1
|
Ebaid MS, Chyb M, Furlan V, Ibrahim HAA, Bren U, Gatkowska J, Dziadek J, Eldehna WM, Sabt A. Identification of Coumarin-Chalcone and Coumarin-Pyrazoline Derivatives as Novel Anti- Toxoplasma gondii Agents. Drug Des Devel Ther 2024; 18:5599-5614. [PMID: 39650850 PMCID: PMC11625422 DOI: 10.2147/dddt.s495089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Toxoplasmosis, a zoonotic infection caused by the apicomplexan parasite Toxoplasma gondii, affects a significant portion of the global human population. This condition, particularly dangerous for pregnant women and immunocompromised individuals, currently lacks effective treatment options. Methods Eighteen coumarin-based derivatives were synthesized, comprising coumarin-chalcone hybrids (5a-i) and coumarin-pyrazoline hybrids (6a-i). Cytotoxicity was evaluated using L929 mouse fibroblasts and Hs27 human fibroblasts. Anti-T. gondii activity was assessed, and molecular docking studies were performed to predict binding modes with TgCDPK1. Results Pyrazoline hybrids (6a-i) showed lower toxicity than chalcone-bearing coumarins (5a-i), with CC30 values exceeding the highest tested concentration (500 µg/mL) for most compounds. The synthesized molecules demonstrated strong anti-T. gondii activity, with IC50 values ranging from 0.66 µg/mL to 9.05 µg/mL. Molecular docking studies provided insights into potential binding mechanisms. Conclusion This study highlights the potential of coumarin-based hybrids as anti-T. gondii agents. The findings should contribute to the growing arsenal of small molecules against T. gondii and underscore the value of molecular hybridization in drug design. Further studies to elucidate these compounds' mechanism of action and in vivo efficacy are warranted to fully realize their potential as anti-parasitic agents.
Collapse
Affiliation(s)
- Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, Egypt
| | - Maciej Chyb
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Łódź, Poland
| | - Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | | | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, Maribor, Slovenia
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
2
|
Ali DH, Gaji RY. TKL family kinases in human apicomplexan pathogens. Mol Biochem Parasitol 2024; 259:111628. [PMID: 38719028 PMCID: PMC11182715 DOI: 10.1016/j.molbiopara.2024.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens' (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.
Collapse
Affiliation(s)
- Dima Hajj Ali
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Wang F, Xue Y, Pei Y, Yin M, Sun Z, Zhou Z, Liu J, Liu Q. Construction of luciferase-expressing Neospora caninum and drug screening. Parasit Vectors 2024; 17:118. [PMID: 38459572 PMCID: PMC10921786 DOI: 10.1186/s13071-024-06195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Neospora caninum is an apicomplexan parasite that is particularly responsible for abortions in cattle and neuromuscular disease in dogs. Due to the limited effectiveness of currently available drugs, there is an urgent need for new therapeutic approaches to control neosporosis. Luciferase-based assays are potentially powerful tools in the search for antiprotozoal compounds, permitting the development of faster and more automated assays. The aim of this study was to construct a luciferase-expressing N. caninum and evaluate anti-N. caninum drugs. METHODS Luciferase-expressing N. caninum (Nc1-Luc) was constructed using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9). After testing the luciferase expression and phenotype of the Nc1-Luc strains, the drug sensitivity of Nc1-Luc strains was determined by treating them with known positive or negative drugs and calculating the half-maximal inhibitory concentration (IC50). The selective pan-rapidly accelerated fibrosarcoma (pan-RAF) inhibitor TAK-632 was then evaluated for anti-N. caninum effects using Nc1-Luc by luciferase activity reduction assay and other in vitro and in vivo studies. RESULTS The phenotypes and drug sensitivity of Nc1-Luc strains were consistent with those of the parental strains Nc1, and Nc1-Luc strains can be used to determine the IC50 for anti-N. caninum drugs. Using the Nc1-Luc strains, TAK-632 showed promising activity against N. caninum, with an IC50 of 0.6131 μM and a selectivity index (SI) of 62.53. In vitro studies demonstrated that TAK-632 inhibited the invasion, proliferation, and division of N. caninum tachyzoites. In vivo studies showed that TAK-632 attenuated the virulence of N. caninum in mice and significantly reduced the parasite burden in the brain. CONCLUSIONS In conclusion, a luciferase-expressing N. caninum strain was successfully constructed, which provides an effective tool for drug screening and related research on N. caninum. In addition, TAK-632 was found to inhibit the growth of N. caninum, which could be considered as a candidate lead compound for new therapeutics for neosporosis.
Collapse
Affiliation(s)
- Fei Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yangfei Xue
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yanqun Pei
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meng Yin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhepeng Sun
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zihui Zhou
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Chan AW, Broncel M, Yifrach E, Haseley NR, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 2023; 12:RP85654. [PMID: 37933960 PMCID: PMC10629828 DOI: 10.7554/elife.85654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eden Yifrach
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Nicole R Haseley
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Elena Andree
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Shortt
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
5
|
Shortt E, Hackett CG, Stadler RV, Kent RS, Herneisen AL, Ward GE, Lourido S. CDPK2A and CDPK1 form a signaling module upstream of Toxoplasma motility. mBio 2023; 14:e0135823. [PMID: 37610220 PMCID: PMC10653799 DOI: 10.1128/mbio.01358-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE This work uncovers interactions between various signaling pathways that govern Toxoplasma gondii egress. Specifically, we compare the function of three canonical calcium-dependent protein kinases (CDPKs) using chemical-genetic and conditional-depletion approaches. We describe the function of a previously uncharacterized CDPK, CDPK2A, in the Toxoplasma lytic cycle, demonstrating that it contributes to parasite fitness through regulation of microneme discharge, gliding motility, and egress from infected host cells. Comparison of analog-sensitive kinase alleles and conditionally depleted alleles uncovered epistasis between CDPK2A and CDPK1, implying a partial functional redundancy. Understanding the topology of signaling pathways underlying key events in the parasite life cycle can aid in efforts targeting kinases for anti-parasitic therapies.
Collapse
Affiliation(s)
- Emily Shortt
- Whitehead Institute, Cambridge, Massachusetts, USA
| | | | - Rachel V. Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, Massachusetts, USA
- Biology Department, MIT, Cambridge, Massachusetts, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, Massachusetts, USA
- Biology Department, MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Chan AW, Broncel M, Yifrach E, Haseley N, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523553. [PMID: 36712004 PMCID: PMC9882037 DOI: 10.1101/2023.01.11.523553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eden Yifrach
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nicole Haseley
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Elena Andree
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Exploring the Antiparasitic Activity of Tris-1,3,4-Thiadiazoles against Toxoplasma gondii-Infected Mice. Molecules 2022; 27:molecules27072246. [PMID: 35408644 PMCID: PMC9000608 DOI: 10.3390/molecules27072246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Nitrogen-containing atoms in their core structures have been exclusive building blocks in drug discovery and development. One of the most significant and well-known heterocycles is the 1,3,4-thidiazole nucleus, which is found in a wide range of natural products and therapeutic agents. In the present work, certain tris-1,3,4-thiadiazole derivatives (6, 7) were synthesized through a multi-step synthesis approach. All synthesized compounds were characterized using different spectroscopic tools. Previously, thiadiazole compounds as anti-Toxoplasma gondii agents have been conducted and reported in vitro. However, this is the first study to test the anti-Toxoplasma gondii activity of manufactured molecular hybrids thiadiazole in an infected mouse model with the acute RH strain of T. gondii. All the observed results demonstrated compound (7)’s powerful activity, with a considerable reduction in the parasite count reaching 82.6% in brain tissues, followed by liver and spleen tissues (65.35 and 64.81%, respectively). Inflammatory and anti-inflammatory cytokines assessments proved that Compound 7 possesses potent antiparasitic effect. Furthermore, docking tests against TgCDPK1 and ROP18 kinase (two major enzymes involved in parasite invasion and egression) demonstrated compound 7’s higher potency compared to compound 6 and megazol. According to the mentioned results, tris-1,3,4-thiadiazole derivatives under test can be employed as potent antiparasitic agents against the acute RH strain of T. gondii.
Collapse
|
8
|
Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase. Nat Commun 2022; 13:459. [PMID: 35075105 PMCID: PMC8786932 DOI: 10.1038/s41467-022-28108-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii commonly infects humans and while most infections are controlled by the immune response, currently approved drugs are not capable of clearing chronic infection in humans. Hence, approximately one third of the world’s human population is at risk of reactivation, potentially leading to severe sequelae. To identify new candidates for treating chronic infection, we investigated a series of compounds derived from diversity-oriented synthesis. Bicyclic azetidines are potent low nanomolar inhibitors of phenylalanine tRNA synthetase (PheRS) in T. gondii, with excellent selectivity. Biochemical and genetic studies validate PheRS as the primary target of bicyclic azetidines in T. gondii, providing a structural basis for rational design of improved analogs. Favorable pharmacokinetic properties of a lead compound provide excellent protection from acute infection and partial protection from chronic infection in an immunocompromised mouse model of toxoplasmosis. Collectively, PheRS inhibitors of the bicyclic azetidine series offer promise for treatment of chronic toxoplasmosis. Current treatments for toxoplasmosis are limited by adverse reactions and inability to cure chronic infections dominated by semi-dormant cyst forms. Here the authors demonstrate the potential of small molecule inhibitors of PheRS for controlling acute and chronic toxoplasmosis.
