1
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
2
|
Paulovičová E, Paulovičová L, Poláková M. Glycolipids mimicking biosurfactants of the synthetic origin as new immunomodulating and anticandidal derivatives. Carbohydr Res 2023; 534:108978. [PMID: 37944383 DOI: 10.1016/j.carres.2023.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The immunobiological effectivity of glycolipids mimicking biosurfactants of the synthetic origin was followed up using macrophages cell line RAW264.7. These derivatives with different number of mannose units connected glycosidically or through triazole linker, and all having octyl aglycone, were evaluated with respect to their structure - immunomodulation activity relationship. This comparative study showed that the structural variations of the selected derivatives influenced the immunobiological cell behaviour as concerned pro-inflammatory TNF-α, IL-6, IL-1α, IL-17, IL-12 and anti-inflammatory IL-10 cytokines production and enhancement of RAW264.7 cell proliferation. The derivatives with mannose units linked through triazole linkers exerted in some cases stronger immunomodulative potency than (di)mannosides. On the other hand, a presence of triazole linker is a less favourable for an effective candidacidal activity as determined by in vitro using Candida albicans biofilm. The design of new defined immunomodulating formulas of the synthetic origin as possible antifungal agents and prospective participants in drug delivery systems may be of interest.
Collapse
Affiliation(s)
- Ema Paulovičová
- Dept.Glycomaterials, Immunol. & Cell Culture Labs, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
| | - Lucia Paulovičová
- Dept.Glycomaterials, Immunol. & Cell Culture Labs, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia
| | - Monika Poláková
- Dept. of Glycochemistry, Lab. Sugars & Glycomimics, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
| |
Collapse
|
3
|
de Paz JL, García-Jiménez MJ, Jafari V, García-Domínguez M, Nieto PM. Synthesis and interaction with growth factors of sulfated oligosaccharides containing an anomeric fluorinated tail. Bioorg Chem 2023; 141:106929. [PMID: 37879181 DOI: 10.1016/j.bioorg.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Compounds that mimic the biological properties of glycosaminoglycans (GAGs) and can be more easily prepared than the native GAG oligosaccharides are highly demanded. Here, we present the synthesis of sulfated oligosaccharides displaying a perfluorinated aliphatic tag at the reducing end as GAG mimetics. The preparation of these molecules was greatly facilitated by the presence of the fluorinated tail since the reaction intermediates were isolated by simple fluorous solid-phase extraction. Fluorescence polarization competition assays indicated that the synthesized oligosaccharides interacted with two heparin-binding growth factors, midkine (MK) and FGF-2, showing higher binding affinities than the natural oligosaccharides, and can be therefore considered as useful GAG mimetics. Moreover, NMR experiments showed that the 3D structure of these compounds is similar to that of the native sequences, in terms of sugar ring and glycosidic linkage conformations. Finally, we also demonstrated that these derivatives are able to block the MK-stimulating effect on NIH3T3 cells growth.
Collapse
Affiliation(s)
- José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - María José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | - Vahid Jafari
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Américo Vespucio, 24, 41092 Sevilla, Spain
| | - Mario García-Domínguez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Américo Vespucio, 24, 41092 Sevilla, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
4
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Ionescu C, Oprea B, Ciobanu G, Georgescu M, Bică R, Mateescu GO, Huseynova F, Barragan-Montero V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina (B Aires) 2022; 58:medicina58070903. [PMID: 35888622 PMCID: PMC9316440 DOI: 10.3390/medicina58070903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the process of developing new blood vessels from pre-existing ones. This review summarizes the main features of physiological and pathological angiogenesis and those of angiogenesis activation and inhibition. In healthy adults, angiogenesis is absent apart from its involvement in female reproductive functions and tissue regeneration. Angiogenesis is a complex process regulated by the action of specific activators and inhibitors. In certain diseases, modulating the angiogenic balance can be a therapeutic route, either by inhibiting angiogenesis (for example in the case of tumor angiogenesis), or by trying to activate the process of new blood vessels formation, which is the goal in case of cardiac or peripheral ischemia.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Bogdan Oprea
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Georgeta Ciobanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
| | - Milena Georgescu
- Clinic for Plastic Surgery and Burns, County Emergency Hospital Craiova, 200642 Craiova, Romania;
| | - Ramona Bică
- General Hospital—“Victor Babes”, 281 Mihai Bravu St., Sector III, 030303 Bucharest, Romania;
| | - Garofiţa-Olivia Mateescu
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
| | - Fidan Huseynova
- LBN, University of Montpellier, 34193 Montpellier, France; (F.H.); (V.B.-M.)
- Institute of Molecular Biology and Biotechnologies, Azerbaïjan National Academy of Sciences (ANAS), AZ1073 Baku, Azerbaijan
- Department of Histology, Cytology and Embryology, Azerbaijan Medical University, AZ1078 Baku, Azerbaijan
| | | |
Collapse
|
6
|
Chhabra M, Doherty GG, See NW, Gandhi NS, Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. CHEM REC 2021; 21:3087-3101. [PMID: 34145723 PMCID: PMC8441866 DOI: 10.1002/tcr.202100125] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Indexed: 12/16/2022]
Abstract
Heparan sulfate (HS) is a complex, polyanionic polysaccharide ubiquitously expressed on cell surfaces and in the extracellular matrix. HS interacts with numerous proteins to mediate a vast array of biological and pathological processes. Inhibition of HS-protein interactions is thus an attractive approach for new therapeutic development for cancer and infectious diseases, including COVID-19; however, synthesis of well-defined native HS oligosaccharides remains challenging. This has aroused significant interest in the development of HS mimetics which are more synthetically tractable and have fewer side effects, such as undesired anticoagulant activity. This account provides a perspective on the design and synthesis of different classes of HS mimetics with useful properties, and the development of various assays and molecular modelling tools to progress our understanding of their interactions with HS-binding proteins.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Gareth G. Doherty
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Nicholas W. See
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Neha S. Gandhi
- School of Chemistry and PhysicsQueensland University of Technology4000BrisbaneQLDAustralia
| | - Vito Ferro
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| |
Collapse
|
7
|
Torres-Rico M, Maza S, de Paz JL, Nieto PM. Synthesis, structure and midkine binding of chondroitin sulfate oligosaccharide analogues. Org Biomol Chem 2021; 19:5312-5326. [PMID: 34048524 DOI: 10.1039/d1ob00882j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of chondroitin sulfate (CS) oligosaccharide mimetics, more easily synthesized than natural sequences, is a highly interesting task because these compounds pave the way for modulation of the biological processes in which CS is involved. Herein, we report the synthesis of CS type E analogues which present easily accessible glucose units instead of glucuronic acid (GlcA) moieties. NMR experiments and molecular dynamics simulations showed that the 3D structure of these compounds is similar to the structure of the natural CS-E oligosaccharides. In addition, fluorescence polarization (FP) and saturation transfer difference NMR (STD-NMR) experiments revealed that the synthesized CS-like derivatives were able to interact with midkine, a model heparin-binding growth factor, suggesting that the presence of the GlcA carboxylate groups is not essential for the binding. Overall, our results indicate that the synthesized glucose-containing oligosaccharides can be considered as functional and structural CS mimetics.
