1
|
Černáková L, Haluz P, Mastihuba V, Košťálová Z, Karnišová Potocká E, Mastihubová M. Enzymatic β-Mannosylation of Phenylethanoid Alcohols. Molecules 2025; 30:414. [PMID: 39860283 PMCID: PMC11767590 DOI: 10.3390/molecules30020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide. Several studies suggest an important role of the saccharidic fragment in the biological activities of PhGs, provoking demand for new glycovariants of natural PhGs. This study presents the preparation of β-mannosylated analogs of tyrosol β-D-glucopyranoside (salidroside) and hydroxytyrosol β-D-glucopyranoside (hydroxysalidroside). While the chemical synthesis of β-D-mannopyranosides is rather challenging, they can be prepared by enzymatic catalysis. We found that Novozym 188, an industrial β-glucosidase, also contains β-mannosidase and used this enzyme in the preparation of tyrosol β-D-mannopyranoside and hydroxytyrosol β-D-mannopyranoside in 12 and 16% chemical yields, respectively, by transglycosylation from β-D-mannopyranosyl-(1→4)-D-mannose. The mannosylation was chemoselective and occurred exclusively on the primary hydroxyls of tyrosol and hydroxytyrosol, and the glycosylation of phenolic moieties of the aglycons was observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.); (Z.K.)
| |
Collapse
|
2
|
Guo YF, Xu TT, Zhang GH, Dong H. Synthesis of 2-Deoxyglycosides with Exclusive β-Configuration Using 2-SAc Glycosyl Bromide Donors. Molecules 2025; 30:185. [PMID: 39795241 PMCID: PMC11721102 DOI: 10.3390/molecules30010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
In this study, we developed an indirect method for the synthesis of 2-deoxyglycosides with an exclusive β-configuration using glucosyl and galactosyl bromide donors with 2-thioacetyl (SAc) groups. The 2-SAc glucosyl and galactosyl bromide donors were easily obtained through the treatment of 1-OAc, 2-SAc glucose and galactose with HBr-CH3COOH solution, respectively. The glycosylation of such donors with acceptors under an improved Koenigs-Knorr condition resulted in glycosylation products with an exclusive β-configuration in excellent yields. The synthetic approach of 2-SAc glycosyl donors using glycals as the starting materials was also investigated. Based on these studies, the synthetic method of using 2-deoxyglycosides with an exclusive β-configuration through desulfurization will have more practical applications.
Collapse
Affiliation(s)
| | | | | | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Ministry of Education, Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
3
|
Zhou Y, Liao KS, Chen TY, Hsieh YSY, Wong CH. Effective Organotin-Mediated Regioselective Functionalization of Unprotected Carbohydrates. J Org Chem 2023. [PMID: 37167441 DOI: 10.1021/acs.joc.3c00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Regioselective functionalization of unprotected carbohydrates at a secondary OH group in the presence of primary OH groups based on the commonly used organotin-mediated reaction has been improved. We found that the preactivation of the dibutylstannylene acetal intermediate with tetrabutylammonium bromide in toluene is a key to the improved condition for the efficient, high-yielding, and regioselective tosylation, benzoylation, or benzylation of unprotected carbohydrates. The counteranion of tetrabutylammonium ion with a weak coordination ability plays a crucial role in the improved regioselective reactions. A convenient access to the intermediates of synthetic value is also demonstrated in the organotin-mediated regioselective tosylation of unprotected carbohydrates, followed by the nucleophilic inversion reaction to give sulfur-containing and azide-modified carbohydrates.
Collapse
Affiliation(s)
- Yixuan Zhou
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
| | - Yves S Y Hsieh
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Zhang X, Basuli F, Shi ZD, Shah S, Shi J, Mitchell A, Lai J, Wang Z, Hammoud DA, Swenson RE. Synthesis and Evaluation of Fluorine-18-Labeled L-Rhamnose Derivatives. Molecules 2023; 28:molecules28093773. [PMID: 37175182 PMCID: PMC10180268 DOI: 10.3390/molecules28093773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.
