1
|
Zhang J, Jiang P, Wang S, Li M, Hao Z, Guan W, Pan J, Wu J, Zhang Y, Li H, Chen L, Yang B, Liu Y. Recent advances in the natural product analogues for the treatment of neurodegenerative diseases. Bioorg Chem 2024; 153:107819. [PMID: 39276492 DOI: 10.1016/j.bioorg.2024.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Neurodegenerative diseases (NDs) represent a hallmark of numerous incapacitating and untreatable conditions, the incidence of which is escalating swiftly, exemplified by Alzheimer's disease and Parkinson's disease. There is an urgent necessity to create pharmaceuticals that exhibit high efficacy and minimal toxicity in order to address these debilitating diseases. The structural complexity and diversity of natural products confer upon them a broad spectrum of biological activities, thereby significantly contributing to the history of drug discovery. Nevertheless, natural products present challenges in drug discovery, including time-consuming separation processes, low content, low bioavailability, and other related issues. To address these challenges, numerous analogs of natural products have been synthesized. This methodology enables the rapid synthesis of analogs of natural products with the potential to serve as lead compounds for drug development, thereby paving the way for the discovery of novel pharmaceuticals. This paper provides a summary of 127 synthetic analogues featuring various natural product structures, including flavonoids, alkaloids, coumarins, phenylpropanoids, terpenoids, polyphenols, and amides. The compounds are categorized based on their efficacy in treating various diseases. Furthermore, this article delves into the structure-activity relationship (SAR) of certain analogues, offering a thorough point of reference for the systematic development of pharmaceuticals aimed at addressing neurodegenerative conditions.
Collapse
Affiliation(s)
- Jinling Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jiatong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yiqiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Cores Á, Carmona-Zafra N, Clerigué J, Villacampa M, Menéndez JC. Quinones as Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1464. [PMID: 37508002 PMCID: PMC10376830 DOI: 10.3390/antiox12071464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes. One of them is coenzyme Q10, which takes part in the oxidative phosphorylation processes involved in cell energy production, as a proton and electron carrier in the mitochondrial respiratory chain, and shows neuroprotective effects relevant to Alzheimer's and Parkinson's diseases. Additional neuroprotective quinones that can be regarded as coenzyme Q10 analogues are idobenone, mitoquinone and plastoquinone. Other endogenous quinones with neuroprotective activities include tocopherol-derived quinones, most notably vatiquinone, and vitamin K. A final group of non-endogenous quinones with neuroprotective activity is discussed, comprising embelin, APX-3330, cannabinoid-derived quinones, asterriquinones and other indolylquinones, pyrroloquinolinequinone and its analogues, geldanamycin and its analogues, rifampicin quinone, memoquin and a number of hybrid structures combining quinones with amino acids, cholinesterase inhibitors and non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Noelia Carmona-Zafra
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
3
|
Stern N, Gacs A, Tátrai E, Flachner B, Hajdú I, Dobi K, Bágyi I, Dormán G, Lőrincz Z, Cseh S, Kígyós A, Tóvári J, Goldblum A. Dual Inhibitors of AChE and BACE-1 for Reducing Aβ in Alzheimer's Disease: From In Silico to In Vivo. Int J Mol Sci 2022; 23:13098. [PMID: 36361906 PMCID: PMC9655245 DOI: 10.3390/ijms232113098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and widespread condition, still not fully understood and with no cure yet. Amyloid beta (Aβ) peptide is suspected to be a major cause of AD, and therefore, simultaneously blocking its formation and aggregation by inhibition of the enzymes BACE-1 (β-secretase) and AChE (acetylcholinesterase) by a single inhibitor may be an effective therapeutic approach, as compared to blocking one of these targets or by combining two drugs, one for each of these targets. We used our ISE algorithm to model each of the AChE peripheral site inhibitors and BACE-1 inhibitors, on the basis of published data, and constructed classification models for each. Subsequently, we screened large molecular databases with both models. Top scored molecules were docked into AChE and BACE-1 crystal structures, and 36 Molecules with the best weighted scores (based on ISE indexes and docking results) were sent for inhibition studies on the two enzymes. Two of them inhibited both AChE (IC50 between 4-7 μM) and BACE-1 (IC50 between 50-65 μM). Two additional molecules inhibited only AChE, and another two molecules inhibited only BACE-1. Preliminary testing of inhibition by F681-0222 (molecule 2) on APPswe/PS1dE9 transgenic mice shows a reduction in brain tissue of soluble Aβ42.