Collapse
Affiliation(s)
- Myriam Torres-Rico
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - Susana Maza
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
8
|
Inhibition of glucuronomannan hexamer on the proliferation of lung cancer through binding with immunoglobulin G. Carbohydr Polym 2020; 248:116785. [PMID: 32919573 DOI: 10.1016/j.carbpol.2020.116785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
The anti-lung cancer activity of oligosaccharides derived from glucuronomannan was investigated. The inhibition of A549 cell proliferation by glucuronomannan (Gn) and its oligomers (dimer (G2), tetramer (G4) and hexamer (G6)) were concentration dependent. In vivo activities on the A549-derived tumor xenografts showed the tumor inhibition of G2, G4 and G6 were 17 %, 40 % and 46 %, respectively. Organ coefficients in nude mice showed an increase in the kidney with G4, the brain with G6, and the spleen with G6. An advanced tandem mass tag labeled proteomics approach was performed. A significant differential expression was found in 59 out of the 4371 proteins, which involved the immune system. Surface plasmon resonance (SPR) studies revealed G6 was strongly bound to immunoglobulin G. This suggests that glucuronomannan hexamer inhibits the proliferation of lung cancer through its binding to immunoglobulin.
Collapse
|
9
|
Chhabra M, Ferro V. PI-88 and Related Heparan Sulfate Mimetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:473-491. [PMID: 32274723 DOI: 10.1007/978-3-030-34521-1_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heparan sulfate mimetic PI-88 (muparfostat) is a complex mixture of sulfated oligosaccharides that was identified in the late 1990s as a potent inhibitor of heparanase. In preclinical animal models it was shown to block angiogenesis, metastasis and tumor growth, and subsequently became the first heparanase inhibitor to enter clinical trials for cancer. It progressed to Phase III trials but ultimately was not approved for use. Herein we summarize the preparation, physicochemical and biological properties of PI-88, and discuss preclinical/clinical and structure-activity relationship studies. In addition, we discuss the PI-88-inspired development of related HS mimetic heparanase inhibitors with improved properties, ultimately leading to the discovery of PG545 (pixatimod) which is currently in clinical trials.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
10
|
Giannini G, Battistuzzi G, Rivara S. The Control of Heparanase Through the Use of Small Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:567-603. [PMID: 32274727 DOI: 10.1007/978-3-030-34521-1_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the enormous progress made in recent years with antibodies, vaccines, antisense oligonucleotides, etc., the so-called "biological" approaches for tackling the control of various diseases, medicinal chemistry remains a bulwark to refer to for the development of new drugs. Also in the case of heparanase, medicinal chemistry has always been in the forefront to identify new inhibitors, through modification of natural macromolecules, e.g., sulfated polysaccharides like heparin, or of natural compounds isolated from bacteria or plants, or through rational design. In this chapter, the reader will find a detailed description of the most relevant small-molecule heparanase inhibitors reported so far in the scientific literature and in patent applications, with mention to the design strategy and to structure-activity relationships. Starting from heparanase inhibitors of natural origin and the attempts to improve their potency and selectivity, the reader will be guided through the major chemical classes of synthetic inhibitors, with representation of the structure of the most relevant compounds. The last paragraph is dedicated to a brief description of inhibitors that have reached clinical trials, highlighting their structure, mechanism, and improved derivatives.
Collapse
Affiliation(s)
| | | | - Silvia Rivara
- Department of Food and Drug, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
11
|
Bendersky V, Yang Y, Brennan TV. Immunomodulatory Activities of the Heparan Sulfate Mimetic PG545. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:461-470. [PMID: 32274722 DOI: 10.1007/978-3-030-34521-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparanase regulates multiple biological activities that enhance tumor growth and metastatic spread. Heparanase cleaves and degrades heparan sulfate (HS), a key structural component of the extracellular matrix that serves as a barrier to cell invasion and also as a reservoir for cytokines and growth factors critical for tumor growth and metastasis. For this reason, heparanase is an attractive target for the development of novel anti-cancer therapies. Pixatimod (PG545), a heparanase inhibitor, has shown promising results in the treatment of multiple tumor types. PG545 offers a diversity of mechanisms of action in tumor therapy that include angiogenic inhibition, inhibition of growth factor release, inhibition of tumor cell migration, tumor cell apoptosis, activation of ER stress response, dysregulation of autophagy, and NK cell activation. Further investigation into the role that heparanase and its inhibitors play in tumor therapy can lead to the development of effective tumor therapies.
Collapse
Affiliation(s)
- Victoria Bendersky
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Yiping Yang
- Department of Medicine and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019; 8:E544. [PMID: 31195728 PMCID: PMC6627046 DOI: 10.3390/cells8060544] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
13
|
Synthesis of a Fluorous-Tagged Hexasaccharide and Interaction with Growth Factors Using Sugar-Coated Microplates. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24081591. [PMID: 31013665 PMCID: PMC6515340 DOI: 10.3390/molecules24081591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
Here, we report the synthesis of a sulfated, fully protected hexasaccharide as a glycosaminoglycan mimetic and the study of its interactions with different growth factors: midkine, basic fibroblast growth factor (FGF-2) and nerve growth factor (NGF). Following a fluorous-assisted approach, monosaccharide building blocks were successfully assembled and the target oligosaccharide was prepared in excellent yield. The use of more acid stable 4,6-O-silylidene protected glucosamine units was crucial for the efficiency of this strategy because harsh reaction conditions were needed in the glycosylations to avoid the formation of orthoester side products. Fluorescence polarization experiments demonstrated the strong interactions between the synthesized hexamer, and midkine and FGF-2. In addition, we have developed an alternative assay to analyse these molecular recognition events. The prepared oligosaccharide was non-covalently attached to a fluorous-functionalized microplate and the direct binding of the protein to the sugar-immobilized surface was measured, affording the corresponding KD,surf value.