Collapse
Affiliation(s)
- Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Amelia Mitchell
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
5
|
Kumar M, Kumar N, Gurawa A, Kashyap S. Protecting group enabled stereocontrolled approach for rare-sugars talose/gulose via dual-ruthenium catalysis. Carbohydr Res 2023; 523:108705. [PMID: 36370626 DOI: 10.1016/j.carres.2022.108705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023]
Abstract
We herein report a convenient and highly stereocontrolled approach for rare and vital ᴅ-talo and ᴅ-gulo sugars directly from economical ᴅ-galactal through dual ruthenium-catalysis. The stereo-divergent strategy involves Ru(III)Cl3-catalyzed Ferrier glycosylation of ᴅ-galactal to give 2,3-unsaturated ᴅ-galactopyranoside, further selective functionalization of C-4 and C-6 position with diverse protecting groups and dihydroxylation with Ru(VIII)O4 generated in situ providing access to talo/gulo isomers. The α-anomeric stereoselectivity and syn-diastereoselectivity in glycosylation-dihydroxylation steps have been predominantly achieved by judicious selection of stereoelectronically diverse protecting groups. The synthetic utility of the dual-ruthenium catalysis was demonstrated for efficiently assembling the ᴅ-talose and/or ᴅ-gulose sugars in natural products and bioactive scaffolds.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India.
| |
Collapse
|
6
|
Luo T, Zhang Q, Guo YF, Pei ZC, Dong H. Efficient Preparation of 2‐SAc‐Glycosyl Donors and Investigation of Their Application in Synthesis of 2‐Deoxyglycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Luo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| | - Qiang Zhang
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Yang-Fan Guo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Zhi-Chao Pei
- Northwest Agriculture and Forestry University College of Chemistry and Pharmacy CHINA
| | - Hai Dong
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| |
Collapse
|
7
|
Zhou Y, Liao KS, Li ST, Wu CY. Facile and Scalable Route to Access Rare Deoxy Amino Sugars for Nonulosonic Acid Aldolase Biosynthesis. Front Chem 2022; 10:865026. [PMID: 35783215 PMCID: PMC9245050 DOI: 10.3389/fchem.2022.865026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/27/2022] [Indexed: 01/16/2023] Open
Abstract
We presented a facile and scalable route for the synthesis of di-azido sugars via one-pot double inversion of the mono-benzoyl sugars by TBAN3 and studied the dependency pattern between solvent and protecting groups as well as the configuration of the neighboring and leaving groups. Moreover, we developed a chemical synthetic strategy for pseudaminic acid precursors (11 steps in 49%). Furthermore, we discussed the configuration of nonulosonic acid precursors for specificity of PseI and PmNanA enzymatic synthesis, permitting us to synthesize new nonulosonic acid derivatives for accessing Pse isomers.
Collapse
|
8
|
Kooner AS, Diaz S, Yu H, Santra A, Varki A, Chen X. Chemoenzymatic Synthesis of Sialosides Containing 7- N- or 7,9-Di- N-acetyl Sialic Acid as Stable O-Acetyl Analogues for Probing Sialic Acid-Binding Proteins. J Org Chem 2021; 86:14381-14397. [PMID: 34636559 DOI: 10.1021/acs.joc.1c01091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel chemoenzymatic synthon strategy has been developed to construct a comprehensive library of α2-3- and α2-6-linked sialosides containing 7-N- or 7,9-di-N-acetyl sialic acid, the stable analogue of naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl-sialic acid. Diazido and triazido-mannose derivatives that were readily synthesized chemically from inexpensive galactose were shown to be effective chemoenzymatic synthons. Together with bacterial sialoside biosynthetic enzymes with remarkable substrate promiscuity, they were successfully used in one-pot multienzyme (OPME) sialylation systems for highly efficient synthesis of sialosides containing multiple azido groups. Conversion of the azido groups to N-acetyl groups generated the desired sialosides. The hydrophobic and UV-detectable benzyloxycarbonyl (Cbz) group introduced in the synthetic acceptors of sialyltransferases was used as a removable protecting group for the propylamine aglycon of the target sialosides. The resulting N-acetyl sialosides were novel stable probes for sialic acid-binding proteins such as plant lectin MAL II, which bond strongly to sialyl T antigens with or without an N-acetyl at C7 or at both C7 and C9 in the sialic acid.
