1
|
Qiu J, Qin R, Zhi S, Liu L. Recent advance in macrolactams: Structure, bioactivity, and biosynthesis. Bioorg Chem 2025; 159:108406. [PMID: 40184666 DOI: 10.1016/j.bioorg.2025.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Macrolactams have garnered significant attention in recent years due to their diverse structures and remarkable biological activities. Despite the increasing number of new members being reported, a systematic discussion of recent advancements in this family is still lacking, particularly in areas such as structure-activity relationship and newly identified biosynthetic pathways that deviate from the traditional collinear rule. To address this gap, we compiled 105 macrolactams reported between 2004 and 2023, produced by microbial strains isolated from diverse environments, including marine sediments, soil, plants, and animals. This review not only highlights the sources, structures, and biological activities of these macrolactams but also delves into 17 known biosynthetic pathways. We provide an in-depth analysis of the associated biosynthetic gene clusters, the mechanisms of key enzymes, and their roles in the biosynthesis process. By offering these insights, this review serves as a valuable reference for the discovery of novel macrolactams and their sustainable production using synthetic biology approaches in the future.
Collapse
Affiliation(s)
- Jiawei Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ruochang Qin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Evers JK, Glöckle A, Wiegand M, Schuler S, Einsiedler M, Gulder TAM. Heterologous Expression and Optimization of Fermentation Conditions for Recombinant Ikarugamycin Production. Biotechnol Bioeng 2025; 122:974-982. [PMID: 39799388 PMCID: PMC11895416 DOI: 10.1002/bit.28919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025]
Abstract
Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis. It is, therefore, used as a tool compound to study diverse biological processes. However, ikarugamycin commercial prices are very high, with up to 1300 € per 1 mg, thus limiting its application. We, therefore, set out to develop a high-yielding recombinant production platform of ikarugamycin by screening different expression vectors, recombinant host strains, and cultivation conditions. Overall, this has led to overproduction levels of more than 100 mg/L, which, together with a straightforward purification protocol, establishes biotechnological access to affordable ikarugamycin enabling its increased use in biomedical research in the future.
Collapse
Affiliation(s)
- Julia K. Evers
- Chair of Technical BiochemistryTechnische Universität DresdenDresdenSaxonyGermany
| | - Anna Glöckle
- Chair of Technical BiochemistryTechnische Universität DresdenDresdenSaxonyGermany
| | - Monique Wiegand
- Chair of Technical BiochemistryTechnische Universität DresdenDresdenSaxonyGermany
| | - Sebastian Schuler
- Chair of Technical BiochemistryTechnische Universität DresdenDresdenSaxonyGermany
| | - Manuel Einsiedler
- Chair of Technical BiochemistryTechnische Universität DresdenDresdenSaxonyGermany
- Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Department of Pharmacy at Saarland UniversityPharmaScienceHub (PSH)Helmholtz Centre for Infection Research (HZI)Saarland UniversitySaarbrückenSaarlandGermany
| | - Tobias A. M. Gulder
- Chair of Technical BiochemistryTechnische Universität DresdenDresdenSaxonyGermany
- Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Department of Pharmacy at Saarland UniversityPharmaScienceHub (PSH)Helmholtz Centre for Infection Research (HZI)Saarland UniversitySaarbrückenSaarlandGermany
| |
Collapse
|
3
|
Schuler S, Einsiedler M, Evers JK, Malay M, Uka V, Schneider S, Gulder TAM. Expanding Polycyclic Tetramate Macrolactam (PoTeM) Core Structure Diversity by Chemo-Enzymatic Synthesis and Bioengineering. Angew Chem Int Ed Engl 2025; 64:e202420335. [PMID: 39714566 PMCID: PMC11933527 DOI: 10.1002/anie.202420335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Polycyclic tetramate macrolactams (PoTeMs) represent a growing class of bioactive natural products that are derived from a common tetramate polyene precursor, lysobacterene A, produced by an unusual bacterial iterative polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS). The structural and functional diversity of PoTeMs is biosynthetically elaborated from lysobacterene A by pathway-specific cyclizing and modifying enzymes. This results in diverse core structure decoration and cyclization patterns. However, approaches to directly edit the PoTeM carbon skeleton do currently not exist. We thus set out to modify the PoTeM core structure by exchanging the natural l-ornithine-derived building block by l-lysine, hence extending macrocycle size by an additional CH2 group. We developed streamlined synthetic access to lysobacterene A and the corresponding extended analog and achieved cyclization of both precursors by the cognate PoTeM cyclases IkaBC in vitro. This chemo-enzymatic approach corroborated the catalytic competence of IkaBC to produce a larger macrolactam yielding homo-ikarugamycin. We thus engineered the adenylation domain active site of IkaA to directly accept l-lysine, which upon co-expression with IkaBC delivered a recombinant bacterial homo-ikarugamycin producer. Our work establishes an entirely new PoTeM structural framework and sets the stage for the biotechnological diversification of the PoTeM natural product class in general.
Collapse
Affiliation(s)
- Sebastian Schuler
- Chair of Technical BiochemistryTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Manuel Einsiedler
- Chair of Technical BiochemistryTechnische Universität DresdenBergstraße 6601069DresdenGermany
- Department of Natural Product BiotechnologyHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, PharmaScienceHub (PSH)Campus E8.166123SaarbrückenGermany
| | - Julia K. Evers
- Chair of Technical BiochemistryTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Mert Malay
- Chair of Technical BiochemistryTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Valdet Uka
- Chair of Technical BiochemistryTechnische Universität DresdenBergstraße 6601069DresdenGermany
- Department of Natural Product BiotechnologyHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, PharmaScienceHub (PSH)Campus E8.166123SaarbrückenGermany
| | - Sabine Schneider
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Tobias A. M. Gulder
- Chair of Technical BiochemistryTechnische Universität DresdenBergstraße 6601069DresdenGermany
- Department of Natural Product BiotechnologyHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, PharmaScienceHub (PSH)Campus E8.166123SaarbrückenGermany
| |
Collapse
|
4
|
Glöckle A, Schuler S, Einsiedler M, Gulder TAM. A plug-and-play system for polycyclic tetramate macrolactam production and functionalization. Microb Cell Fact 2025; 24:13. [PMID: 39794810 PMCID: PMC11724479 DOI: 10.1186/s12934-024-02630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The biosynthesis of the natural product family of the polycyclic tetramate macrolactams (PoTeMs) employs an uncommon iterative polyketide synthase/non-ribosomal peptide synthetase (iPKS/NRPS). This machinery produces a universal PoTeM biosynthetic precursor that contains a tetramic acid moiety connected to two unsaturated polyene side chains. The enormous structural and hence functional diversity of PoTeMs is enabled by pathway-specific tailoring enzymes, particularly cyclization-catalyzing oxidases that process the polyene chains to form distinct ring systems, and further modifying enzymes. RESULTS Ikarugamycin is the first discovered PoTeM and is formed by the three enzymes IkaABC. Utilizing the iPKS/NRPS IkaA, we established a genetic plug-and-play system by screening eight different strong promoters downstream of ikaA to facilitate high-level heterologous expression of PoTeMs in different Streptomyces host systems. Furthermore, we applied the system on three different PoTeM modifying genes (ptmD, ikaD, and cftA), showing the general utility of this approach to study PoTeM post-PKS/NRPS processing of diverse tailoring enzymes. CONCLUSION By employing our plug-and-play system for PoTeMs, we reconstructed the ikarugamycin biosynthesis and generated five derivatives of ikarugamycin. This platform will generally facilitate the investigation of new PoTeM biosynthetic cyclization and tailoring reactions in the future.
Collapse
Affiliation(s)
- Anna Glöckle
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Sebastian Schuler
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Manuel Einsiedler
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
- Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, PharmaScienceHub (PSH), Campus E8.1, 66123, Saarbrücken, Germany
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany.
- Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, PharmaScienceHub (PSH), Campus E8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
5
|
Dos Santos JDN, Pinto E, Martín J, Vicente F, Reyes F, Lage OM. Unveiling the bioactive potential of Actinomycetota from the Tagus River estuary. Int Microbiol 2024; 27:1357-1372. [PMID: 38236380 PMCID: PMC11452475 DOI: 10.1007/s10123-024-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The increase in global travel and the incorrect and excessive use of antibiotics has led to an unprecedented rise in antibiotic resistance in bacterial and fungal populations. To overcome these problems, novel bioactive natural products must be discovered, which may be found in underexplored environments, such as estuarine habitats. In the present work, estuarine actinomycetotal strains were isolated with conventional and iChip techniques from the Tagus estuary in Alcochete, Portugal, and analysed for different antimicrobial bioactivities. Extracts were produced from the isolated cultures and tested for bioactivity against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Aspergillus fumigatus ATCC 240305, Candida albicans ATCC 10231 and Trichophyton rubrum FF5. Furthermore, bioactive extracts were subjected to dereplication by high-performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) to putatively identify their chemical components. In total, 105 isolates belonging to 3 genera were obtained. One which was isolated, MTZ3.1 T, represents a described novel taxon for which the name Streptomyces meridianus was proposed. Regarding the bioactivity testing, extracts from 12 strains proved to be active against S. aureus, 2 against E. coli, 4 against A. fumigatus, 3 against C. albicans and 10 against T. rubrum. Dereplication of bioactive extracts showed the presence of 28 known bioactive molecules, 35 hits have one or more possible matches in the DNP and 18 undescribed ones. These results showed that the isolated bacteria might be the source of new bioactive natural products.
Collapse
Affiliation(s)
- José Diogo Neves Dos Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, S/N, 4169-007, Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Eugénia Pinto
- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Jesús Martín
- Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Fundación MEDINA, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de La Salud, 18016, Granada, Spain
| | - Francisca Vicente
- Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Fundación MEDINA, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de La Salud, 18016, Granada, Spain
| | - Fernando Reyes
- Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Fundación MEDINA, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de La Salud, 18016, Granada, Spain
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, S/N, 4169-007, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
6
|
Bharathi D, Lee J. Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review. Mar Drugs 2024; 22:348. [PMID: 39195465 DOI: 10.3390/md22080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Harper CP, Day A, Tsingos M, Ding E, Zeng E, Stumpf SD, Qi Y, Robinson A, Greif J, Blodgett JAV. Critical analysis of polycyclic tetramate macrolactam biosynthetic gene cluster phylogeny and functional diversity. Appl Environ Microbiol 2024; 90:e0060024. [PMID: 38771054 PMCID: PMC11218653 DOI: 10.1128/aem.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.
Collapse
Affiliation(s)
| | - Anna Day
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maya Tsingos
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Edward Ding
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth Zeng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Adam Robinson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Greif
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
8
|
Elsbaey M, Samaru Y, Elekhnawy E, Oku N, Igarashi Y. A new polycyclic tetramate macrolactam from Allostreptomyces RD068384: stereochemistry and antifungal potential. J Antibiot (Tokyo) 2024; 77:393-396. [PMID: 38594387 DOI: 10.1038/s41429-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 04/11/2024]
Abstract
A new polycyclic tetramate macrolactam designated allostreptamide (1), together with four known congeners, were isolated from the culture extract of Allostreptomyces RD068384. The planar structure of the new compound was elucidated through interpretation of NMR and MS data. The absolute configuration was determined through ROESY and ECD analyses. The isolated compounds revealed antifungal potential against fourteen Candida albicans isolates with minimum inhibitory concentrations (MICs) ranging from 64 to 2048 µg ml-1. Compound 3 showed antibiofilm action and considerably reduced the viability of five isolates (36%) in the formed biofilm. The qRT-PCR revealed that 3 downregulated the BCR1, PLB2, ALS1, and SAP5 biofilm related gene expression. Therefore, 3 could be a promising antifungal therapy for C. albicans infections.
Collapse
Affiliation(s)
- Marwa Elsbaey
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Yuki Samaru
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
9
|
Corti V, Barløse CL, Østergaard NL, Kristensen A, Jessen NI, Jørgensen KA. Organocatalytic Enantioselective Thermal [4 + 4] Cycloadditions. J Am Chem Soc 2023; 145:1448-1459. [PMID: 36603159 DOI: 10.1021/jacs.2c12750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chiral eight-membered carbocycles are important motifs in organic chemistry, natural product chemistry, chemical biology, and medicinal chemistry. The lack of synthetic methods toward their construction is a challenge preventing their rational design and stereoselective synthesis. The catalytic enantioselective [4 + 4] cycloaddition is one of the most straightforward and atom-economical methods to obtain chiral cyclooctadiene derivatives. We report the first organocatalytic asymmetric [4 + 4] cycloaddition of 9H-fluorene-1-carbaldehydes with electron-deficient dienes affording cyclooctadiene derivatives in good yields and with excellent control of peri-, diastereo-, and enantioselectivities. The reaction concept is based on the aminocatalytic formation of a polarized butadiene component incorporated into a cyclic extended π-system, with restricted conformational freedom, allowing for a stereocontrolled [4 + 4] cycloaddition. FMO analysis unveiled that the HOMO and LUMO of the two reacting partners resemble those of butadiene. The methodology allows for the construction of cyclooctadiene derivatives decorated with various functionalities. The cyclooctadienes were synthetically elaborated, allowing for structural diversity demonstrating their synthetic utility for the formation of, for example, chiral cyclobutene- or cyclooctane scaffolds. DFT computational studies shed light on the reaction mechanism identifying the preference for an initial but reversible [4 + 2] cycloaddition delivering an off-cycle catalyst resting state, from which catalyst elimination is not possible. The off-cycle catalyst-bound intermediate undergoes a retro-[4 + 2] cycloaddition, followed by a [4 + 4] cycloaddition generating a cycloadduct from which catalyst elimination is possible. The reaction pathway accounts for the observed peri-, diastereo-, and enantioselectivity of the organocatalytic [4 + 4] cycloaddition.
Collapse
Affiliation(s)
- Vasco Corti
- Department of Chemistry, Aarhus University, Aarhus C DK-8000, Denmark
| | | | | | - Anne Kristensen
- Department of Chemistry, Aarhus University, Aarhus C DK-8000, Denmark
| | | | | |
Collapse
|
10
|
Chiba O, Shimada N, Yoshio S, Kudo Y, Cho Y, Yotsu-Yamashita M, Konoki K. State-Dependent Inhibition of Voltage-Gated Sodium Channels in Neuroblastoma Neuro-2A Cells by Arachidonic Acid from Halichondria okadai. Chem Res Toxicol 2022; 35:1950-1961. [PMID: 36315108 DOI: 10.1021/acs.chemrestox.2c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Voltage-gated sodium channels (Nav) are closely associated with epilepsy, cardiac and skeletal muscle diseases, and neuropathic pain. Several toxic compounds have been isolated from the marine sponge Halichondria okadai; however, toxic substances that modulate Nav are yet to be identified. This study aimed to identify Nav inhibitors from two snake venoms and H. okadai using mouse neuroblastoma Neuro-2A cells (N2A), which primarily express the specific Nav subtype Nav1.7, using whole-cell patch-clamp recordings. We successfully isolated arachidonic acid (AA, 1) from the hexane extract of H. okadai, and then the fatty acid-mediated modulation of Nav in N2A was investigated in detail for the first time. Octanoic acid (2), palmitic acid (3), and oleic acid (4) showed no inhibitory activity at 100 μM, whereas AA (1), dihomo-γ-linolenic acid (DGLA, 5), and eicosapentaenoic acid (EPA, 6) showed IC50 values of 6.1 ± 2.0, 58 ± 19, and 25 ± 4.0 μM, respectively (N = 4, mean ± SEM). Structure and activity relationships were investigated for the first time using two ω-3 polyunsaturated fatty acids (PUFAs), EPA (6) and eicosatetraenoic acid (ETA, 7), and two ω-6 PUFAs, AA (1) and DGLA (5), to determine their effects on a resting state, activated state, and inactivated state. Steady-state analysis showed that the half inactivation potential was largely hyperpolarized by 10 μM AA (1), while 50 μM DGLA (5), 50 μM EPA (6), and 10 μM ETA (7) led to a slight change. The percentages of the resting state block were 24 ± 1, 22 ± 1, 34 ± 4, and 38 ± 9% in the presence of AA (1), DGLA (5), EPA (6), and ETA (7), respectively, with EPA (6) and ETA (7) exhibiting a greater inhibition than both AA (1) and DGLA (5), and their inhibitions did not increase in the following depolarization pulses. None of the compounds exhibited the use-dependent block. The half recovery times from the inactivated state for the control, AA (1), DGLA (5), EPA (6), and ETA (7) were 7.67 ± 0.33, 34.3 ± 1.10, 15.5 ± 1.10, 10.7 ± 0.31, and 3.59 ± 0.18 ms, respectively, with AA (1) exhibiting a distinctively large effect. Overall, distributed binding to the resting and the inactivated states of Nav would be significant for the inhibition of Nav, which presumably depends on the active structure of each PUFA.
