1
|
Lorenzoni S, Rodríguez-Nogales C, Blanco-Prieto MJ. Targeting tumor microenvironment with RGD-functionalized nanoparticles for precision cancer therapy. Cancer Lett 2025; 614:217536. [PMID: 39924081 DOI: 10.1016/j.canlet.2025.217536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The need for precision therapies arises from the complexities associated with high-risk types of cancer, due to their aggressiveness and resistance to treatment. These diseases represent a global issue that requires transversal strategies involving cooperation among oncology specialists and experts from related fields, including nanomedicine. Nanoparticle-mediated active targeting of tumors has proven to be a revolutionary approach to address the most challenging neoplasms by overcoming the poor permeation at tumor site of untargeted, and nowadays questioned, strategies that rely solely on Enhanced Permeability and Retention (EPR) effects. The decoration of nanoparticles with Arg-Gly-Asp (RGD) peptides, which selectively target integrins on the cell membrane, marks a turning point in tumor microenvironment (TME) targeted strategies, enabling precision and efficiency in the delivery of chemotherapeutics. This review delves into the intricacies of the TME's features and targetable components (i.e. integrins), and the development of RGDs for nanoparticles' functionalization for active TME targeting. It provides a translational perspective on the integration of RGD-functionalized nanoparticles in oncology, highlighting their potential to overcome current therapeutic challenges, particularly in precision medicine. The current landscape of targeted nanomedicines in the clinic, and the development of RGD-nanomedicine for pediatric cancers are also discussed.
Collapse
Affiliation(s)
- Sara Lorenzoni
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, Pamplona, 31008, Pamplona, Spain; Cancer Center Clínica Universidad de Navarra (CCUN), Avenida Pio XII 36, 31008, Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, Pamplona, 31008, Pamplona, Spain; Cancer Center Clínica Universidad de Navarra (CCUN), Avenida Pio XII 36, 31008, Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, Pamplona, 31008, Pamplona, Spain; Cancer Center Clínica Universidad de Navarra (CCUN), Avenida Pio XII 36, 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Song Y, Cui L, Liu Z, Tang Z, Chen X. Multivalent RGD Peptide-Mediated Nanochimera for Lysosomal Degradation of PDL1 Protein. NANO LETTERS 2025; 25:4078-4086. [PMID: 40012503 DOI: 10.1021/acs.nanolett.5c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The development of immune checkpoint inhibitors, especially PDL1 antibodies, has revolutionized cancer therapy, but the posttherapy recycling of PDL1 proteins poses a significant challenge by inducing resistance and reducing treatment efficacy. To address this, we introduce an integrin-driven, lysosome-targeted nanochimera, composed of poly(glutamic acid), RGD peptides, and PDL1 antibodies, is designed to engage the target PDL1 protein, with the αvβ3 integrin binding to the multivalent RGD peptides to direct the complex through the endocytosomal pathway to the lysosome, ensuring PDL1 degradation and blocking its recycling. Our in vitro and in vivo experiments demonstrate that these nanochimeras potently activate T-cell antitumor immunity by downregulating PDL1 expression within tumor cells and tissues, significantly enhancing the efficacy of PDL1 antibodies. A key discovery of our study is the pivotal role of multivalent RGD peptides in facilitating target protein degradation, providing valuable insights for the development of more efficacious and sophisticated immunotherapies.
Collapse
Affiliation(s)
- Yanfei Song
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Linjie Cui
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhilin Liu
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaohui Tang
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Men C, Zhang Y, Shi P, Tang Z, Cheng X. ανβ3 integrin-targeted ICG-derived probes for imaging-guided surgery and photothermal therapy of oral cancer. Analyst 2023; 148:6334-6340. [PMID: 37947486 DOI: 10.1039/d3an01761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Indocyanine green (ICG), as the only Federal Drug Administration (FDA) approved fluorescence imaging agent, has been widely applied in clinics for near-infrared (NIR) fluorescence imaging-guided surgery and photothermal therapy of cancers. However, its lack of target specificity and poor photo and photothermal stabilities seriously restrict its wide application in clinical practice. Herein, we developed ICG-derived NIR fluorescent probes consisting of a cypate fluorophore and one or two cyclic-(arginine-glycine-aspartic acid) (cRGD) peptides that can specifically target αvβ3 integrin for accurate diagnosis and therapy of oral tumors. Probe Cy-2RGD has been demonstrated to possess bright NIR emission, great tumor targeting capability and a photothermal effect. Moreover, it could be successfully used for effective imaging-guided surgical resection as well as photothermal therapy of oral tumors. This work could provide a valuable tool for sensitive detection and accurate treatment of malignant tumors.
Collapse
Affiliation(s)
- Changhe Men
- Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Peiyang Shi
- Suzhou High School of Jiangsu Province, Suzhou 215007, China
| | - Zichun Tang
- Department of Oral and Maxillofacial Surgery, Suzhou Stomatological Hospital, Suzhou 215000, China.
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Trencsényi G, Halmos G, Képes Z. Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies. Cancers (Basel) 2023; 15:4459. [PMID: 37760428 PMCID: PMC10526435 DOI: 10.3390/cancers15184459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Since angiogenesis/neoangiogenesis has a major role in tumor development, progression and metastatic spread, the establishment of angiogenesis-targeting imaging and therapeutic vectors is of utmost significance. Aminopeptidase N (APN/CD13) is a pivotal biomarker of angiogenic processes abundantly expressed on the cell surface of active vascular endothelial and various neoplastic cells, constituting a valuable target for cancer diagnostics and therapy. Since the asparagine-glycine-arginine (NGR) sequence has been shown to colocalize with APN/CD13, the research interest in NGR-peptide-mediated vascular targeting is steadily growing. Earlier preclinical experiments have already demonstrated the imaging and therapeutic feasibility of NGR-based probes labeled with different positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radionuclides, including Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re) or Bismuth-213 (213Bi). To improve the tumor binding affinity and the retention time of single-receptor targeting peptides, NGR motifs containing heterodimers have been introduced to identify multi-receptor overexpressing malignancies. Preclinical studies with various tumor-bearing experimental animals provide useful tools for the investigation of the in vivo imaging behavior of NGR-based heterobivalent ligands. Herein, we review the reported preclinical achievements on NGR heterodimers that could be highly relevant for the development of further target-specific multivalent compounds in diagnostic and therapeutic settings.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
5
|
Gong X, Wang J, Yang L, Li L, Gao X, Sun X, Bai J, Liu J, Pu X, Wang Y. Enhanced Chemodynamic Therapy Mediated by a Tumor-Specific Catalyst in Synergy with Mitophagy Inhibition Improves the Efficacy for Endometrial Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301497. [PMID: 37086131 DOI: 10.1002/smll.202301497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Chemodynamic therapy (CDT) relies on the tumor microenvironment (e.g., high H2 O2 level) responsive Fenton-like reactions to produce hydroxyl radicals (·OH) against tumors. However, endogenous H2 O2 is insufficient for effective chemodynamic responses. An NAD(P)H: quinone oxidoreductase 1 (NQO1)high catalase (CAT)low therapeutic window for the use of NQO1 bioactive drug β-lapachone (β-Lap) is first identified in endometrial cancer (EC). Accompanied by NADH depletion, NQO1 catalyzes β-Lap to produce excess H2 O2 and initiate oxidative stress, which selectively suppress NQO1high EC cell proliferation, induce DNA double-strand breaks, and promote apoptosis. Moreover, shRNA-mediated NQO1 knockdown or dicoumarol rescues NQO1high EC cells from β-Lap-induced cytotoxicity. Arginine-glycine-aspartic acid (RGD)-functionalized iron-based metal-organic frameworks (MOF(Fe)) further promote the conversion of the accumulated H2 O2 into highly oxidative ·OH, which in turn, exacerbates the oxidative damage to RGD-positive target cells. Furthermore, mitophagy inhibition by Mdivi-1 blocks a powerful antioxidant defense approach, ultimately ensuring the anti-tumor efficacy of stepwise-amplified reactive oxygen species signals. The tumor growth inhibition rate (TGI) is about 85.92%. However, the TGI of MOF(Fe)-based synergistic antitumor therapy decreases to only 50.46% in NQO1-deficient KLE tumors. Tumor-specific chemotherapy and CDT-triggered therapeutic modality present unprecedented therapeutic benefits in treating NQO1high EC.