Collapse
Affiliation(s)
- Anoopjit Singh Kooner
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Sandra Diaz
- Department of Medicine, University of California, San Diego, California 92093, United States.,Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California 92093, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California 92093, United States.,Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
9
|
Synthesis of the pentasaccharide repeating unit of the O-antigenic polysaccharide of enteroaggregative Escherichia coli O44:H18 strain. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Cheng WC, You TY, Teo ZZ, Sayyad AA, Maharana J, Guo CW, Liang PH, Lin CS, Meng FC. Further Insights on Structural Modifications of Muramyl Dipeptides to Study the Human NOD2 Stimulating Activity. Chem Asian J 2020; 15:3836-3844. [PMID: 32975372 DOI: 10.1002/asia.202001003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Indexed: 01/02/2023]
Abstract
A series of muramyl dipeptide (MDP) analogues with structural modifications at the C4 position of MurNAc and on the d-iso-glutamine (isoGln) residue of the peptide part were synthesized. The C4-diversification of MurNAc was conveniently achieved by using CuAAC click strategy to conjugate an azido muramyl dipeptide precursor with structurally diverse alkynes. d-Glutamic acid (Glu), replaced with isoGln, was applied for the structural diversity through esterification or amidation of the carboxylic acid. In total, 26 MDP analogues were synthesized and bio-evaluated for the study of human NOD2 stimulation activity in the innate immune response. Interestingly, MDP derivatives with an ester moiety are found to be more potent than reference compound MDP itself or MDP analogues containing an amide moiety. Among the varied lengths of the alkyl chain in ester derivatives, the MDP analogue bearing the d-glutamate dodecyl (C12) ester moiety showed the best NOD2 stimulation potency.
Collapse
Affiliation(s)
- Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan.,Department of Chemistry, National Cheng-Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi, 600, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Ting-Yun You
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan
| | - Zhen-Zhuo Teo
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan.,School of Pharmacy, National Taiwan University, No. 17, Xuzhou Road, Taipei, 106, Taiwan
| | - Ashik A Sayyad
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan
| | - Jitendra Maharana
- Institute of Biological Chemistry Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan.,Taiwan International Graduate Program (TIGP), Chemical biology and molecular Biophysics (CBMB), Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., Hsinchu, 300, Taiwan
| | - Chih-Wei Guo
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, National Taiwan University, No. 17, Xuzhou Road, Taipei, 106, Taiwan
| | - Chung-Shun Lin
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan
| | - Fan-Chun Meng
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nangang District, Taipei, 115, Taiwan
| |
Collapse
|
11
|
Luo T, Zhang Y, Xi J, Lu Y, Dong H. Improved Synthesis of Sulfur-Containing Glycosides by Suppressing Thioacetyl Migration. Front Chem 2020; 8:319. [PMID: 32391332 PMCID: PMC7191076 DOI: 10.3389/fchem.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Complex mixtures were often observed when we attempted to synthesize 4-thio- and 2,4-dithio-glycoside derivatives by double parallel and double serial inversion, thus leading to no or low yields of target products. The reason was later found to be that many unexpected side products were produced when a nucleophile substituted the leaving group on the substrate containing the thioacetate group. We hypothesized that thioacetyl migration is prone to occur due to the labile thioacetate group even under weak basic conditions caused by the nucleophile, leading to this result. Therefore, we managed to inhibit the generation of thiol groups from thioacetate groups by the addition of an appropriate amount of conjugate acid/anhydride, successfully improving the synthesis of 4-thio- and 2,4-dithio-glycoside derivatives. The target products which were previously difficult to synthesize, were herein obtained in relatively high yields. Finally, 4-deoxy- and 2,4-dideoxy-glycoside derivatives were efficiently synthesized through the removal of thioacetate groups under UV light, starting from 4-thio- and 2,4-dithio-glycoside derivatives.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafeng Xi
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Abstract
Chemical synthesis of trehalose glycolipids such as DAT, TDM, SL-1, SL-3, and Ac2SGL from MTb, emmyguyacins from fungi, succinoyl trehalose from rhodococcus, and maradolipids from worms, as well as mycobacterial oligosaccharides is reviewed.
