipid metabolisms by decreasing white adipogenesis and increasing brown adipogenesis. Altogether, BA may be used for balancing glucose metabolisms without the potential side effects on bone loss or weight gain.
Collapse
Affiliation(s)
- Sasithon Senamontree
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Thitiporn Lakthan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Pornsri Charoenpanich
- Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
15
|
Wang Q, Miao Y, Qian Z, Chen L, Lu T, Xu Y, Jiang X, Shen Y. MicroRNA-15a-5p plays a role in osteogenic MC3T3-E1 cells differentiation by targeting PDCD4 (programmed cell death 4) via Wnt/β-catenin dependent signaling pathway. Bioengineered 2021; 12:8173-8185. [PMID: 34672248 PMCID: PMC8806754 DOI: 10.1080/21655979.2021.1977766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is defined as a bone condition characterized by bone mass reduction, bone micro-architectural and quality deterioration, leading to compromised strength and increased chances of fracture. Evidence have shown an essential role of microRNAs (miRNAs) in various osteogenic differentiation processes. However, the function of miR-15a-5p in the differentiation of osteogenic cells and possible mechanisms remains unclear. The present study explored the expression of miR-15a-5p in human osteoporosis specimens and during the osteogenic differentiation of MC3T3-E1 cells. Functions of miR-15a-5p were determined using miR-15a-5p mimics and inhibitors. Luciferase assay was used to verify the binding of miR-15a-5p and PDCD4 3ʹUTR. Alizarin Red Staining (ARS) and Alkaline phosphatase (ALP) activity were used to determine the miR-15a-5p role in osteogenic differentiation. Finally, Wnt pathway inhibitor was used to determine the miR-15a-5p/PDCD4/Wnt signaling pathway in regulating osteogenic differentiation. We found miR-15a-5p expression was increased in human osteoporosis specimens and during differentiation of MC3T3-E1 cells. PDCD4 was also identified as a target of miR-15a-5p and was found to be involved in osteogenic differentiation. Further, miR-15a-5p mimics attenuated the effects of PDCD4 overexpression. Finally, use of XAV939 (Wnt pathway inhibitor) downregulated osteogenic differentiation in miR-15a5p/PDCD4/Wnt-dependent signaling pathway. In conclusion, miR-15a-5p induced differentiation of osteoblasts and mineralization by modulating osteoblast differentiation factors, mainly OSX, ALP, OCN, and RUNX2, by inhibiting PDCD4 and Wnt signaling pathways. This study provides a modality for the future use of miR-15a-5p in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yiming Miao
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Zhiyuan Qian
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Lidong Chen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Tong Lu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yue Xu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| |
Collapse
|
16
|
Li C, Qi Y, Zhou Q, Huang X, Deng X, Yu Y, Shi LE. Betulinic acid promotes the osteogenic differentiation of human periodontal ligament stem cells by upregulating EGR1. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1266-1276. [PMID: 34519779 DOI: 10.1093/abbs/gmab111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is one of the most common chronic inflammations of the oral cavity, which eventually leads to tooth loss. Betulinic acid (BetA) is an organic acid that has anti-inflammatory effects and is derived from fruits and plants, but its effect on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is still unclear. This study aimed to explore the effect of BetA on the osteogenic differentiation of hPDLSCs and its mechanism. Our results revealed that BetA not only promoted the viability of hPDLSCs but also induced their osteogenic differentiation in a dose-dependent manner. In addition, RNA sequencing was used to screen the differentially expressed genes (DEGs) after hPDLSCs were treated with BetA, and 127 upregulated and 138 downregulated genes were identified. Gene Ontology enrichment analysis showed that DEGs were mainly involved in the response to lithium ions and the positive regulation of macrophage-derived foam cell differentiation. The Kyoto Encyclopedia of Genes and Genomes analysis results revealed that DEGs were enriched in the nuclear factor-κB and interleukin-17 signaling pathways. More importantly, we confirmed that early growth response gene 1 (EGR1), one of the three DEGs involved in bone formation, significantly promoted the expression of osteogenic markers and the mineralization of hPDLSCs. Knockdown of EGR1 obviously limited the effect of BetA on the osteogenic differentiation of hPDLSCs. In conclusion, BetA promoted the osteogenic differentiation of hPDLSCs through upregulating EGR1, and BetA might be a promising candidate in the clinical application of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Yuesun Qi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Stomatology, Jinshan Hospital, Fudan University, Shanghai 200540, China
| | - Qin Zhou
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Xin Huang
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Xiaolin Deng
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - L e Shi
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| |
Collapse
|
17
|
Zhou W, Chen B, Shang J, Li R. Ferulic acid attenuates osteoporosis induced by glucocorticoid through regulating the GSK-3β/Lrp-5/ERK signalling pathways. Physiol Int 2021; 108:317-341. [PMID: 34529586 DOI: 10.1556/2060.2021.00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
Objective To evaluate in-vivo and in-vitro effects of ferulic acid (FA) on glucocorticoid-induced osteoarthritis (GIO) to establish its possible underlying mechanisms. Methods The effects of FA on cell proliferation, cell viability (MTT assay), ALP activity, and mineralization assay, and oxidative stress markers (ROS, SOD, GSH LDH and MDA levels) were investigated by MC3T3-E1 cell line. Wistar rats received standard saline (control group) or dexamethasone (GC, 2 mg-1 kg) or DEX+FA (50 and 100 mg-1 kg) orally for 8 weeks. Bone density, micro-architecture, bio-mechanics, bone turnover markers and histo-morphology were determined. The expression of OPG, RANKL, osteogenic markers, and other signalling proteins was assessed employing quantitative RT-PCR and Western blotting. Results The findings indicated the elevation of ALP mRNA expressions, osteogenic markers (Runx-2, OSX, Col-I, and OSN), and the β-Catenin, Lrp-5 and GSK-3β protein expressions. FA showed the potential to increase MC3T3-E1 cell differentiation, proliferation, and mineralization. FA increased oxidative stress markers (SOD, MDA, and GSH) while decreasing ROS levels and lactate dehydrogenase release in GIO rats. The OPG/RANKL mRNA expression ratio was increased by FA, followed by improved GSK-3β and ERK phosphorylation with enhanced mRNA expressions of Lrp-5 and β-catenin. Conclusion These findings showed that FA improved osteoblasts proliferation with oxidative stress suppression by controlling the Lrp-5/GSK-3β/ERK pathway in GIO, demonstrating the potential pathways involved in the mechanism of actions of FA in GIO therapy.