Collapse
|
14
|
Darmawan N, Sambri L, Daniliuc CG, De Cola L. Blue-emitting bolaamphiphilic zwitterionic iridium(iii) complex. Dalton Trans 2019; 48:3664-3670. [PMID: 30768096 DOI: 10.1039/c8dt04833a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation induced emission is a very interesting phenomenon that recently has attracted a lot of interest. Most of the examples deal with organic molecules or flat metal complexes. Here we demonstrate that, by design, even iridium compounds can display this process without shifting the emission energy. In order to enhance the aggregation properties we have focussed on amphiphilic complexes. We report the synthesis and photophysical characterisation of a blue-emitting bolaamphiphilic zwitterionic Ir(iii) complex and an analogous cationic amphiphilic compound, used as a reference. The bolaamphiphile exhibited blue (λmax = 450 nm) emission in dilute, deaerated solution with a photoluminescence quantum yield (PLQY) of 22%, similar to the related cationic amphiphilic complex. The bolaamphiphile displayed significant emission enhancement in the solid state, with an emission quantum yield that reach 52%. Interestingly, the emission of the cationic analogue suffers from aggregation quenching in the solid state, (PLQY = 3%) as is common for these type of complexes. A correlation between the photophysical data and the arrangement in the solid state is discussed.
Collapse
Affiliation(s)
- Noviyan Darmawan
- Institut de Science et Ingénierie Supramoléculaires (ISIS - UMR 7006), Université de Strasbourg & CNRS., 8 Rue Gaspard Monge, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
15
|
Yeh CJ, Ku CC, Lin WC, Fan CY, Zulueta MML, Manabe Y, Fukase K, Li YK, Hung SC. Single-Step Per-O-Sulfonation of Sugar Oligomers with Concomitant 1,6-Anhydro Bridge Formation for Binding Fibroblast Growth Factors. Chembiochem 2019; 20:237-240. [PMID: 30239102 DOI: 10.1002/cbic.201800464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/12/2022]
Abstract
Many circulating cancer-related proteins, such as fibroblast growth factors (FGFs), associate with glycosaminoglycans-particularly heparan sulfate-at the cell surface. Disaccharide analogues of heparan sulfate had previously been identified as the shortest components out of the sugars that bind to FGF-1 and FGF-2. Taking note of the typical pose of l-iduronic acid, we conceived of per-O-sulfonated analogues of such disaccharides, and devised a single-step procedure for per-O-sulfonation of unprotected sugars with concomitant 1,6-anhydro bridge formation to achieve such compounds through direct use of SO3 ⋅Et3 N as sulfonation reagent and dimethylformamide as solvent. The synthesized sugars based on the oligomaltose backbone bound FGF-1 and FGF-2 mostly at the sub-micromolar level, although the tetrasaccharide analogue achieved low-nanomolar binding with FGF-2.
Collapse
Affiliation(s)
- Che-Jui Yeh
- Genomics Research Center, Academia Sinica No. 128, Section 2, Academia Road, Taipei, 115, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 300, Taiwan
| | - Chiao-Chu Ku
- Genomics Research Center, Academia Sinica No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Wei-Chen Lin
- Genomics Research Center, Academia Sinica No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Chiao-Yuan Fan
- Genomics Research Center, Academia Sinica No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Medel Manuel L Zulueta
- Genomics Research Center, Academia Sinica No. 128, Section 2, Academia Road, Taipei, 115, Taiwan.,Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 300, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| |
Collapse
|
16
|
|
17
|
Heparan Sulfate Proteoglycans in Human Colorectal Cancer. Anal Cell Pathol (Amst) 2018; 2018:8389595. [PMID: 30027065 PMCID: PMC6031075 DOI: 10.1155/2018/8389595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, accounting for more than 610,000 mortalities every year. Prognosis of patients is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to investigate molecules involved in colorectal cancer tumorigenesis, with possible use as tumor markers. Heparan sulfate proteoglycans are complex molecules present in the cell membrane and extracellular matrix, which play vital roles in cell adhesion, migration, proliferation, and signaling pathways. In colorectal cancer, the cell surface proteoglycan syndecan-2 is upregulated and increases cell migration. Moreover, expression of syndecan-1 and syndecan-4, generally antitumor molecules, is reduced. Levels of glypicans and perlecan are also altered in colorectal cancer; however, their role in tumor progression is not fully understood. In addition, studies have reported increased heparan sulfate remodeling enzymes, as the endosulfatases. Therefore, heparan sulfate proteoglycans are candidate molecules to clarify colorectal cancer tumorigenesis, as well as important targets to therapy and diagnosis.
Collapse
|
18
|
Cheng WK, Oon CE. How glycosylation aids tumor angiogenesis: An updated review. Biomed Pharmacother 2018; 103:1246-1252. [PMID: 29864905 DOI: 10.1016/j.biopha.2018.04.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is an enzymatic process in which a carbohydrate is attached to a functional group from another molecule. Glycosylation is a crucial post translational process in protein modification. The tumor microenvironment produces altered glycans that contribute to cancer progression and aggressiveness. Abnormal glycosylation is widely observed in tumor angiogenesis. Despite many attempts to decipher the role of glycosylation in different aspects of cancer, little is known regarding the roles of glycans in angiogenesis. The blood vessels in tumors are often used to transport oxygen and nutrients for tumor progression and metastasis. The crosstalk within the tumor microenvironment can induce angiogenesis by manipulating these glycans to hijack the normal angiogenesis process, thus promoting tumor growth. Abnormal glycosylation has been shown to promote tumor angiogenesis by degrading the extracellular matrix to activate the angiogenic signaling pathways. This review highlights the latest update on how glycosylation can contribute to tumor angiogenesis that may affect treatment outcomes.