Collapse
|
9
|
Wu RZ, Zhou HY, Song JF, Xia QH, Hu W, Mou XD, Li X. Chemotherapeutics for Toxoplasma gondii: Molecular Biotargets, Binding Modes, and Structure-Activity Relationship Investigations. J Med Chem 2021; 64:17627-17655. [PMID: 34894691 DOI: 10.1021/acs.jmedchem.1c01569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxoplasmosis, an infectious zoonotic disease caused by the apicomplexan parasite Toxoplasma gondii (T. gondii), is a major worldwide health problem. However, there are currently no effective options (chemotherapeutic drugs or prophylactic vaccines) for treating chronic latent toxoplasmosis infection. Accordingly, seeking more effective and safer chemotherapeutics for combating this disease remains a long-term and challenging objective. In this paper, we summarize possible molecular biotargets, with an emphasis on those that are druggable and promising, including, without limitation, calcium-dependent protein kinase 1, bifunctional thymidylate synthase-dihydrofolate reductase, and farnesyl diphosphate synthase. Meanwhile, as important components of medicinal chemistry, the binding modes and structure-activity relationship profiles of the corresponding inhibitors were also illuminated. We anticipate that this information will be helpful for further identification of more effective chemotherapeutic interventions to prevent and treat zoonotic infections caused by T. gondii.
Collapse
Affiliation(s)
- Rong-Zhen Wu
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Huai-Yu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Jing-Feng Song
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, no. 1168 Chunrong Xi Road, Kunming, Yunnan 650500, PR China
| | - Qiao-Hong Xia
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, no. 72 Binhai Road of JiMo, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Mou
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Xun Li
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China.,Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, PR China
| |
Collapse
|
10
|
da Silva M, Teixeira C, Gomes P, Borges M. Promising Drug Targets and Compounds with Anti- Toxoplasma gondii Activity. Microorganisms 2021; 9:1960. [PMID: 34576854 PMCID: PMC8471693 DOI: 10.3390/microorganisms9091960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite Toxoplasma gondii, which infects around one-third of the world population. This disease may result in serious complications for fetuses, newborns, and immunocompromised individuals. Current treatment options are old, limited, and possess toxic side effects. Long treatment durations are required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting the establishment of latent infection. This review highlights the most promising drug targets involved in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as well as others. A description of some of the most promising compounds demonstrating antiparasitic activity, developed over the last decade through drug discovery and drug repurposing, is provided as a means of giving new perspectives for future research in this field.
Collapse
Affiliation(s)
- Marco da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Margarida Borges
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Gaji RY, Sharp AK, Brown AM. Protein kinases in Toxoplasma gondii. Int J Parasitol 2021; 51:415-429. [PMID: 33581139 PMCID: PMC11065138 DOI: 10.1016/j.ijpara.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is an obligatory intracellular pathogen that causes life threatening illness in immunodeficient individuals, miscarriage in pregnant woman, and blindness in newborn children. Similar to any other eukaryotic cell, protein kinases play critical and essential roles in the Toxoplasma life cycle. Accordingly, many studies have focused on identifying and defining the mechanism of function of these signalling proteins with a long-term goal to develop anti-Toxoplasma therapeutics. In this review, we briefly discuss classification and key components of the catalytic domain which are critical for functioning of kinases, with a focus on domains, families, and groups of kinases within Toxoplasma. More importantly, this article provides a comprehensive, current overview of research on kinase groups in Toxoplasma including the established eukaryotic AGC, CAMK, CK1, CMGC, STE, TKL families and the apicomplexan-specific FIKK, ROPK and WNG family of kinases. This work provides an overview and discusses current knowledge on Toxoplasma kinases including their localization, function, signalling network and role in acute and chronic pathogenesis, with a view towards the future in probing kinases as viable drug targets.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda K Sharp
- Interdisciplinary Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; University Libraries, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
12
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
13
|
Khalifa MM, Martorelli Di Genova B, McAlpine SG, Gallego-Lopez GM, Stevenson DM, Rozema SD, Monaghan NP, Morris JC, Knoll LJ, Golden JE. Dual-Stage Picolinic Acid-Derived Inhibitors of Toxoplasma gondii. ACS Med Chem Lett 2020; 11:2382-2388. [PMID: 33335660 DOI: 10.1021/acsmedchemlett.0c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii causes a prevalent human infection for which only the acute stage has an FDA-approved therapy. To find inhibitors of both the acute stage parasites and the persistent cyst stage that causes a chronic infection, we repurposed a compound library containing known inhibitors of parasitic hexokinase, the first step in the glycolysis pathway, along with a larger collection of new structural derivatives. The focused screen of 22 compounds showed a 77% hit rate (>50% multistage inhibition) and revealed a series of aminobenzamide-linked picolinic acids with submicromolar potency against both T. gondii parasite forms. Picolinic acid 23, designed from an antiparasitic benzamidobenzoic acid class with challenging ADME properties, showed 60-fold-enhanced solubility, a moderate LogD7.4, and a 30% improvement in microsomal stability. Furthermore, isotopically labeled glucose tracing revealed that picolinic acid 23 does not function by hexokinase inhibition. Thus, we report a new probe scaffold to interrogate dual-stage inhibition of T. gondii.
Collapse
Affiliation(s)
- Muhammad M. Khalifa
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Sarah G. McAlpine
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - Gina M. Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States of America
| | - Soren D. Rozema
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| | - Neil P. Monaghan
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - James C. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Jennifer E. Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| |
Collapse
|
14
|
Winzer P, Imhof D, Anghel N, Ritler D, Müller J, Boubaker G, Aguado-Martinez A, Ortega-Mora LM, Ojo KK, VanVoorhis WC, Hemphill A. The Impact of BKI-1294 Therapy in Mice Infected With the Apicomplexan Parasite Neospora caninum and Re-infected During Pregnancy. Front Vet Sci 2020; 7:587570. [PMID: 33195616 PMCID: PMC7593410 DOI: 10.3389/fvets.2020.587570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023] Open
Abstract
Exposure of Neospora caninum tachyzoites to BKI-1294 in vitro results in the formation of long-lived multinucleated complexes (MNCs). However, in vivo treatment of BALB/c mice with BKI-1294 shortly after N. caninum infection during pregnancy was safe and profoundly reduced pup mortality and vertical transmission. We hypothesized that the formation of MNCs could trigger immune responses that contribute to BKI efficacy in vivo. In this study, mice were first vaccinated with a sublethal dose of N. caninum tachyzoites and were treated with BKI-1294. We then investigated the effects of these treatments after mating and re-infection during pregnancy. Effects on fertility, pup survival, vertical transmission, and parasite load in dams were evaluated. Cytokines in sera or splenocyte culture supernatants were assessed by either ELISA or the Luminex™ 200 system, and humoral immune responses against tachyzoite and MNC antigens were compared by ELISA, Western blotting and immunoproteomics. Our results showed that BKI-1294 treatment of live-vaccinated mice reduced the cerebral parasite load in the dams, but resulted in higher neonatal pup mortality and vertical transmission. In live-vaccinated mice, cytokine levels, most notably IFN-y, IL-10, and IL-12, were consistently lower in BKI-1294 treated animals compared to non-treated mice. In addition, comparative Western blotting identified two protein bands in MNC extracts that were only recognized by sera of live-vaccinated mice treated with BKI-1294, and were not found in tachyzoite extracts. We conclude that treatment of live-vaccinated mice with BKI-1294 influenced the cellular and humoral immune responses against infection, affected the safety of the live-vaccine, and decreased protection against re-infection and vertical transmission during pregnancy.