Collapse
Affiliation(s)
- Osamu Chiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Noriko Shimada
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shutaro Yoshio
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
11
|
Sarmiento-Vizcaíno A, Martín J, Ortiz-López FJ, Reyes F, García LA, Blanco G. Natural products, including a new caboxamycin, from Streptomyces and other Actinobacteria isolated in Spain from storm clouds transported by Northern winds of Arctic origin. Front Chem 2022; 10:948795. [PMID: 36405319 PMCID: PMC9669575 DOI: 10.3389/fchem.2022.948795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 01/23/2025] Open
Abstract
Actinobacteria, mostly Streptomyces species, are the main source of natural products essential in medicine. While the majority of producer microorganisms of secondary metabolite are reported from terrestrial or marine environments, there are limited reports of their isolation from atmospheric precipitations. Clouds are considered as atmospheric oases for microorganisms and there is a recent paradigm shift whereby atmospheric-derived Actinobacteria emerge as an alternative source for drug discovery. In this context, we studied a total of 18 bioactive Actinobacteria strains, isolated by sampling nine precipitation events with prevailing Northern winds in the Cantabrian Sea coast, Northern Spain. Backward trajectories meteorological analyses indicate that air masses were originated mostly in the Arctic Ocean, and their trajectory to downwind areas involved the Atlantic Ocean and also terrestrial sources from continental Europe, and in some events from Canada, Greenland, Mauritania and Canary Islands. Taxonomic identification of the isolates, by 16S rRNA gene sequencing and phylogenetic analyses, revealed that they are members of three Actinobacteria genera. Fifteen of the isolates are Streptomyces species, thus increasing the number of bioactive species of this genus in the atmosphere to a 6.8% of the total currently validated species. In addition, two of the strains belong to the genus Micromonospora and one to genus Nocardiopsis. These findings reinforce a previous atmospheric dispersal model, extended herein to the genus Micromonospora. Production of bioactive secondary metabolites was screened in ethyl acetate extracts of the strains by LC-UV-MS and a total of 94 secondary metabolites were detected after LC/MS dereplication. Comparative analyses with natural products databases allowed the identification of 69 structurally diverse natural products with contrasted biological activities, mostly as antibiotics and antitumor agents, but also anti-inflammatory, antiviral, antiparasitic, immunosuppressant and neuroprotective among others. The molecular formulae of the 25 remaining compounds were determined by HRMS. None of these molecules had been previously reported in natural product databases indicating potentially novel metabolites. As a proof of concept, a new metabolite caboxamycin B (1) was isolated from the culture broth of Streptomyces sp. A-177 and its structure was determined by various spectrometric methods. To the best of our knowledge, this is the first novel natural product obtained from an atmospheric Streptomyces, thus pointing out precipitations as an innovative source for discovering new pharmaceutical natural products.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional Área de Microbiología Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | | | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Luis A. García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente Área de Ingeniería Química Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional Área de Microbiología Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
12
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
13
|
Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J, De La Flor YT, Ushijima B, Meyer JL, Paul VJ, Garg N. Metabolomics Approaches to Dereplicate Natural Products from Coral-Derived Bioactive Bacteria. JOURNAL OF NATURAL PRODUCTS 2022; 85:462-478. [PMID: 35112871 DOI: 10.1021/acs.jnatprod.1c01110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paige Mandelare-Ruiz
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yingzhe Yang
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Apurva Routhu
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jay Houk
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yesmarie T De La Flor
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Julie L Meyer
- Department of Soil and Water Sciences, University of Florida, Gainesville, Florida 32603, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Yue H, Miller AL, Khetrapal V, Jayaseker V, Wright S, Du L. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Nat Prod Rep 2022; 39:842-874. [PMID: 35067688 DOI: 10.1039/d1np00063b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: up to August 2021Lysobacter is a genus of Gram-negative bacteria that was classified in 1987. Several Lysobacter species are emerging as new biocontrol agents for crop protection in agriculture. Lysobacter are prolific producers of new bioactive natural products that are largely underexplored. So far, several classes of structurally interesting and biologically active natural products have been isolated from Lysobacter. This article reviews the progress in Lysobacter natural product research over the past ten years, including molecular mechanisms for biosynthesis, regulation and mode of action, genome mining of cryptic biosynthetic gene clusters, and metabolic engineering using synthetic biology tools.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vimmy Khetrapal
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vishakha Jayaseker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
15
|
Sarmiento-Vizcaíno A, Martín J, Reyes F, García LA, Blanco G. Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain. Front Microbiol 2021; 12:773095. [PMID: 34858379 PMCID: PMC8631523 DOI: 10.3389/fmicb.2021.773095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013-2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Luis A García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería Química, Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
16
|
Singh R, Chauhan N, Kuddus M. Exploring the therapeutic potential of marine-derived bioactive compounds against COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52798-52809. [PMID: 34476696 PMCID: PMC8412857 DOI: 10.1007/s11356-021-16104-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 05/08/2023]
Abstract
The ocean is the most biodiverse habitat of various organisms. The organisms surviving in the harsh conditions of the ocean consist of several spectacular properties and produce bioactive compounds of pharmacological importance. These compounds are effective even in small quantities with various immunomodulatory qualities such as antioxidant and anti-inflammatory properties. Though the vaccines for COVID-19 are developed, and drug development is also in progress, but till now no effective drug is available for this deadly virus. Researchers are mining the huge data of bioactive compounds to develop the specific drug for COVID-19. The use of the repurposed drugs is challenging against the rapidly mutating virus with variable symptoms and mode of transmission. This review is an attempt to compile all the spattered data of marine-derived bioactive compounds with antiviral properties and to explore their therapeutic potential against COVID-19.
Collapse
Affiliation(s)
- Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, 226028, India.
| | - Niketa Chauhan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, 226028, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
17
|
Ding W, Tu J, Zhang H, Wei X, Ju J, Li Q. Genome Mining and Metabolic Profiling Uncover Polycyclic Tetramate Macrolactams from Streptomyces koyangensis SCSIO 5802. Mar Drugs 2021; 19:md19080440. [PMID: 34436279 PMCID: PMC8399814 DOI: 10.3390/md19080440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
We have previously shown deep-sea-derived Streptomyces koyangensis SCSIO 5802 to produce two types of active secondary metabolites, abyssomicins and candicidins. Here, we report the complete genome sequence of S. koyangensis SCSIO 5802 employing bioinformatics to highlight its potential to produce at least 21 categories of natural products. In order to mine novel natural products, the production of two polycyclic tetramate macrolactams (PTMs), the known 10-epi-HSAF (1) and a new compound, koyanamide A (2), was stimulated via inactivation of the abyssomicin and candicidin biosynthetic machineries. Detailed bioinformatics analyses revealed a PKS/NRPS gene cluster, containing 6 open reading frames (ORFs) and spanning ~16 kb of contiguous genomic DNA, as the putative PTM biosynthetic gene cluster (BGC) (termed herein sko). We furthermore demonstrate, via gene disruption experiments, that the sko cluster encodes the biosynthesis of 10-epi-HSAF and koyanamide A. Finally, we propose a plausible biosynthetic pathway to 10-epi-HSAF and koyanamide A. In total, this study demonstrates an effective approach to cryptic BGC activation enabling the discovery of new bioactive metabolites; genome mining and metabolic profiling methods play key roles in this strategy.