Collapse
Affiliation(s)
- Noa Stern
- Molecular Modeling and Drug Design Lab, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Alexandra Gacs
- Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Enikő Tátrai
- Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary
- KINETO Lab Ltd., H-1032 Budapest, Hungary
| | | | - István Hajdú
- TargetEx Ltd., H-2120 Dunakeszi, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | - József Tóvári
- KINETO Lab Ltd., H-1032 Budapest, Hungary
- Department of Tumor Biology, National Korányi Institute of TB and Pulmonology, H-1121 Budapest, Hungary
| | - Amiram Goldblum
- Molecular Modeling and Drug Design Lab, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
4
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
5
|
Bai P, Wang K, Zhang P, Shi J, Cheng X, Zhang Q, Zheng C, Cheng Y, Yang J, Lu X, Sang Z. Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 183:111737. [DOI: 10.1016/j.ejmech.2019.111737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/23/2023]
|
6
|
Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem 2019; 19:1694-1711. [DOI: 10.2174/1568026619666190619115735] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Molecular hybridization is a well-exploited medicinal chemistry strategy that aims to combine
two molecules (or parts of them) in a new, single chemical entity. Recently, it has been recognized
as an effective approach to design ligands able to modulate multiple targets of interest. Hybrid compounds
can be obtained by linking (presence of a linker) or framework integration (merging or fusing)
strategies. Although very promising to combat the multifactorial nature of complex diseases, the development
of molecular hybrids faces the critical issues of selecting the right target combination and the
achievement of a balanced activity towards them, while maintaining drug-like-properties. In this review,
we present recent case histories from our own research group that demonstrate why and how molecular
hybridization can be carried out to address the challenges of multitarget drug discovery in two therapeutic
areas that are Alzheimer’s and parasitic diseases. Selected examples spanning from linker- to fragment-
based hybrids will allow to discuss issues and consequences relevant to drug design.
Collapse
Affiliation(s)
- Viktoriya Ivasiv
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Ana E. Gonçalves
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| |
Collapse
|
7
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
8
|
Luo L, Chen J, Su D, Chen M, Luo B, Pi R, Wang L, Shen W, Wang R. L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice. Neurochem Res 2017; 42:615-624. [PMID: 28078613 DOI: 10.1007/s11064-016-2117-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/01/2016] [Accepted: 11/18/2016] [Indexed: 12/01/2022]
Abstract
Amounting evidences demonstrated that Rho/Rho-associated kinase (ROCK) might be a novel target for the therapy of Parkinson's disease (PD). Recently, we synthesized L-F001 and revealed it was a potent ROCK inhibitor with multifunctional effects. Here we investigated the effects of L-F001 in PD models. We found that L-F001 potently attenuated 6-OHDA-induced cytotoxicity in PC12 cells and significantly decreased intracellular reactive oxygen species (ROS), prevented the 6-OHDA-induced decline of mitochondrial membrane potential and intracellular GSH levels. In addition, L-F001 increased Akt and GSK-3beta phosphorylation and induced the nuclear Nrf2 and HO-1 expression in a time- and concentration-dependent manner. Moreover, L-F001 restored the levels of p-Akt and p-GSK-3beta (Ser9) as well as HO-1 expression reduced by 6-OHDA. Those effects were blocked by the specific PI3K inhibitor, LY294002, indicating the involvement of Akt/GSK-3beta pathway in the neuroprotective effect of L-F001. In addition, L-F001 significantly attenuated the tyrosinehydroxylase immunoreactive cell loss in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice PD model. Together, our findings suggest that L-F001 prevents 6-OHDA-induced cell death through activating Akt/GSK-3beta and Nrf2/HO-1 signaling pathway and attenuates MPTP-induced dopaminergic neuron toxicity in mice. L-F001 might be a promising drug candidate for PD.
Collapse
Affiliation(s)
- Liting Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,Department of Pharmacy, Zhuhai Maternal and Child Health Hospital, Zhuhai, 519000, China.,Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingkao Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dan Su
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Meihui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lan Wang
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Wei Shen
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
9
|
Novel butyrylcholinesterase inhibitors through pharmacophore modeling, virtual screening and DFT-based approaches along-with design of bioisosterism-based analogues. Biomed Pharmacother 2017; 85:646-657. [DOI: 10.1016/j.biopha.2016.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
|
10
|
Stavrakov G, Philipova I, Zheleva D, Atanasova M, Konstantinov S, Doytchinova I. Docking-based Design of Galantamine Derivatives with Dual-site Binding to Acetylcholinesterase. Mol Inform 2016; 35:278-85. [PMID: 27492242 DOI: 10.1002/minf.201600041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/17/2016] [Indexed: 11/06/2022]
Abstract
The enzyme acetylcholinesterase is a key target in the treatment of Alzheimer's disease because of its ability to hydrolyze acetylcholine via the catalytic binding site and to accelerate the aggregation of amyloid-β peptide via the peripheral anionic site (PAS). Using docking-based predictions, in the present study we design 20 novel galantamine derivatives with alkylamide spacers of different length ending with aromatic fragments. The galantamine moiety blocks the catalytic site, while the terminal aromatic fragments bind in PAS. The best predicted compounds are synthesized and tested for acetylcholinesterase inhibitory activity. The experimental results confirm the predictions and show that the heptylamide spacer is of optimal length to bridge the galantamine moiety bound in the catalytic site and the aromatic fragments interacting with PAS. Among the tested terminal aromatic fragments, the phenethyl substituent is the most suitable for binding in PAS.