Collapse
Affiliation(s)
- Pablo Winzer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Luis-Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Wesley C VanVoorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States.,Departments of Global Health and Microbiology, University of Washington, Seattle, WA, United States
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Anghel N, Winzer PA, Imhof D, Müller J, Langa X, Rieder J, Barrett LK, Vidadala RSR, Huang W, Choi R, Hulverson MA, Whitman GR, Arnold SL, Van Voorhis WC, Ojo KK, Maly DJ, Fan E, Hemphill A. Comparative assessment of the effects of bumped kinase inhibitors on early zebrafish embryo development and pregnancy in mice. Int J Antimicrob Agents 2020; 56:106099. [PMID: 32707170 DOI: 10.1016/j.ijantimicag.2020.106099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 μM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 μM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 μM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Pablo A Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Mathew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Samuel L Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
16
|
Herneisen AL, Sidik SM, Markus BM, Drewry DH, Zuercher WJ, Lourido S. Identifying the Target of an Antiparasitic Compound in Toxoplasma Using Thermal Proteome Profiling. ACS Chem Biol 2020; 15:1801-1807. [PMID: 32597628 DOI: 10.1021/acschembio.0c00369] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apicomplexan parasites include the causative agents of malaria and toxoplasmosis. Cell-based screens in Toxoplasma previously identified a chemical modulator of calcium signaling (ENH1) that blocked parasite egress from host cells and exhibited potent antiparasitic activity. To identify the targets of ENH1, we adapted thermal proteome profiling to Toxoplasma, which revealed calcium-dependent protein kinase 1 (CDPK1) as a target. We confirmed the inhibition of CDPK1 by ENH1 in vitro and in parasites by comparing alleles sensitive or resistant to ENH1. CDPK1 inhibition explained the block in egress; however, the effects of ENH1 on calcium homeostasis and parasite viability were CDPK1-independent, implicating additional targets. Thermal proteome profiling of lysates from parasites expressing the resistant allele of CDPK1 identified additional candidates associated with the mitochondria and the parasite pellicle-compartments that potentially function in calcium release and homeostasis. Our findings illustrate the promise of thermal profiling to identify druggable targets that modulate calcium signaling in apicomplexan parasites.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Department of Biology, Massachusetts Institute of Technology, 30 Ames St, Cambridge, Massachusetts 02142, United States
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Saima M. Sidik
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Benedikt M. Markus
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, Massachusetts 02142, United States
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sebastian Lourido
- Department of Biology, Massachusetts Institute of Technology, 30 Ames St, Cambridge, Massachusetts 02142, United States
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Janetka JW, Hopper AT, Yang Z, Barks J, Dhason MS, Wang Q, Sibley LD. Optimizing Pyrazolopyrimidine Inhibitors of Calcium Dependent Protein Kinase 1 for Treatment of Acute and Chronic Toxoplasmosis. J Med Chem 2020; 63:6144-6163. [PMID: 32420739 PMCID: PMC7325724 DOI: 10.1021/acs.jmedchem.0c00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Calcium dependent protein kinase 1 (CDPK1) is an essential Ser/Thr kinase that controls invasion and egress by the protozoan parasite Toxoplasma gondii. The Gly gatekeeper of CDPK1 makes it exquisitely sensitive to inhibition by small molecule 1H-pyrazolo[3,4-d]pyrimidine-4-amine (PP) compounds that are bulky ATP mimetics. Here we rationally designed, synthesized, and tested a series of novel PP analogs that were evaluated for inhibition of CDPK1 enzyme activity in vitro and parasite growth in cell culture. Optimal substitution on the PP scaffold included 2-pyridyl ethers directed into the hydrophobic pocket and small carbocyclic rings accessing the ribose-binding pocket. Further optimization of the series led to identification of the lead compound 3a that displayed excellent potency, selectivity, safety profile, and efficacy in vivo. The results of these studies provide a foundation for further work to optimize CDPK1 inhibitors for the treatment of acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis. MO 63110
| | | | - Ziping Yang
- Vyera Pharmaceuticals, 600 Third Avenue, New York, NY 10016
| | - Jennifer Barks
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| | - Mary Savari Dhason
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| |
Collapse
|
18
|
Liu S, Wu M, Hua Q, Lu D, Tian Y, Yu H, Cheng L, Chen Y, Cao J, Hu X, Tan F. Two old drugs, NVP-AEW541 and GSK-J4, repurposed against the Toxoplasma gondii RH strain. Parasit Vectors 2020; 13:242. [PMID: 32393321 PMCID: PMC7216583 DOI: 10.1186/s13071-020-04094-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Toxoplasma gondii is a zoonotic pathogen that causes toxoplasmosis and leads to serious public health problems in developing countries. However, current clinical therapeutic drugs have some disadvantages, such as serious side effects, a long course of treatment and the emergence of drug-resistant strains. The urgent need to identify novel anti-Toxoplasma drugs has initiated the effective strategy of repurposing well-characterized drugs. As a principled screening for the identification of effective compounds against Toxoplasma gondii, in the current study, a collection of 666 compounds were screened for their ability to significantly inhibit Toxoplasma growth. Methods The inhibition of parasite growth was determined using a luminescence-based β-galactosidase activity assay. Meanwhile, the effect of compounds on the viability of host cells was measured using CCK8. To assess the inhibition of the selected compounds on discrete steps of the T. gondii lytic cycle, the invasion, intracellular proliferation and egress abilities were evaluated. Finally, a murine infection model of toxoplasmosis was used to monitor the protective efficacy of drugs against acute infection of a highly virulent RH strain. Results A total of 68 compounds demonstrated more than 70% parasite growth inhibition. After excluding compounds that impaired host cell viability, we further characterized two compounds, NVP-AEW541 and GSK-J4 HCl, which had IC50 values for parasite growth of 1.17 μM and 2.37 μM, respectively. In addition, both compounds showed low toxicity to the host cell. Furthermore, we demonstrated that NVP-AEW541 inhibits tachyzoite invasion, while GSK-J4 HCl inhibits intracellular tachyzoite proliferation by halting cell cycle progression from G1 to S phase. These findings prompted us to analyse the efficacy of the two compounds in vivo by using established mouse models of acute toxoplasmosis. In addition to prolonging the survival time of mice acutely infected with T. gondii, both compounds had a remarkable ability to reduce the parasite burden of tissues. Conclusions Our findings suggest that both NVP-AEW541 and GSK-J4 could be potentially repurposed as candidate drugs against T. gondii infection.![]()
Collapse
Affiliation(s)
- Shuxian Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mimi Wu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qianqian Hua
- Clinical Laboratory, Dongyang People's Hospital, Jinhua, 322100, Zhejiang, People's Republic of China
| | - Daiqiang Lu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuan Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Helin Yu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Linyan Cheng
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yinqi Chen
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiaxin Cao
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Hu
- School of Medical Laboratory Science and School of Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
19
|
The effect of edelfosine on GRA1 and MIC3 expressions in acute toxoplasmosis. Parasitol Res 2020; 119:1371-1380. [PMID: 31970471 DOI: 10.1007/s00436-020-06601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
Phosphoinositide-dependent phospholipase-C (PI-PLC) triggers the calcium signaling pathway which plays an important role in dense granule and microneme secretion and pathogenesis of Toxoplasma gondii (T. gondii). There are limited data about the effects of phospholipid analogues against T. gondii. The current study assessed the effect of edelfosine, as a phospholipid analogue, on GRA1 and MIC3 expressions using in vitro and in vivo models of acute toxoplasmosis. Infected Vero cells were treated by edelfosine in two subgroups: 24 h following the cell infection and treatment at the same time of cell infection. Animal study was performed on forty mice in four groups including non-infected, infected untreated, infected edelfosine-treated, and infected pyrimethamine-treated. Gene and protein expression analyses were done using quantitative real-time PCR and western blot, respectively. Edelfosine significantly reduced the GRA1 (P < 0.01) and MIC3 (P < 0.01) mRNA and protein expressions in 24 h following the cell infection and at the same time of cell infection groups. In vivo study showed that the edelfosine significantly reduced the GRA1 expression in eye, and MIC3 expression in brain and liver. Moreover, the edelfosine-treated infected mice had significant higher survival rate compared with uninfected mice. The reducing effect of edelfosine on GRA1 and MIC3 mRNA and protein levels 24 h following the cell infection was more than treatment at the same time of cell infection group. Moreover, the effect of edelfosine on GRA1 and MIC3 expression in animal tissues was variable. These data showed that the edelfosine may decrease the T. gondii excretory/secretory antigens through inhibition of PI-PLC.