Collapse
Affiliation(s)
- Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
| | - Huaran Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: (J.J.); (Q.L.); Tel.: +86-20-8902-3028 (J.J. & Q.L.)
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: (J.J.); (Q.L.); Tel.: +86-20-8902-3028 (J.J. & Q.L.)
| |
Collapse
|
18
|
Brescia F, Vlassi A, Bejarano A, Seidl B, Marchetti-Deschmann M, Schuhmacher R, Puopolo G. Characterisation of the Antibiotic Profile of Lysobacter capsici AZ78, an Effective Biological Control Agent of Plant Pathogenic Microorganisms. Microorganisms 2021; 9:microorganisms9061320. [PMID: 34204563 PMCID: PMC8235233 DOI: 10.3390/microorganisms9061320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Determining the mode of action of microbial biocontrol agents plays a key role in their development and registration as commercial biopesticides. The biocontrol rhizobacterium Lysobacter capsici AZ78 (AZ78) is able to inhibit a vast array of plant pathogenic oomycetes and Gram-positive bacteria due to the release of antimicrobial secondary metabolites. A combination of MALDI-qTOF-MSI and UHPLC-HRMS/M was applied to finely dissect the AZ78 metabolome and identify the main secondary metabolites involved in the inhibition of plant pathogenic microorganisms. Under nutritionally limited conditions, MALDI-qTOF-MSI revealed that AZ78 is able to release a relevant number of antimicrobial secondary metabolites belonging to the families of 2,5-diketopiperazines, cyclic lipodepsipeptides, macrolactones and macrolides. In vitro tests confirmed the presence of secondary metabolites toxic against Pythium ultimum and Rhodococcus fascians in AZ78 cell-free extracts. Subsequently, UHPLC-HRMS/MS was used to confirm the results achieved with MALDI-qTOF-MSI and investigate for further putative antimicrobial secondary metabolites known to be produced by Lysobacter spp. This technique confirmed the presence of several 2,5-diketopiperazines in AZ78 cell-free extracts and provided the first evidence of the production of the cyclic depsipeptide WAP-8294A2 in a member of L. capsici species. Moreover, UHPLC-HRMS/MS confirmed the presence of dihydromaltophilin/Heat Stable Antifungal Factor (HSAF) in AZ78 cell-free extracts. Due to the production of HSAF by AZ78, cell-free supernatants were effective in controlling Plasmopara viticola on grapevine leaf disks after exposure to high temperatures. Overall, our work determined the main secondary metabolites involved in the biocontrol activity of AZ78 against plant pathogenic oomycetes and Gram-positive bacteria. These results might be useful for the future development of this bacterial strain as the active ingredient of a microbial biopesticide that might contribute to a reduction in the chemical input in agriculture.
Collapse
Affiliation(s)
- Francesca Brescia
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (F.B.); (A.B.)
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Anthi Vlassi
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (A.V.); (B.S.); (R.S.)
| | - Ana Bejarano
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (F.B.); (A.B.)
- Center of Agriculture, Food, Environment, University of Trento, 38098 San Michele all’Adige, Italy
| | - Bernard Seidl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (A.V.); (B.S.); (R.S.)
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), 1060 Vienna, Austria;
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (A.V.); (B.S.); (R.S.)
| | - Gerardo Puopolo
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (F.B.); (A.B.)
- Center of Agriculture, Food, Environment, University of Trento, 38098 San Michele all’Adige, Italy
- Correspondence:
| |
Collapse
|
19
|
Saide A, Damiano S, Ciarcia R, Lauritano C. Promising Activities of Marine Natural Products against Hematopoietic Malignancies. Biomedicines 2021; 9:645. [PMID: 34198841 PMCID: PMC8228764 DOI: 10.3390/biomedicines9060645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
According to the WHO classification of tumors, more than 150 typologies of hematopoietic and lymphoid tumors exist, and most of them remain incurable diseases that require innovative approaches to improve therapeutic outcome and avoid side effects. Marine organisms represent a reservoir of novel bioactive metabolites, but they are still less studied compared to their terrestrial counterparts. This review is focused on marine natural products with anticancer activity against hematological tumors, highlighting recent advances and possible perspectives. Until now, there are five commercially available marine-derived compounds for the treatment of various hematopoietic cancers (e.g., leukemia and lymphoma), two molecules in clinical trials, and series of compounds and/or extracts from marine micro- and macroorganisms which have shown promising properties. In addition, the mechanisms of action of several active compounds and extracts are still unknown and require further study. The continuous upgrading of omics technologies has also allowed identifying enzymes with possible bioactivity (e.g., l-asparaginase is currently used for the treatment of leukemia) or the enzymes involved in the synthesis of bioactive secondary metabolites which can be the target of heterologous expression and genetic engineering.
Collapse
Affiliation(s)
- Assunta Saide
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
20
|
A Pseudoalteromonas Clade with Remarkable Biosynthetic Potential. Appl Environ Microbiol 2021; 87:AEM.02604-20. [PMID: 33397702 DOI: 10.1128/aem.02604-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/19/2020] [Indexed: 02/02/2023] Open
Abstract
Pseudoalteromonas species produce a diverse range of biologically active compounds, including those biosynthesized by nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). Here, we report the biochemical and genomic analysis of Pseudoalteromonas sp. strain HM-SA03, isolated from the blue-ringed octopus, Hapalochlaena sp. Genome mining for secondary metabolite pathways revealed seven putative NRPS/PKS biosynthesis gene clusters, including those for the biosynthesis of alterochromides, pseudoalterobactins, alteramides, and four novel compounds. Among these was a novel siderophore biosynthesis gene cluster with unprecedented architecture (NRPS-PKS-NRPS-PKS-NRPS-PKS-NRPS). Alterochromide production in HM-SA03 was also confirmed by liquid chromatography-mass spectrometry. An investigation of the biosynthetic potential of 42 publicly available Pseudoalteromonas genomes indicated that some of these gene clusters are distributed throughout the genus. Through the phylogenetic analysis, a particular subset of strains formed a clade with extraordinary biosynthetic potential, with an average density of 10 biosynthesis gene clusters per genome. In contrast, the majority of Pseudoalteromonas strains outside this clade contained an average of three clusters encoding complex biosynthesis. These results highlight the underexplored potential of Pseudoalteromonas as a source of new natural products.IMPORTANCE This study demonstrates that the Pseudoalteromonas strain HM-SA03, isolated from the venomous blue-ringed octopus, Hapalochalaena sp., is a biosynthetically talented organism, capable of producing alterochromides and potentially six other specialized metabolites. We identified a pseudoalterobactin biosynthesis gene cluster and proposed a pathway for the production of the associated siderophore. A novel siderophore biosynthesis gene cluster with unprecedented architecture was also identified in the HM-SA03 genome. Finally, we demonstrated that HM-SA03 belongs to a phylogenetic clade of strains with extraordinary biosynthetic potential. While our results do not support a role of HM-SA03 in Hapalochalaena sp. venom (tetrodotoxin) production, they emphasize the untapped potential of Pseudoalteromonas as a source of novel natural products.