Collapse
Affiliation(s)
- Wei Zhou
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | - Bo Chen
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | - Jingbo Shang
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | | |
Collapse
|
18
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
19
|
Tian Y, Jiang P, Liu X, Wei L, Bai Y, Liu X, Li S. Production and identification of peptides with activity promoting osteoblast proliferation from meat dregs of Pinctada martensii. J Food Biochem 2021; 45:e13890. [PMID: 34374442 DOI: 10.1111/jfbc.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
As a by-product of pearl production, Pinctada martensii meat dregs have a high level of protein but cannot be fully utilized. In this study, P. martensii meat dregs were first hydrolyzed by three pepsin enzymes, resulting in neutral proteinase enzymatic hydrolysate that had a higher effect on stimulating the proliferation of MC3T3-E1 cells, and cell proliferation increases of 37.37 ± 0.03%. Subsequently, after purification of alcohol precipitation, ultrafiltration, and Superdex G-25 gel chromatography, five fractions were further separated and purified in which fraction ZP2 could effectively improve cell proliferation induced an increase of 43.95 ± 0.03% in MC3T3-E1 cells growth. Consequently, with the help of alkaline phosphatase and methyl thiazolyl tetrazolium assay, five novel peptides (FDNEGKGKLPEEY, FWDGRDGEVDGFK, VLQTDNDALGKAK, IVLDSGDGVTH, and MVAPEEHP) derived from fraction ZP2 with the strongest osteogenic activity were screened, and their sequences were identified using Orbitrap Fusion Lumos Tribrid Orbital liquid chromatography-mass spectrometry. Therefore, the research results demonstrated that P. martensii meat could be used as a promising material for producing food additives for improving osteoporosis. PRACTICAL APPLICATIONS: In this study, after enzymolysis and purification, the fraction ZP2, derived from Pinctada martensii meat dregs were found to have a better activity of promoting osteoblast proliferation, showing the higher osteogenic activity with an increase of 43.95 ± 0.03% in terms of cell proliferation. It is beneficial to realize the high value and resource utilization of P. martensii meat dregs as a by-product of pearl production. The research demonstrated that the meat dregs of P. martensii could be used as an attractive material for producing active peptides in functional foods. In addition, the molecular weight of the peptides we identified from the ZP2 fraction is suitable for the proliferation of MC3T3-E1 cells, which lays a foundation for the further synthesis of peptides that promote the high proliferation activity of osteocytes.
Collapse
Affiliation(s)
- Yufeng Tian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Pingyingzi Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoyue Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lulu Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yunxia Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Huai Y, Zhang WJ, Wang W, Dang K, Jiang SF, Li DM, Li M, Hao Q, Miao ZP, Li Y, Qian AR. Systems pharmacology dissection of action mechanisms for herbs in osteoporosis treatment. CHINESE HERBAL MEDICINES 2021; 13:313-331. [PMID: 36118922 PMCID: PMC9476722 DOI: 10.1016/j.chmed.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment. Methods Here, we introduced a systematic pharmacology model, combining the absorption, distribution, metabolism, and excretion (ADME) screening model, drug targeting and network pharmacology, to probe into the therapeutic mechanisms of herbs in osteoporosis. Results We obtained 86 natural compounds with favorable pharmacokinetic profiles and their 58 targets from seven osteoporosis-related herbs. Network analysis revealed that they probably synergistically work through multiple mechanisms, such as suppressing inflammatory response, maintaining bone metabolism or improving organism immunity, to benefit patients with osteoporosis. Furthermore, experimental results showed that all the five compounds (calycosin, asperosaponin VI, hederagenin, betulinic acid and luteolin) enhanced osteoblast proliferation and differentiation in vitro, which corroborated the validity of this system pharmacology approach. Notably, gentisin and aureusidin among the identified compounds were first predicted to be associated with osteoporosis. Conclusion Herbs and their natural compounds, being characterized as the classical combination therapies, might be engaged in multiple mechanisms to coordinately improve the osteoporosis symptoms. This work may contribute to offer novel strategies and clues for the therapy and drug discovery of osteoporosis and other complex diseases.
Collapse
|
21
|
Wang Y, Sun J, Zhang Y, Liu W, Yang S, Yang J. Stichopus japonicus Polysaccharide Stimulates Osteoblast Differentiation through Activation of the Bone Morphogenetic Protein Pathway in MC3T3-E1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2576-2584. [PMID: 33417444 DOI: 10.1021/acs.jafc.0c06466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to examine the combined use of bone morphogenetic protein-2 (BMP-2) and polysaccharide isolated from Stichopus japonicus on osteogenic differentiation of MC3T3-E1 cells. Osteogenic differentiation was measured via histochemical staining of alkaline phosphatase (ALP) assay, alizarin red staining of mineralization assay, Western blotting, ELISA, and a qRT-PCR evaluation for the expression of BMP-2, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), osteopontin (OPN), and collagen type I (Col I) in MC3T3-E1 cells. Immunofluorescence assay was utilized to assess the BMP-2 localized on the cell surface. The results illustrated that SP-2 was able to increase ALP expression and accelerate the mineralization. Osteoblasts cultured on BMP-2/SP-2 substrate increased the expression levels of BMP-2, Runx-2, Col I, OCN, and OPN. SP-2 increased the binding efficiency involving a BMP-2 and its cell surface receptor. The dose of 5 μg/mL SP-2 used showed the best function of inducing osteoblast differentiation. These findings indicated that SP-2 is a more effective enhancer that cooperated with BMP-2 to induce osteoblastic differentiation by utilizing the BMP-2 signaling pathway.
Collapse
Affiliation(s)
- Yanjie Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| | - Jinghe Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| | - Yanqi Zhang
- Department of Statistics, Iowa State University, 2438 Osborn Drive, Ames, Iowa 50011, United States
| | - Wenzhuan Liu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 3192 Molecular Biology Building, Ames, Iowa 50011, United States
| | - Jingfeng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| |
Collapse
|
22
|
7-HYB, a Phenolic Compound Isolated from Myristica fragrans Houtt Increases Cell Migration, Osteoblast Differentiation, and Mineralization through BMP2 and β-catenin Signaling. Int J Mol Sci 2020; 21:ijms21218059. [PMID: 33137925 PMCID: PMC7663243 DOI: 10.3390/ijms21218059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
The seeds (nutmegs) of Myristica fragrans Houtt have been used as popular spices and traditional medicine to treat a variety of diseases. A phenolic compound, ((7S)-8′-(benzo[3′,4′]dioxol-1′-yl)-7-hydroxypropyl)benzene-2,4-diol (7-HYB) was isolated from the seeds of M. fragrans. This study aimed to investigate the anabolic effects of 7-HYB in osteogenesis and bone mineralization. In the present study, 7-HYB promotes the early and late differentiation of MC3T3-E1 preosteoblasts. 7-HYB also elevated cell migration rate during differentiation of the preosteoblasts with the increased phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, p38, and JNK. In addition, 7-HYB induced the protein level of BMP2, the phosphorylation of Smad1/5/8, and the expression of RUNX2. 7-HYB also inhibited GSK3β and subsequently increased the level of β-catenin. However, in bone marrow macrophages (BMMs), 7-HYB has no biological effects in cell viability, TRAP-positive multinuclear osteoclasts, and gene expression (c-Fos and NF-ATc1) in receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Our findings suggest that 7-HYB plays an important role in osteoblast differentiation through the BMP2 and β-catenin signaling pathway. It also indicates that 7-HYB might have a therapeutic effect for the treatment of bone diseases such as osteoporosis and periodontitis.
Collapse
|
23
|
Badran SA, Atia-tul-Wahab, Fayyaz S, Muhammad BT, Choudhary MI. Effect of Steroidal Hormone Pregnenolone on Proliferation and Differentiation of MC3T3-E1 Osteoblast like Cells. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200204110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Bone remodeling is a complex process that includes continuous resorption
by osteoclast cells and bone formation by osteoblast cells. Bone fragility is a common health issue
of the elderly population, particularly in postmenopausal women. It has been established that steroidal
hormones have an important role in bone homeostasis. Therefore hormone replacement therapy
could have beneficial effects on bone health as compared to other treatments.