Collapse
Affiliation(s)
- Wei Kang Cheng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia.
| |
Collapse
|
19
|
Abstract
Proteoglycans are diverse, complex extracellular/cell surface macromolecules composed of a central core protein with covalently linked glycosaminoglycan (GAG) chains; both of these components contribute to the growing list of important bio-active functions attributed to proteoglycans. Increasingly, attention has been paid to the roles of proteoglycans in nervous tissue development due to their highly regulated spatio/temporal expression patterns, whereby they promote/inhibit neurite outgrowth, participate in specification and maturation of various precursor cell types, and regulate cell behaviors like migration, axonal pathfinding, synaptogenesis and plasticity. These functions emanate from both the environments proteoglycans create around cells by retaining ions and water or serving as scaffolds for cell shaping or motility, and from dynamic interactions that modulate signaling fields for cytokines, growth factors and morphogens, which may bind to either the protein or GAG portions. Also, genetic abnormalities impacting proteoglycan synthesis during critical steps of brain development and response to environmental insults and injuries, as well as changes in microenvironment interactions leading to tumors in the central nervous system, all suggest roles for proteoglycans in behavioral and intellectual disorders and malignancies.
Collapse
Affiliation(s)
- Nancy B Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, IL, USA
| | - Miriam S Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| |
Collapse
|
20
|
Maza S, Gandia-Aguado N, de Paz JL, Nieto PM. Fluorous-tag assisted synthesis of a glycosaminoglycan mimetic tetrasaccharide as a high-affinity FGF-2 and midkine ligand. Bioorg Med Chem 2018; 26:1076-1085. [DOI: 10.1016/j.bmc.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 02/01/2023]
|
21
|
Ghannam A, Murad H, Jazzara M, Odeh A, Allaf AW. Isolation, Structural characterization, and antiproliferative activity of phycocolloids from the red seaweed Laurencia papillosa on MCF-7 human breast cancer cells. Int J Biol Macromol 2018; 108:916-926. [DOI: 10.1016/j.ijbiomac.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Govindarajan M. Amphiphilic glycoconjugates as potential anti-cancer chemotherapeutics. Eur J Med Chem 2017; 143:1208-1253. [PMID: 29126728 DOI: 10.1016/j.ejmech.2017.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Amphiphilicity is one of the desirable features in the process of drug development which improves the biological as well as the pharmacokinetics profile of bioactive molecule. Carbohydrate moieties present in anti-cancer natural products and synthetic molecules influence the amphiphilicity and hence their bioactivity. This review focuses on natural and synthetic amphiphilic anti-cancer glycoconjugates. Different classes of molecules with varying degree of amphiphilicity are covered with discussions on their structure-activity relationship and mechanism of action.
Collapse
Affiliation(s)
- Mugunthan Govindarajan
- Emory Institute for Drug Development, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States.
| |
Collapse
|
23
|
Heparin Mimetics: Their Therapeutic Potential. Pharmaceuticals (Basel) 2017; 10:ph10040078. [PMID: 28974047 PMCID: PMC5748635 DOI: 10.3390/ph10040078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Heparin mimetics are synthetic and semi-synthetic compounds that are highly sulfated, structurally distinct analogues of glycosaminoglycans. These mimetics are often rationally designed to increase potency and binding selectivity towards specific proteins involved in disease manifestations. Some of the major therapeutic arenas towards which heparin mimetics are targeted include: coagulation and thrombosis, cancers, and inflammatory diseases. Although Fondaparinux, a rationally designed heparin mimetic, is now approved for prophylaxis and treatment of venous thromboembolism, the search for novel anticoagulant heparin mimetics with increased affinity and fewer side effects remains a subject of research. However, increasingly, research is focusing on the non-anticoagulant activities of these molecules. Heparin mimetics have potential as anti-cancer agents due to their ability to: (1) inhibit heparanase, an endoglycosidase which facilitates the spread of tumor cells; and (2) inhibit angiogenesis by binding to growth factors. The heparin mimetic, PI-88 is in clinical trials for post-surgical hepatocellular carcinoma and advanced melanoma. The anti-inflammatory properties of heparin mimetics have primarily been attributed to their ability to interact with: complement system proteins, selectins and chemokines; each of which function differently to facilitate inflammation. The efficacy of low/non-anticoagulant heparin mimetics in animal models of different inflammatory diseases has been demonstrated. These findings, plus clinical data that indicates heparin has anti-inflammatory activity, will raise the momentum for developing heparin mimetics as a new class of therapeutic agent for inflammatory diseases.
Collapse
|
24
|
Xing L, Niu Q, Li C. Practical Glucosylations and Mannosylations Using Anomeric Benzoyloxy as a Leaving Group Activated by Sulfonium Ion. ACS OMEGA 2017; 2:3698-3709. [PMID: 30023701 PMCID: PMC6044952 DOI: 10.1021/acsomega.7b00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/06/2017] [Indexed: 06/08/2023]
Abstract
One obstacle for practical glycosylations is the high cost of promoters and low-temperature equipment. This problem has been at least partially solved by using MeSCH2Cl/KI as a low-cost promoter system. MeSCH2Cl has an estimated cost of <$1/mol compared with $1741/mol for AgOTf and $633/mol for TMSOTf. This new promoter system is capable of activating various leaving groups including anomeric Cl, F, trichloroacetimidate, and acyloxy groups. Stable and easy-to-prepare anomeric benzoloxy carbohydrate donors were investigated in the glycosylations of carbohydrates, aliphatic alcohols, amino acids, steroids, and nucleoside acceptors. Most of these glycosylations were operationally simple with fast reaction rates and moderate yields of 35-79%. In addition, direct glycosylations of nucleosides using less than 2 equiv of anomeric benzoloxy donors and high stereoselective mannosylation have been achieved. From an economic point of view, this glycosylation method should be highly applicable to industrial processes.