Collapse
|
21
|
Yin Z, Dickschat JS. Cis double bond formation in polyketide biosynthesis. Nat Prod Rep 2021; 38:1445-1468. [PMID: 33475122 DOI: 10.1039/d0np00091d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2020Polyketides form a large group of bioactive secondary metabolites that usually contain one or more double bonds. Although most of the double bonds found in polyketides are trans or E-configured, several cases are known in which cis or Z-configurations are observed. Double bond formation by polyketide synthases (PKSs) is widely recognised to be catalysed by ketoreduction and subsequent dehydration of the acyl carrier protein (ACP)-tethered 3-ketoacyl intermediate in the PKS biosynthetic assembly line with a specific stereochemical course in which the ketoreduction step determines the usual trans or more rare cis double bond configuration. Occasionally, other mechanisms for the installation of cis double bonds such as double bond formation during chain release or post-PKS modifications including, amongst others, isomerisations or double bond installations by oxidation are observed. This review discusses the peculiar mechanisms of cis double bond formation in polyketide biosynthesis.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
22
|
Laschat S, Deimling M, Zens A, Park N, Hess C, Klenk S, Dilruba Z, Baro A. Adventures and Detours in the Synthesis of Hydropentalenes. Synlett 2021. [DOI: 10.1055/s-0040-1707226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Functionalized hydropentalenes (i.e., bicyclo[3.3.0]octanones) constitute important building blocks for natural products and for ligands for asymmetric catalysis. The assembly and tailored functionalization of this convex roof-shaped scaffold is challenging and has motivated a variety of synthetic approaches including our own contributions, which will be presented in this account.1 Introduction2 Biosynthesis of Hydropentalenes3 Hydropentalenes through the Pauson–Khand Reaction4 Hydropentalenes through Transannular Oxidative Cyclization of Cycloocta-1,4-diene5 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Dodecahydrocyclopenta[a]indenes6 Functionalization of Bicyclo[3.3.0]octan-1,4-diones to Crown Ether Hybrids7 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Cylindramide8 Tandem Ring-Opening Metathesis/Ring-Closing Metathesis/Cross-Metathesis of Bicyclo[2.2.1]heptanes9 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Geodin A10 Hydropentalenes through Enantioselective Desymmetrization of Weiss Diketones11 Functionalization of Weiss Diketones by Carbonyl Ene Reactions12 Functionalization of the Weiss Diketone to Cylindramide and Geodin A Core Units13 Biological Properties of Bicyclo[3.3.0]octanes14 Hydropentalenes through Vinylcyclopropane Cyclopentene Rearrangement15 Functionalization of Bicyclo[3.3.0]octanes toward Chiral Dienes16 Miscellaneous Syntheses of Hydropentalenes17 Conclusion and Outlook
Collapse
Affiliation(s)
| | - Max Deimling
- Institut für Organische Chemie, Universität Stuttgart
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart
| | - Natja Park
- Institut für Organische Chemie, Universität Stuttgart
| | | | - Simon Klenk
- Institut für Organische Chemie, Universität Stuttgart
| | - Zarfishan Dilruba
- Institut für Organische Chemie, Universität Stuttgart
- Department of Chemistry, University of Leicester
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart
| |
Collapse
|
23
|
Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation. Mar Drugs 2020; 18:md18120645. [PMID: 33339096 PMCID: PMC7765564 DOI: 10.3390/md18120645] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.
Collapse
|
24
|
Makarieva TN, Ivanchina NV, Stonik VA. Application of Oxidative and Reductive Transformations in the Structure Determination of Marine Natural Products. JOURNAL OF NATURAL PRODUCTS 2020; 83:1314-1333. [PMID: 32091208 DOI: 10.1021/acs.jnatprod.9b01020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review highlights the application of oxidative and reductive chemical transformations in the structure determination of complex marine natural products, including their absolute configurations. Workability of the Baeyer-Villiger reaction, ozonolysis, periodate oxidation, hydrogenolysis, and reductive amination, as well as other related chemical transformations, are discussed.
Collapse
Affiliation(s)
- Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Pr. 100 let, Vladivostoku, 159, Russia
| | - Natalia V Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Pr. 100 let, Vladivostoku, 159, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Pr. 100 let, Vladivostoku, 159, Russia
| |
Collapse
|
25
|
Santos JD, Vitorino I, de la Cruz M, Díaz C, Cautain B, Annang F, Pérez-Moreno G, Gonzalez I, Tormo JR, Martin J, Vicente MF, Lage OM. Diketopiperazines and other bioactive compounds from bacterial symbionts of marine sponges. Antonie van Leeuwenhoek 2020; 113:875-887. [DOI: 10.1007/s10482-020-01398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
|
26
|
The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar Drugs 2020; 18:md18020114. [PMID: 32075282 PMCID: PMC7074263 DOI: 10.3390/md18020114] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Tetramic acid (pyrrolidine-2,4-dione) compounds, isolated from a variety of marine and terrestrial organisms, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities. In the past decade, marine-derived microorganisms have become great repositories of novel tetramic acids. Here, we discuss the biological activities of 277 tetramic acids of eight classifications (simple 3-acyl tetramic acids, 3-oligoenoyltetramic acids, 3-decalinoyltetramic acid, 3-spirotetramic acids, macrocyclic tetramic acids, N-acylated tetramic acids, α-cyclopiazonic acid-type tetramic acids, and other tetramic acids) from marine-derived microbes, including fungi, actinobacteria, bacteria, and cyanobacteria, as reported in 195 research studies up to 2019.
Collapse
|
27
|
Capon RJ. Extracting value: mechanistic insights into the formation of natural product artifacts – case studies in marine natural products. Nat Prod Rep 2020; 37:55-79. [DOI: 10.1039/c9np00013e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review highlights the importance of valuing natural product handling artifacts, to open a new window into, and provide a unique perspective of, bioactive chemical space.
Collapse
Affiliation(s)
- Robert J. Capon
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- St Lucia
- Australia
| |
Collapse
|
28
|
Hao L, Zheng X, Wang Y, Li S, Shang C, Xu Y. Inhibition of Tomato Early Blight Disease by Culture Extracts of a Streptomyces puniceus Isolate from Mangrove Soil. PHYTOPATHOLOGY 2019; 109:1149-1156. [PMID: 30794487 DOI: 10.1094/phyto-12-18-0444-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigates the potential of natural products derived from a mangrove rhizosphere bacterium in tomato early blight management. A Streptomyces puniceus strain L75 was isolated from the rhizosphere of Acanthus ilicifolius Linn in the Mai Po Reserve, Hong Kong. The crude ethyl acetate (EA) extract of L75 fermentation cultures has broad-spectrum antifungal bioactivities. L75 EA extract was significantly more effective in Alternaria solani growth inhibition at 25 μg/ml or lower compared with Mancozeb, with no observable negative impacts on tomato leaves or root development. Furthermore, L75 EA extract had significantly lower aquatic toxicity than Mancozeb at the same concentrations. L75 EA extract targets germ tube elongation of A. solani conidia, with a fungistatic mode of action. Liquid chromatography-quadrupole time-of-flight mass spectrometry analysis identified two possible antifungal compounds, Alteramide A and the Heat-Stable Antifungal Factor, which together contribute partially to the bioactivity of L75 EA extract. On detached tomato leaves, coinoculation of A. solani with L75 EA extract of 50, 25, or 5 μg/ml reduced diseased areas by ∼98, ∼90, and ∼48%, respectively, relative to the control after 5 days. This study demonstrates the potential of natural products from mangrove rhizosphere bacteria in agricultural applications.