Collapse
|
20
|
Deng Y, Wu T, Zhai SQ, Li CH. Recent progress on anti-Toxoplasma drugs discovery: Design, synthesis and screening. Eur J Med Chem 2019; 183:111711. [PMID: 31585276 DOI: 10.1016/j.ejmech.2019.111711] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 01/30/2023]
Abstract
Toxoplasma gondii severely threaten the health of immunocompromised patients and pregnant women as this parasite can cause several disease, including brain and eye disease. Current treatment for toxoplasmosis commonly have high cytotoxic side effects on host and require long durations ranging from one week to more than one year. The regiments lack efficacy to eradicate T. gondii tissue cysts to cure chromic infection results in the needs for long treatment and relapsing disease. In addition, there has not been approved drugs for treating the pregnant women infected by T. gondii. Moreover, Toxoplasma vaccine researches face a wide variety of challenges. Developing high efficient and low toxic agents against T. gondii is urgent and important. Over the last decade, tremendous progress have been made in identifying and developing novel compounds for the treatment of toxoplasmosis. This review summarized and discussed recent advances between 2009 and 2019 in exploring effective agents against T. gondii from five aspects of drug discovery.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Tao Wu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Shao-Qin Zhai
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China.
| |
Collapse
|
21
|
Lapinskas PJ, Ben-Harari RR. Perspective on current and emerging drugs in the treatment of acute and chronic toxoplasmosis. Postgrad Med 2019; 131:589-596. [PMID: 31399001 DOI: 10.1080/00325481.2019.1655258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
No new drugs for treatment of toxoplasmosis have been approved in over 60 years, despite the burden of toxoplasmosis on human society. The small selection of effective drugs is limited by important side effects, often limiting patient use. This perspective highlights promising late-stage drug candidates in the treatment of toxoplasmosis. Presently, drugs target the tachyzoite form of the parasite Toxoplasma gondii responsible for the acute infection but do not eradicate the tissue cyst form underlying chronic infection. Pyrimethamine - the first-line and only approved drug for treatment of toxoplasmosis in the United States - inhibits parasite DNA synthesis by inhibiting dihydrofolate reductase (DHFR). Two novel DHFR inhibitors with improved potency and selectivity for parasite DHFR over human DHFR are in clinical-stage development. One of the most advanced and promising therapeutic targets, demonstrating potential to treat both acute and chronic toxoplasmosis, is the calcium-dependent protein kinase 1 (CDPK1) which plays an essential role in the intracellular replicative cycle of the parasite, and has no direct mammalian homolog. Two CDPK1 inhibitor programs have identified potent and selective lead series, demonstrating acceptable systemic and CNS exposure, and in vivo efficacy in animal models of acute and chronic infection. Physicians need a better arsenal of parasiticidal drugs for the treatment of toxoplasmosis, particularly those active against tissue cysts.
Collapse
|
22
|
Zhang Q, Tang M. Regioselective Synthesis of Highly Functionalized Pyrazoles from N-Tosylhydrazones. Org Lett 2019; 21:1917-1920. [PMID: 30829036 DOI: 10.1021/acs.orglett.9b00561] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A regioselective synthesis of highly functionalized pyrazoles from N-tosylhydrazones was developed. The reaction was general for a wide range of substrates and demonstrated excellent tolerance to a variety of substituents, and the method has been successfully applied to the formal synthesis of ibrutinib.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Meng Tang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , P.R. China
| |
Collapse
|
23
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
24
|
Hopper AT, Brockman A, Wise A, Gould J, Barks J, Radke JB, Sibley LD, Zou Y, Thomas S. Discovery of Selective Toxoplasma gondii Dihydrofolate Reductase Inhibitors for the Treatment of Toxoplasmosis. J Med Chem 2019; 62:1562-1576. [PMID: 30624926 DOI: 10.1021/acs.jmedchem.8b01754] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A safer treatment for toxoplasmosis would be achieved by improving the selectivity and potency of dihydrofolate reductase (DHFR) inhibitors, such as pyrimethamine (1), for Toxoplasma gondii DHFR ( TgDHFR) relative to human DHFR ( hDHFR). We previously reported on the identification of meta-biphenyl analog 2, designed by in silico modeling of key differences in the binding pocket between TgDHFR and hDHFR. Compound 2 improves TgDHFR selectivity 6.6-fold and potency 16-fold relative to 1. Here, we report on the optimization and structure-activity relationships of this arylpiperazine series leading to the discovery of 5-(4-(3-(2-methoxypyrimidin-5-yl)phenyl)piperazin-1-yl)pyrimidine-2,4-diamine 3. Compound 3 has a TgDHFR IC50 of 1.57 ± 0.11 nM and a hDHFR to TgDHFR selectivity ratio of 196, making it 89-fold more potent and 16-fold more selective than 1. Compound 3 was highly effective in control of acute infection by highly virulent strains of T. gondii in the murine model, and it possesses the best combination of selectivity, potency, and prerequisite drug-like properties to advance into IND-enabling, preclinical development.
Collapse
Affiliation(s)
- Allen T Hopper
- Vyera Pharmaceuticals, LLC , 600 Third Avenue, 10th Floor , New York , New York 10016 , United States
| | - Adam Brockman
- Vyera Pharmaceuticals, LLC , 600 Third Avenue, 10th Floor , New York , New York 10016 , United States
| | - Andy Wise
- Evotec (UK) LTD. , Alderley Park , Cheshire SK104TG , U.K
| | - Julie Gould
- Evotec (UK) LTD. , Alderley Park , Cheshire SK104TG , U.K
| | - Jennifer Barks
- Department of Molecular Microbiology , Washington University School of Medicine , 660 S. Euclid Avenue , St. Louis , Missouri 63130 , United States
| | - Joshua B Radke
- Department of Molecular Microbiology , Washington University School of Medicine , 660 S. Euclid Avenue , St. Louis , Missouri 63130 , United States
| | - L David Sibley
- Department of Molecular Microbiology , Washington University School of Medicine , 660 S. Euclid Avenue , St. Louis , Missouri 63130 , United States
| | - Yongmao Zou
- WuXi AppTec (Tianjin) Co., Ltd. , 168 NanHai Road, 10th Avenue, TEDA , Tianjin 300457 , P. R. China
| | - Stephen Thomas
- Vyera Pharmaceuticals, LLC , 600 Third Avenue, 10th Floor , New York , New York 10016 , United States
| |
Collapse
|
25
|
Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Shahdin S, Daryani A. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol Res 2018; 117:3045-3057. [PMID: 30088074 DOI: 10.1007/s00436-018-6027-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Currently, there is no approved therapy that can eradicate Toxoplasma gondii tissue cysts, which are responsible for chronic infection. This systematic review was performed to assess drugs or compounds that can be used as anti-T. gondii tissue cysts in vitro and in vivo. English electronic databases (i.e., PubMed, Science Direct, Scopus, Google Scholar, and Web of Science) were systematically searched for articles published up to 2017. A total of 55 papers published from 1987 to 2017 were eligible for inclusion in this systematic review. Among the drugs, atovaquone and azithromycin were found effective after long-term inoculation into mice; however, clinical cases of resistance to these drugs have been reported. Also, FR235222, QUI-11, tanshinone IIA, and hydroxyzine were shown to be effective against Toxoplasma cysts, but their effectiveness in vivo remains unknown. Additionally, compound 32, endochin-like quinolones, miltefosine, and guanabenz can be used as effective antiparasitic with the unique ability to reduce brain tissue cysts in chronically infected mice. Importantly, these antimicrobial agents are significant criteria for drug candidates. Future studies should focus on the biology and drug susceptibility of the cyst form of T. gondii in chronic toxoplasmosis patients to find more effective strategies that have sterilizing activity for eliminating T. gondii tissue cysts from the host, preventing disease relapse and potentially shortening the required duration of drug administration. Graphical abstract.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran
| | - Shayesteh Shahdin
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran.
| |
Collapse
|
26
|
Hortua Triana MA, Márquez-Nogueras KM, Vella SA, Moreno SNJ. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1846-1856. [PMID: 30992126 DOI: 10.1016/j.bbamcr.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca2+) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca2+ signaling is essential for the cellular and developmental changes that support T. gondii parasitism. The characterization of the molecular players and pathways directly activated by Ca2+ signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca2+ signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca2+ players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.
Collapse
Affiliation(s)
| | | | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Toxoplasma Calcium-Dependent Protein Kinase 1 Inhibitors: Probing Activity and Resistance Using Cellular Thermal Shift Assays. Antimicrob Agents Chemother 2018; 62:AAC.00051-18. [PMID: 29555627 DOI: 10.1128/aac.00051-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022] Open
Abstract
In Toxoplasma gondii, calcium-dependent protein kinase 1 (CDPK1) is an essential protein kinase required for invasion of host cells. We have developed several hundred CDPK1 inhibitors, many of which block invasion. Inhibitors with similar 50% inhibitory concentrations (IC50s) were tested in thermal shift assays for their ability to stabilize CDPK1 in cell lysates, in intact cells, or in purified form. Compounds that inhibited parasite growth stabilized CDPK1 in all assays. In contrast, two compounds that showed poor growth inhibition stabilized CDPK1 in lysates but not in cells. Thus, cellular exclusion could explain exceptions in the correlation between the action on the target and cellular activity. We used thermal shift assays to examine CDPK1 in two clones that were independently selected by growth in the CDPK1 inhibitor RM-1-132 and that had increased 50% effective concentrations (EC50s) for the compound. The A and C clones had distinct point mutations in the CDPK1 kinase domain, H201Q and L96P, respectively, residues that lie near one another in the inactive isoform. Purified mutant proteins showed RM-1-132 IC50s and thermal shifts similar to those shown by wild-type CDPK1. Reduced inhibitor stabilization (and a presumed reduced interaction) was observed only in cellular thermal shift assays. This highlights the utility of cellular thermal shift assays in demonstrating that resistance involves reduced on-target engagement (even if biochemical assays suggest otherwise). Indeed, similar EC50s were observed upon overexpression of the mutant proteins, as in the corresponding drug-selected parasites, although high levels of CDPK1(H201Q) only modestly increased resistance compared to that achieved with high levels of wild-type enzyme.