Collapse
Affiliation(s)
- Xiaodi Gong
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, P. R. China
| | - Jing Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Linlin Yang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lijuan Li
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingfeng Bai
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xin Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, 200030, P. R. China
| |
Collapse
|
6
|
Yang C, Tiwari SK, Guo L, An G, Zheng H, Huang J, Jiang L, Bai Z, Zhu Y, Wang N. Zn-Co metal organic frameworks coated with chitosand and Au nanoparticles for chemo-photothermal-targeted combination therapy of liver cancer. Front Oncol 2023; 13:1110909. [PMID: 37152005 PMCID: PMC10154549 DOI: 10.3389/fonc.2023.1110909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
The toxic effects of chemotherapy drugs on normal tissues are still a major limiting factor in cancer treatment. In this paper, we report a metal-organic framework (Zn-Co ZIF) with chitosan-coated outer layer as a carrier for the drug adriamycin hydrochloride (DOX), a treatment for liver cancer, as a novel anti-cancer nanodrug-enhanced carrier. Gold nanoparticles, a good photothermal conversion agent, were combined with the target SH-RGD during surface functionalisation to prepare Zn-Co ZIF@DOX-CS-Au-RGD (ZD-CAR), a nanoplatform with good photothermal conversion properties and targeting for combined liver cancer therapy. ZD-CAR was developed after RGD accurately targeted the tumour and entered the tumour microenvironment (TME), it cleaves and releases the liver cancer therapeutic agent (DOX) in a weak acidic environment to effectively kill tumour cells. The metal skeleton cleavage releases Co2+, which catalyzes the production of oxygen from H2O2 to alleviate the tumour hypoxic environment. The dissolved oxygen could reach 14 mg/L after adding 80 mg/mL of ZD-CAR. Meanwhile, gold nanoparticles could convert light energy into heat energy under 808 NIR irradiation to induce local superheating and kill tumour cells. In summary, this study developed a nanoplatform that combines chemo-photothermal-targeted therapy. It has shown good therapeutic effeciency in cellular experiments and performance tests and has promising applications in anti-cancer therapy.
Collapse
Affiliation(s)
- Congling Yang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - Santosh K. Tiwari
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Department of Chemistry, NMAM Institute of Technology, Nitte (Deemed to be University) Nitte, Karnataka, India
| | - Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guanghui An
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - Heming Zheng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - JianFeng Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhihao Bai
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- *Correspondence: Zhihao Bai, ; Nannan Wang,
| | - Yanqiu Zhu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - Nannan Wang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
- *Correspondence: Zhihao Bai, ; Nannan Wang,
| |
Collapse
|
7
|
Lv Z, Qiu L, Wang W, Liu Z, Liu Q, Wang L, Song L. RGD-Labeled Hemocytes With High Migration Activity Display a Potential Immunomodulatory Role in the Pacific Oyster Crassostrea gigas. Front Immunol 2022; 13:914899. [PMID: 35865522 PMCID: PMC9294365 DOI: 10.3389/fimmu.2022.914899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunocyte migration to infection sites is important for host cellular defense, but the main types of migrating hemocytes and their mechanisms against pathogen invasions are unclear in invertebrates. In the present study, a population of hemocytes in the Pacific oyster Crassostrea gigas labeled with a fluorescein isothiocyanate (FITC)-conjugated Arg-Gly-Asp (RGD)-containing peptide was sorted. RGD+ hemocytes were characterized by a smaller cell size and cytoplasmic-nucleo ratio, fewer cytoplasmic granules, and higher levels of myeloperoxidase, reactive oxygen species, and intracellular free calcium concentration. RGD+ hemocytes exhibited a high level of migration activity, which was further induced after V. splendidus infection. Transcriptome analysis revealed that RGD+ hemocytes highly expressed a series of migration-related genes, which together with migration-promoting genes were significantly upregulated after V. splendidus infection. The neuroendocrine system was also proven to regulate the migration activity of RGD+ hemocytes, especially with the excitatory neuroendocrine factor dopamine, which promoted migration activity as confirmed by receptor blocking assays. Meanwhile, RGD+ hemocytes could highly express immunomodulatory factor interleukin (IL)-17s and their receptor genes, which was positively related to the production of antimicrobial peptides in whole hemocytes after V. splendidus infection. Collectively, this study identified a specific hemocyte population, i.e., RGD+ hemocytes, that shows high migration activity in response to pathogen infection and exerts a potential immunomodulatory role by highly expressing IL-17s that might enhance the hemocytes’ antimicrobial peptide production in oysters.
Collapse
Affiliation(s)
- Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Limei Qiu, ; Linsheng Song,
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- *Correspondence: Limei Qiu, ; Linsheng Song,
| |
Collapse
|
8
|
Akakuru OU, Zhang Z, Iqbal MZ, Zhu C, Zhang Y, Wu A. Chemotherapeutic nanomaterials in tumor boundary delineation: Prospects for effective tumor treatment. Acta Pharm Sin B 2022; 12:2640-2657. [PMID: 35755279 PMCID: PMC9214073 DOI: 10.1016/j.apsb.2022.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
Accurately delineating tumor boundaries is key to predicting survival rates of cancer patients and assessing response of tumor microenvironment to various therapeutic techniques such as chemotherapy and radiotherapy. This review discusses various strategies that have been deployed to accurately delineate tumor boundaries with particular emphasis on the potential of chemotherapeutic nanomaterials in tumor boundary delineation. It also compiles the types of tumors that have been successfully delineated by currently available strategies. Finally, the challenges that still abound in accurate tumor boundary delineation are presented alongside possible perspective strategies to either ameliorate or solve the problems. It is expected that the information communicated herein will form the first compendious baseline information on tumor boundary delineation with chemotherapeutic nanomaterials and provide useful insights into future possible paths to advancing current available tumor boundary delineation approaches to achieve efficacious tumor therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Zhoujing Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - M. Zubair Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengjie Zhu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Corresponding author.
| |
Collapse
|
9
|
Buckle T, van Willigen DM, Welling MM, van Leeuwen FW. Pre-clinical development of fluorescent tracers and translation towards clinical application. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Wang L, Zhang D, Li J, Li F, Wei R, Jiang G, Xu H, Wang X, Zhou Y, Xi L. A novel ICG-labeled cyclic TMTP1 peptide dimer for sensitive tumor imaging and enhanced photothermal therapy in vivo. Eur J Med Chem 2021; 227:113935. [PMID: 34731764 DOI: 10.1016/j.ejmech.2021.113935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
TMTP1 is a polypeptide independently screened in our laboratory, which can target tumors in situ and metastases. In previous work, we have successfully developed a near-infrared (NIR) probe TMTP1-PEG4-ICG for tumor imaging. However, the limited ability to target tumor micrometastases hinders its further clinical application. Multimerization of peptides has been extensively demonstrated as an effective strategy to increase receptor binding affinity due to "multivalent effect" or "apparent cooperative affinity". In this study, a novel TMTP1 homodimer-directed NIR probe (TMTP1-PEG4)2-ICG was successfully constructed and synthesized. The cyclic TMTP1 peptides were bridged by two PEG4 linkers and then labeled with ICG-NHS for tumor imaging and photothermal therapy. In vivo biodistribution were assessed in normal BALB/c mice, and tumor targeting abilities of (TMTP1-PEG4)2-ICG and its monomer were evaluated and compared in 4T1-bearing subcutaneous tumor and lymph node metastasis model mice. Biodistribution analysis in vivo revealed that (TMTP1-PEG4)2-ICG was cleared mainly in both liver and kidney dependent way. Comparing with free ICG dye or TMTP1-PEG4-ICG probe, this improved (TMTP1-PEG4)2-ICG dimer showed more sensitive tumor imaging and could clearly identify tumors at a minimum volume of 10 mm3. Additionally, when compared to its monomer, lymph node (LN) metastases could also be apparently visualized and easily distinguished from normal LN by the novel dimer at 24 h post-injection. The blocking study revealed that the tumor accumulation of this probe was specifically medicated by receptor-ligand interaction. Furthermore, with the increase in stability and tumor targeting ability of ICG in vivo, the probe could also be an attractive photothermal agent to significantly inhibit tumor growth under 808 nm NIR laser irradiation. In conclusion, our work revealed that the novel (TMTP1-PEG4)2-ICG dimer could be a promising theranostic agent for sensitive tumor imaging and imaging-guided photothermal therapy, indicating its broad prospects for further clinical transformation.