Collapse
Affiliation(s)
- Lingyun Hao
- 1 Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xiaoli Zheng
- 1 Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yu Wang
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Shuangfei Li
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Chenjing Shang
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ying Xu
- 1 Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
29
|
Dhaneesha M, Hasin O, Sivakumar KC, Ravinesh R, Naman CB, Carmeli S, Sajeevan TP. DNA Binding and Molecular Dynamic Studies of Polycyclic Tetramate Macrolactams (PTM) with Potential Anticancer Activity Isolated from a Sponge-Associated Streptomyces zhaozhouensis subsp. mycale subsp. nov. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:124-137. [PMID: 30542952 DOI: 10.1007/s10126-018-9866-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
A sponge-associated actinomycete (strain MCCB267) was isolated from a marine sponge Mycale sp. collected in the Indian Ocean off the Southeast coast of India. Phylogenetic studies of this strain using 16S rRNA gene sequencing showed high sequence similarity to Streptomyces zhaozhouensis. However, strain MCCB267 showed distinct physiological and biochemical characteristic features and was thus designated as S. zhaozhouensis subsp. mycale. subsp. nov. A cytotoxicity-guided fractionation of the crude ethyl acetate extract of strain MCCB267 culture medium yielded four pure compounds belonging to the polycyclic tetramate macrolactam (PTM) family of natural products: ikarugamycin (IK) (1), clifednamide A (CF) (2), 30-oxo-28-N-methylikarugamycin (OI) (3), and 28-N-methylikarugamycin (MI) (4). The four compounds exhibited promising cytotoxic activity against NCI-H460 lung carcinoma cells in vitro, by inducing cell death via apoptosis. Flow cytometric analysis revealed that 1, 3, and 4 induced cell cycle arrest during G1 phase in the NCI-H460 cell line, whereas 2 induced cell arrest in the S phase. A concentration-dependent accumulation of cells in the sub-G1 phase was also detected upon treatment of the cancer cell line with compounds 1-4. The in vitro cytotoxicity studies were supported by molecular docking and molecular dynamic simulation analyses. An in silico study revealed that the PTMs can bind to the minor groove of DNA and subsequently induce the apoptotic stimuli leading to cell death. The characterization of the isolated actinomycete, the study of the mode of action of the four PTMs, 1-4, and the molecular docking and molecular dynamic simulations analyses are herein described.
Collapse
Affiliation(s)
- M Dhaneesha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682 016, India
| | - O Hasin
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - K C Sivakumar
- Bioinformatics Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - R Ravinesh
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315211, China
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - S Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - T P Sajeevan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682 016, India.
| |
Collapse
|
30
|
Tang B, Laborda P, Sun C, Xu G, Zhao Y, Liu F. Improving the production of a novel antifungal alteramide B in Lysobacter enzymogenes OH11 by strengthening metabolic flux and precursor supply. BIORESOURCE TECHNOLOGY 2019; 273:196-202. [PMID: 30447620 DOI: 10.1016/j.biortech.2018.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Lysobacter enzymogenes OH11 is currently considered to be a novel biocontrol agent for various plant fungi diseases. At present, only heat-stable antifungal factor (HSAF) has been isolated and identified in culture, although other active compounds also showed antifungal activity. In the present study, a novel active compound, alteramide B (ATB), which exhibits broad-spectrum antagonistic activity against phytopathogenic fungi and oomycetes, was isolated. The genes responsible for ATB biosynthesis were also determined. In addition, a strain producing ATB with minimal HSAF production was successfully generated by redirecting metabolic flux, namely L. enzymogenes OH57. Furthermore, ATB production increased to 893.32 ± 15.57 mg/L through medium optimization and precursor supply strategy, which was 24.36-fold higher than that of 10% tryptic soy broth (36.67 ± 1.63 mg/L). Taken together, this study indicates ATB has great development value as a biopesticide because of its bioactivity and high production.
Collapse
Affiliation(s)
- Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pedro Laborda
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cheng Sun
- School of Medicine, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
31
|
Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive Secondary Metabolites from Octocoral-Associated Microbes-New Chances for Blue Growth. Mar Drugs 2018; 16:E485. [PMID: 30518125 PMCID: PMC6316421 DOI: 10.3390/md16120485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Octocorals (Cnidaria, Anthozoa Octocorallia) are magnificent repositories of natural products with fascinating and unusual chemical structures and bioactivities of interest to medicine and biotechnology. However, mechanistic understanding of the contribution of microbial symbionts to the chemical diversity of octocorals is yet to be achieved. This review inventories the natural products so-far described for octocoral-derived bacteria and fungi, uncovering a true chemical arsenal of terpenes, steroids, alkaloids, and polyketides with antibacterial, antifungal, antiviral, antifouling, anticancer, anti-inflammatory, and antimalarial activities of enormous potential for blue growth. Genome mining of 15 bacterial associates (spanning 12 genera) cultivated from Eunicella spp. resulted in the identification of 440 putative and classifiable secondary metabolite biosynthetic gene clusters (BGCs), encompassing varied terpene-, polyketide-, bacteriocin-, and nonribosomal peptide-synthase BGCs. This points towards a widespread yet uncharted capacity of octocoral-associated bacteria to synthetize a broad range of natural products. However, to extend our knowledge and foster the near-future laboratory production of bioactive compounds from (cultivatable and currently uncultivatable) octocoral symbionts, optimal blending between targeted metagenomics, DNA recombinant technologies, improved symbiont cultivation, functional genomics, and analytical chemistry are required. Such a multidisciplinary undertaking is key to achieving a sustainable response to the urgent industrial demand for novel drugs and enzyme varieties.
Collapse
Affiliation(s)
- Inês Raimundo
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Sandra G Silva
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| |
Collapse
|
32
|
Apoptotic role of marine sponge symbiont Bacillus subtilis NMK17 through the activation of caspase-3 in human breast cancer cell line. Mol Biol Rep 2018; 45:2641-2651. [PMID: 30414102 DOI: 10.1007/s11033-018-4434-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to evaluate the diverse potential biological activity of partially purified crude extract (PPCEBS) of marine Bacillus subtilis NMK17 associated with marine sponge Clathria frondifera. Symbionts were isolated from a marine sponge, only the potential strain which exhibited apoptosis was sequenced using 16S rRNA and extract of the active strain was subjected to purification using HPLC. The potential pro-apoptotic role of PPCEBS was investigated in MCF-7 human breast cancer cell line for cytotoxicity by MTT assay, which showed dose-dependent cytotoxicity on 24 h of exposure. The apoptotic findings demonstrated that PPCEBS significantly induces apoptosis, which was characterised by apoptotic morphological changes. Further, an increased expression of the Caspase 3 and Bax whereas decreased Bcl-2 was confirmed by immunofluorescence and western blotting analysis in MCF-7 cell line, which revealed that PPCEBS has potent apoptosis-inducing property. Added to the desirable apoptotic activity, PPCEBS exhibited excellent antibacterial and antioxidant activities too. The pharmacological effect of the marine sponge-associated bacteria from Gulf of Mannar India needs further attention in discovering new bioactive compounds. Our results suggested that the compounds present in the PPCEBS in marine bacterial B. subtilis NMK17 could be candidates for developing an apoptosis-specific drug with minimal toxicity. This study indicated that marine sponge-associated bacteria could be a good source to find the cytotoxic metabolites which would induce apoptosis and cause cancer cell death. Also, this study explores that marine natural products as a potential source of pharmaceuticals.