Collapse
Affiliation(s)
- Santanu Jana
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | |
Collapse
|
13
|
Lv J, Luo T, Zou D, Dong H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Lv
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Tao Luo
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 450052 Zhengzhou P. R. China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| |
Collapse
|
14
|
Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nat Commun 2019; 10:2222. [PMID: 31110237 PMCID: PMC6527550 DOI: 10.1038/s41467-019-09691-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 11/08/2022] Open
Abstract
Substrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl β-d-glucoside and methyl 6-thio-β-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-β-sophoroside attaches nearby. Structural analyses and multi-scale molecular modelling of nanoscale reactant movements in HvExoI reveal that upon productive binding of incoming substrates, the glucose product modifies its binding patterns and evokes the formation of a transient lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic round. This path enables substrate-product assisted processive catalysis through multiple hydrolytic events without HvExoI losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases. Enzyme substrates and products often diffuse too rapidly to assess the catalytic implications of these movements. Here, the authors characterise the structural basis of product and substrate diffusion for an exo-hydrolase and discover a substrate-product assisted processive catalytic mechanism.
Collapse
|
15
|
Emmadi M, Kulkarni SS. Synthesis of Rare Deoxy Amino Sugar Building Blocks Enabled the Total Synthesis of a Polysaccharide Repeating Unit Analogue from the LPS of Psychrobacter cryohalolentis K5T. J Org Chem 2018; 83:14323-14337. [DOI: 10.1021/acs.joc.8b02037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Madhu Emmadi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
16
|
Jana S, Sarpe VA, Kulkarni SS. Total Synthesis of Emmyguyacins A and B, Potential Fusion Inhibitors of Influenza Virus. Org Lett 2018; 20:6938-6942. [DOI: 10.1021/acs.orglett.8b03073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vikram A. Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
17
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
18
|
Willén D, Bengtsson D, Clementson S, Tykesson E, Manner S, Ellervik U. Synthesis of Double-Modified Xyloside Analogues for Probing the β4GalT7 Active Site. J Org Chem 2018; 83:1259-1277. [DOI: 10.1021/acs.joc.7b02809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Willén
- Centre for Analysis and Synthesis,
Centre for Chemistry and Chemical Engineering, Lund University, P.O.
Box 124, SE-221 00 Lund, Sweden
| | - Dennis Bengtsson
- Centre for Analysis and Synthesis,
Centre for Chemistry and Chemical Engineering, Lund University, P.O.
Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Clementson
- Centre for Analysis and Synthesis,
Centre for Chemistry and Chemical Engineering, Lund University, P.O.
Box 124, SE-221 00 Lund, Sweden
| | - Emil Tykesson
- Centre for Analysis and Synthesis,
Centre for Chemistry and Chemical Engineering, Lund University, P.O.
Box 124, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis,
Centre for Chemistry and Chemical Engineering, Lund University, P.O.
Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis,
Centre for Chemistry and Chemical Engineering, Lund University, P.O.
Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
19
|
Song W, Cai J, Zou X, Wang X, Hu J, Yin J. Applications of controlled inversion strategies in carbohydrate synthesis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Elgland M, Nordeman P, Fyrner T, Antoni G, Nilsson KPR, Konradsson P. β-Configured clickable [18F]FDGs as novel 18F-fluoroglycosylation tools for PET. NEW J CHEM 2017. [DOI: 10.1039/c7nj00716g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a chemoselective 18F-fluoroglycosylation method for PET imaging that employ β-configured [18F]FDGs as prosthetic groups for 18F-labeling using CuAAC click chemistry.
Collapse
Affiliation(s)
- M. Elgland
- Linköpings University
- IFM – Department of Biology
- Chemistry & Physics
- SE-581 83 LINKÖPING
- Sweden
| | - P. Nordeman
- Department of Medicinal Chemistry
- Uppsala University
- Uppsala SE-75123
- Sweden
| | - T. Fyrner
- Linköpings University
- IFM – Department of Biology
- Chemistry & Physics
- SE-581 83 LINKÖPING
- Sweden
| | - G. Antoni
- Department of Medicinal Chemistry
- Uppsala University
- Uppsala SE-75123
- Sweden
| | - K. Peter R. Nilsson
- Linköpings University
- IFM – Department of Biology
- Chemistry & Physics
- SE-581 83 LINKÖPING
- Sweden
| | - P. Konradsson
- Linköpings University
- IFM – Department of Biology
- Chemistry & Physics
- SE-581 83 LINKÖPING
- Sweden
| |
Collapse
|
21
|
Namito Y, Michigami K, Nagahashi T, Matsubara R, Hayashi M. Selective Synthesis of Partially Protected d-Talopyranosides and d-Gulopyranosides via Catalytic Asymmetric Dihydroxylation: Multiplier Effects of Substrate Control and Catalyst Control. Org Lett 2016; 18:6058-6061. [PMID: 27934352 DOI: 10.1021/acs.orglett.6b03000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly selective syntheses of d-talopyranosides and d-gulopyranosides have been achieved by utilizing the multiplier effects of substrate control and catalyst control. Through the combination of an O-benzoyl-protected substrate and the AD-mix-β system, the d-talopyranoside was obtained in a ratio of 96:4. In contrast, the d-gulopyranoside was obtained in a ratio of 3:97 through the use of an O-tert-butyldimethylsilyl-protected substrate and AD-mix-α.
Collapse
Affiliation(s)
- Yoichi Namito
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe 657-8501, Japan
| | - Kyosuke Michigami
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe 657-8501, Japan
| | - Takaaki Nagahashi
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe 657-8501, Japan
| |
Collapse
|
22
|
Ochiai H, Niwa T, Hosoya T. Stereoinversion of Stereocongested Carbocyclic Alcohols via Triflylation and Subsequent Treatment with Aqueous N,N-Dimethylformamide. Org Lett 2016; 18:5982-5985. [DOI: 10.1021/acs.orglett.6b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hidenori Ochiai
- Chemical Biology Team, Division
of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takashi Niwa
- Chemical Biology Team, Division
of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Chemical Biology Team, Division
of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
23
|
Sanapala SR, Kulkarni SS. Expedient Route To Access Rare Deoxy Amino l-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates. J Am Chem Soc 2016; 138:4938-47. [DOI: 10.1021/jacs.6b01823] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Someswara Rao Sanapala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Peterson K, Weymouth-Wilson A, Nilsson UJ. Aryl Sulfonates in Inversions at Secondary Carbohydrate Hydroxyl Groups: A New and Improved Route Toward 3-Azido-3-deoxy-β-d-galactopyranosides. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1105248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Alex Weymouth-Wilson
- Dextra Laboratories Ltd., Science & Technology Centre, Earley Gate, Whiteknights Road, Reading, RG6 6BZ, UK
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Lund University, SE 22100, Lund, Sweden
| |
Collapse
|
25
|