Collapse
Affiliation(s)
- Ling Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Danya Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rui Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guiying Jiang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hanjie Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xueqian Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ying Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Fan J, Cheney PP, Bloch S, Xu B, Liang K, Odonkor CA, Edwards WB, Basak S, Mintz R, Biswas P, Achilefu S. Multifunctional Thio-Stabilized Gold Nanoparticles for Near-Infrared Fluorescence Detection and Imaging of Activated Caspase-3. CURR ANAL CHEM 2021; 17:1182-1193. [PMID: 34393690 DOI: 10.2174/1573411017999210112175743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Gold nanoparticles (AuNPs) are commonly used in nanomedicine because of their unique spectral properties, chemical and biological stability, and ability to quench the fluorescence of organic dyes attached to their surfaces. However, the utility of spherical AuNPs for activatable fluorescence sensing of molecular processes have been confined to resonance-matched fluorophores in the 500 nm to 600 nm spectral range to maximize dye fluorescence quenching efficiency. Expanding the repertoire of fluorophore systems into the NIR fluorescence regimen with emission >800 nm will facilitate the analysis of multiple biological events with high detection sensitivity. Objective The primary goal of this study is to determine if spherical AuNP-induced radiative rate suppression of non-resonant near-infrared (NIR) fluorescent probes can serve as a versatile nanoconstruct for highly sensitive detection and imaging of activated caspase-3 in aqueous media and cancer cells. This required the development of activatable NIR fluorescence sensors of caspase-3 designed to overcome the nonspecific degradation and release of the surface coatings in aqueous media. Method We harnessed the fluorescence-quenching properties and multivalency of spherical AuNPs to develop AuNP-templated activatable NIR fluorescent probes to detect activated caspase-3, an intracellular reporter of early cell death. Freshly AuNPs were coated with a multifunctional NIR fluorescent dye-labeled peptide (LS422) consisting of an RGD peptide sequence that targets αvβ3-integrin protein (αvβ3) on the surface of cancer cells to mediate the uptake and internalization of the sensors in tumor cells; a DEVD peptide sequence for reporting the induction of cell death through caspase-3 mediated NIR fluorescence enhancement; and a multidentate hexacysteine sequence for enhancing self-assembly and stabilizing the multifunctional construct on AuNPs. The integrin binding affinity of LS422 and caspase-3 kinetics were determined by a radioligand competitive binding and fluorogenic peptide assays, respectively. Detection of intracellular caspase-3, cell viability, and the internalization of LS422 in cancer cells were determined by confocal NIR fluorescence spectroscopy and microscopy. Results Narrow size AuNPs (13 nm) were prepared and characterized by transmission electron microscopy and dynamic light scattering. When assembled on the AuNPs, the binding constant of LS422 for αvβ3 improved 11-fold from 13.2 nM to 1.2 nM. Whereas the catalytic turnover of caspase-3 by LS422-AuNPs was similar to the reference fluorogenic peptide, the binding affinity for the enzyme increased by a factor of 2. Unlike the αvβ3 positive, but caspase-3 negative breast cancer MCF-7 cells, treatment of the αvβ3 and caspase-3 positive lung cancer A549 cells with Paclitaxel showed significant fluorescence enhancement within 30 minutes, which correlated with caspase-3 specific activation of LS422-AuNPs fluorescence. Incorporation of a 3.5 mW NIR laser source into our spectrofluorometer increased the detection sensitivity by an order of magnitude (limit of detection ~0.1 nM of cypate) and significantly decreased the signal noise relative to a xenon lamp. This gain in sensitivity enabled the detection of substrate hydrolysis at a broad range of inhibitor concentrations without photobleaching the cypate dye. Conclusion The multifunctional AuNPs demonstrate the use of a non-resonant quenching strategy to design activatable NIR fluorescence molecular probes. The nanoconstruct offers a selective reporting method for detecting activated caspase-3, imaging of cell viability, identifying dying cells, and visualizing the functional status of intracellular enzymes. Performing these tasks with NIR fluorescent probes creates an opportunity to translate the in vitro and cellular analysis of enzymes into in vivo interrogation of their functional status using deep tissue penetrating NIR fluorescence analytical methods.
Collapse
Affiliation(s)
- J Fan
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - P P Cheney
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - S Bloch
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - B Xu
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - K Liang
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - C A Odonkor
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - W B Edwards
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - S Basak
- Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States
| | - R Mintz
- Departments of Radiology, Washington University School of Medicine, St Louis, United States.,Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, United States.,Department of Biomedical Engineering, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - P Biswas
- Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States
| | - S Achilefu
- Departments of Radiology, Washington University School of Medicine, St Louis, United States.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, United States.,Department of Biomedical Engineering, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| |
Collapse
|
12
|
Dai L, Zhang J, Wong CT, Chan WTK, Ling X, Anderson CJ, Law GL. Design of Functional Chiral Cyclen-Based Radiometal Chelators for Theranostics. Inorg Chem 2021; 60:7082-7088. [PMID: 33689299 DOI: 10.1021/acs.inorgchem.0c03734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of water-soluble chiral cyclen-based chelators with chemical handles for selective targeting have been synthesized (cyclen = 1,4,7,10-Tetraazacyclododecane). Optical studies, relaxivity measurements, and competitive titrations were performed to show the versatility of these chiral chelators. The complexations of L3, L4, and L5 with Lu3+, Y3+, Sc3+, and Cu2+ were successfully demonstrated in around 90% to 100% yields. Efficient and rapid radiolabeling of L5 with 177Lu was achieved under mild conditions with 96% yield. The chelators exhibit near quantitative labeling efficiencies with a wide range of radiometal ions, which are promising for the development of targeting specific radiopharmaceutical and molecular magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Lixiong Dai
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Junhui Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Carlos Tinlong Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carolyn J Anderson
- Departments of Medicine, Radiology, Pharmacology and Chemical Biology, Chemistry, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Departments of Chemistry and Radiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| |
Collapse
|
13
|
Guo RY, Wang HM, Dong X, Hu Y, Li J, Zang Y, Li X. Selectivity Comparison of Tumor-Imaging Probes Designed Based on Various Tumor-Targeting Strategies: A Proof of Concept Study. ACS APPLIED BIO MATERIALS 2021; 4:2058-2065. [DOI: 10.1021/acsabm.0c01097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rui-Ying Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongzhou Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Zhang K, Wu L, Lin K, Zhang M, Li W, Tong X, Zheng J. Integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis during postnatal rat retinal development. Exp Neurol 2021; 340:113659. [PMID: 33640375 DOI: 10.1016/j.expneurol.2021.113659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Remodeling of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a pivotal role for microglia in developing retina. We tested whether integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis in the developing rat retina. METHODS We performed immunofluorescence assays to investigate the role of integrin receptors expressed in the microglia in ketamine-induced neuronal apoptosis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to investigate the protein and mRNA levels of cytokines (TNF-α, IL-1β) and/or chemokines (CCL2, CXCL6, CXCL10, and CXCL12). Experiments were performed using whole-mount retinas dissected from P7 Sprague-Dawley rats. RESULTS Integrin receptors expressed in microglia were upregulated in ketamine-induced neuronal apoptosis in the early developing rat retina. Downregulating integrin receptors with RGD peptide ameliorated ketamine-induced microgliosis through: 1) ameliorating the change in microglia morphology from immature ramified microglia to an amoeboid state; 2) decreasing the number of microglia and intensity of activated microglia in the retinal ganglion cell layer (GCL); and 3) decreasing cytokine (TNF-α and IL-1β) and chemokine (CCL2, CXCL10) levels in the retinal tissue. Inhibition of activated microglia with minocycline or the blockade of cytokines (TNF-α and IL-1β) with a receptor antagonist (RA) attenuated neuronal apoptosis after exposure to ketamine. CONCLUSIONS The upregulation of integrin β1 receptors in the microglia acts as a signaling molecule, triggering microgliosis to aggravate ketamine-induced neuronal apoptosis via the release of TNF-α and IL-1β in the early developing rat retina.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Wu
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiguang Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
15
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Dos Santos HT, Nam K, Brown CT, Dean SM, Lewis S, Pfeifer CS, Lei P, Petris MJ, Andreadis ST, Baker OJ. Trimers Conjugated to Fibrin Hydrogels Promote Salivary Gland Function. J Dent Res 2020; 100:268-275. [PMID: 33043768 DOI: 10.1177/0022034520964784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
New strategies for tissue engineering have great potential for restoring and revitalizing impaired tissues and organs, including the use of smart hydrogels that can be modified to enhance organization and functionality of the salivary glands. For instance, monomers of laminin-111 peptides chemically conjugated to fibrin hydrogel (L1pM-FH) promote cell cluster formation in vitro and salivary gland regeneration in vivo when compared with fibrin hydrogel (FH) alone; however, L1pM-FH produce only weak expression of acinar differentiation markers in vivo (e.g., aquaporin-5 and transmembrane protein 16). Since previous studies demonstrated that a greater impact can be achieved when trimeric forms were used as compared with monomeric or dimeric forms, we investigated the extent to which trimers of laminin-111 chemically conjugated to FH (L1pT-FH) can increase the expression of acinar differentiation markers and elevate saliva secretion. In vitro studies using Par-C10 acinar cells demonstrated that when compared with L1pM-FH, L1pT-FH induced similar levels of acinar-like cell clustering, polarization, lumen formation, and calcium signaling. To assess the performance of the trimeric complex in vivo, we compared the ability of L1pM-FH and L1pT-FH to increase acinar differentiation markers and restore saliva flow rate in a salivary gland wound model of C57BL/6 mice. Our results show that L1pT-FH applied to wounded mice significantly improved the expression of the acinar differentiation markers and saliva secretion when compared with the monomeric form. Together, these positive effects of L1pT-FH warrant its future testing in additional models of hyposalivation with the ultimate goal of applying this technology in humans.