Collapse
|
33
|
Ueoka R, Bhushan A, Probst SI, Bray WM, Lokey RS, Linington RG, Piel J. Genome-Based Identification of a Plant-Associated Marine Bacterium as a Rich Natural Product Source. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reiko Ueoka
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Agneya Bhushan
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Silke I. Probst
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Walter M. Bray
- Chemistry & Biochemistry Department; University of California Santa Cruz; 1156 High Street 95064 Santa Cruz California USA
| | - R. Scott Lokey
- Chemistry & Biochemistry Department; University of California Santa Cruz; 1156 High Street 95064 Santa Cruz California USA
| | - Roger G. Linington
- Department of Chemistry; Simon Fraser University; 8888 University Drive Bumaby BC V5A 1S6 Canada
| | - Jörn Piel
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| |
Collapse
|
34
|
Ueoka R, Bhushan A, Probst SI, Bray WM, Lokey RS, Linington RG, Piel J. Genome-Based Identification of a Plant-Associated Marine Bacterium as a Rich Natural Product Source. Angew Chem Int Ed Engl 2018; 57:14519-14523. [PMID: 30025185 DOI: 10.1002/anie.201805673] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/12/2018] [Indexed: 01/14/2023]
Abstract
The large number of sequenced bacterial genomes provides the opportunity to bioinformatically identify rich natural product sources among previously neglected microbial groups. Testing this discovery strategy, unusually high biosynthetic potential was suggested for the Oceanospirillales member Gynuella sunshinyii, a Gram-negative marine bacterium from the rhizosphere of the halophilic plant Carex scabrifolia. Its genome contains numerous unusual biosynthetic gene clusters for diverse types of metabolites. Genome-guided isolation yielded representatives of four different natural product classes, of which only alteramide A was known. Cytotoxic lacunalides were identified as products of a giant trans-acyltransferase polyketide synthase gene cluster, one of six present in this strain. Cytological profiling against HeLa cells suggested that lacunalide A disrupts CDK signaling in the cell cycle. In addition, chemical studies on model compounds were conducted, suggesting the structurally unusual ergoynes as products of a conjugated diyne-thiourea cyclization reaction.
Collapse
Affiliation(s)
- Reiko Ueoka
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Agneya Bhushan
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Silke I Probst
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Walter M Bray
- Chemistry & Biochemistry Department, University of California Santa Cruz, 1156 High Street, 95064, Santa Cruz, California, USA
| | - R Scott Lokey
- Chemistry & Biochemistry Department, University of California Santa Cruz, 1156 High Street, 95064, Santa Cruz, California, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Bumaby, BC, V5A 1S6, Canada
| | - Jörn Piel
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| |
Collapse
|
35
|
Paulus C, Rebets Y, Zapp J, Rückert C, Kalinowski J, Luzhetskyy A. New Alpiniamides From Streptomyces sp. IB2014/011-12 Assembled by an Unusual Hybrid Non-ribosomal Peptide Synthetase Trans-AT Polyketide Synthase Enzyme. Front Microbiol 2018; 9:1959. [PMID: 30186270 PMCID: PMC6113372 DOI: 10.3389/fmicb.2018.01959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
The environment of Lake Baikal is a well-known source of microbial diversity. The strain Streptomyces sp. IB2014/011-12, isolated from samples collected at Lake Baikal, was found to exhibit potent activity against Gram-positive bacteria. Here, we report isolation and characterization of linear polyketide alpiniamide A (1) and its new derivatives B-D (2-5). The structures of alpiniamides A-D were established and their relative configuration was determined by combination of partial Murata's method and ROESY experiment. The absolute configuration of alpiniamide A was established through Mosher's method. The gene cluster, responsible for the biosynthesis of alpiniamides (alp) has been identified by genome mining and gene deletion experiments. The successful expression of the cloned alp gene cluster in a heterologous host supports these findings. Analysis of the architecture of the alp gene cluster and the feeding of labeled precursors elucidated the alpiniamide biosynthetic pathway. The biosynthesis of alpiniamides is an example of a rather simple polyketide assembly line generating unusual chemical diversity through the combination of domain/module skipping and double bond migration events.
Collapse
Affiliation(s)
- Constanze Paulus
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Department for Pharmaceutical Biotechnology, University of Saarland, Saarbrücken, Germany
| | - Yuriy Rebets
- Department for Pharmaceutical Biotechnology, University of Saarland, Saarbrücken, Germany
| | - Josef Zapp
- Department for Pharmaceutical Biotechnology, University of Saarland, Saarbrücken, Germany
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Department for Pharmaceutical Biotechnology, University of Saarland, Saarbrücken, Germany
| |
Collapse
|
36
|
Mao D, Okada BK, Wu Y, Xu F, Seyedsayamdost MR. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr Opin Microbiol 2018; 45:156-163. [PMID: 29883774 DOI: 10.1016/j.mib.2018.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Dainan Mao
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Yihan Wu
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Fei Xu
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
37
|
Liu Y, Wang H, Song R, Chen J, Li T, Li Y, Du L, Shen Y. Targeted Discovery and Combinatorial Biosynthesis of Polycyclic Tetramate Macrolactam Combamides A–E. Org Lett 2018; 20:3504-3508. [DOI: 10.1021/acs.orglett.8b01285] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yan Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Rentai Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Jining Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Tianhong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Liangcheng Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
- Department of Chemistry, University of Nebraska Lincoln, Lincoln, Nebraska 68588, United States
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
38
|
Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. Biosynthesis of the Polycyclic System in the Antifungal HSAF and Analogues from
Lysobacter enzymogenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yaoyao Li
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Yujie Jiao
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Shanren Li
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Liangcheng Du
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| |
Collapse
|
39
|
Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. Biosynthesis of the Polycyclic System in the Antifungal HSAF and Analogues from Lysobacter enzymogenes. Angew Chem Int Ed Engl 2018; 57:6221-6225. [PMID: 29573092 DOI: 10.1002/anie.201802488] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/05/2023]
Abstract
The biocontrol agent Lysobacter enzymogenes produces polycyclic tetramate macrolactams (PoTeMs), including the antifungal HSAF. To elucidate the biosynthesis of the cyclic systems, we identified eleven HSAF precursors/analogues with zero, one, two, or three rings through heterologous expression of the HSAF gene cluster. A series of combinatorial gene expression and deletion experiments showed that OX3 is the "gatekeeper" responsible for the formation of the first 5-membered ring from lysobacterene A, OX1 and OX2 are responsible for formation of the second ring but with different selectivity, and OX4 is responsible for formation of the 6-membered ring. In vitro experiments showed that OX4 is an NADPH-dependent enzyme that catalyzes the reductive cyclization of 3-dehydroxy alteramide C to form 3-dehydroxy HSAF. Thus, the multiplicity of OX genes is the basis for the structural diversity of the HSAF family, which is the only characterized PoTeM cluster that involves four redox enzymes in the formation of the cyclic system.
Collapse
Affiliation(s)
- Yaoyao Li
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Yujie Jiao
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Shanren Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
40
|
Sarmiento-Vizcaíno A, Espadas J, Martín J, Braña AF, Reyes F, García LA, Blanco G. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products. Front Microbiol 2018; 9:773. [PMID: 29740412 PMCID: PMC5924784 DOI: 10.3389/fmicb.2018.00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Julia Espadas
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Luis A García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería Química, Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
41
|
Quezada M, Licona-Cassani C, Cruz-Morales P, Salim AA, Marcellin E, Capon RJ, Barona-Gómez F. Diverse Cone-Snail Species Harbor Closely Related Streptomyces Species with Conserved Chemical and Genetic Profiles, Including Polycyclic Tetramic Acid Macrolactams. Front Microbiol 2017; 8:2305. [PMID: 29225593 PMCID: PMC5705629 DOI: 10.3389/fmicb.2017.02305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022] Open
Abstract
Streptomyces are Gram-positive bacteria that occupy diverse ecological niches including host-associations with animals and plants. Members of this genus are known for their overwhelming repertoire of natural products, which has been exploited for almost a century as a source of medicines and agrochemicals. Notwithstanding intense scientific and commercial interest in Streptomyces natural products, surprisingly little is known of the intra- and/or inter-species ecological roles played by these metabolites. In this report we describe the chemical structures, biological properties, and biosynthetic relationships between natural products produced by Streptomyces isolated from internal tissues of predatory Conus snails, collected from the Great Barrier Reef, Australia. Using chromatographic, spectroscopic and bioassays methodology, we demonstrate that Streptomyces isolated from five different Conus species produce identical chemical and antifungal profiles - comprising a suite of polycyclic tetramic acid macrolactams (PTMs). To investigate possible ecological (and evolutionary) relationships we used genome analyses to reveal a close taxonomic relationship with other sponge-derived and free-living PTM producing Streptomyces (i.e., Streptomyces albus). In-depth phylogenomic analysis of PTM biosynthetic gene clusters indicated PTM structure diversity was governed by a small repertoire of genetic elements, including discrete gene acquisition events involving dehydrogenases. Overall, our study shows a Streptomyces-Conus ecological relationship that is concomitant with specific PTM chemical profiles. We provide an evolutionary framework to explain this relationship, driven by anti-fungal properties that protect Conus snails from fungal pathogens.