Synthesis and binding affinity analysis of positional thiol analogs of mannopyranose for the elucidation of sulfur in different position. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Zhou Y, Zhang X, Ren B, Wu B, Pei Z, Dong H. S-Acetyl migration in synthesis of sulfur-containing glycosides. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Ren B, Rahm M, Zhang X, Zhou Y, Dong H. Regioselective Acetylation of Diols and Polyols by Acetate Catalysis: Mechanism and Application. J Org Chem 2014; 79:8134-42. [DOI: 10.1021/jo501343x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bo Ren
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Martin Rahm
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca 14853, New York, United States
- Department
of Applied Physical Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Xiaoling Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Yixuan Zhou
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| |
Collapse
|
28
|
Sanapala SR, Kulkarni SS. Chemical synthesis of asparagine-linked archaeal N-glycan from Methanothermus fervidus. Chemistry 2014; 20:3578-83. [PMID: 24616211 DOI: 10.1002/chem.201304950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/02/2014] [Indexed: 12/12/2022]
Abstract
Several N-linked glycoproteins have been identified in archaea and there is growing evidence that the N-glycan is involved in survival and functioning of archaea in extreme conditions. Chemical synthesis of the archaeal N-glycans represents a crucial step towards understanding the putative function of protein glycosylation in archaea. Herein the first total synthesis of the archaeal L-asparagine linked hexasaccharide from Methanothermus fervidus is reported using a highly convergent [3+3] glycosylation approach in high overall yields. The synthesis relies on efficient preparation of regioselectively protected thioglycoside building blocks for orthogonal glycosylations and late stage N-aspartylation.
Collapse
Affiliation(s)
- Someswara Rao Sanapala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India)
| | | |
Collapse
|
29
|
Ferrer Lopez A, Jacquinet JC, Lopin-Bon C. From Chondroitin Polymer to Size-Defined Hyaluronan Oligosaccharides. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Emmadi M, Kulkarni SS. Synthesis of orthogonally protected bacterial, rare-sugar and D-glycosamine building blocks. Nat Protoc 2013; 8:1870-89. [DOI: 10.1038/nprot.2013.113] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Pan XL, Zhou YX, Liu W, Liu JY, Dong H. Stereoelectronic control of cleavage of dioxolane five-membered ring on carbohydrates. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2293-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Emmadi M, Kulkarni SS. Expeditious synthesis of bacterial, rare sugar building blocks to access the prokaryotic glycome. Org Biomol Chem 2013; 11:3098-102. [DOI: 10.1039/c3ob40615f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Emmadi M, Kulkarni SS. Orthogonally protected d-galactosamine thioglycoside building blocks via highly regioselective, double serial and double parallel inversions of β-d-thiomannoside. Org Biomol Chem 2013; 11:4825-30. [DOI: 10.1039/c3ob40935j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Mukherjee S, Tripathi PN, Mandal SB. Allyloxy and Propargyloxy Group Migration: Role of Remote Group Participation in the Synthesis of 5-C-Nucleosides and Other Sugar Derivatives. Org Lett 2012; 14:4186-9. [DOI: 10.1021/ol301851q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subhrangshu Mukherjee
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Prabhash N. Tripathi
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Sukhendu B. Mandal
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
35
|
Li Y, Yin Z, Wang B, Meng XB, Li ZJ. Synthesis of orthogonally protected l-glucose, l-mannose, and l-galactose from d-glucose. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ott D, Seifert J, Prahl I, Niemietz M, Hoffman J, Guder J, Mönnich M, Unverzagt C. Modular Synthesis of Core Fucosylated N-Glycans. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Dong H, Zhou Y, Pan X, Cui F, Liu W, Liu J, Ramström O. Stereoelectronic Control in Regioselective Carbohydrate Protection. J Org Chem 2012; 77:1457-67. [DOI: 10.1021/jo202336y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Dong