Objectives:
An imbalance between the rate of bone formation and bone resorption leads to the fragility
of bones. During the current study, we aimed to explore the ability of pregnenolone (1) (PRE),
on proliferation and differentiation of MC3T3-E1 cells. We further aimed to investigate the underlying
mechanism of action for the anabolic effect of PRE (1).
Methods:
The effects of pregnenolone (1) on proliferation, differentiation, and mineralization of
MC3T3 osteoblast-like cells were determined. Cell viability was analyzed using MTT assay and
flow cytometry. ALP activity and alizarin staining were employed to evaluate the effect of pregnenolone
on osteoblast differentiation. Moreover, western blot for analysis of certain important proteins,
crucial for the regulation of bone homeostasis, such as BMP2 and RANKL, was also performed.
Results:
Our results showed that pregnenolone (1) at a concentration of 5 μM
caused a significant (p< 0.05) rise in the growth of MC3T3-E1 cells, whereas a comparable effect
was observed in osteoblast differentiating assays. A significant decrease in RANKL expression was
observed at (0.04 – 1 .M). Our results, therefore, indicated the possible role of pregnenolone (1) in
positive regulation of bone homeostasis by suppressing RANKL expression.
Conclusion:
Taken together, our results indicate that pregnenolone (1) has the potential to enhance
osteoblast proliferation, as inferred from the increased number of cells. These results demonstrated that
pregnenolone (1) could be a potential anabolic agent for the treatment of fragility related disorders.
Collapse
Affiliation(s)
- Serene Adnan Badran
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Jordan, Amman-11942, Jordan
| | - Atia-tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sharmeen Fayyaz
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Bushra Taj Muhammad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
24
|
TMARg, a Novel Anthraquinone Isolated from Rubia cordifolia Nakai, Increases Osteogenesis and Mineralization through BMP2 and β-Catenin Signaling. Int J Mol Sci 2020; 21:ijms21155332. [PMID: 32727092 PMCID: PMC7432489 DOI: 10.3390/ijms21155332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Plant extracts have long been regarded as useful medicines in the treatment of human diseases. Rubia cordifolia Nakai has been used as a traditional medicine, as it has pharmacological properties such as antioxidant and anti-inflammatory activity. However, the biological functions of TMARg, isolated from the roots of R. cordifolia, in osteoblast differentiation remain unknown. This study was performed to investigate the pharmacological effects and intracellular signaling of TMARg in the osteoblast differentiation of pre-osteoblast MC3T3-E1 cells and mesenchymal precursor C2C12 cells. Methods: Cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP), and by staining it with Alizarin red S (ARS). Cell migration was determined by using migration assays. Western blot analysis and immunocytochemical analysis were used to examine the intracellular signaling pathways and differentiation proteins. Results: In the present study, TMARg showed no cytotoxicity and increased the osteoblast differentiation in pre-osteoblasts, as assessed from the alkaline phosphate (ALP) staining and activity and ARS staining. TMARg also induced BMP2 expression and increased the p-smad1/5/8-RUNX2 and β-catenin pathways in both MC3T3-E1 and C2C12 cells. Furthermore, TMARg activated mitogen-activated protein kinases (MAPKs) and increased the cell migration rate. In addition, the TMARg-mediated osteoblast differentiation was suppressed by BMP and Wnt inhibitors with the downregulation of BMP2 expression. Conclusion: These findings demonstrate that TMARg exerts pharmacological and biological effects on osteoblast differentiation through the activation of BMP2 and β-catenin signaling pathways, and suggest that TMARg might be a potential phytomedicine for the treatment of bone diseases.
Collapse
|
25
|
Wang J, Zhang B, Lu W, Liu J, Zhang W, Wang Y, Ma M, Cao X, Guo Y. Cell Proliferation Stimulation Ability and Osteogenic Activity of Low Molecular Weight Peptides Derived from Bovine Gelatin Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7630-7640. [PMID: 32633950 DOI: 10.1021/acs.jafc.0c02717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been recognized that collagen peptides of MW 878 Da (CP1) promote osteoblast proliferation and mineralization. The objective of this study is to identify the peptides responsible for proliferation of osteoblast growth, enhancement of ALP (alkaline phosphatase) activity in osteoblasts and promotion of osteoblast mineralization. To this end, the CP1 were fractioned by a series of chromatography procedures, and 51 peptides from the fraction possessing the most powerful cell proliferation ability were identified by LC-MS-MS. The peptides, GPAGPSGPAGK and GPPGSPGPR, were validated on a simultaneous basis as possessing enhanced bioactivity-inducing properties. In particular, the ALP activity of the cells treated with these two peptides was almost twice that of the control cells. Hydrogen bonds were formed, and the hydrophobic interactions with the EGFR (epidermal growth factor receptor) might be responsible for the osteoblast proliferation activity. On this basis, the two peptides might be potential lead compounds against osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junli Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weijie Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
26
|
Badran SA, Fayyaz S, Taj B, Choudhary MI. Megestrol acetate induced proliferation and differentiation of osteoblastic MC3T3-E1 cells: A drug repurposing approach. Steroids 2020; 157:108607. [PMID: 32084501 DOI: 10.1016/j.steroids.2020.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 11/24/2022]
Abstract
AIMS Drug repurposing or repositioning i.e.; identifying new indications for existing drugs have recently accelerated the process of drug discovery and development. Megestrol acetate (1) is a well-known progestin. It is commonly used as an appetite stimulant, and also in the treatment of breast, and endometrial cancers. The aim of this study is to investigate the effect of megestrol acetate (1) in osteoblast differentiation, and to determine the possible mechanism involved in megestrol acetate (1) induced osteoblast differentiation. MAIN METHODS Cytotoxicity of different steroidal drugs was evaluated using MTT assay. Alkaline phosphatase (ALP) activity was also determined, and alizarin red S (ARS) staining was performed to measure extracellular mineralization. Osteogenic protein levels were determined using Western blot analysis. KEY FINDINGS Results of the current study indicated that the megestrol acetate (1) enhanced the proliferation and differentiation of osteoblast cells at 1, 0.2, and 0.04 µM. This stimulatory effect of the megestrol acetate (1) was more prominent at 0.2 µM for cell proliferation, while the maximum cell differentiation (ALPase activity, and calcification) was observed at 0.04 μM. Western blot analysis also showed that megestrol acetate (1) altered the expression of bone morphogenic protein-2 (BMP2), p38, and pJNK proteins. Hence, only moderate doses of MGA (1) can enhance osteoblast proliferation and differentiation. SIGNIFICANCE Our results identified that megestrol acetate (1) could be a potential lead for further research towards bone fragility related disorders.