Collapse
Affiliation(s)
- Linlin Xing
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| | - Qun Niu
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| | - Chunbao Li
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| |
Collapse
|
25
|
|
26
|
Zhou J, Lv S, Zhang D, Xia F, Hu W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J Org Chem 2017; 82:2599-2621. [DOI: 10.1021/acs.joc.6b03017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Siying Lv
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Zhang
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
27
|
The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Lett 2016; 382:245-254. [PMID: 27666777 DOI: 10.1016/j.canlet.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
Abstract
Heparanase, the only known mammalian endoglycosidase degrading heparan sulfate (HS) chains of HS proteoglycans (HSPG), is a highly versatile protein affecting multiple events in tumor cells and their microenvironment. In several malignancies, deregulation of the heparanase/HSPG system has been implicated in tumor progression, hence representing a valuable therapeutic target. Currently, multiple agents interfering with the heparanase/HSPG axis are under clinical investigation. Sarcomas are characterized by a high biomolecular complexity and multiple levels of interconnection with microenvironment sustaining their growth and progression. The clinical management of advanced diseases remains a challenge. In several sarcoma subtypes, high levels of heparanase expression have been correlated with poor prognosis associated factors. On the other hand, expression of cell surface-associated HSPGs (i.e. glypicans and syndecans) has been found altered in specific sarcoma subtypes. Recent studies provided the preclinical proof-of-principle of the role of the heparanase/HSPG axis as therapeutic target in various sarcoma subtypes. Although currently there are no clinical trials evaluating agents targeting heparanase and/or HSPGs in sarcomas, we here provide arguments for this strategy as potentially able to implement the therapeutic options for sarcoma patients.
Collapse
|
28
|
Discovery and Optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways. Sci Rep 2016; 6:33434. [PMID: 27633259 PMCID: PMC5025770 DOI: 10.1038/srep33434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
Inhibition of angiogenesis is considered as one of the desirable pathways for the treatment of tumor growth and metastasis. Herein we demonstrated that a series of pyridinyl-thiazolyl carboxamide derivatives were designed, synthesized and examined against angiogenesis through a colony formation and migration assays of human umbilical vein endothelial cells (HUVECs) in vitro. A structure-activity relationship (SAR) study was carried out and optimization toward this series of compounds resulted in the discovery of N-(3-methoxyphenyl)-4-methyl-2-(2-propyl-4-pyridinyl)thiazole-5-carboxamide (3k). The results indicated that compound 3k showed similar or better effects compared to Vandetanib in suppressing HUVECs colony formation and migration as well as VEGF-induced angiogenesis in the aortic ring spreading model and chick embryo chorioallantoic membrane (CAM) model. More importantly, compound 3k also strongly blocked tumor growth with the dosage of 30 mg/kg/day, and subsequent mechanism exploration suggested that this series of compounds took effect mainly through angiogenesis signaling pathways. Together, these results suggested compound 3k may serve as a lead for a novel class of angiogenesis inhibitors for cancer treatments.
Collapse
|
29
|
Jia L, Ma S. Recent advances in the discovery of heparanase inhibitors as anti-cancer agents. Eur J Med Chem 2016; 121:209-220. [PMID: 27240275 DOI: 10.1016/j.ejmech.2016.05.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 01/04/2023]
Abstract
Heparanase, an only endo-β-d-glucuronidase capable of cleaving heparan sulfate (HS) side chains at specific sites, contributes to remodeling of the extracellular matrix (ECM) and releasing of HS-linked growth factors, cytokines and signaling proteins. In addition, heparanase also plays an indispensable role in tumor angiogenesis, invasion and metastasis, indicating that it is a promising target for the development of antitumor drugs. Recent progress leads to three classes of heparanase inhibitors, including active analogs of endogenous substance, synthetic small molecule compounds and natural products. In this review, following an outline on the heparanase structure and function, an overview of the advancement of heparanase inhibitors as novel and potent anti-cancer agents will be given, especially introducing various existing heparanase inhibitors, as well as their inhibitory activities and mechanisms of action.
Collapse
Affiliation(s)
- Li Jia
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, PR China
| | - Shutao Ma
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, PR China.
| |
Collapse
|
30
|
Pasqualon T, Lue H, Groening S, Pruessmeyer J, Jahr H, Denecke B, Bernhagen J, Ludwig A. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:717-26. [DOI: 10.1016/j.bbamcr.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
31
|
Brennan TV, Lin L, Brandstadter JD, Rendell VR, Dredge K, Huang X, Yang Y. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. J Clin Invest 2015; 126:207-19. [PMID: 26649979 DOI: 10.1172/jci76566] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/03/2015] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies.
Collapse
|
32
|
Buonfiglio R, Engkvist O, Várkonyi P, Henz A, Vikeved E, Backlund A, Kogej T. Investigating Pharmacological Similarity by Charting Chemical Space. J Chem Inf Model 2015; 55:2375-90. [DOI: 10.1021/acs.jcim.5b00375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rosa Buonfiglio
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | - Ola Engkvist
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | - Péter Várkonyi
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| | - Astrid Henz
- Division
of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden
| | - Elisabet Vikeved
- Division
of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden
| | - Anders Backlund
- Division
of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden
| | - Thierry Kogej
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden
| |
Collapse
|
33
|
Tony Mong KK, Shiau KS, Lin YH, Cheng KC, Lin CH. A concise synthesis of single components of partially sulfated oligomannans. Org Biomol Chem 2015; 13:11550-60. [PMID: 26463681 DOI: 10.1039/c5ob01786f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A concise synthesis of single components of C2 sulfated oligomannans including trimers, tetramers, and pentamers is reported. The synthesis features the application of the DMF-modulation method for the participatory thiomannoside donors in 1,2-transα-glycosidic bond formation. The obtained oligomannans were fully characterized using (1)H, (13)C, COSY, and HSQC NMR spectroscopy.