Collapse
|
28
|
Moine E, Moiré N, Dimier-Poisson I, Brunet K, Couet W, Colas C, Van Langendonck N, Enguehard-Gueiffier C, Gueiffier A, Héraut B, Denevault-Sabourin C, Debierre-Grockiego F. Imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1 decrease the parasite burden in mice with acute toxoplasmosis. Int J Parasitol 2018. [PMID: 29524527 DOI: 10.1016/j.ijpara.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The current therapeutic arsenal for toxoplasmosis is restricted to drugs non-specific to the parasite which cause important side effects. Development of more efficient and specific anti-Toxoplasma compounds is urgently needed. Imidazo[1,2-b]pyridazines designed to inhibit the calcium-dependent protein kinase 1 of Toxoplasma gondii (TgCDPK1) and effective against tachyzoite growth in vitro at submicromolar ranges were modified into hydrochloride salts to be administered in vivo in a mouse model of acute toxoplasmosis. All protonated imidazo[1,2-b]pyridazine salts (SP230, SP231 and SP232) maintained their activity on TgCDPK1 and T. gondii tachyzoites. Rat and mouse liver microsomes were used to predict half-life and intrinsic clearance, and the pharmacokinetic profile of the most rapidly degraded imidazo[1,2b]pyridazine salt (SP230) was determined in serum, brain and lungs of mice after a single administration of 50 mg/kg. Compounds were then tested in vivo in a murine model of acute toxoplasmosis. Mice infected with tachyzoites of the ME49 strain of T. gondii were treated for 4, 7 or 8 days with 25 or 50 mg/kg/day of SP230, SP231 or SP232. The parasite burdens were strongly diminished (>90% reduction under some conditions) in the spleen and the lungs of mice treated with imidazo[1,2-b]pyridazine salts compared with untreated mice, without the need for pre-treatment. Moreover, no increases in the levels of hepatic and renal toxicity markers were observed, demonstrating no significant signs of short-term toxicity. To conclude, imidazo[1,2-b]pyridazine salts have strong efficacy in vivo on acute toxoplasmosis and should be further tested in a model of mouse congenital toxoplasmosis.
Collapse
Affiliation(s)
| | | | | | - Kévin Brunet
- Université de Poitiers, CHU Poitiers, Inserm U1070, Poitiers, France
| | - William Couet
- Université de Poitiers, CHU Poitiers, Inserm U1070, Poitiers, France
| | - Cyril Colas
- Université d'Orléans, CNRS, ICOA, UMR 7311, Orléans, France; CNRS, CBM, UPR 4301, Université d'Orléans, Orléans, France
| | | | | | | | - Bruno Héraut
- ISP, INRA, Université Tours, 37380 Nouzilly, France
| | | | | |
Collapse
|
29
|
Rutaganira FU, Barks J, Dhason MS, Wang Q, Lopez MS, Long S, Radke JB, Jones NG, Maddirala AR, Janetka JW, El Bakkouri M, Hui R, Shokat KM, Sibley LD. Inhibition of Calcium Dependent Protein Kinase 1 (CDPK1) by Pyrazolopyrimidine Analogs Decreases Establishment and Reoccurrence of Central Nervous System Disease by Toxoplasma gondii. J Med Chem 2017; 60:9976-9989. [PMID: 28933846 DOI: 10.1021/acs.jmedchem.7b01192] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium dependent protein kinase 1 (CDPK1) is an essential enzyme in the opportunistic pathogen Toxoplasma gondii. CDPK1 controls multiple processes that are critical to the intracellular replicative cycle of T. gondii including secretion of adhesins, motility, invasion, and egress. Remarkably, CDPK1 contains a small glycine gatekeeper residue in the ATP binding pocket making it sensitive to ATP-competitive inhibitors with bulky substituents that complement this expanded binding pocket. Here we explored structure-activity relationships of a series of pyrazolopyrimidine inhibitors of CDPK1 with the goal of increasing selectivity over host enzymes, improving antiparasite potency, and improving metabolic stability. The resulting lead compound 24 exhibited excellent enzyme inhibition and selectivity for CDPK1 and potently inhibited parasite growth in vitro. Compound 24 was also effective at treating acute toxoplasmosis in the mouse, reducing dissemination to the central nervous system, and decreasing reactivation of chronic infection in severely immunocompromised mice. These findings provide proof of concept for the development of small molecule inhibitors of CDPK1 for treatment of CNS toxoplasmosis.
Collapse
Affiliation(s)
- Florentine U Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - Jennifer Barks
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Mary Savari Dhason
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Michael S Lopez
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - Shaojun Long
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Amarendar R Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto , MaRS South Tower, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto , MaRS South Tower, 101 College St, Toronto, ON M5G 1L7, Canada.,Toronto General Hospital Research Institute , 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| |
Collapse
|
30
|
Müller J, Aguado-Martínez A, Ortega-Mora LM, Moreno-Gonzalo J, Ferre I, Hulverson MA, Choi R, McCloskey MC, Barrett LK, Maly DJ, Ojo KK, Van Voorhis W, Hemphill A. Development of a murine vertical transmission model for Toxoplasma gondii oocyst infection and studies on the efficacy of bumped kinase inhibitor (BKI)-1294 and the naphthoquinone buparvaquone against congenital toxoplasmosis. J Antimicrob Chemother 2017; 72:2334-2341. [PMID: 28486633 PMCID: PMC5890665 DOI: 10.1093/jac/dkx134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Establishment of a mouse model for congenital toxoplasmosis based on oral infection with oocysts from Toxoplasma gondii ME49 and its application for investigating chemotherapeutic options against congenital toxoplasmosis. Methods CD1 mice were mated, orally infected with 5, 25, 100, 500 or 2000 oocysts and monitored for clinical signs and survival of dams and pups until 4 weeks post partum . The parasite burden in infected mice was quantified by real-time PCR in lungs, brains and, in the case of surviving pups, also in eyes. Seroconversion was assessed by ELISA. T. gondii cysts in brain were identified by immunofluorescence. In a second experiment, pregnant CD1 mice challenged with 20 oocysts/mouse were treated with buparvaquone or the calcium-dependent protein kinase 1 inhibitor bumped kinase inhibitor (BKI)-1294 and the outcome of infection was analysed. Results T. gondii DNA was detected in the brain of all infected animals, irrespective of the infection dose. Seroconversion occurred at 3 weeks post-infection. Most pups born to infected dams died within 1 week post partum , but a small fraction survived until the end of the experiment. T. gondii DNA was detected in the brain of all survivors and half of them exhibited ocular infection. Chemotherapy with both compounds led to dramatically increased numbers of surviving pups and reduced cerebral infection. Most efficient were treatments with BKI-1294, with 100% survivors and only 7% brain-positive pups. Conclusions BKI-1294 and buparvaquone exert excellent activities against transplacental transmission in pregnant mice.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Adriana Aguado-Martínez
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Moreno-Gonzalo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Matthew A. Hulverson
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ryan Choi
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Molly C. McCloskey
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lynn K. Barrett
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Kayode K. Ojo
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Wes Van Voorhis
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| |
Collapse
|
31
|
Alday PH, Doggett JS. Drugs in development for toxoplasmosis: advances, challenges, and current status. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:273-293. [PMID: 28182168 PMCID: PMC5279849 DOI: 10.2147/dddt.s60973] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.
Collapse
Affiliation(s)
- P Holland Alday
- Division of Infectious Diseases, Oregon Health & Science University
| | - Joseph Stone Doggett
- Division of Infectious Diseases, Oregon Health & Science University; Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
32
|
Van Voorhis WC, Doggett JS, Parsons M, Hulverson MA, Choi R, Arnold SLM, Riggs MW, Hemphill A, Howe DK, Mealey RH, Lau AOT, Merritt EA, Maly DJ, Fan E, Ojo KK. Extended-spectrum antiprotozoal bumped kinase inhibitors: A review. Exp Parasitol 2017; 180:71-83. [PMID: 28065755 DOI: 10.1016/j.exppara.2017.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
Many life-cycle processes in parasites are regulated by protein phosphorylation. Hence, disruption of essential protein kinase function has been explored for therapy of parasitic diseases. However, the difficulty of inhibiting parasite protein kinases to the exclusion of host orthologues poses a practical challenge. A possible path around this difficulty is the use of bumped kinase inhibitors for targeting calcium-dependent protein kinases that contain atypically small gatekeeper residues and are crucial for pathogenic apicomplexan parasites' survival and proliferation. In this article, we review efficacy against the kinase target, parasite growth in vitro, and in animal infection models, as well as the relevant pharmacokinetic and safety parameters of bumped kinase inhibitors.