Collapse
Affiliation(s)
- H T Dos Santos
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - K Nam
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - C T Brown
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - S M Dean
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - S Lewis
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - C S Pfeifer
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - P Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - M J Petris
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.,Department of Biochemistry, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - S T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - O J Baker
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.,Department of Biochemistry, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
17
|
Ghabraie E, Kemker I, Tonali N, Ismail M, Dodero VI, Sewald N. Phenothiazine-Biaryl-Containing Fluorescent RGD Peptides. Chemistry 2020; 26:12036-12042. [PMID: 32297686 PMCID: PMC7540173 DOI: 10.1002/chem.202001312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/22/2022]
Abstract
Cyclic RGD peptides are well-known ligands of integrins. The integrins αV β3 and α5 β1 are involved in angiogenesis, and integrin αV β3 is abundantly present on cancer cells, thus representing a therapeutic target. Hence, synthetic and biophysical studies continuously are being directed towards the understanding of ligand-integrin interaction. In this context, the development of versatile synthetic strategies to obtain fluorescent building blocks that can add molecular diversity and modular spectral characteristics while not compromising binding affinity or selectivity is a relevant task. An on-resin intramolecular Suzuki-Miyaura cross-coupling (SMC) between l- or d-7-bromotryptophan (7BrTrp) and a phenothiazine (Ptz) boronic acid affords fluorescent cyclic RGD pseudopeptides, c(RGD(W/w)Ptz). Ring closure by SMC establishes a phenothiazine-indole moiety with axial chirality. An array of eight novel compounds has been synthesized, among them one fluorescent compound with good affinity to integrin αV β3 . The fluorescence properties of the analogues can be efficiently tuned depending on the substituents in Ptz moiety even for fluorescence emission in the visible (red) spectral range.
Collapse
Affiliation(s)
- Elmira Ghabraie
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Isabell Kemker
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Nicolo Tonali
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Mohamed Ismail
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Veronica I. Dodero
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Norbert Sewald
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| |
Collapse
|
18
|
Endothelial Cell Targeting by cRGD-Functionalized Polymeric Nanoparticles under Static and Flow Conditions. NANOMATERIALS 2020; 10:nano10071353. [PMID: 32664364 PMCID: PMC7407316 DOI: 10.3390/nano10071353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Since αvβ3 integrin is a key component of angiogenesis in health and disease, Arg-Gly-Asp (RGD) peptide-functionalized nanocarriers have been investigated as vehicles for targeted delivery of drugs to the αvβ3 integrin-overexpressing neovasculature of tumors. In this work, PEGylated nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA) functionalized with cyclic-RGD (cRGD), were evaluated as nanocarriers for the targeting of angiogenic endothelium. For this purpose, NPs (~300 nm) functionalized with cRGD with different surface densities were prepared by maleimide-thiol chemistry and their interactions with human umbilical vein endothelial cells (HUVECs) were evaluated under different conditions using flow cytometry and microscopy. The cell association of cRGD-NPs under static conditions was time-, concentration- and cRGD density-dependent. The interactions between HUVECs and cRGD-NPs dispersed in cell culture medium under flow conditions were also time- and cRGD density-dependent. When washed red blood cells (RBCs) were added to the medium, a 3 to 8-fold increase in NPs association to HUVECs was observed. Moreover, experiments conducted under flow in the presence of RBC at physiologic hematocrit and shear rate, are a step forward in the prediction of in vivo cell–particle association. This approach has the potential to assist development and high-throughput screening of new endothelium-targeted nanocarriers.
Collapse
|
19
|
Pina A, Kadri M, Arosio D, Dal Corso A, Coll JL, Gennari C, Boturyn D. Multimeric Presentation of RGD Peptidomimetics Enhances Integrin Binding and Tumor Cell Uptake. Chemistry 2020; 26:7492-7496. [PMID: 32227540 DOI: 10.1002/chem.202001115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Indexed: 12/13/2022]
Abstract
The use of multimeric ligands is considered as a promising strategy to improve tumor targeting for diagnosis and therapy. Herein, tetrameric RGD (Arg-Gly-Asp) peptidomimetics were designed to target αv β3 integrin-expressing tumor cells. These compounds were prepared by an oxime chemoselective assembly of cyclo(DKP-RGD) ligands and a cyclodecapeptide scaffold, which allows a tetrameric presentation. The resulting tetrameric RGD peptidomimetics were shown to improve αv β3 integrin binding compared with the monomeric form. Interestingly, these compounds were also able to enhance tumor cell endocytosis in the same way as tetrameric RGD peptides. Altogether, the results show the potential of the tetrameric cyclo(DKP-RGD) ligands for in vivo imaging and drug delivery.
Collapse
Affiliation(s)
- Arianna Pina
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Malika Kadri
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Via C. Golgi, 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Didier Boturyn
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, 570, rue de la chimie, CS 40700, 38041, GRENOBLE Cedex 9, France
| |
Collapse
|
20
|
Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020; 8:218. [PMID: 32296681 PMCID: PMC7136562 DOI: 10.3389/fchem.2020.00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Nelson Casanova
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
21
|
Thoreau F, Vanwonterghem L, Henry M, Coll JL, Boturyn D. Design of RGD-ATWLPPR peptide conjugates for the dual targeting of α Vβ 3 integrin and neuropilin-1. Org Biomol Chem 2019; 16:4101-4107. [PMID: 29774910 DOI: 10.1039/c8ob00669e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeting the tumour microenvironment is a promising strategy to detect and/or treat cancer. The design of selective compounds that co-target several receptors frequently overexpressed in solid tumours may allow a reliable and selective detection of tumours. Here we report the modular synthesis of compounds encompassing ligands of αVβ3 integrin and neuropilin-1 that are overexpressed in the tumour microenvironment. These compounds were then evaluated through cellular experiments and imaging of tumours in mice. We observed that the peptide that displays both ligands is more specifically accumulating in the tumours than in controls. Simultaneous interaction with αVβ3 integrin and NRP1 induces NRP1 stabilization at the cell membrane surface which is not observed with the co-injection of the controls.
Collapse
Affiliation(s)
- Fabien Thoreau
- Univ. Grenoble Alpes, CNRS, Department of Molecular Chemistry, UMR 5250, F-38000 Grenoble, France.
| | | | | | | | | |
Collapse
|
22
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
23
|
Kajouj S, Marcelis L, Mattiuzzi A, Grassin A, Dufour D, Van Antwerpen P, Boturyn D, Defrancq E, Surin M, De Winter J, Gerbaux P, Jabin I, Moucheron C. Synthesis and photophysical studies of a multivalent photoreactive Ru II-calix[4]arene complex bearing RGD-containing cyclopentapeptides. Beilstein J Org Chem 2018; 14:1758-1768. [PMID: 30112081 PMCID: PMC6071717 DOI: 10.3762/bjoc.14.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Photoactive ruthenium-based complexes are actively studied for their biological applications as potential theragnostic agents against cancer. One major issue of these inorganic complexes is to penetrate inside cells in order to fulfil their function, either sensing the internal cell environment or exert a photocytotoxic activity. The use of lipophilic ligands allows the corresponding ruthenium complexes to passively diffuse inside cells but limits their structural and photophysical properties. Moreover, this strategy does not provide any cell selectivity. This limitation is also faced by complexes anchored on cell-penetrating peptides. In order to provide a selective cell targeting, we developed a multivalent system composed of a photoreactive ruthenium(II) complex tethered to a calix[4]arene platform bearing multiple RGD-containing cyclopentapeptides. Extensive photophysical and photochemical characterizations of this Ru(II)–calixarene conjugate as well as the study of its photoreactivity in the presence of guanosine monophosphate have been achieved. The results show that the ruthenium complex should be able to perform efficiently its photoinduced cytotoxic activity, once incorporated into targeted cancer cells thanks to the multivalent platform.