Collapse
Affiliation(s)
- Serene A Badran
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| | - Sharmeen Fayyaz
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Bushra Taj
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
27
|
Jeong DH, Kwak SC, Lee MS, Yoon KH, Kim JY, Lee CH. Betulinic Acid Inhibits RANKL-Induced Osteoclastogenesis via Attenuating Akt, NF-κB, and PLCγ2-Ca 2+ Signaling and Prevents Inflammatory Bone Loss. JOURNAL OF NATURAL PRODUCTS 2020; 83:1174-1182. [PMID: 32237724 DOI: 10.1021/acs.jnatprod.9b01212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The increase of bone-resorbing osteoclast activity in bone remodeling is the major characteristic of various bone diseases. Thus, inhibiting osteoclastogenesis and bone-resorbing function may be an effective therapeutic target for bone diseases. Betulinic acid (BA), a natural plant-derived pentacyclic triterpenoid compound, is known to possess numerous pharmacological and biochemical properties including anti-inflammatory, anticancer, and antiadipogenic activity. However, the effect of BA on osteoclast differentiation and function in bone metabolism has not been demonstrated so far. In this study, we investigated whether BA could suppress RANKL-induced osteoclastogenesis and bone resorption. Interestingly, BA significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt and IκB, as well as PLCγ2-Ca2+ signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos and NFATc1. The inhibition of these pathways by BA was once more confirmed by retrovirus infection of constitutively active (CA)-Akt and CA-Ikkβ retrovirus and measurement of Ca2+ influx. BA also significantly inhibited the expression of osteoclastogenesis-specific marker genes. Moreover, we found that BA administration restored the bone loss induced through acute lipopolysaccharide injection in mice by a micro-CT and histological analysis. Our findings suggest that BA is a potential therapeutic candidate for bone diseases involving osteoclasts.
Collapse
Affiliation(s)
- Da Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung Chul Kwak
- Department of Anatomy, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myeung Su Lee
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Kwon-Ha Yoon
- Department of Radiology, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Medical Convergence Research Center, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Medical Convergence Research Center, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chang Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Medical Convergence Research Center, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
28
|
Mizerska-Kowalska M, Sławińska-Brych A, Kaławaj K, Żurek A, Pawińska B, Rzeski W, Zdzisińska B. Betulin Promotes Differentiation of Human Osteoblasts In Vitro and Exerts an Osteoinductive Effect on the hFOB 1.19 Cell Line Through Activation of JNK, ERK1/2, and mTOR Kinases. Molecules 2019; 24:molecules24142637. [PMID: 31331121 PMCID: PMC6680433 DOI: 10.3390/molecules24142637] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
Although betulin (BET), a naturally occurring pentacyclic triterpene, has a variety of biological activities, its osteogenic potential has not been investigated so far. The aim of this study was to assess the effect of BET on differentiation of human osteoblasts (hFOB 1.19 and Saos-2 cells) in vitro in osteogenic (with ascorbic acid as an osteogenic supplement) and osteoinductive (without an additional osteogenic supplement) conditions. Osteoblast differentiation was evaluated based on the mRNA expression (RT-qPCR) of Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), type I collagen-α1 (COL1A1), and osteopontin (OPN). Additionally, ALP activity and production of COL1A1 (western blot analysis) and OPN (ELISA) were evaluated. The level of mineralization (calcium accumulation) was determined with Alizarin red S staining. BET upregulated the mRNA level of RUNX2 and the expression of other osteoblast differentiation markers in both cell lines (except the influence of BET on ALP expression/activity in the Saos-2 cells). Moreover, it increased mineralization in both cell lines in the osteogenic conditions. BET also increased the mRNA level of osteoblast differentiation markers in both cell lines (except for ALP in the Saos-2 cells) in the osteoinductive conditions, which was accompanied with increased matrix mineralization. The osteoinductive activity of BET in the hFOB 1.19 cells was probably mediated via activation of MAPKs (JNK and ERK1/2) and mTOR, as the specific inhibitors of these kinases abolished the BET-induced osteoblast differentiation. Our results suggest that BET has the potential to enhance osteogenesis.
Collapse
Affiliation(s)
| | | | - Katarzyna Kaławaj
- Department of Virology and Immunology; Maria Curie-Sklodowska University, Lublin 20-033, Poland
| | - Aleksandra Żurek
- Department of Virology and Immunology; Maria Curie-Sklodowska University, Lublin 20-033, Poland
| | - Beata Pawińska
- Department of Virology and Immunology; Maria Curie-Sklodowska University, Lublin 20-033, Poland
| | - Wojciech Rzeski
- Department of Virology and Immunology; Maria Curie-Sklodowska University, Lublin 20-033, Poland
- Department of Medical Biology, Institute of Rural Health, Lublin 20-090, Poland
| | - Barbara Zdzisińska
- Department of Virology and Immunology; Maria Curie-Sklodowska University, Lublin 20-033, Poland.
| |
Collapse
|
29
|
Xu Z, Chen H, Wang Z, Fan F, Shi P, Tu M, Du M. Isolation and Characterization of Peptides from Mytilus edulis with Osteogenic Activity in Mouse MC3T3-E1 Preosteoblast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1572-1584. [PMID: 30614690 DOI: 10.1021/acs.jafc.8b06530] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Seafood provides a range of health benefits because of its high protein levels. In this study, a novel peptide, YPRKDETGAERT, was identified from NHA-2 of Mytilus edulis by capillary-electrophoresis electrospray ionization-quadrupole-time of flight (CESI-Q-TOF). Peptide YPRKDETGAERT showed the highest affinity among all the peptides, with -CDOCKER energy values of 204.482 kcal/mol on one integrin (PDB: 3VI4 ) and 210.16 kcal/mol on another integrin (PDB: 1L5G ). The secondary mass spectrogram at the m/ z of peptide YPRKDETGAERT was 1422.53 Da, which was determined by CESI-Q-TOF. Peptide YPRKDETGAERT induced an increase of 28.27 ± 3.66% in mouse-MC3T3-E1-preosteoblast-cell growth. The alkaline-phosphatase activity of peptide YPRKDETGAERT was 2.79 ± 0.07 mU, which was an increase of 21.25% compared with that of the control. These results provide theoretical and practical insights for the preparation and application of osteogenic peptides in the functional-foods industry.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Fengjiao Fan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Pujie Shi
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Maolin Tu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| |
Collapse
|
30
|
Liu L, Wang D, Qin Y, Xu M, Zhou L, Xu W, Liu X, Ye L, Yue S, Zheng Q, Li D. Astragalin Promotes Osteoblastic Differentiation in MC3T3-E1 Cells and Bone Formation in vivo. Front Endocrinol (Lausanne) 2019; 10:228. [PMID: 31040823 PMCID: PMC6476984 DOI: 10.3389/fendo.2019.00228] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Astragalin (AG) is a biologically active flavonoid compound that can be extracted from a number of medicinal plants. However, the effects of AG on osteoblastic differentiation in mouse MC3T3-E1 cells and on bone formation in vivo have not been studied fully. In this study, we found that the activities of alkaline phosphatase (ALP) and mineralized nodules in MC3T3-E1 cells were both significantly increased after treatment with AG (5, 10, and 20 μM). Meanwhile, the mRNA and protein levels of osteoblastic marker genes in MC3T3-E1 cells after AG treatment were markedly increased compared with a control group. In addition, the levels of BMP-2, p-Smad1/5/9, and Runx2 were significantly elevated in AG-treated MC3T3-E1 cells. Moreover, we found that the protein levels of Erk1/2, p-Erk1/2, p38, p-p38, and p-JNK were also significantly increased in AG-treated MC3T3-E1 cells compared to those in the control group. Finally, in vivo experiments demonstrated that AG significantly promoted bone formation in an ovariectomized (OVX)-induced osteoporotic mouse model. This was evidenced by significant increases in the values of osteoblast-related parameters (BFR/BS, MAR, Ob.S/BS, and Ob.N/B.Pm) and bone histomorphometric parameters (BMD, BV/TV, Tb.Th, and Tb.N.) in OVX mice after AG treatment (5, 10, and 20 mg/kg). Collectively, these results demonstrated that AG may promote osteoblastic differentiation in MC3T3-E1 cells via the activation of the BMP and MAPK pathways and promote bone formation in vivo. These novel findings indicated that AG may be a useful bone anabolic agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Li Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dan Wang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Yao Qin