Collapse
Affiliation(s)
- Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | | | - Marilyn Parsons
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Matthew A Hulverson
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Samuel L M Arnold
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Michael W Riggs
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Berne, Switzerland
| | - Daniel K Howe
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Audrey O T Lau
- The National Institutes of Health, NIAID, DEA, 5601 Fishers Lane, Rockville, MD 20892, USA
| | - Ethan A Merritt
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kayode K Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
33
|
Johnson S, Rahmani R, Drew DR, Williams MJ, Wilkinson M, Tan YH, Huang JX, Tonkin CJ, Beeson JG, Baum J, Smith BJ, Baell JB. Truncated Latrunculins as Actin Inhibitors Targeting Plasmodium falciparum Motility and Host Cell Invasion. J Med Chem 2016; 59:10994-11005. [PMID: 28002959 DOI: 10.1021/acs.jmedchem.6b01109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polymerization of the cytosolic protein actin is critical to cell movement and host cell invasion by the malaria parasite, Plasmodium falciparum. Any disruption to actin polymerization dynamics will render the parasite incapable of invading a host cell and thereby unable to cause infection. Here, we explore the potential of using truncated latrunculins as potential chemotherapeutics for the treatment of malaria. Exploration of the binding interactions of the natural actin inhibitor latrunculins with actin revealed how a truncated core of the inhibitor could retain its key interaction features with actin. This truncated core was synthesized and subjected to preliminary structure-activity relationship studies to generate a focused set of analogues. Biochemical analyses of these analogues demonstrate their 6-fold increased activity compared with that of latrunculin B against P. falciparum and a 16-fold improved selectivity ex vivo. These data establish the latrunculin core as a potential focus for future structure-based drug design of chemotherapeutics against malaria.
Collapse
Affiliation(s)
- Swapna Johnson
- La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Raphaël Rahmani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Damien R Drew
- Burnet Institute , 85 Commercial Rd, Melbourne Victoria 3004, Australia.,Central Clinical School and Department of Microbiology, Monash University , Melbourne, Victoria 3004, Australia
| | - Melanie J Williams
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,The Department of Medical Biology, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Mark Wilkinson
- Department of Life Sciences, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Yan Hong Tan
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Life Sciences, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Johnny X Huang
- Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,The Department of Medical Biology, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - James G Beeson
- Burnet Institute , 85 Commercial Rd, Melbourne Victoria 3004, Australia.,Central Clinical School and Department of Microbiology, Monash University , Melbourne, Victoria 3004, Australia
| | - Jake Baum
- Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Life Sciences, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
34
|
Review of Experimental Compounds Demonstrating Anti-Toxoplasma Activity. Antimicrob Agents Chemother 2016; 60:7017-7034. [PMID: 27600037 DOI: 10.1128/aac.01176-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan parasite capable of infecting humans and other animals. Current treatment options for T. gondii infection are limited and most have drawbacks, including high toxicity and low tolerability. Additionally, no FDA-approved treatments are available for pregnant women, a high-risk population due to transplacental infection. Therefore, the development of novel treatment options is needed. To aid this effort, this review highlights experimental compounds that, at a minimum, demonstrate inhibition of in vitro growth of T. gondii When available, host cell toxicity and in vivo data are also discussed. The purpose of this review is to facilitate additional development of anti-Toxoplasma compounds and potentially to extend our knowledge of the parasite.
Collapse
|
35
|
Hennessey KM, Smith TR, Xu JW, Alas GCM, Ojo KK, Merritt EA, Paredez AR. Identification and Validation of Small-Gatekeeper Kinases as Drug Targets in Giardia lamblia. PLoS Negl Trop Dis 2016; 10:e0005107. [PMID: 27806042 PMCID: PMC5091913 DOI: 10.1371/journal.pntd.0005107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Giardiasis is widely acknowledged to be a neglected disease in need of new therapeutics to address toxicity and resistance issues associated with the limited available treatment options. We examined seven protein kinases in the Giardia lamblia genome that are predicted to share an unusual structural feature in their active site. This feature, an expanded active site pocket resulting from an atypically small gatekeeper residue, confers sensitivity to "bumped" kinase inhibitors (BKIs), a class of compounds that has previously shown good pharmacological properties and minimal toxicity. An initial phenotypic screen for biological activity using a subset of an in-house BKI library found that 5 of the 36 compounds tested reduced trophozoite growth by at least 50% at a concentration of 5 μM. The cellular localization and the relative expression levels of the seven protein kinases of interest were determined after endogenously tagging the kinases. Essentiality of these kinases for parasite growth and infectivity were evaluated genetically using morpholino knockdown of protein expression to establish those that could be attractive targets for drug design. Two of the kinases were critical for trophozoite growth and attachment. Therefore, recombinant enzymes were expressed, purified and screened against a BKI library of >400 compounds in thermal stability assays in order to identify high affinity compounds. Compounds with substantial thermal stabilization effects on recombinant protein were shown to have good inhibition of cell growth in wild-type G. lamblia and metronidazole-resistant strains of G. lamblia. Our data suggest that BKIs are a promising starting point for the development of new anti-giardiasis therapeutics that do not overlap in mechanism with current drugs.
Collapse
Affiliation(s)
- Kelly M. Hennessey
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Tess R. Smith
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington, United States of America
| | - Jennifer W. Xu
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kayode K. Ojo
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington, United States of America
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ARP); (EAM)
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ARP); (EAM)
| |
Collapse
|
36
|
Human toxoplasmosis–Searching for novel chemotherapeutics. Biomed Pharmacother 2016; 82:677-84. [DOI: 10.1016/j.biopha.2016.05.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/22/2023] Open
|
37
|
Vidadala RSR, Rivas KL, Ojo KK, Hulverson MA, Zambriski JA, Bruzual I, Schultz TL, Huang W, Zhang Z, Scheele S, DeRocher AE, Choi R, Barrett LK, Siddaramaiah LK, Hol WGJ, Fan E, Merritt EA, Parsons M, Freiberg G, Marsh K, Kempf DJ, Carruthers VB, Isoherranen N, Doggett JS, Van Voorhis WC, Maly DJ. Development of an Orally Available and Central Nervous System (CNS) Penetrant Toxoplasma gondii Calcium-Dependent Protein Kinase 1 (TgCDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of Toxoplasmosis. J Med Chem 2016; 59:6531-46. [PMID: 27309760 DOI: 10.1021/acs.jmedchem.6b00760] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy.
Collapse
Affiliation(s)
- Rama Subba Rao Vidadala
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Kasey L Rivas
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Kayode K Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Matthew A Hulverson
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Jennifer A Zambriski
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University , Pullman, Washington 99164, United States
| | - Igor Bruzual
- Portland VA Medical Center , Portland, Oregon 97239, United States
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, Michigan 48109, United States
| | - Wenlin Huang
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Suzanne Scheele
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington 98109, United States
| | - Amy E DeRocher
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington 98109, United States
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | | | - Wim G J Hol
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Erkang Fan
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Ethan A Merritt
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington 98109, United States.,Department of Global Health, University of Washington , Seattle, Washington 98195, United States
| | - Gail Freiberg
- AbbVie , North Chicago, Illinois 60064, United States
| | - Kennan Marsh
- AbbVie , North Chicago, Illinois 60064, United States
| | - Dale J Kempf
- AbbVie , North Chicago, Illinois 60064, United States
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, Michigan 48109, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington , Seattle, Washington 98195, United States
| | - J Stone Doggett
- Portland VA Medical Center , Portland, Oregon 97239, United States
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States.,Department of Global Health, University of Washington , Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
38
|
Analysis of Noncanonical Calcium-Dependent Protein Kinases in Toxoplasma gondii by Targeted Gene Deletion Using CRISPR/Cas9. Infect Immun 2016; 84:1262-1273. [PMID: 26755159 DOI: 10.1128/iai.01173-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are expanded in apicomplexan parasites, especially in Toxoplasma gondii where 14 separate genes encoding these enzymes are found. Although previous studies have shown that several CDPKs play a role in controlling invasion, egress, and cell division in T. gondii, the roles of most of these genes are unexplored. Here we developed a more efficient method for gene disruption using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) that was modified to completely delete large, multiexonic genes from the genome and to allow serial replacement by recycling of the selectable marker using Cre-loxP. Using this system, we generated a total of 24 mutants in type 1 and 2 genetic backgrounds to ascertain the functions of noncanonical CDPKs. Remarkably, although we were able to confirm the essentiality of CDPK1 and CDPK7, the majority of CDPKs had no discernible phenotype for growth in vitro or infection in the mouse model. The exception to this was CDPK6, loss of which leads to reduced plaquing, fitness defect in a competition assay, and reduced tissue cyst formation in chronically infected mice. Our findings highlight the utility of CRISPR/Cas9 for rapid serial gene deletion and also suggest that additional models are needed to reveal the functions of many genes in T. gondii.
Collapse
|
39
|
Abstract
Calcium ion signaling regulates central aspects of the biology controlling stage and life cycle transitions of apicomplexan parasites. In the current issue of Infection and Immunity, Long and coworkers (S. Long, Q. Wang, and L. D. Sibley, Infect Immun 84:1262-1273, 2016, http://dx.doi.org/10.1128/IAI.01173-15) describe a powerful genetic system enabling reliable serial genetic dissection of a large gene family encoding novel calcium-dependent protein kinases (CDPKs) that provides new insights into the roles of CDPKs during Toxoplasma gondii infection.