Collapse
Affiliation(s)
- Sofia Kajouj
- Laboratoire de Chimie Organique et Photochimie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/08, 1050 Bruxelles, Belgium
| | - Lionel Marcelis
- Laboratoire de Chimie Organique et Photochimie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/08, 1050 Bruxelles, Belgium.,Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Alice Mattiuzzi
- Laboratoire de Chimie Organique, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/06, 1050 Bruxelles, Belgium
| | - Adrien Grassin
- Université Grenoble Alpes, Département de Chimie Moléculaire UMR CNRS 5250, CS 40700, 38058 Grenoble Cedex 09, France
| | - Damien Dufour
- Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, Campus de la Plaine, CP205/05, 1050 Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, Campus de la Plaine, CP205/05, 1050 Bruxelles, Belgium
| | - Didier Boturyn
- Université Grenoble Alpes, Département de Chimie Moléculaire UMR CNRS 5250, CS 40700, 38058 Grenoble Cedex 09, France
| | - Eric Defrancq
- Université Grenoble Alpes, Département de Chimie Moléculaire UMR CNRS 5250, CS 40700, 38058 Grenoble Cedex 09, France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers, University of Mons - UMONS, 20, Place du Parc, B-7000 Mons, Belgium
| | - Julien De Winter
- Organic synthesis and Mass Spectrometry Laboratory, University of Mons - UMONS, Place du Parc 23, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic synthesis and Mass Spectrometry Laboratory, University of Mons - UMONS, Place du Parc 23, B-7000 Mons, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/06, 1050 Bruxelles, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/08, 1050 Bruxelles, Belgium
| |
Collapse
|
24
|
Proper functional modification and optimized adsorption conditions improved the DNA loading capacity of mesoporous silica nanoparticles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Wei C, Yuan Z, Zheng J, Kassaye H, Gui L, Wang F, Wan H, Xu Y, He Q, Er M, Ma Y, Chen H. Methionine-Decorated Near Infrared Fluorescent Probe for Prolonged Tumor Imaging. Mol Pharm 2018; 15:3167-3176. [DOI: 10.1021/acs.molpharmaceut.8b00233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chen Wei
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Jinrong Zheng
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Habtamu Kassaye
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Fei Wang
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Hao Wan
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Qing He
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Murat Er
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Yi Ma
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| |
Collapse
|
26
|
Yang M, Yang CS, Guo W, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G, Liu YQ. A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol Ther 2017; 18:833-840. [PMID: 29144842 DOI: 10.1080/15384047.2017.1395115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the diagnosis and treatment of cancer; however, significant challenges remain. Conditionally replicating adenoviruses (CRAds), which not only kill cancer cells, but also serve as vectors to express therapeutic genes, are a novel and effective method to treat cancer. However, most adenoviruses are Ad5, which infect cells through the coxsackie and adenovirus receptor (CAR). The transduction efficacy of Ad5 is restricted because of the absent or low expression of CAR on several cancer cells. Ad serotype 35 has a different tropism pattern to Ad5. Ad35 attaches to cells via a non-CAR receptor, CD46, which is expressed widely on most tumor cells. Thus, chimeric adenoviral vectors consisting of the knob and shaft of Ad35 combined with Ad5 have been constructed. The chimeric fiber adenoviral vectors can transduce CAR-positive and CAR-negative cell lines. In this review, we explore the application of the novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 in tumor therapy in terms of safety, mechanism, transduction efficacy, and antitumor effect.
Collapse
Affiliation(s)
- Ming Yang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China.,b Department of Oncology , Affiliated Nanyang Second General Hospital , Nanyang , China
| | - Chun Sheng Yang
- c Department of Dermatology , Affiliated Huai'an Hospital of Xuzhou Medical University , the Second People's Hospital of Huai'an, Huai'an , China
| | - WenWen Guo
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - JianQin Tang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Qian Huang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - ShouXin Feng
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - AiJun Jiang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - XiFeng Xu
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guan Jiang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Yan Qun Liu
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
27
|
Grassmé H, Henry B, Ziobro R, Becker KA, Riethmüller J, Gardner A, Seitz AP, Steinmann J, Lang S, Ward C, Schuchman EH, Caldwell CC, Kamler M, Edwards MJ, Brodlie M, Gulbins E. β1-Integrin Accumulates in Cystic Fibrosis Luminal Airway Epithelial Membranes and Decreases Sphingosine, Promoting Bacterial Infections. Cell Host Microbe 2017; 21:707-718.e8. [PMID: 28552668 PMCID: PMC5475347 DOI: 10.1016/j.chom.2017.05.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/10/2017] [Accepted: 05/02/2017] [Indexed: 11/18/2022]
Abstract
Chronic pulmonary colonization with bacterial pathogens, particularly Pseudomonas aeruginosa, is the primary cause of morbidity and mortality in patients with cystic fibrosis (CF). We observed that β1-integrins accumulate on the luminal membrane of upper-airway epithelial cells from mice and humans with CF. β1-integrin accumulation is due to increased ceramide and the formation of ceramide platforms that trap β1-integrins on the luminal pole of bronchial epithelial cells. β1-integrins downregulate acid ceramidase expression, resulting in further accumulation of ceramide and consequent reduction of surface sphingosine, a lipid that kills bacteria. Interrupting this vicious cycle by triggering surface β1-integrin internalization via anti-β1-integrin antibodies or the RGD peptide ligand-or by genetic or pharmacological correction of ceramide levels-normalizes β1-integrin distribution and sphingosine levels in CF epithelial cells and prevents P. aeruginosa infection in CF mice. These findings suggest a therapeutic avenue to ameliorate CF-associated bacterial infections.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Brian Henry
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, Ohio 45229, USA
| | - Regan Ziobro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Joachim Riethmüller
- Center for Pediatric Clinical Studies, Children's Clinic, University of Tuebingen, Hoppe-Seyler-Strasse 1, 72076 Tübingen, Germany
| | - Aaron Gardner
- Institute of Cellular Medicine, Newcastle University, c/o Level 3, Clinical Resource Building, Great North Children's Hospital, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Aaron P Seitz
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, Ohio 45229, USA
| | - Joerg Steinmann
- Department of Medical Microbiology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Christopher Ward
- Institute of Cellular Medicine, Newcastle University, c/o Level 3, Clinical Resource Building, Great North Children's Hospital, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, Ohio 45229, USA
| | - Markus Kamler
- West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, Ohio 45229, USA
| | - Malcolm Brodlie
- Institute of Cellular Medicine, Newcastle University, c/o Level 3, Clinical Resource Building, Great North Children's Hospital, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
28
|
Degardin M, Thakar D, Claron M, Richter RP, Coche-Guérente L, Boturyn D. Development of a selective cell capture and release assay: impact of clustered RGD ligands. J Mater Chem B 2017; 5:4745-4753. [DOI: 10.1039/c7tb00630f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clustered RGD compounds improve the selective capture and release of cells that express αvβ3 integrin.