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Maolei Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ling Zhou
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenjuan Xu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Xiaona Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Lei Ye
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Shijun Yue
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Defang Li
| |
Collapse
|
31
|
Liu Y, Yang T, Chen T, Hao J, Gai Y, Zhang W. (R)‑dehydroxyabscisic alcohol β‑D‑apiofuranosyl‑(1ˮ→6')‑β‑D‑glucopyranoside enhances the osteoblastic differentiation of ST2 cells via the BMP/WNT pathways. Mol Med Rep 2018; 19:461-467. [PMID: 30483786 PMCID: PMC6297791 DOI: 10.3892/mmr.2018.9690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/19/2018] [Indexed: 01/28/2023] Open
Abstract
Lonicera japonica has been used in traditional Chinese medicine as an important medicinal plant, with the ability to inhibit osteoclast development and bone loss. However, it is not clear which active ingredient exerts these effects. (R)-dehydroxyabscisic alcohol β-D-apiofuranosy l-(1ˮ→6’)-β-D-glucopyranoside (DAG) is an active constituent isolated from Lonicera japonica. In the present study, the ST2 bone marrow stromal cell line was treated by DAG at different concentrations and the osteoblastic differentiation was explored by ELISA assay, Von Kossa staining, Alizarin Red S staining, reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results revealed that DAG promoted osteoblastic differentiation, as evidenced by increasing mineralization and alkaline phosphatase (ALP) activity, as well as the expression of genes encoding bone differentiation markers, including Alp, osteopontin (Opn) and osteocalcin (Ocn). In addition, DAG upregulated the gene expression of bone morphogenetic protein (Bmp)-2, Bmp4, Wnt family member (Wnt)-1, Wnt3 and runt-related transcription factor 2 (Runx2), as well as the protein expression of phosphorylated-mothers against decapentaplegic homolog (Smad) 1, Smad5 Smad8, β-catenin and Runx2 in ST2 cells. The osteogenic effects induced by DAG were attenuated by the BMP antagonist Noggin and the WNT signaling pathway inhibitor Dickkopf related protein-1. The data indicated that DAG promoted the osteoblastic differentiation of ST2 cells, at least partially through regulating the BMP/WNT signaling pathways. This provides scientific rationale for the development of DAG as a treatment for bone loss-associated diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Tao Yang
- Department of Joint Surgery and Sports Medicine, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jun Hao
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Gai
- Department of Pathology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
32
|
Liu H, Wei LK, Jian XF, Huang J, Zou H, Zhang SZ, Yuan GH. Isolation, culture and induced differentiation of rabbit mesenchymal stem cells into osteoblasts. Exp Ther Med 2018; 15:3715-3724. [PMID: 29581732 PMCID: PMC5863588 DOI: 10.3892/etm.2018.5894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) may be easily isolated from the bone marrow, and possess multi-lineage differentiation potential and various therapeutic applications. The differentiation of MSCs into osteoblasts is a complex process that is regulated by multiple internal and external factors. In the present study, the differentiation of MSCs isolated from rabbit bone marrow into osteoblasts using different osteoblast inductive media in the presence of dexamethasone, bone morphogenetic protein 2 (BMP-2), 1,25-dihydroxyvitamin D3, transforming growth factor β (TGFβ), platelet lysate and cyclooxygenase 2 (COX2), respectively. Alkaline phosphatase (ALP) activity, mineralization, collagen type (Ct) I and osteocalcin activities, and the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), BMP-2 and Ct II were measured during the differentiation process in MSCs treated with different inducers. Rabbit MSCs were successfully isolated and were observed to be predominantly circular in shape after culture for 24 h. Following subculture for 5 days, the cells demonstrated a spindle shape. ALP, Ct I and osteocalcin activities were higher in cells cultured in dexamethasone, BMP-2 and TGFβ compared with the activities in control cells. Following differentiation, the dexamethasone, BMP-2 and TGFβ groups demonstrated significantly enhanced mineralization of MSCs detected by Alizarin Red S staining. The mRNA and protein expression levels of VEGF, BMP-2 and Ct II were significantly increased in the same groups compared with the levels in the control group. In conclusion, rabbit MSCs were successfully isolated from bone marrow and differentiated into osteoblasts indicated by raised ALP, Ct I and osteocalcin activities, mineralization and expression of osteogenesis-inducing genes and proteins. The present study revealed that dexamethasone, BMP-2 and TGFβ have a positive effect on cell differentiation.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Li-Kun Wei
- Department of Stomatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Xiao-Fei Jian
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jie Huang
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shi-Zhan Zhang
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Guang-Hua Yuan
- Department of Orthopedics, Wuhan Xinzhou District People's Hospital, Wuhan, Hubei 430400, P.R. China
| |
Collapse
|
33
|
Curtin CM, Castaño IM, O'Brien FJ. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer. Adv Healthc Mater 2018; 7. [PMID: 29068566 DOI: 10.1002/adhm.201700695] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Indexed: 12/17/2022]
Abstract
microRNA-based therapies are an advantageous strategy with applications in both regenerative medicine (RM) and cancer treatments. microRNAs (miRNAs) are an evolutionary conserved class of small RNA molecules that modulate up to one third of the human nonprotein coding genome. Thus, synthetic miRNA activators and inhibitors hold immense potential to finely balance gene expression and reestablish tissue health. Ongoing industry-sponsored clinical trials inspire a new miRNA therapeutics era, but progress largely relies on the development of safe and efficient delivery systems. The emerging application of biomaterial scaffolds for this purpose offers spatiotemporal control and circumvents biological and mechanical barriers that impede successful miRNA delivery. The nascent research in scaffold-mediated miRNA therapies translates know-how learnt from studies in antitumoral and genetic disorders as well as work on plasmid (p)DNA/siRNA delivery to expand the miRNA therapies arena. In this progress report, the state of the art methods of regulating miRNAs are reviewed. Relevant miRNA delivery vectors and scaffold systems applied to-date for RM and cancer treatment applications are discussed, as well as the challenges involved in their design. Overall, this progress report demonstrates the opportunity that exists for the application of miRNA-activated scaffolds in the future of RM and cancer treatments.
Collapse
Affiliation(s)
- Caroline M. Curtin
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| |
Collapse
|
34
|
Yu S, Luk KH, Cheung ST, Kwok KWH, Wong KH, Chen T. Polysaccharide-protein complex-decorated selenium nanosystem as an efficient bone-formation therapeutic. J Mater Chem B 2018; 6:5215-5219. [DOI: 10.1039/c8tb01084f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PTR-SeNPs with high stability were fabricated, which demonstrated excellent in vitro and in vivo osteogenic effects via BMP-2/Smad-mediated signaling pathways.