Collapse
Affiliation(s)
- Kwok-Kong Tony Mong
- Applied Chemistry Department, National Chiao Tung University of Taiwan, 1001, University Road, Hsinchu, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
34
|
Liao BY, Wang Z, Hu J, Liu WF, Shen ZZ, Zhang X, Yu L, Fan J, Zhou J. PI-88 inhibits postoperative recurrence of hepatocellular carcinoma via disrupting the surge of heparanase after liver resection. Tumour Biol 2015; 37:2987-98. [PMID: 26415733 DOI: 10.1007/s13277-015-4085-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/13/2015] [Indexed: 01/27/2023] Open
Abstract
Phosphomannopentaose sulfate (PI-88), an effective inhibitor of heparanase (HPSE), exhibited anti-recurrence and anti-metastasis activity in preliminary clinical trials of hepatocellular carcinoma (HCC); however, the underlying mechanisms remain uncertain. Our aim was to reveal the mechanism by which PI-88 inhibits recurrence and intrahepatic metastasis. A tissue microarray containing samples from 352 HCC patients was used to determine HPSE expression. We performed enzyme-linked immunosorbent assay (ELISA) to detect plasma levels of HPSE in 40 HCC patients. We also used quantitative polymerase chain reaction, western blot analysis, and immunohistochemical staining to assess HPSE expression of HCC cell lines and tissues. The in vitro effects of PI-88 were examined by cell proliferation and migration assays. In vivo PI-88 activity was assessed using murine orthotopic HCC models. Intratumoral HPSE was an independent prognostic marker for postsurgical overall survival (P = 0.001) and time to recurrence (P < 0.001) of HCC patients with hepatectomy. Elevated levels of HPSE were detected both in postsurgical plasma of HCC patients and an orthotopic mouse model after hepatectomy. PI-88 inhibited tumor recurrence and metastasis after liver resection in the mouse model. In vitro expression of HPSE was up-regulated by overexpression of early growth response 1 (EGR1), which is induced after hepatectomy. Up-regulation of HPSE enhanced the sensitivity of HCC cells to PI-88 and the inhibitive effect of PI-88 on cell proliferation and migration. Our data show that PI-88 effectively inhibits postoperative recurrence and intrahepatic metastasis of HCC, providing an experimental basis for the clinical application of PI-88 in HCC patients who have undergone hepatectomy.
Collapse
Affiliation(s)
- Bo-Yi Liao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Zheng Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Jie Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Wei-Feng Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Zao-Zhuo Shen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Xin Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Lei Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Jia Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China. .,Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.
| | - Jian Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China. .,Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
35
|
Abstract
Studies aimed at the identification of biomarkers and treatment targets of cancer have focused on mRNAs, miRNAs, and proteins expressed by malignant cells, while glycoproteins mainly produced by stromal cells remain relatively unexplored. Glycans lack a given template for their biosynthesis that involves the concerted action of several, sometimes >15 different enzymes. This fact complicates the analysis at the genomic level of the role of glycoproteins in clinical oncology. The glycosaminoglycans (GAGs) stand out as highly polyanionic components at the surface of malignant and stromal tumor cells as well as their surrounding matrix. Published data thus describe a multifaceted regulatory role of GAGs and GAG-conjugated proteins, proteoglycans, in e.g. tumor associated angiogenesis, coagulation, invasion, and metastasis. Relatively small, randomized clinical trials suggest that heparin, an over-sulfated variant of the GAG heparan sulfate, may have direct, anti-tumor effects. Several ongoing trials aim at establishing whether heparin and its derivatives should be added to standard treatment of cancer patients or not, based on progression free- and overall survival end-point data. Given the potential bleeding complications with this treatment, other strategies to block GAG function should provide interesting alternatives. In the emerging era of personalized medicine, one can foresee the development of predictive biomarkers to select patients that may benefit from GAG-targeted treatments, aiming at individualized prevention of thromboembolic complications as well as inhibition of tumor development and progression. Here, the role of GAGs as targets and vehicles of cancer treatment is discussed with special emphasis on angiogenesis and coagulation associated mechanisms.
Collapse
Affiliation(s)
- Mattias Belting
- Lund University Cancer Center (LUCC), Skåne University Hospital, Lund; Department of Clinical Sciences, Section of Oncology-Pathology, Barngatan 2B, SE-221 85 Lund, Sweden.
| |
Collapse
|
36
|
Lemjabbar-Alaoui H, McKinney A, Yang YW, Tran VM, Phillips JJ. Glycosylation alterations in lung and brain cancer. Adv Cancer Res 2015; 126:305-44. [PMID: 25727152 DOI: 10.1016/bs.acr.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Vy M Tran
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA.
| |
Collapse
|
37
|
Murad H, Ghannam A, Al-Ktaifani M, Abbas A, Hawat M. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes. Mol Med Rep 2014; 11:2153-8. [PMID: 25384757 DOI: 10.3892/mmr.2014.2915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/05/2014] [Indexed: 11/06/2022] Open
Abstract
Marine algae are prolific sources of sulfated polysaccharides, which may explain the low incidence of certain cancers in countries that traditionally consume marine food. Breast cancer is one of the most common types of non‑skin cancer in females. In this study, extracted sulfated carrageenan (ESC), predominantly consisting of ι‑carrageenan extracted from the red alga Laurencia papillosa, was characterized using Fourier transform infrared spectrometry. The biological effects of the identified extract were investigated and its potential cytotoxic activity was tested against the MDA‑MB‑231 cancer cell line. The biological biometer of the inhibitory concentration of the polysaccharide‑treated MDA‑MB‑231 cells was determined as 50 µM. Treatment with 50 µM ESC inhibited cell proliferation and promptly induced cell death through nuclear condensation and DNA fragmentation. Characterization of polysaccharide‑treated MDA‑MB‑231 cell death revealed that induction of apoptosis occurred via the activation of the extrinsic apoptotic caspase‑8 gene. The apoptotic signaling pathway was regulated through caspase‑3, caspase‑9, p53, Bax and Bcl‑2 genes. These findings suggest that ESC may serve as a potential therapeutic agent to target breast cancer via prompting apoptosis.