Collapse
Affiliation(s)
- M. Degardin
- Univ. Grenoble-Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | - D. Thakar
- Univ. Grenoble-Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | - M. Claron
- Univ. Grenoble-Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| | - R. P. Richter
- University of Leeds
- School of Biomedical Sciences and School of Physics and Astronomy
- Leeds
- UK
- CIC biomaGUNE
| | | | - D. Boturyn
- Univ. Grenoble-Alpes
- CNRS
- DCM UMR 5250
- F-38000 Grenoble
- France
| |
Collapse
|
29
|
Zhang R, Deng T, Wang J, Wu G, Li S, Gu Y, Deng D. Organic-to-aqueous phase transfer of Zn–Cu–In–Se/ZnS quantum dots with multifunctional multidentate polymer ligands for biomedical optical imaging. NEW J CHEM 2017. [DOI: 10.1039/c7nj00573c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnCuInSe/ZnS QDs with widely tunable PL emissions were synthesized and water-solubilized with cRGD modified multifunctional multidentate polymer (cRGD-PME) for bioimaging.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing
- China
| | - Tao Deng
- Department of Pharmaceutical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing
- China
| | - Jie Wang
- Department of Pharmaceutical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing
- China
| | - Gang Wu
- Department of Biology
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing
- China
| | - Sirui Li
- Department of Pharmaceutical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing
- China
| | - Yueqing Gu
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing
- China
| | - Dawei Deng
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
30
|
Yu Y, Yang R, Zhao X, Qin D, Liu Z, Liu F, Song X, Li L, Feng R, Gao N. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation. Acta Biochim Biophys Sin (Shanghai) 2016; 48:420-9. [PMID: 27055473 DOI: 10.1093/abbs/gmw023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
To explore the cytotoxic mechanism of abrin P2 on human colon cancer HCT-8 cells, abrin P2 was isolated from the seed of Abrus precatorius L. It was found that abrin P2 exhibited cytotoxicity toward 12 different human cancer cell lines. Our results demonstrated that abrin P2 suppressed the proliferation of human colon cancer cells (HCT-8 cells) and induced cell cycle arrest at the S and G2/M phases. The mechanism by which abrin P2 inhibited cell proliferation was via the down-regulation of cyclin B1, proliferating cell nuclear antigen and Ki67, as well as the up-regulation of P21. In addition, abrin P2 induced a dose- and time-dependent increase in the rate of HCT-8 cell apoptosis. Treatment with both Z-VAD-FMK, a broad-spectrum caspase inhibitor, and abrin P2 demonstrated that abrin P2 induced HCT-8 cell apoptosis via the activation of caspases. Together, our results revealed that abrin P2-induced apoptosis in HCT-8 cells was associated with the activation of caspases-3/-8/-9, the reduction in the Bcl-2/Bax ratio, the loss of mitochondrial membrane potential, and the increase in cytochrome c release. We further showed that abrin P2 administration effectively suppressed the growth of colon cancer xenografts in nude mice. This is the first report that abrin P2 effectively inhibits colon cancer cell growth in vivo and in vitro by suppressing proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Ying Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China Center of Research on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China
| | - Runmei Yang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiuyun Zhao
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China Center of Research on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China
| | - Dandan Qin
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China Center of Research on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China
| | - Zhaoyang Liu
- Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Fang Liu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xin Song
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Liqin Li
- Research Institute of Chemical Defense of PLA, Beijing 102205, China
| | - Renqing Feng
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Nannan Gao
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
31
|
Nguyen DH, Lee JS, Choi JH, Park KM, Lee Y, Park KD. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery. Acta Biomater 2016; 35:109-17. [PMID: 26884278 DOI: 10.1016/j.actbio.2016.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/14/2022]
Abstract
Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. STATEMENT OF SIGNIFICANCE In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be readily controlled by varying the SPIO/PEG ratio in the assemblies, and also demonstrated significant improvement of the functional nanoparticles for theranostic systems; enhanced magnetic resonance, improved cellular uptake, and efficient PTX loading and sustained release at the desired time point. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy.
Collapse
Affiliation(s)
- Dai Hai Nguyen
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Jung Seok Lee
- Biomedical Engineering, Yale University, CT 06511, USA
| | - Jong Hoon Choi
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea.
| |
Collapse
|
32
|
Wang J, Zhang R, Bao F, Han Z, Gu Y, Deng D. Water-soluble Zn–Ag–In–Se quantum dots with bright and widely tunable emission for biomedical optical imaging. RSC Adv 2015; 5:88583-88589. [DOI: 10.1039/c5ra17046j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
In this work, we synthesized water-soluble quaternary cadmium-free Zn–Ag–In–Se quantum dots with bright and widely tunable emission, and explored their potential in tumor-specific imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biomedical Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Rong Zhang
- Department of Biomedical Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Fangjian Bao
- Department of Biomedical Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhihao Han
- Department of Biomedical Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yueqing Gu
- Department of Biomedical Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Natural Medicines
| | - Dawei Deng
- Department of Biomedical Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Natural Medicines
| |
Collapse
|
33
|
Advances in imaging probes and optical microendoscopic imaging techniques for early in vivo cancer assessment. Adv Drug Deliv Rev 2014; 74:53-74. [PMID: 24120351 DOI: 10.1016/j.addr.2013.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
A new chapter in the history of medical diagnosis happened when the first X-ray technology was invented in the late 1800s. Since then, many non-invasive and minimally invasive imaging techniques have been invented for clinical diagnosis to research in cellular biology, drug discovery, and disease monitoring. These imaging modalities have leveraged the benefits of significant advances in computer, electronics, and information technology and, more recently, targeted molecular imaging. The development of targeted contrast agents such as fluorescent and nanoparticle probes coupled with optical imaging techniques has made it possible to selectively view specific biological events and processes in both in vivo and ex vivo systems with great sensitivity and selectivity. Thus, the combination of targeted molecular imaging probes and optical imaging techniques have become a mainstay in modern medicinal and biological research. Many promising results have demonstrated great potentials to translate to clinical applications. In this review, we describe a discussion of employing imaging probes and optical microendoscopic imaging techniques for cancer diagnosis.
Collapse
|
34
|
Joseph SC, Blackman BA, Kelly ML, Phillips M, Beaury MW, Martinez I, Parronchi CJ, Bitsaktsis C, Blake AD, Sabatino D. Synthesis, characterization, and biological activity of poly(arginine)-derived cancer-targeting peptides in HepG2 liver cancer cells. J Pept Sci 2014; 20:736-45. [PMID: 24931620 DOI: 10.1002/psc.2665] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/17/2014] [Accepted: 05/13/2014] [Indexed: 11/12/2022]
Abstract
The solid-phase synthesis, structural characterization, and biological evaluation of a small library of cancer-targeting peptides have been determined in HepG2 hepatoblastoma cells. These peptides are based on the highly specific Pep42 motif, which has been shown to target the glucose-regulated protein 78 receptors overexpressed and exclusively localized on the cell surface of tumors. In this study, Pep42 was designed to contain varying lengths (3-12) of poly(arginine) sequences to assess their influence on peptide structure and biology. Peptides were effectively synthesized by 9-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis, in which the use of a poly(ethylene glycol) resin provided good yields (14-46%) and crude purities >95% as analyzed by liquid chromatography-mass spectrometry. Peptide structure and biophysical properties were investigated using circular dichroism spectroscopy. Interestingly, peptides displayed secondary structures that were contingent on solvent and length of the poly(arginine) sequences. Peptides exhibited helical and turn conformations, while retaining significant thermal stability. Structure-activity relationship studies conducted by flow cytometry and confocal microscopy revealed that the poly(arginine) derived Pep42 sequences maintained glucose-regulated protein 78 binding on HepG2 cells while exhibiting cell translocation activity that was contingent on the length of the poly(arginine) strand. In single dose (0.15 mM) and dose-response (0-1.5 mM) cell viability assays, peptides were found to be nontoxic in human HepG2 liver cancer cells, illustrating their potential as safe cancer-targeting delivery agents.
Collapse
Affiliation(s)
- Stesha C Joseph
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chilakamarthi U, Kandhadi J, Gunda S, Thatipalli AR, Kumar Jerald M, Lingamallu G, Reddy RC, Chaudhuri A, Pande G. Synthesis and functional characterization of a fluorescent peptide probe for non invasive imaging of collagen in live tissues. Exp Cell Res 2014; 327:91-101. [PMID: 24907653 DOI: 10.1016/j.yexcr.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/05/2014] [Accepted: 05/10/2014] [Indexed: 11/18/2022]
Abstract
Targeted molecular imaging to detect changes in the structural and functional organization of tissues, at the molecular level, is a promising approach for effective and early diagnosis of diseases. Quantitative and qualitative changes in type I collagen, which is a major component in the extra cellular matrix (ECM) of skin and other vital organs like lung, liver, heart and kidneys, are often associated with the pathophysiology of these organs. We have synthesized a fluorescent probe that comprises collagelin, a specific collagen binding peptide, coupled to fluorescent porphyrin that can effectively detect abnormal deposition of collagen in live tissues by emitting fluorescence in the near infra red (NIR) region. In this report we have presented the methodology for coupling of 5-(4-carboxy phenyl)-10, 15, 20-triphenyl porphyrin (C-TPP) to the N-terminal of collagelin or to another mutant peptide (used as a control). We have evaluated the efficacy of these fluorescent peptides to detect collagen deposition in live normal and abnormal tissues. Our results strongly suggest that porphyrin-tagged collagelin can be used as an effective probe for the non invasive in vivo detection of tissue fibrosis, especially in the liver.