Collapse
Affiliation(s)
- Michelle Quezada
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Cuauhtemoc Licona-Cassani
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Angela A. Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| |
Collapse
|
42
|
Cárdenas A, Neave MJ, Haroon MF, Pogoreutz C, Rädecker N, Wild C, Gärdes A, Voolstra CR. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME JOURNAL 2017; 12:59-76. [PMID: 28895945 PMCID: PMC5739002 DOI: 10.1038/ismej.2017.142] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.
Collapse
Affiliation(s)
- Anny Cárdenas
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany.,Max Plank Institute for Marine Microbiology, Bremen, Germany.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthew J Neave
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohamed Fauzi Haroon
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Claudia Pogoreutz
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Christian Wild
- Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Astrid Gärdes
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
43
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
44
|
Sonnenschein EC, Stierhof M, Goralczyk S, Vabre FM, Pellissier L, Hanssen KØ, de la Cruz M, Díaz C, de Witte P, Copmans D, Andersen JH, Hansen E, Kristoffersen V, Tormo JR, Ebel R, Milne BF, Deng H, Gram L, Jaspars M, Tabudravu JN. Pseudochelin A, a siderophore of Pseudoalteromonas piscicida S2040. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms. Mar Drugs 2017; 15:md15030068. [PMID: 28287431 PMCID: PMC5367025 DOI: 10.3390/md15030068] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence indicates that marine sponge-derived microbes possess the potential ability to make prolific natural products with therapeutic effects. This review for the first time provides a comprehensive overview of new cytotoxic agents from these marine microbes over the last 62 years from 1955 to 2016, which are assorted into seven types: terpenes, alkaloids, peptides, aromatics, lactones, steroids, and miscellaneous compounds.
Collapse
|
46
|
Odhiambo BO, Xu G, Qian G, Liu F. Evidence of an Unidentified Extracellular Heat-Stable Factor Produced by Lysobacter enzymogenes (OH11) that Degrade Fusarium graminearum PH1 Hyphae. Curr Microbiol 2017; 74:437-448. [PMID: 28213660 DOI: 10.1007/s00284-017-1206-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/25/2017] [Indexed: 11/26/2022]
Abstract
Lysobacter enzymogenes OH11 produces heat-stable antifungal factor (HSAF) and lytic enzymes possessing antifungal activity. This study bio-prospected for other potential antifungal factors besides those above. The cells and extracellular metabolites of L. enzymogenes OH11 and the mutants ΔchiA, ΔchiB, ΔchiC, Δclp, Δpks, and ΔpilA were examined for antifungal activity against Fusarium graminearum PH1, the causal agent of Fusarium head blight (FHB). Results evidenced that OH11 produces an unidentified extracellular heat-stable degrading metabolite (HSDM) that exhibit degrading activity on F. graminearum PH1 chitinous hyphae. Interestingly, both heat-treated and non-heat-treated extracellular metabolites of OH11 mutants exhibited hyphae-degrading activity against F. graminearum PH1. Enzyme activity detection of heat-treated metabolites ruled out the possibility of enzyme degradation activity. Remarkably, the PKS-NRPS-deficient mutant Δpks cannot produce HSAF or analogues, yet its metabolites exhibited hyphae-degrading activity. HPLC analysis confirmed no HSAF production by Δpks. Δclp lacks hyphae-degrading ability. Therefore, clp regulates HSDM and extracellular lytic enzymes production in L. enzymogenes OH11. ΔpilA had impaired surface cell motility and significantly reduced antagonistic properties. ΔchiA, ΔchiB, and ΔchiC retained hyphae-degrading ability, despite having reduced abilities to produce chitinase enzymes. Ultimately, L. enzymogenes OH11 can produce other unidentified HSDM independent of the PKS-NRPS genes. This suggests HSAF and lytic enzymes production are a fraction of the antifungal mechanisms in OH11. Characterization of HSDM, determination of its biosynthetic gene cluster and understanding its mode of action will provide new leads in the search for effective drugs for FHB management.
Collapse
Affiliation(s)
| | - Gaoge Xu
- College of Plant Protection Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoliang Qian
- College of Plant Protection Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengquan Liu
- College of Plant Protection Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
47
|
Kobayashi J. Search for New Bioactive Marine Natural Products and Application to Drug Development. Chem Pharm Bull (Tokyo) 2017; 64:1079-83. [PMID: 27477644 DOI: 10.1248/cpb.c16-00281] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural products are well recognized as an important source of lead compounds in drug development. During the past >30 years, we have discovered >1000 novel bioactive natural products from Okinawan marine organisms (sponges, tunicates, cone shells, etc.) and microorganisms (fungi, bacteria, dinoflagellates, etc.). Some of them are used as bioprobes useful for basic studies of life sciences, while others are expected to be candidates of drug leads.
Collapse
|
48
|
Greunke C, Glöckle A, Antosch J, Gulder TAM. Biokatalytische Totalsynthese von Ikarugamycin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Greunke
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| | - Anna Glöckle
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| | - Janine Antosch
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias A. M. Gulder
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
49
|
Greunke C, Glöckle A, Antosch J, Gulder TAM. Biocatalytic Total Synthesis of Ikarugamycin. Angew Chem Int Ed Engl 2017; 56:4351-4355. [DOI: 10.1002/anie.201611063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Christian Greunke
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| | - Anna Glöckle
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| | - Janine Antosch
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
50
|
Saha S, Zhang W, Zhang G, Zhu Y, Chen Y, Liu W, Yuan C, Zhang Q, Zhang H, Zhang L, Zhang W, Zhang C. Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams. Chem Sci 2016; 8:1607-1612. [PMID: 28451290 PMCID: PMC5361873 DOI: 10.1039/c6sc03875a] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022] Open
Abstract
We report the activation of a PTM gene cluster in marine-derived Streptomyces pactum, leading to the discovery of six new PTMs, the pactamides A-F.
Polycyclic tetramate macrolactams (PTMs) are a growing class of natural products and are derived from a hybrid polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway. PTM biosynthetic gene clusters are conserved and widely distributed in bacteria, however, most of them remain silent. Herein we report the activation of a PTM gene cluster in marine-derived Streptomyces pactum SCSIO 02999 by promoter engineering and heterologous expression, leading to the discovery of six new PTMs, pactamides A–F (11–16), with potent cytotoxic activity upon several human cancer cell lines. In vivo gene disruption experiments and in vitro biochemical assays reveal a reductive cyclization cascade for polycycle formation, with reactions sequentially generating the 5, 5/5 and 5/5/6 carbocyclic ring systems, catalysed by the phytoene dehydrogenase PtmB2, the oxidoreductase PtmB1, and the alcohol dehydrogenase PtmC, respectively. Furthermore, PtmC was demonstrated as a bifunctional cyclase for catalyzing the formation of the inner five-membered ring in ikarugamycin. This study suggests the possibility of finding more bioactive PTMs by genome mining and discloses a general mechanism for the formation of 5/5/6-type carbocyclic rings in PTMs.
Collapse
Affiliation(s)
- Subhasish Saha
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Guangtao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China , Guangdong Institute of Microbiology , 100 Central Xianlie Road , Guangzhou 510070 , China
| | - Wei Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ; .,State Key Laboratory of Applied Microbiology Southern China , South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC) , China
| | - Chengshan Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Haibo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China , Guangdong Institute of Microbiology , 100 Central Xianlie Road , Guangzhou 510070 , China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ; .,State Key Laboratory of Applied Microbiology Southern China , South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC) , China
| |
Collapse
|