Collapse
Affiliation(s)
- Hossam Murad
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Ahmed Ghannam
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Mahmoud Al-Ktaifani
- Department of Chemistry, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Assef Abbas
- Faculty of Biological Sciences, Tishreen University, P.O. Box 2237, Lattakia, Syria
| | - Mohammad Hawat
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| |
Collapse
|
38
|
Macchione G, Maza S, Mar Kayser M, de Paz JL, Nieto PM. Synthesis of Chondroitin Sulfate Oligosaccharides UsingN-(Tetrachlorophthaloyl)- andN-(Trifluoroacetyl)galactosamine Building Blocks. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Pisano C, Vlodavsky I, Ilan N, Zunino F. The potential of heparanase as a therapeutic target in cancer. Biochem Pharmacol 2014; 89:12-9. [PMID: 24565907 DOI: 10.1016/j.bcp.2014.02.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022]
Abstract
Heparanase has generated substantial interest as therapeutic target for antitumor therapy, because its activity is implicated in malignant behavior of cancer cells and in tumor progression. Increased heparanase expression was found in numerous tumor types and correlates with poor prognosis. Heparanase, an endoglucuronidase responsible for heparan sulfate cleavage, regulates the structure and function of heparan sulfate proteoglycans, leading to disassembly of the extracellular matrix. The action of heparanase is involved in multiple regulatory events related, among other effects, to augmented bioavailability of growth factors and cytokines. Inhibitors of heparanase suppress tumor growth, angiogenesis and metastasis by modulating growth factor-mediated signaling, ECM barrier function and cell interactions in the tumor microenvironment. Therefore, targeting heparanase has potential implications for anti-tumor, anti-angiogenic and anti-inflammatory therapies. Current approaches for heparanase inhibition include development of chemically modified heparins, small molecule inhibitors and neutralizing antibodies. The available evidence supports the emerging utility of heparanase inhibition as a promising antitumor strategy, specifically in rational combination with other agents. The recent studies with compounds designed to block heparanase (e.g., modified heparins) provide a rational basis for their therapeutic application and optimization.
Collapse
Affiliation(s)
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Haifa, Israel
| | - Franco Zunino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
40
|
Tetrasaccharide iteration synthesis of a heparin-like dodecasaccharide and radiolabelling for in vivo tissue distribution studies. Nat Commun 2013; 4:2016. [PMID: 23828390 PMCID: PMC3715853 DOI: 10.1038/ncomms3016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 05/16/2013] [Indexed: 01/10/2023] Open
Abstract
Heparin-like oligosaccharides mediate numerous important biological interactions, of which many are implicated in various diseases. Synthetic improvements are central to the development of such oligosaccharides as therapeutics and, in addition, there are no methods to elucidate the pharmacokinetics of structurally defined heparin-like oligosaccharides. Here we report an efficient two-cycle [4+4+4] tetrasaccharide-iteration-based approach for rapid chemical synthesis of a structurally defined heparin-related dodecasaccharide, combined with the incorporation of a latent aldehyde tag, unmasked in the final step of chemical synthesis, providing a generic end group for labelling/conjugation. We exploit this latent aldehyde tag for 3H radiolabelling to provide the first example of this kind of agent for monitoring in vivo tissue distribution and in vivo stability of a biologically active, structurally defined heparin related dodecasaccharide. Such studies are critical for the development of related saccharide therapeutics, and the data here establish that a biologically active, synthetic, heparin-like dodecasaccharide provides good organ distribution, and serum lifetimes relevant to developing future oligosaccharide therapeutics. Heparin-like oligosaccharides are implicated in various diseases. Hansen et al. report an efficient two-cycle [4+4+4] tetrasaccharide-iteration-based approach to synthesize a structurally defined heparin dodecasaccharide with a latent aldehyde tag for labelling and conjugation.
Collapse
|
41
|
Wilson JC, Laloo AE, Singh S, Ferro V. 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase. Biochem Biophys Res Commun 2013; 443:185-8. [PMID: 24291708 DOI: 10.1016/j.bbrc.2013.11.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe (1)H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.
Collapse
Affiliation(s)
- Jennifer C Wilson
- Institute for Glycomics, Griffith University Gold Coast Campus, QLD 4222, Australia.
| | - Andrew Elohim Laloo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sanjesh Singh
- Institute for Glycomics, Griffith University Gold Coast Campus, QLD 4222, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
42
|
Xu F, Zhang L, Jia Y, Wang X, Li X, Wen Q, Zhang Y, Xu W. Discovery of 4-amino-2-(thio)phenol derivatives as novel protein kinase and angiogenesis inhibitors for the treatment of cancer: synthesis and biological evaluation. Part II. Eur J Med Chem 2013; 69:191-200. [PMID: 24036042 DOI: 10.1016/j.ejmech.2013.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022]
Abstract
A novel series of 4-amino-2-(thio)phenol derivatives were well synthesized. The preliminary biological test revealed that several compounds displayed high specific protein kinase and angiogenesis inhibitory activities compared with previous work mainly because of the substitution of sulfonamide structure for amide fragment. Among which, compound 5i was identified to inhibit protein kinase B/AKT (IC₅₀ = 1.26 μM) and ABL tyrosine kinase (IC₅₀ = 1.50 μM) effectively. Meanwhile, compound 5i demonstrated competitive in vitro antiangiogenic activities to Pazopanib in both human umbilical vein endothelial cell (HUVEC) tube formation assay and the rat thoracic aorta rings test.
Collapse
Affiliation(s)
- Fuming Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji'nan, Shandong 250012, PR China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol 2013; 170:712-29. [PMID: 23962094 PMCID: PMC3799588 DOI: 10.1111/bph.12344] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, a process of new blood vessel formation, is a prerequisite for tumour growth to supply the proliferating tumour with oxygen and nutrients. The angiogenic process may contribute to tumour progression, invasion and metastasis, and is generally accepted as an indicator of tumour prognosis. Therefore, targeting tumour angiogenesis has become of high clinical relevance. The current review aimed to highlight mechanistic details of anti-angiogenic therapies and how they relate to classification and treatment rationales. Angiogenesis inhibitors are classified into either direct inhibitors that target endothelial cells in the growing vasculature or indirect inhibitors that prevent the expression or block the activity of angiogenesis inducers. The latter class extends to include targeted therapy against oncogenes, conventional chemotherapeutic agents and drugs targeting other cells of the tumour micro-environment. Angiogenesis inhibitors may be used as either monotherapy or in combination with other anticancer drugs. In this context, many preclinical and clinical studies revealed higher therapeutic effectiveness of the combined treatments compared with individual treatments. The proper understanding of synergistic treatment modalities of angiogenesis inhibitors as well as their wide range of cellular targets could provide effective tools for future therapies of many types of cancer.