Collapse
|
40
|
Crowther GJ, Hillesland HK, Keyloun KR, Reid MC, Lafuente-Monasterio MJ, Ghidelli-Disse S, Leonard SE, He P, Jones JC, Krahn MM, Mo JS, Dasari KS, Fox AMW, Boesche M, El Bakkouri M, Rivas KL, Leroy D, Hui R, Drewes G, Maly DJ, Van Voorhis WC, Ojo KK. Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds. PLoS One 2016; 11:e0149996. [PMID: 26934697 PMCID: PMC4774911 DOI: 10.1371/journal.pone.0149996] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds' mechanisms of action--i.e., the specific molecular targets by which they kill the parasite--would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children's Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 μM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible.
Collapse
Affiliation(s)
- Gregory J. Crowther
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Heidi K. Hillesland
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Katelyn R. Keyloun
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Molly C. Reid
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Sonja Ghidelli-Disse
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D, Heidelberg, Germany
| | - Stephen E. Leonard
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Panqing He
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jackson C. Jones
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Mallory M. Krahn
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jack S. Mo
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kartheek S. Dasari
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Anna M. W. Fox
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Markus Boesche
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D, Heidelberg, Germany
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Kasey L. Rivas
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Didier Leroy
- Drug Discovery, Medicines for Malaria Venture, Geneva, Switzerland
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D, Heidelberg, Germany
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Wesley C. Van Voorhis
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kayode K. Ojo
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
41
|
Sidik SM, Hortua Triana MA, Paul AS, El Bakkouri M, Hackett CG, Tran F, Westwood NJ, Hui R, Zuercher WJ, Duraisingh MT, Moreno SNJ, Lourido S. Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling. J Biol Chem 2016; 291:9566-80. [PMID: 26933036 PMCID: PMC4850295 DOI: 10.1074/jbc.m115.703546] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 11/27/2022] Open
Abstract
The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca2+. Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca2+ indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca2+ signaling in the model apicomplexan Toxoplasma gondii. In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca2+. We define the pool of Ca2+ regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca2+ signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca2+. The enhancers identified are capable of releasing intracellular Ca2+ stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii. The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum. Inhibition of Ca2+-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca2+ stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca2+, underscoring the importance of these pathways and the therapeutic potential of their inhibition.
Collapse
Affiliation(s)
- Saima M Sidik
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Miryam A Hortua Triana
- the Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Aditya S Paul
- the Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Majida El Bakkouri
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Caroline G Hackett
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Fanny Tran
- the School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom, and
| | - Nicholas J Westwood
- the School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom, and
| | - Raymond Hui
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - William J Zuercher
- the Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Manoj T Duraisingh
- the Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Silvia N J Moreno
- the Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Sebastian Lourido
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142,
| |
Collapse
|
42
|
Ma S, Zhou S, Lin W, Zhang R, Wu W, Zheng K. Study of novel pyrazolo[3,4-d]pyrimidine derivatives as selective TgCDPK1 inhibitors: molecular docking, structure-based 3D-QSAR and molecular dynamics simulation. RSC Adv 2016. [DOI: 10.1039/c6ra20277b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We explored the structural features that have an impact on TgCDPK1 activity and TgCDPK1/Src selectivity by multi-computational methods with different statistical models.
Collapse
Affiliation(s)
- Shaojie Ma
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Shengfu Zhou
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Weicong Lin
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Rong Zhang
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Wenjuan Wu
- Department of Physical Chemistry
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| | - Kangcheng Zheng
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- PR China
| |
Collapse
|
43
|
Huang W, Ojo KK, Zhang Z, Rivas K, Vidadala RSR, Scheele S, DeRocher AE, Choi R, Hulverson MA, Barrett LK, Bruzual I, Siddaramaiah LK, Kerchner KM, Kurnick MD, Freiberg GM, Kempf D, Hol WGJ, Merritt EA, Neckermann G, de Hostos EL, Isoherranen N, Maly DJ, Parsons M, Doggett JS, Van Voorhis WC, Fan E. SAR Studies of 5-Aminopyrazole-4-carboxamide Analogues as Potent and Selective Inhibitors of Toxoplasma gondii CDPK1. ACS Med Chem Lett 2015; 6:1184-1189. [PMID: 26693272 PMCID: PMC4677665 DOI: 10.1021/acsmedchemlett.5b00319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022] Open
Abstract
We previously discovered compounds based on a 5-aminopyrazole-4-carboxamide scaffold to be potent and selective inhibitors of CDPK1 from T. gondii. The current work, through structure-activity relationship studies, led to the discovery of compounds (34 and 35) with improved characteristics over the starting inhibitor 1 in terms of solubility, plasma exposure after oral administration in mice, or efficacy on parasite growth inhibition. Compounds 34 and 35 were further demonstrated to be more effective than 1 in a mouse infection model and markedly reduced the amount of T. gondii in the brain, spleen, and peritoneal fluid, and 35 given at 20 mg/kg eliminated T. gondii from the peritoneal fluid.
Collapse
Affiliation(s)
- Wenlin Huang
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kayode K. Ojo
- Department
of Medicine, Division of Allergy and Infectious Diseases, and the
Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington 98109, United States
| | - Zhongsheng Zhang
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kasey Rivas
- Department
of Medicine, Division of Allergy and Infectious Diseases, and the
Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington 98109, United States
| | | | - Suzanne Scheele
- Center for Infectious Disease Research (formerly Seattle Biomedical
Research Institute), Seattle, Washington 98109, United States
| | - Amy E. DeRocher
- Center for Infectious Disease Research (formerly Seattle Biomedical
Research Institute), Seattle, Washington 98109, United States
| | - Ryan Choi
- Department
of Medicine, Division of Allergy and Infectious Diseases, and the
Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington 98109, United States
| | - Matthew A. Hulverson
- Department
of Medicine, Division of Allergy and Infectious Diseases, and the
Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington 98109, United States
| | - Lynn K. Barrett
- Department
of Medicine, Division of Allergy and Infectious Diseases, and the
Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington 98109, United States
| | - Igor Bruzual
- Portland VA Medical Center, Portland, Oregon 97239, United States
| | | | - Keshia M. Kerchner
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | | | | | - Dale Kempf
- AbbVie, N. Chicago, Illinois 60064, United States
| | - Wim G. J. Hol
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ethan A. Merritt
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | | | | | - Nina Isoherranen
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J. Maly
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical
Research Institute), Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - J. Stone Doggett
- Portland VA Medical Center, Portland, Oregon 97239, United States
| | - Wesley C. Van Voorhis
- Department
of Medicine, Division of Allergy and Infectious Diseases, and the
Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Erkang Fan
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
44
|
Inhibition of Calcium-Dependent Protein Kinase 1 (CDPK1) In Vitro by Pyrazolopyrimidine Derivatives Does Not Correlate with Sensitivity of Cryptosporidium parvum Growth in Cell Culture. Antimicrob Agents Chemother 2015; 60:570-9. [PMID: 26552986 DOI: 10.1128/aac.01915-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidiosis is a serious diarrheal disease in immunocompromised patients and malnourished children, and treatment is complicated by a lack of adequate drugs. Recent studies suggest that the natural occurrence of a small gatekeeper residue in serine threonine calcium-dependent protein kinase 1 (CDPK1) of Cryptosporidium parvum might be exploited to target this enzyme and block parasite growth. Here were explored the potency with which a series of pyrazolopyrimidine analogs, which are selective for small gatekeeper kinases, inhibit C. parvum CDPK1 and block C. parvum growth in tissue culture in vitro. Although these compounds potently inhibited kinase activity in vitro, most had no effect on parasite growth. Moreover, among those that were active against parasite growth, there was a very poor correlation with their 50% inhibitory concentrations against the enzyme. Active compounds also had no effect on cell invasion, unlike the situation in Toxoplasma gondii, where these compounds block CDPK1, prevent microneme secretion, and disrupt cell invasion. These findings suggest that CPDK1 is not essential for C. parvum host cell invasion or growth and therefore that it is not the optimal target for therapeutic intervention. Nonetheless, several inhibitors with low micromolar 50% effective concentrations were identified, and these may affect other essential targets in C. parvum that are worthy of further exploration.