Collapse
Affiliation(s)
- Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Kar-Him Luk
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong
- China
| | - Siu-To Cheung
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong
- China
| | - Kevin Wing-Hin Kwok
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong
- China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
35
|
Taketomi T, Onimura T, Yoshiga D, Muratsu D, Sanui T, Fukuda T, Kusukawa J, Nakamura S. Sprouty2 is involved in the control of osteoblast proliferation and differentiation through the FGF and BMP signaling pathways. Cell Biol Int 2017; 42:1106-1114. [PMID: 28921936 DOI: 10.1002/cbin.10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3-E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3-E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF-ERK1/2 and BMP-Smad pathways, and suppresses the induction of markers of osteoblast differentiation.
Collapse
Affiliation(s)
- Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomohiro Onimura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshiga
- Division of Oral and Maxillofacial Reconstructive Surgery, Kyushu Dental College, Kitakyushu, Fukuoka, Japan
| | - Daichi Muratsu
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Yuan DY, Meng Z, Xu K, Li QF, Chen C, Li KY, Zhang B. Betulinic acid increases radiosensitization of oral squamous cell carcinoma through inducing Sp1 sumoylation and PTEN expression. Oncol Rep 2017; 38:2360-2368. [DOI: 10.3892/or.2017.5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/02/2017] [Indexed: 11/05/2022] Open
|
37
|
Wang F, Zhao Y, Liu Y, Yu P, Yu Z, Wang J, Xue C. Peptides from Antarctic krill (Euphausia superba
) ameliorate senile osteoporosis via activating osteogenesis related BMP2/Smads and Wnt/β-catenin pathway. J Food Biochem 2017. [DOI: 10.1111/jfbc.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Yanlei Zhao
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Yuntao Liu
- Shandong Oriental Ocean Sci-tech Co., Ltd.; Yantai Shandong Province 264003 China
| | - Peng Yu
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Zhe Yu
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Jingfeng Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Changhu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| |
Collapse
|
38
|
Chung HJ, Kim WK, Oh J, Kim MR, Shin JS, Lee J, Ha IH, Lee SK. Anti-Osteoporotic Activity of Harpagoside by Upregulation of the BMP2 and Wnt Signaling Pathways in Osteoblasts and Suppression of Differentiation in Osteoclasts. JOURNAL OF NATURAL PRODUCTS 2017; 80:434-442. [PMID: 28106392 DOI: 10.1021/acs.jnatprod.6b00964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Harpagoside (1) is an iridoid glycoside isolated from the radix of Harpagophytum procumbens var. sublobatum, commonly called Devil's claw. The anti-osteoporotic effect of 1 was investigated in both in vitro cell cultures and in vivo using an ovariectomized (OVX) mouse model. Compound 1 induced bone formation by stimulating osteoblast proliferation, alkaline phosphatase activity, and mineralization in osteoblastic MC3T3-E1 cells. Treatment with 1 increased the mRNA and protein expression of bone formation biomarkers through regulation of the BMP2 and Wnt signaling pathway in MC3T3-E1 cells. Compound 1 also suppressed the RANKL-induced osteoclastogenesis of cultured mouse bone marrow cells. Oral administration of 1 restored the OVX-induced destruction of trabecular bone. The bone mineral density of the femur was also increased significantly by 1. The elevated serum levels of osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase in the OVX mice were decreased by treatment with 1. These findings suggest that compound 1 may protect against bone loss induced by OVX in mice by regulating stimulation of osteoblast differentiation and inhibition of osteoclast resorption. Therefore, harpagoside (1) is a potential candidate for management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Hwa-Jin Chung
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul 135-896, Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | - Jedo Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | - Me-Riong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul 135-896, Korea
| | - Joon-Shik Shin
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul 135-896, Korea
| | - Jinho Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul 135-896, Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation , Seoul 135-896, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| |
Collapse
|
39
|
Abstract
Objective: To review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation. Data Sources: Studies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected. Study Selection: Abstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded. Results: ENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2. Conclusion: The pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference.
Collapse
Affiliation(s)
| | | | - Wei-Hua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
40
|
Kwak S, Haider A, Gupta KC, Kim S, Kang IK. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering. NANOSCALE RESEARCH LETTERS 2016; 11:323. [PMID: 27376895 PMCID: PMC4932007 DOI: 10.1186/s11671-016-1532-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 05/06/2023]
Abstract
The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.
Collapse
Affiliation(s)
- Sanghwa Kwak
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
| | - Adnan Haider
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
| | - Kailash Chandra Gupta
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
- />Polymer Research Laboratory, Department of Chemistry, I.I.T. Roorkee, Roorkee, 247667 India
| | - Sukyoung Kim
- />School of Materials Science and Engineering, Yeungnam University, Gyeongbuk, 712-749 South Korea
| | - Inn-Kyu Kang
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
| |
Collapse
|
41
|
Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Xu HT, Qin LP, Xin HL, Zhang QY, Li YM. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:61-80. [PMID: 27180315 DOI: 10.1016/j.jep.2016.05.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis is a chronic epidemic which can leads to enhanced bone fragility and consequent an increase in fracture risk. Traditional Chinese medicine (TCM) formulas have a long history of use in the prevention and treatment of osteoporosis. Antiosteoporotic TCM formulas have conspicuous advantage over single drugs. Systematic data mining of the existing antiosteoporotic TCM formulas database can certainly help the drug discovery processes and help the identification of safe candidates with synergistic formulations. In this review, the authors summarize the clinical use and animal experiments of TCM formulas and their mechanism of action, and discuss the potential antiosteoporotic activity and the active constituents of commonly used herbs in TCM formulas for the therapy of osteoporosis. MATERIALS AND METHODS The literature was searched from Medline, Pubmed, ScienceDirect, Spring Link, Web of Science, CNKI and VIP database from 1989 to 2015, and also collected from Chinese traditional books and Chinese Pharmacopoeia with key words such as osteoporosis, osteoblast, osteoclast, traditional Chinese medicine formulas to identify studies on the antiosteoporotic effects of TCM formulas, herbs and chemical constituents, and also their possible mechanisms. RESULTS Thirty-three TCM formulas were commonly used to treat osteoporosis, and showed significant antiosteoporotic effects in human and animal. The herb medicines and their chemical constituents in TCM formulas were summarized, the pharmacological effects and chemical constituents of commonly used herbs in TCM formulas were described in detail. The action mechanisms of TCM formulas and their chemical constituents were described. Finally, the implication for the discovery of antiosteoporotic leads and combinatory ingredients from TCM formulas were prospectively discussed. CONCLUSIONS Clinical practice and animal experiments indicate that TCM formulas provide a definite therapeutic effect on osteoporosis. The active constituents in TCM formulas are diverse in chemical structure, and include flavonoids, lignans, saponins and iridoid glycosides. Antiosteoporotic mechanism of TCM formulas and herbs involves multi regulatory pathways, such as Wnt/β-catenin, BMP/Smad, MAPK pathway and RANKL/OPG system. Phytochemicals from TCM formulas and their compositional herb medicines offer great potential for the development of novel antiosteoporotic drugs. The active ingredients in TCM formulas can be developed in combination as potent drugs, which may exhibit better antiosteoporotic effects compared to the individual compound.