Collapse
Affiliation(s)
- Asmaa E El-Kenawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Azza B El-Remessy
- Center for Pharmacy and Experimental Therapeutics, University of GeorgiaAugusta, GA, USA
- Department of Pharmacology and Toxicology, Georgia Regents UniversityAugusta, GA, USA
- Charlie Norwood VA Medical CenterAugusta, GA, USA
| |
Collapse
|
44
|
Ferro V. Heparan sulfate inhibitors and their therapeutic implications in inflammatory illnesses. Expert Opin Ther Targets 2013; 17:965-75. [DOI: 10.1517/14728222.2013.811491] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Maza S, Mar Kayser M, Macchione G, López-Prados J, Angulo J, de Paz JL, Nieto PM. Synthesis of chondroitin/dermatan sulfate-like oligosaccharides and evaluation of their protein affinity by fluorescence polarization. Org Biomol Chem 2013; 11:3510-25. [PMID: 23595496 DOI: 10.1039/c3ob40306h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here, we present a novel approach for the chemical synthesis of chondroitin and dermatan sulfate oligosaccharides. A key point of this strategy is the preparation and use of an N-trifluoroacetyl galactosamine building block containing a 4,6-O-di-tert-butylsilylene group. Glycosylation reactions proceeded in good yields (74-91%) with our protecting group distribution. Using this approach, we have synthesized, for the first time, a chondroitin/dermatan sulfate-like tetrasaccharide that contains both types of uronic acids, D-glucuronic and L-iduronic acid. Moreover, we have employed a fluorescence polarization competition assay to evaluate the interactions between the synthesized oligosaccharides and FGF-2 (basic fibroblast growth factor). Our results show that this method, using standard instrumentation and minimal sample consumption, is a powerful tool for the rapid analysis of the glycosaminoglycan affinity for proteins in solution.
Collapse
Affiliation(s)
- Susana Maza
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ. Proteoglycans and their roles in brain cancer. FEBS J 2013; 280:2399-417. [PMID: 23281850 DOI: 10.1111/febs.12109] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022]
Abstract
Glioblastoma, a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase signalling pathways and a poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signalling and migration via interactions with extracellular ligands, growth factor receptors and extracellular matrix components, as well as intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumour cells and promote critical tumour-microenvironment interactions. In the present review, we summarize the evidence for proteoglycan function in gliomagenesis and examine the expression of proteoglycans and their modifying enzymes in human glioblastoma using data obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in receptor tyrosine kinases. Based on these data, we propose a model in which proteoglycans and their modifying enzymes promote receptor tyrosine kinase signalling and progression in glioblastoma, and we suggest that cancer-associated proteoglycans are promising biomarkers for disease and therapeutic targets.
Collapse
Affiliation(s)
- Anna Wade
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
47
|
Phillips JJ. Novel therapeutic targets in the brain tumor microenvironment. Oncotarget 2012; 3:568-75. [PMID: 22643827 DOI: 10.18632/oncotarget.493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM), a highly malignant brain tumor of adults and children, diffusely invades within the non-neoplastic brain. Despite aggressive current therapeutic interventions, improved therapeutic strategies are greatly needed. Interactions between the tumor and constituents of its microenvironment are known to regulate malignancy, and heparan sulfate proteoglycans (HSPGs) are important as they bind diverse extracellular proteins, including growth factors and cell adhesion molecules, regulating the activity of several ligand-mediated signaling pathways. Recent work from our group described a mechanism by which GBM regulates PDGFR-alpha signaling via enzymatic alteration of heparan sulfate proteoglycans (HSPGs) in the extracellular microenvironment. Blocking tumor-induced alterations of HSPGs, which can be achieved by pharmacological strategies, would potentially inhibit multiple oncogenic signaling pathways in tumor cells and disrupt critical tumormicroenvironment interactions. Here we examine HSPGs and the enzymes that modify them in GBM. We compare their expression across tumor subtypes, their potential roles in oncogenesis, and their potential as novel therapeutic targets in GBM.
Collapse
Affiliation(s)
- Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, USA.
| |
Collapse
|
48
|
Liu L, Li C, Cochran S, Feder D, Guddat LW, Ferro V. A focused sulfated glycoconjugate Ugi library for probing heparan sulfate-binding angiogenic growth factors. Bioorg Med Chem Lett 2012; 22:6190-4. [DOI: 10.1016/j.bmcl.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
|
49
|
Phillips JJ. Novel therapeutic targets in the brain tumor microenvironment. Oncotarget 2012; 3:568-575. [PMID: 22643827 PMCID: PMC3388186 DOI: 10.18632/oncotarget.526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/23/2012] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM), a highly malignant brain tumor of adults and children, diffusely invades within the non-neoplastic brain. Despite aggressive current therapeutic interventions, improved therapeutic strategies are greatly needed. Interactions between the tumor and constituents of its microenvironment are known to regulate malignancy, and heparan sulfate proteoglycans (HSPGs) are important as they bind diverse extracellular proteins, including growth factors and cell adhesion molecules, regulating the activity of several ligand-mediated signaling pathways. Recent work from our group described a mechanism by which GBM regulates PDGFR-alpha signaling via enzymatic alteration of heparan sulfate proteoglycans (HSPGs) in the extracellular microenvironment. Blocking tumor-induced alterations of HSPGs, which can be achieved by pharmacological strategies, would potentially inhibit multiple oncogenic signaling pathways in tumor cells and disrupt critical tumormicroenvironment interactions. Here we examine HSPGs and the enzymes that modify them in GBM. We compare their expression across tumor subtypes, their potential roles in oncogenesis, and their potential as novel therapeutic targets in GBM.
Collapse
Affiliation(s)
- Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco
- Department of Pathology, Division of Neuropathology, University of California San Francisco
| |
Collapse
|
50
|
Ferro V, Liu L, Johnstone KD, Wimmer N, Karoli T, Handley P, Rowley J, Dredge K, Li CP, Hammond E, Davis K, Sarimaa L, Harenberg J, Bytheway I. Discovery of PG545: A Highly Potent and Simultaneous Inhibitor of Angiogenesis, Tumor Growth, and Metastasis. J Med Chem 2012; 55:3804-13. [DOI: 10.1021/jm201708h] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vito Ferro
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Ligong Liu
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Ken D. Johnstone
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Norbert Wimmer
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Tomislav Karoli
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Paul Handley
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Jessica Rowley
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Keith Dredge
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Cai Ping Li
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Edward Hammond
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Kat Davis
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Laura Sarimaa
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Job Harenberg
- Clinical
Pharmacology, Faculty
of Medicine Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Ian Bytheway
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| |
Collapse
|