Collapse
Affiliation(s)
- Georgi Stavrakov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str., 1000, Sofia, Bulgaria
| | - Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian academy of Sciences, Acad. G. Bonchev str. 9, 1113, Sofia, Bulgaria
| | - Dimitrina Zheleva
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str., 1000, Sofia, Bulgaria
| | - Mariyana Atanasova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str., 1000, Sofia, Bulgaria
| | - Spiro Konstantinov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str., 1000, Sofia, Bulgaria
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str., 1000, Sofia, Bulgaria.
| |
Collapse
|
11
|
Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2016; 26:2539-2543. [PMID: 27072909 DOI: 10.1016/j.bmcl.2016.03.086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/04/2016] [Accepted: 03/25/2016] [Indexed: 02/05/2023]
Abstract
A novel series of ferulic acid-memoquin hybrids were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). The in vitro studies showed that most of the compounds exhibited a significant ability to inhibit acetylcholinesterase (AChE) (IC50 of 3.2-34.7μM) and self-induced β-amyloid (Aβ1-42) aggregation (30.8-39.1%, 25μM), to act as potential antioxidants (ORAC-FL value of 0.9-1.3). In particular, compound 17d had the greatest ability to inhibit AChE (IC50=3.2μM), and Aβ1-42 aggregation (30.8%) was also an excellent antioxidant and neuroprotectant. Moreover, it is capable of disaggregating self-induced Aβ aggregation. Furthermore, 17d could cross the blood-brain barrier (BBB) in vitro. The results showed that compound 17d is a potential multifunctional agent for the treatment of AD.
Collapse
|
12
|
Nepovimova E, Uliassi E, Korabecny J, Peña-Altamira LE, Samez S, Pesaresi A, Garcia GE, Bartolini M, Andrisano V, Bergamini C, Fato R, Lamba D, Roberti M, Kuca K, Monti B, Bolognesi ML. Multitarget Drug Design Strategy: Quinone–Tacrine Hybrids Designed To Block Amyloid-β Aggregation and To Exert Anticholinesterase and Antioxidant Effects. J Med Chem 2014; 57:8576-89. [DOI: 10.1021/jm5010804] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eugenie Nepovimova
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- Department
of Toxicology, Department of Public Health, Centre for Advanced Studies,
Faculty of Military Health Sciences, University of Defence, Trebesska
1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department
of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy
in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Jan Korabecny
- Department
of Toxicology, Department of Public Health, Centre for Advanced Studies,
Faculty of Military Health Sciences, University of Defence, Trebesska
1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Luis Emiliano Peña-Altamira
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Sarah Samez
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri
1, I-34127 Trieste, Italy
| | - Alessandro Pesaresi
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
| | - Gregory E. Garcia
- Research
Division, U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts, Point Road, Aberdeen Proving
Ground, Maryland 21010-5400, United States
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Vincenza Andrisano
- Department
for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto
237, I-47921 Rimini, Italy
| | - Christian Bergamini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Romana Fato
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Doriano Lamba
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
| | - Marinella Roberti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Kamil Kuca
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Barbara Monti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
13
|
Prati F, Goldman-Pinkovich A, Lizzi F, Belluti F, Koren R, Zilberstein D, Bolognesi ML. Quinone-amino acid conjugates targeting Leishmania amino acid transporters. PLoS One 2014; 9:e107994. [PMID: 25254495 PMCID: PMC4177859 DOI: 10.1371/journal.pone.0107994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/22/2014] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1–15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes) and intracellular (amastigotes) forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively). Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives.
Collapse
Affiliation(s)
- Federica Prati
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Federica Lizzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roni Koren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
14
|
Multi-target Design Strategies in the Context of Alzheimer’s Disease: Acetylcholinesterase Inhibition and NMDA Receptor Antagonism as the Driving Forces. Neurochem Res 2014; 39:1914-23. [DOI: 10.1007/s11064-014-1250-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/08/2023]
|
15
|
Prati F, Uliassi E, Bolognesi ML. Two diseases, one approach: multitarget drug discovery in Alzheimer's and neglected tropical diseases. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00069b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multitarget drug discovery may represent a promising therapeutic approach to treat Alzheimer's and neglected tropical diseases.
Collapse
Affiliation(s)
- F. Prati
- Department of Drug Discovery & Development
- Istituto Italiano di Tecnologia
- Genova
- Italy
- Department of Pharmacy & Biotechnology
| | - E. Uliassi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| | - M. L. Bolognesi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
16
|
Prati F, Bartolini M, Simoni E, De Simone A, Pinto A, Andrisano V, Bolognesi ML. Quinones bearing non-steroidal anti-inflammatory fragments as multitarget ligands for Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23:6254-8. [DOI: 10.1016/j.bmcl.2013.09.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 02/01/2023]
|
17
|
Gatti R, Andreatta P, Boschetti S. Study of 1,4-naphthoquinone as a new useful derivatization reagent for LC analysis of aliphatic thiols in dietary supplements and pharmaceuticals. Anal Bioanal Chem 2012; 405:817-25. [DOI: 10.1007/s00216-012-6250-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|