Collapse
Affiliation(s)
| | - Jaipal Kandhadi
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Srinivas Gunda
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | - Mahesh Kumar Jerald
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Giribabu Lingamallu
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Rakesh C Reddy
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Arabinda Chaudhuri
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Gopal Pande
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
36
|
Yang L, Sajja HK, Cao Z, Qian W, Bender L, Marcus AI, Lipowska M, Wood WC, Wang YA. uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection. Am J Cancer Res 2013; 4:106-18. [PMID: 24396518 PMCID: PMC3881230 DOI: 10.7150/thno.7409] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
Complete removal of tumors by surgery is the most important prognostic factor for cancer patients with the early stage cancers. The ability to identify invasive tumor edges of the primary tumor, locally invaded small tumor lesions, and drug resistant residual tumors following neoadjuvant therapy during surgery should significantly reduce the incidence of local tumor recurrence and improve survival of cancer patients. In this study, we report that urokinase plasminogen activator (uPA) and its receptor (uPAR) are the ligand/cell surface target pair for the development of targeted optical imaging probes for enhancing imaging contrasts in the tumor border. Recombinant peptides of the amino terminal fragment (ATF) of the receptor binding domain of uPA were labeled with near infrared fluorescence (NIR) dye molecules either as peptide-imaging or peptide-conjugated nanoparticle imaging probes. Systemic delivery of the uPAR-targeted imaging probes in mice bearing orthotopic human breast or pancreatic tumor xenografts or mouse mammary tumors led to the accumulation of the probes in the tumor and stromal cells, resulting in strong signals for optical imaging of tumors and identification of tumor margins. Histological analysis showed that a high level of uPAR-targeted nanoparticles was present in the tumor edge or active tumor stroma immediately adjacent to the tumor cells. Furthermore, following targeted therapy using uPAR-targeted theranostic nanoparticles, residual tumors were detectable by optical imaging through the imaging contrasts produced by NIR-dye-labeled theranostic nanoparticles in drug resistant tumor cells. Therefore, results of our study support the potential of the development of uPAR-targeted imaging and theranostic agents for image-guided surgery.
Collapse
|
37
|
Lozza C, Navarro-Teulon I, Pèlegrin A, Pouget JP, Vivès E. Peptides in receptor-mediated radiotherapy: from design to the clinical application in cancers. Front Oncol 2013; 3:247. [PMID: 24093086 PMCID: PMC3782707 DOI: 10.3389/fonc.2013.00247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/06/2013] [Indexed: 12/29/2022] Open
Abstract
Short peptides can show high affinity for specific receptors overexpressed on tumor cells. Some of these are already used in cancerology as diagnostic tools and others are in clinical trials for therapeutic applications. Therefore, peptides exhibit great potential as a diagnostic tool but also as an alternative or an additional antitumoral approach upon the covalent attachment of a therapeutic moiety such as a radionuclide or a cytotoxic drug. The chemistry offers flexibility to graft onto the targeting-peptide either fluorine or iodine directly, or metallic radionuclides through appropriate chelating agent. Since short peptides are straightforward to synthesize, there is an opportunity to further improve existing peptides or to design new ones for clinical applications. However, several considerations have to be taken into account to optimize the recognition properties of the targeting-peptide to its receptor, to improve its stability in the biological fluids and its residence in the body, or to increase its overall therapeutic effect. In this review, we highlight the different aspects which need to be considered for the development of an efficient peptide receptor-mediated radionuclide therapy in different neoplasms.
Collapse
Affiliation(s)
- Catherine Lozza
- Institut de Recherche en Cancérologie de Montpellier , Montpellier , France ; INSERM, U896 , Montpellier , France ; Université Montpellier 1 , Montpellier , France ; Institut Régional du Cancer Montpellier , Montpellier , France
| | | | | | | | | |
Collapse
|
38
|
Hahnenkamp A, Schäfers M, Bremer C, Höltke C. Design and synthesis of small-molecule fluorescent photoprobes targeted to aminopeptdase N (APN/CD13) for optical imaging of angiogenesis. Bioconjug Chem 2013; 24:1027-38. [PMID: 23642127 DOI: 10.1021/bc400074w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report here the synthesis of a nonpeptide, small-molecule fluorescent imaging agent with high affinity to aminopeptidase N (APN/CD13), a key player in a variety of pathophysiological angiogenic processes. On the basis of a recently described lead structure, we synthesized three putative precursor compounds by introducing polyethylene glycol (PEG) spacers comprising amino groups for dye labeling. Different attachment sites resulted in substantial differences in target affinity, cell toxicity, and target imaging performance. In comparison to bestatin, a natural inhibitor of many aminopeptidases, two of our compounds (22, 23) exhibit comparable inhibition potency, while a third (21) does not show any inhibiting effect. Cell binding assays with APN-positive BT-549 and APN-negative BT-20 cells and the final fluorescent probes Cy 5.5-21 and Cy 5.5-23 confirm these findings. The favorable characteristics of Cy 5.5-23 will now be proven in in vivo experiments with murine models of high APN expression and may serve as a tool to better understand APN pathophysiology.
Collapse
Affiliation(s)
- Anke Hahnenkamp
- Department of Clinical Radiology, Albert-Schweitzer-Campus 1/A16, University Hospital Muenster, D-48149 Muenster, Germany
| | | | | | | |
Collapse
|
39
|
Xiong L, Shuhendler AJ, Rao J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 2013; 3:1193. [PMID: 23149738 PMCID: PMC3527090 DOI: 10.1038/ncomms2197] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022] Open
Abstract
Strong autofluorescence from living tissues, and the scattering and absorption of short-wavelength light in living tissues, significantly reduce sensitivity of in vivo fluorescence imaging. These issues can be tackled by using imaging probes that emit in the near-infrared wavelength range. Here we describe self-luminescing near-infrared-emitting nanoparticles employing an energy transfer relay that integrates bioluminescence resonance energy transfer and fluorescence resonance energy transfer, enabling in vivo near-infrared imaging without external light excitation. Nanoparticles were 30-40 nm in diameter, contained no toxic metals, exhibited long circulation time and high serum stability, and produced strong near-infrared emission. Using these nanoparticles, we successfully imaged lymphatic networks and vasculature of xenografted tumours in living mice. The self-luminescing feature provided excellent tumour-to-background ratio (>100) for imaging very small tumours (2-3 mm in diameter). Our results demonstrate that these new nanoparticles are well suited to in vivo imaging applications such as lymph-node mapping and cancer imaging.
Collapse
Affiliation(s)
- Liqin Xiong
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California 94305-5484, USA
| | | | | |
Collapse
|
40
|
Guo Y, Yuan H, Cho H, Kuruppu D, Jokivarsi K, Agarwal A, Shah K, Josephson L. High efficiency diffusion molecular retention tumor targeting. PLoS One 2013; 8:e58290. [PMID: 23505478 PMCID: PMC3594319 DOI: 10.1371/journal.pone.0058290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for (111) In(3+)), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111)In] RGD and [(111)In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111)In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.
Collapse
Affiliation(s)
- Yanyan Guo
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hushan Yuan
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hoonsung Cho
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Darshini Kuruppu
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kimmo Jokivarsi
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Aayush Agarwal
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Lee Josephson
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Sheridan EJ, Austin CJD, Aitken JB, Vogt S, Jolliffe KA, Harris HH, Rendina LM. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:226-33. [PMID: 23412478 PMCID: PMC3943546 DOI: 10.1107/s0909049513001647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells.
Collapse
Affiliation(s)
- Erin J. Sheridan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Jade B. Aitken
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
- Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801, Japan
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Hugh H. Harris
- School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Louis M. Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
42
|
Li Y, Guo J, Tang S, Lang L, Chen X, Perrin DM. One-step and one-pot-two-step radiosynthesis of cyclo-RGD-(18)F-aryltrifluoroborate conjugates for functional imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:44-56. [PMID: 23342300 PMCID: PMC3545361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/22/2012] [Indexed: 06/01/2023]
Abstract
Arylboronates capture aqueous (18)F-fluoride in one step to afford a highly polar (18)F-labeled aryltrifluoroborate anion ((18)F-ArBF(3) (-)) that clears rapidly in vivo. To date however, there is little data to show that a ligand labeled with a prosthetic (18)F-ArBF(3) (-) will provide functional images. RGD, a high-affinity ligand for integrins that are present on the cell surface of numerous tumors, has been labeled in many formats with many different radionuclides, and as such represents a well-established ligand that can be used to evaluate new labeling methods. Herein we have labeled RGD with a prosthetic (18)F-ArBF(3) (-) via two approaches for the first time: 1) a RGD-boronate bioconjugate is directly labeled in one step and 2) an alkyne-modified arylborimidine is first converted to the corresponding (18)F-ArBF(3) (-) which is then conjugated to an RGD-azide via Cu(+)-mediated [2+3] dipolar cycloaddition in one pot over two steps. RGD-(18)F-ArBF(3) (-) bionconjugates were produced in reasonable radiochemical yields using low amounts of (18)F-fluoride anion (10-50 mCi). Despite relatively low specific activities, good tumor images are revealed in each case.