Collapse
Affiliation(s)
- Nai-Dan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Bao-Kang Huang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong-Tao Xu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yi-Min Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
42
|
Choi H, Jeong BC, Kook MS, Koh JT. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways. J Biomed Sci 2016; 23:45. [PMID: 27188281 PMCID: PMC4869197 DOI: 10.1186/s12929-016-0260-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Healing of bone defects is a dynamic and orchestrated process that relies on multiple growth factors and cell types. Bone morphogenetic protein 2 (BMP2) is a key growth factor for bone healing, which stimulates mesenchymal stem cells to differentiate into osteoblasts. Betulinic acid (BetA) is a natural pentacyclic triterpenoid from plants. This study aimed to examine combinatory effects of BetA and BMP2 on ectopic bone generation in mice. RESULTS In MC3T3-E1 preosteoblast culture, 10-15 μM of BetA increased the alkaline phosphatase (ALP) activity and expression levels of osteogenic marker genes without the decreased cell viability. In addition, BetA synergistically enhanced BMP2-induced gene expressions and mineralization with the enhancement of phosphorylation of Smad1/5/8 and p38. In an in vivo ectopic bone formation model, combination of BetA (50 μg) and BMP2 (3 μg) resulted in increases in the amount of new bone generation, compared with treatment with BMP2 alone. Histological studies showed that bone generation with cortical and trabecular structures was resulted from the combination of BetA and BMP2. CONCLUSION BetA can enhance in vivo osteogenic potentials of BMP2, possibly via stimulating Smad 1/5/8 and p38 pathways, and combination of both agents can be considered as a therapeutic strategy for bone diseases.
Collapse
Affiliation(s)
- Hyuck Choi
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Animal Nutrition Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Byung-Chul Jeong
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Suk Kook
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jeong-Tae Koh
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea. .,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
43
|
Wang F, Wang Y, Zhao Y, Zhan Q, Yu P, Wang J, Xue C. Sialoglycoprotein Isolated from Eggs of Carassius auratus Ameliorates Osteoporosis: An Effect Associated with Regulation of the Wnt/β-Catenin Pathway in Rodents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2875-2882. [PMID: 27023001 DOI: 10.1021/acs.jafc.5b06132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the current study, ovariectomized (OVX) rats and the senescence-accelerated mouse strain P6 (SAMP6) were employed to establish models of postmenopausal osteoporosis and senile osteoporosis, respectively. The effects of treatment with sialoglycoprotein isolated from the eggs of Carassius auratus (Ca-SGP) on these two types of osteoporosis were investigated in vivo. Results showed that Ca-SGP significantly increased bone mineral density, ameliorated trabecular bone microstructure, and improved bone biomechanical properties in both OVX rats and SAMP6. The osteogenesis related Wnt/β-catenin pathway was targeted to study the underlying mechanism of Ca-SGP activity. In postmenopausal osteoporosis, Ca-SGP suppressed the activation of Wnt/β-catenin signal via down-regulating the expression of key genes including LRP5, β-catenin, and Runx2, suggesting that overactive osteogenesis was controlled by Ca-SGP. The bone formation was sharply weakened in senile osteoporosis, whereas Ca-SGP treatment promoted osteoblast activity by stimulating the Wnt/β-catenin signal. In conclusion, Ca-SGP ameliorated these two types of osteoporosis by normalizing bone anabolism.
Collapse
Affiliation(s)
- Fei Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yiming Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yanlei Zhao
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Qiping Zhan
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Peng Yu
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| |
Collapse
|
44
|
Costa CRR, Amorim BR, de Magalhães P, De Luca Canto G, Acevedo AC, Guerra ENS. Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review. Phytother Res 2016; 30:519-31. [PMID: 26822584 DOI: 10.1002/ptr.5568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/05/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest. The methodology of the selected studies was evaluated using GRADE. After a two-step selection process, eight studies were identified. Six different types of plants were reported in the selected studies, which were Morinda citrifolia, Aloe vera, Fructus cnidii, Zanthoxylum schinifolium, Centella asiatica, and Epimedium species. They included five types of isolated plant components: acemannan, osthole, hesperetin, asiaticoside, and icariin. In addition, some active substances of these components were identified as polysaccharides, coumarins, flavonoids, and triterpenes. The studies demonstrated the potential effects of plants on osteogenic differentiation, cell proliferation, mineral deposition, and gene and protein expression. Four studies showed that periodontal ligament cells induce mineral deposition after plant treatment. Although there are few studies on the subject, current evidence suggests that plants are potentially useful for the treatment of periodontal diseases. However, further investigations are required to confirm the promising effect of these plants in regenerative treatments.
Collapse
Affiliation(s)
| | - Bruna Rabelo Amorim
- Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Pérola de Magalhães
- Natural Products Laboratory, Health Sciences Faculty, University of Brasilia, Brasília, Brazil
| | - Graziela De Luca Canto
- Brazilian Centre for Evidence-Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil.,School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana Carolina Acevedo
- Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
45
|
Hwang PA, Hung YL, Phan NN, Hieu BTN, Chang PM, Li KL, Lin YC. The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology 2015; 68:1349-59. [PMID: 26271462 DOI: 10.1007/s10616-015-9894-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/09/2015] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis has been reported as a hidden death factor in aged people. So far, prevention and treatment therapies for osteoporosis only slow down the progress but do not treat the disease. Fucoidan has been recognized its roles in anti-tumor, anti-inflammatory, anti-coagulant and antiviral activities. To date, low molecular weight (LMW) fucoidan role in bone loss disease has been not determined yet. Therefore, this study aims to figure out potential effects of LMW fucoidan in osteoporosis in vitro and in vivo. LMW fucoidan was extracted from fresh Sargassum hemiphyllum showing a significant increase in 7F2 cell viability to 150.33 ± 6.50 % relative to normal fucoidan (130.12 ± 5.74 %). The expression of level BMP-2, ALP, osteocalcin significantly increased with 2.28 ± 0.06, 2.18 ± 0.12 and 2.06 ± 0.07 fold, respectively. The RT-PCR assay showed that LMW fucoidan increased mRNA expression of BMP-2, ALP, osteocalcin, COL I, BSP and osteonectin. Furthermore, the bone density and bone ash weight were considerably boosted by the oral administration of 280 mg/kg LMW fucoidan and 100 mg/kg calcium carbonate in C57BL/6J female aged mice. The present finding indicated that LMW fucoidan triggered osteogenic differentiation in vitro, and had an anabolic effect on bone mineralization in vivo. Dietary intake of LMW fucoidan from S. hemiphyllum suggested playing a role in the enhancement of bone loss with increasing age.