Collapse
|
45
|
In Vitro and In Vivo Effects of the Bumped Kinase Inhibitor 1294 in the Related Cyst-Forming Apicomplexans Toxoplasma gondii and Neospora caninum. Antimicrob Agents Chemother 2015; 59:6361-74. [PMID: 26248379 DOI: 10.1128/aac.01236-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022] Open
Abstract
We report on the in vitro effects of the bumped kinase inhibitor 1294 (BKI-1294) in cultures of virulent Neospora caninum isolates Nc-Liverpool (Nc-Liv) and Nc-Spain7 and in two strains of Toxoplasma gondii (RH and ME49), all grown in human foreskin fibroblasts. In these parasites, BKI-1294 acted with 50% inhibitory concentrations (IC50s) ranging from 20 nM (T. gondii RH) to 360 nM (N. caninum Nc-Liv), and exposure of intracellular stages to 1294 led to the nondisjunction of newly formed tachyzoites, resulting in the formation of multinucleated complexes similar to complexes previously observed in BKI-1294-treated N. caninum beta-galactosidase-expressing parasites. However, such complexes were not seen in a transgenic T. gondii strain that expressed CDPK1 harboring a mutation (G to M) in the gatekeeper residue. In T. gondii ME49 and N. caninum Nc-Liv, exposure of cultures to BKI-1294 resulted in the elevated expression of mRNA coding for the bradyzoite marker BAG1. Unlike in bradyzoites, SAG1 expression was not repressed. Immunofluorescence also showed that these multinucleated complexes expressed SAG1 and BAG1 and the monoclonal antibody CC2, which binds to a yet unidentified bradyzoite antigen, also exhibited increased labeling. In a pregnant mouse model, BKI-1294 efficiently inhibited vertical transmission in BALB/c mice experimentally infected with one of the two virulent isolates Nc-Liv or Nc-Spain7, demonstrating proof of concept that this compound protected offspring from vertical transmission and disease. The observed deregulated antigen expression effect may enhance the immune response during BKI-1294 therapy and will be the subject of future studies.
Collapse
|
46
|
Lopez MS, Kliegman JI, Shokat KM. The logic and design of analog-sensitive kinases and their small molecule inhibitors. Methods Enzymol 2015; 548:189-213. [PMID: 25399647 DOI: 10.1016/b978-0-12-397918-6.00008-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Analog-sensitive AS Kinase technology allows for rapid, reversible, and highly specific inhibition of individual engineered kinases in cells and in mouse models of human diseases. The technique consists of two parts: a kinase containing a space-creating mutation in the ATP-binding pocket and a bulky ATP-competitive small molecule inhibitor that complements the shape of the mutant ATP pocket. This strategy enables dissection of phospho-signaling pathways, elucidation of the physiological function of individual kinases, and characterization of the pharmacology of clinical-kinase inhibitors. Here, we present an overview of AS technology and describe a stepwise approach for generating AS Kinase mutants and identifying appropriate small molecule inhibitors. We also describe commonly encountered technical obstacles and provide strategies to overcome them.
Collapse
Affiliation(s)
- Michael S Lopez
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Joseph I Kliegman
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
47
|
Hui R, El Bakkouri M, Sibley LD. Designing selective inhibitors for calcium-dependent protein kinases in apicomplexans. Trends Pharmacol Sci 2015; 36:452-60. [PMID: 26002073 DOI: 10.1016/j.tips.2015.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022]
Abstract
Apicomplexan parasites cause some of the most severe human diseases, including malaria (caused by Plasmodium), toxoplasmosis, and cryptosporidiosis. Treatments are limited by the lack of effective drugs and development of resistance to available agents. By exploiting novel features of protein kinases in these parasites, it may be possible to develop new treatments. We summarize here recent advances in identifying small molecule inhibitors against a novel family of plant-like, calcium-dependent kinases that are uniquely expanded in apicomplexan parasites. Analysis of the 3D structure, activation mechanism, and sensitivity to small molecules had identified several attractive chemical scaffolds that are potent and selective inhibitors of these parasite kinases. Further optimization of these leads may yield promising new drugs for treatment of these parasitic infections.
Collapse
Affiliation(s)
- Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 101 College St, Toronto, ON, M5G 1L7, Canada; Toronto General Hospital Research Institute, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - L David Sibley
- Department of Molecular Microbiology, 660 S. Euclid Ave., Washington University School of Medicine, St Louis, MO 63130, USA.
| |
Collapse
|
48
|
Lourido S, Moreno SNJ. The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell Calcium 2014; 57:186-93. [PMID: 25605521 DOI: 10.1016/j.ceca.2014.12.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Apicomplexan parasites have complex life cycles, frequently split between different hosts and reliant on rapid responses as the parasites react to changing environmental conditions. Calcium ion (Ca(2+)) signaling is consequently essential for the cellular and developmental changes that support Apicomplexan parasitism. Apicomplexan genomes reveal a rich repertoire of genes involved in calcium signaling, although many of the genes responsible for observed physiological changes remain unknown. There is evidence, for example, for the presence of a nifedipine-sensitive calcium entry mechanism in Toxoplasma, but the molecular components involved in Ca(2+) entry in both Toxoplasma and Plasmodium, have not been identified. The major calcium stores are the endoplasmic reticulum (ER), the acidocalcisomes, and the plant-like vacuole in Toxoplasma, or the food vacuole in Plasmodium spp. Pharmacological evidence suggests that Ca(2+) release from intracellular stores may be mediated by inositol 1,4,5-trisphosphate (IP3) or cyclic ADP ribose (cADPR) although there is no molecular evidence for the presence of receptors for these second messengers in the parasites. Several Ca(2+)-ATPases are present in Apicomplexans and a putative mitochondrial Ca(2+)/H(+) exchanger has been identified. Apicomplexan genomes contain numerous genes encoding Ca(2+)-binding proteins, with the notable expansion of calcium-dependent protein kinases (CDPKs), whose study has revealed roles in gliding motility, microneme secretion, host cell invasion and egress, and parasite differentiation. Microneme secretion has also been shown to depend on the C2 domain containing protein DOC2 in both Plasmodium spp. and Toxoplasma, providing further evidence for the complex transduction of Ca(2+) signals in these organisms. The characterization of these pathways could lead to the discovery of novel drug targets and to a better understanding of the role of Ca(2+) in these parasites.
Collapse
Affiliation(s)
- Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
49
|
A single mutation in the gatekeeper residue in TgMAPKL-1 restores the inhibitory effect of a bumped kinase inhibitor on the cell cycle. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 5:1-8. [PMID: 25941623 PMCID: PMC4412912 DOI: 10.1016/j.ijpddr.2014.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is the causative pathogen for Toxoplasmosis. Bumped kinase inhibitor 1NM-PP1 inhibits the growth of T. gondii by targeting TgCDPK1. However, we recently reported that resistance to 1NM-PP1 can be acquired via a mutation in T. gondii mitogen-activated protein kinase like 1 (TgMAPKL-1). Further characterization of how this TgMAPKL-1 mutation restores the inhibitory effect of 1NM-PP1 would shed further light on the function of TgMAPKL-1 in the parasite life cycle. Therefore, we made parasite clones with TgMAPKL-1 mutated at the gatekeeper residue Ser 191, which is critical for 1NM-PP1 susceptibility. Host cell lysis of RH/ku80(-)/HA-TgMAPKL-1(S191A) was completely inhibited at 250 nM 1NM-PP1, whereas that of RH/ku80(-)/HA-TgMAPKL-1(S191Y) was not. By comparing 1NM-PP1-sensitive (RH/ku80(-)/HA-TgMAPKL-1(S191A)) and -resistant (RH/ku80(-)/HA-TgMAPKL-1(S191Y)) clones, we observed that inhibition of TgMAPKL-1 blocked cell cycle progression after DNA duplication. Morphological analysis revealed that TgMAPKL-1 inhibition caused enlarged parasite cells with many daughter cell scaffolds and imcomplete cytokinesis. We conclude that the mutation in TgMAPKL-1 restored the cell cycle-arresting effect of 1NM-PP1 on T. gondii endodyogeny. Given that endodyogeny is the primary mechanism of cell division for both the tachyzoite and bradyzoite stages of this parasite, TgMAPKL-1 may be a promising target for drug development. Exploration of the signals that regulate TgMAPKL-1 will provide further insights into the unique mode of T. gondii cell division.
Collapse
|
50
|
A sharp T-cell antigen receptor signaling threshold for T-cell proliferation. Proc Natl Acad Sci U S A 2014; 111:E3679-88. [PMID: 25136127 DOI: 10.1073/pnas.1413726111] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kinase zeta-chain-associated protein kinase 70 kDa (Zap70) that is catalytically inhibited by a small molecule inhibitor, thereby blocking TCR signaling specifically and efficiently. We have also characterized a fluorescent reporter Nur77-eGFP transgenic mouse line in which T cells up-regulate GFP uniquely in response to TCR stimulation. The combination of these technologies unmasked a sharp TCR signaling threshold for commitment to cell division both in vitro and in vivo. Further, we demonstrate that this threshold is independent of both the magnitude of the TCR stimulus and Interleukin 2. Similarly, we identify a temporal threshold of TCR signaling that is required for commitment to proliferation, after which T cells are able to proliferate in a Zap70 kinase-independent manner. Taken together, our studies reveal a sharp threshold for the magnitude and duration of TCR signaling required for commitment of T cells to proliferation. These results have important implications for understanding T-cell responses to infection and optimizing strategies for immunomodulatory drug delivery.
Collapse
|