Collapse
Affiliation(s)
- Ying Li
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| | - Jinxia Guo
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Shiqing Tang
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - David M Perrin
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| |
Collapse
|
43
|
Ulrich S, Dumy P, Boturyn D, Renaudet O. Engineering of biomolecules for sensing and imaging applications. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Schröder L. Xenon for NMR biosensing – Inert but alert. Phys Med 2013; 29:3-16. [DOI: 10.1016/j.ejmp.2011.11.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/18/2011] [Accepted: 11/06/2011] [Indexed: 12/24/2022] Open
|
45
|
Cao J, Wan S, Tian J, Li S, Deng D, Qian Z, Gu Y. Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:390-402. [PMID: 22649045 DOI: 10.1002/cmmi.1464] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A fast clearing hydrophilic near-infrared (NIR) dye ICG-Der-02 was used to constitute tumor targeting contrast agents. Cell adhesion molecule integrin α(v)β(3) served as the target receptor because of its unique expression on almost all sprouting tumor vasculatures. The purpose of this study was to synthesize and compare the properties of integrin α(v)β(3)-targeted, fast clearing NIR probes both in vitro and in vivo for tumor diagnosis. ICG-Der-02 was covalently conjugated to three kinds of RGD peptide including linear, monoeric cyclic and dimeric RGD to form three RGD-based NIR probes. The integrin receptor specificities of these probes were evaluated in vitro by confocal microscopy. The dynamic bio-distribution and elimination ratse were in vivo real-time monitored by a near-infrared imaging system in normal mice. Further, the in vivo tumor targeting abilities of the RGD-based NIR probes were compared in α(v)β(3) -positive MDA-MB-231, U87MG and α(v)β(3)-negtive MCF-7 xenograft mice models. Three RGD-based NIR probes were successfully synthesized with good optical properties. In vitro cellular experiments indicated that the probes have a clear binding affinity to α(υ)β(3) -positive tumor cells, with a cyclic dimeric RGD probe owing the highest integrin affinity. Dynamic bio-distributions of these probes showed a rapid clearing rate through the renal pathway. In vivo tumor targeting ability of the RGD-based porbes was demonstrated on MDA-MB-231 and U87MG tumor models. As expected, the c(RGDyK)(2)-ICG-Der-02 probe displayed the highest tumor-to-normal tissue contrast. The in vitro and in vivo block experiments confirmed the receptor binding specificity of the probes. The hydrophilic dye-labeled NIR probes exhibited a fast clearing rate and deep tissue penetration capability. Further, the α(υ)β(3) receptor affinity of the three RGD-based NIR probes followed the order of dimer cyclic > monomer cyclic > linear. The results demonstrate potent fast clearing probes for in vivo early tumor diagnosis.
Collapse
Affiliation(s)
- Jie Cao
- Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Chen Y, Pullambhatla M, Banerjee SR, Byun Y, Stathis M, Rojas C, Slusher BS, Mease RC, Pomper MG. Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Bioconjug Chem 2012; 23:2377-85. [PMID: 23157641 DOI: 10.1021/bc3003919] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted near-infrared (NIR) optical imaging can be used in vivo to detect specific tissues, including malignant cells. A series of NIR fluorescent ligands targeting the prostate-specific membrane antigen (PSMA) was synthesized and each compound was tested for its ability to image PSMA+ tissues in experimental models of prostate cancer. The agents were prepared by conjugating commercially available active esters of NIR dyes, including IRDye800CW, IRDye800RS, Cy5.5, Cy7, or a derivative of indocyanine green (ICG) to the terminal amine group of (S)-2-(3-((S)-5-amino-1-carboxypentyl)ureido)pentanedioic acid 1, (14S,18S)-1-amino-8,16-dioxo-3,6-dioxa-9,15,17-triazaicosane-14,18,20-tricarboxylic acid 2 and (3S,7S)-26-amino-5,13,20-trioxo-4,6,12,21-tetraazahexacosane-1,3,7,22-tetracarboxylic acid 3. The K(i) values for the dye-inhibitor conjugates ranged from 1 to 700 pM. All compounds proved capable of imaging PSMA+ tumors selectively to varying degrees depending on the choice of fluorophore and linker. The highest tumor uptake was observed with IRDye800CW employing a poly(ethylene glycol) or lysine-suberate linker, as in 800CW-2 and 800CW-3, while the highest tumor to nontarget tissue ratios were obtained for Cy7 with these same linkers, as in Cy7-2 and Cy7-3. Compounds 2 and 3 provide useful scaffolds for targeting of PSMA+ tissues in vivo and should be useful for preparing NIR dye conjugates designed specifically for clinical intraoperative optical imaging devices.
Collapse
Affiliation(s)
- Ying Chen
- Russell H. Morgan Department of Radiology, Brain Science Institute, Johns Hopkins Medical School, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li ZJ, Cho CH. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med 2012; 10 Suppl 1:S1. [PMID: 23046982 PMCID: PMC3445867 DOI: 10.1186/1479-5876-10-s1-s1] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications.
Collapse
Affiliation(s)
- Zhi Jie Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR.
| | | |
Collapse
|
48
|
Morales AR, Yanez CO, Zhang Y, Wang X, Biswas S, Urakami T, Komatsu M, Belfield KD. Small molecule fluorophore and copolymer RGD peptide conjugates for ex vivo two-photon fluorescence tumor vasculature imaging. Biomaterials 2012; 33:8477-85. [PMID: 22940216 DOI: 10.1016/j.biomaterials.2012.06.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/27/2012] [Indexed: 01/13/2023]
Abstract
We report the use of small molecule and block copolymer RGD peptide conjugates for deep ex vivo imaging of tumor vasculature in "whole" excised tumors using two-photon fluorescence microscopy (2PFM). The fluorescent probes were administered to mice via tail-vein injection, after which the tumors were excised, fixed, and imaged without further sample preparation. Both RGD conjugates demonstrated specific targeting to tumor blood vessels, and this selectivity imparted excellent contrast in 2PFM micrographs that captured high-resolution 3-D images of the tumor vasculature up to depths of 830 μm in Lewis Lung Carcinoma (LLC) tumors. 2PFM ex vivo fluorescence micrographs clearly revealed tumor vessels, while differences in the sensitivity of tumor vessel imaging were apparent between the small molecule and block copolymer conjugates. Both the small molecule and polymer-based two-photon absorbing probe conjugate are valuable for deep tissue tumor microvasculature imaging.
Collapse
Affiliation(s)
- Alma R Morales
- University of Central Florida, Department of Chemistry, P.O. Box 162366, Orlando, FL 32816-2366, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Near-infrared fluorescent divalent RGD ligand for integrin αvβ₃-targeted optical imaging. Bioorg Med Chem Lett 2012; 22:5405-9. [PMID: 22871580 DOI: 10.1016/j.bmcl.2012.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022]
Abstract
A new near-infrared fluorescent compound containing two cyclic RGD motifs, cypate-[c(RGDfK)](2) (1), was synthesized based on a carbocyanine fluorophore bearing two carboxylic acid groups (cypate) for integrin α(v)β(3)-targeting. Compared with its monovalent counterpart cypate-c(RGDfK) (2), 1 exhibited remarkable improvements in integrin α(v)β(3) binding affinity and tumor uptake in nude mice of A549. The results suggest that cypate-linked divalent ligands can serve as an important molecular platform for exploring receptor-targeted optical imaging and treatment of various diseases.
Collapse
|
50
|
Zhang X, Bloch S, Akers W, Achilefu S. Near-infrared molecular probes for in vivo imaging. CURRENT PROTOCOLS IN CYTOMETRY 2012; Chapter 12:Unit12.27. [PMID: 22470154 PMCID: PMC3334312 DOI: 10.1002/0471142956.cy1227s60] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo imaging because of the low absorption of biological molecules in this region. This unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sharon Bloch
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Walter Akers
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|