Collapse
Affiliation(s)
- Pai-An Hwang
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Taipei, Taiwan
| | - Yu-Lan Hung
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Taipei, Taiwan
| | - Nam Nhut Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh, Vietnam
| | - Bui-Thi-Ngoc Hieu
- Graduate Institute of Biotechnology, Chinese Culture University, 55 Hwa-Kang Rd., Yangmin Shan, Taipei, 1114, Taiwan
| | - Po-Ming Chang
- Graduate Institute of Biotechnology, Chinese Culture University, 55 Hwa-Kang Rd., Yangmin Shan, Taipei, 1114, Taiwan
| | - Kuan-Lun Li
- Graduate Institute of Biotechnology, Chinese Culture University, 55 Hwa-Kang Rd., Yangmin Shan, Taipei, 1114, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, 55 Hwa-Kang Rd., Yangmin Shan, Taipei, 1114, Taiwan.
| |
Collapse
|
46
|
Liou SF, Hsu JH, Chu HC, Lin HH, Chen IJ, Yeh JL. KMUP-1 Promotes Osteoblast Differentiation Through cAMP and cGMP Pathways and Signaling of BMP-2/Smad1/5/8 and Wnt/β-Catenin. J Cell Physiol 2015; 230:2038-48. [PMID: 25536014 DOI: 10.1002/jcp.24904] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Phosphodiesterase (PDE) inhibitors have been suggested as a possible candidate for the treatment of osteopenia, including osteoporosis. KMUP-1 is a novel xanthine derivative with inhibitory activities on the PDE 3, 4, and 5 iso-enzymes to suppress the degradation of cAMP and cGMP. This study aimed to investigate the effect of KMUP-1 on osteoblast differentiation and the underlying cellular and molecular mechanisms. Primary osteoblasts and osteoblastic MC3T3-E1 cells were examined. KMUP-1 enhanced alkaline phosphatase (ALP) activity and mineralization compared to untreated controls in primary osteoblasts and MC3T3-E1 cells. KMUP-1 also increased the mRNA expression of the osteoblastic differentiation markers, including collagen type 1a, ALP, osteocalcin, osteoprotegerin, BMP-2, and Runx2, a key transcription regulator for osteoblastic differentiation. The osteogenic effect of KMUP-1 was abolished by BMP signaling inhibitor, noggin. Furthermore, we found that KMUP-1 upregulated Smad1/5/8 phosphorylations with subsequent BRE-Luc activation confirmed by transient transfection assay. In addition, KMUP-1 inactivated glycogen synthase kinase-3β (GSK-3β), with associated nuclear translocation of β-catenin. Co-treatment with H89 and KT5823, cAMP and cGMP pathway inhibitors, respectively, reversed the KMUP-1-induced activations of Smad1/5/8, β-catenin, and Runx2. The findings demonstrate for the first time that KMUP-1 can promote osteoblast maturation and differentiation in vitro via BMP-2/Smad1/5/8 and Wnt/β-catenin pathways. These effects are mediated, in part, by the cAMP and cGMP signaling. Thus, KMUP-1 may be a novel osteoblast activator and a potential new therapy for osteoporosis.
Collapse
Affiliation(s)
- Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jong-Hau Hsu
- Department of Paediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chieh Chu
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hong Lin
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ing-Jun Chen
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
47
|
2,4,5-Trimethoxyldalbergiquinol promotes osteoblastic differentiation and mineralization via the BMP and Wnt/β-catenin pathway. Cell Death Dis 2015; 6:e1819. [PMID: 26181200 PMCID: PMC4650732 DOI: 10.1038/cddis.2015.185] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Dalbergia odorifera has been traditionally used as a medicine to treat many diseases. However, the role of 2,4,5-trimethoxyldalbergiquinol (TMDQ) isolated and extracted from D. odorifera in osteoblast function and the underlying molecular mechanisms remain poorly understood. The aim of this study was to investigate the effects and possible underlying mechanisms of TMDQ on osteoblastic differentiation of primary cultures of mouse osteoblasts as an in vitro assay system. TMDQ stimulated osteoblastic differentiation, as assessed by the alkaline phosphatase (ALP) activity, ALP staining, mineralized nodule formation, and the levels of mRNAs encoding the bone differentiation markers, including ALP, bone sialoprotein (BSP), osteopontin, and osteocalcin. TMDQ upregulated the expression of Bmp2 and Bmp4 genes, and increased the protein level of phospho-Smad1/5/8. Furthermore, TMDQ treatment showed the increased mRNA expression of Wnt ligands, phosphorylation of GSK3, and the expression of β-catenin protein. The TMDQ-induced osteogenic effects were abolished by Wnt inhibitor, Dickkopf-1 (DKK1), and bone morphogenetic protein (BMP) antagonist, noggin. TMDQ-induced runt-related transcription factor 2 (Runx2) expression was attenuatted by noggin and DKK1. These data suggest that TMDQ acts through the activation of BMP, Wnt/β-catenin, and Runx2 signaling to promote osteoblast differentiation, and we demonstrate that TMDQ could be a potential agent for the treatment of bone loss-associated diseases such as osteoporosis.
Collapse
|
48
|
MicroRNA-24 Regulates Osteogenic Differentiation via Targeting T-Cell Factor-1. Int J Mol Sci 2015; 16:11699-712. [PMID: 26006243 PMCID: PMC4463725 DOI: 10.3390/ijms160511699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to have diverse biological roles in regulating many biological processes, including osteogenic differentiation. In the present study, we identified that miR-24 was a critical regulator during osteogenic differentiation. We found that overexpression of miR-24 significantly inhibited osteogenic differentiation, which decreased alkaline phosphatase activity, matrix mineralization and the expression of osteogenic differentiation markers. In contrast, inhibition of miR-24 exhibited an opposite effect. Furthermore, we delineated that miR-24 regulates post-transcriptionals of T-cell factor-1 (Tcf-1) via targeting the 3'-untranslated region (UTR) of Tcf-1 mRNA. MiR-24 was further found to regulate the protein expression of Tcf-1 in the murine osteoprogenitors cells and bone mesenchymal stem cells. Additionally, the positive effect of miR-24 suppression on osteoblast differentiation was apparently abrogated by Tcf-1 silencing. Taken together, our data suggest that miR-24 participates in osteogenic differentiation by targeting and regulating Tcf-1 expression in osteoblastic cells.
Collapse
|
49
|
Huang YL, Lee CH, Liao JF, Liu YW, Chiou WF. Protective effects of ugonin K on hydrogen peroxide-induced osteoblast cell damage. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Khan MF, Dev K, Lahiri S, Dixit M, Trivedi R, Singh D, Maurya R. Osteogenic activity of natural diterpenoids isolated from Cupressus sempervirens fruits in calvarial derived osteoblast cells via differentiation and mineralization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1794-1800. [PMID: 25481392 DOI: 10.1016/j.phymed.2014.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/21/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to investigate the antiosteoporotic activity of four structurally related diterpenoids: sugiol (1), trans-communic acid (2), 15-acetoxy imbricatolic acid (3) and imbricatolic acid (4). Their osteogenic effect was evaluated by using validated models including alkaline phosphatase (ALP) assay, mineralization assay and expression of osteogenic genes-bone morphogenetic protein-2 (BMP-2) and osteoblast transcription factor (RUNX2) - in primary calvarial cultures harvested from neonatal mice. Among them, compound 1 at a dose of 1.0 mg/kg body weight exhibited significant osteoprotective effects and did not show uterine estrogenicity at the same dose. Additionally, compound 1 treatment led to improved biomechanical properties as exhibited by increased power, energy and stiffness in femoral bones compared to untreated Ovx animals. Since osteoporotic compression fracture correlates with the mechanical characteristics of trabecular bone, so that it could effectively reduce the risk of this type of fracture by improving trabecular micro architecture in postmenopausal women. Therefore, our findings proposed that diterpenoids may be useful new chemical agents in the treatment of diseases associated with bone loss.
Collapse
Affiliation(s)
- Mohammad Faheem Khan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kapil Dev
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shibani Lahiri
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manisha Dixit
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Divya Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|