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, 430074, Wuhan, P. R. China
| | - Yixuan Zhou
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, 430074, Wuhan, P. R. China
| | - Xiaoliang Pan
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Fengchao Cui
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Wei Liu
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Jingyao Liu
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Olof Ramström
- Department of
Chemistry, Royal Institute of Technology (KTH), Teknikringen 30,
S-10044, Stockholm, Sweden
| |
Collapse
|
38
|
Baba A, Yoshioka T. Complementary and Synergistic Roles in Enzyme-Catalyzed Regioselective and Complete Hydrolytic Deprotection of O-Acetylated β-d-Glucopyranosides of N-Arylacetohydroxamic Acids. J Org Chem 2012; 77:1675-84. [DOI: 10.1021/jo202123s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Akiko Baba
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264,
Japan
| | - Tadao Yoshioka
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264,
Japan
| |
Collapse
|
39
|
Öberg CT, Noresson AL, Leffler H, Nilsson UJ. Synthesis of 3-amido-3-deoxy-β-d-talopyranosides: all-cis-substituted pyranosides as lectin inhibitors. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Lichtenthaler FW. 2-Oxoglycosyl ("ulosyl") and 2-oximinoglycosyl bromides: versatile donors for the expedient assembly of oligosaccharides with β-D-mannose, β-L-rhamnose, N-acetyl-β-D-mannosamine, and N-acetyl-β-D-mannosaminuronic acid units. Chem Rev 2011; 111:5569-609. [PMID: 21751781 DOI: 10.1021/cr100444b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frieder W Lichtenthaler
- Clemens-Schöpf-Institut für Organische Chemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany.
| |
Collapse
|
41
|
Lu Z, Ding N, Zhang W, Wang P, Li Y. A convenient synthesis of the core trisaccharide of the N-glycans. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Emmadi M, Kulkarni SS. Rapid transformation of D-mannose into orthogonally protected D-glucosamine and D-galactosamine thioglycosides. J Org Chem 2011; 76:4703-9. [PMID: 21510706 DOI: 10.1021/jo200342v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An expedient protocol for synthesis of orthogonally protected 2-azido-2-deoxy-D-glucosamine and 2-azido-2-deoxy-D-galactosamine donors from D-mannose is described. Readily available phenyl β-D-thiomannoside is rapidly transformed into D-GlcN(3) thioglycosides via a highly regioselective 3-O-acylation followed by 4,6-O-benzylidenation and azide displacement of C2-OTf, which is further converted into D-GalN(3) thioglycosides through Lattrell-Dax inversion of the C4 hydroxy group and its Boc protection. The reaction sequence may be completed in 2 days and involves simple workups and minimal column chromatography.
Collapse
Affiliation(s)
- Madhu Emmadi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | | |
Collapse
|
43
|
Chen HM, Withers SG. Syntheses of p-nitrophenyl 3- and 4-thio-β-D-glycopyranosides. Carbohydr Res 2010; 345:2596-604. [PMID: 21044780 DOI: 10.1016/j.carres.2010.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
Thioglycosides have proved to be useful, enzymatically stable analogs of glycosides for structural and mechanistic studies and their synthesis is considerably simplified through the use of thioglycoligases. As part of an investigation into the use of thioglycosides as potential pharmacological chaperones, and as components of glycoproteins and glycolipids, the syntheses of p-nitrophenyl 3-thio-β-D-galactopyranoside, phenyl 1,4-dithio-β-D-glucopyranoside, p-nitrophenyl 4-thio-β-D-mannopyranoside and p-nitrophenyl 2-acetamido-2-deoxy-4-thio-β-D-mannopyranoside are described.
Collapse
Affiliation(s)
- Hong-Ming Chen
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | | |
Collapse
|
44
|
Xue JL, Cecioni S, He L, Vidal S, Praly JP. Variations on the SnCl4 and CF3CO2Ag-promoted glycosidation of sugar acetates: a direct, versatile and apparently simple method with either α or β stereocontrol. Carbohydr Res 2009; 344:1646-53. [DOI: 10.1016/j.carres.2009.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
|
45
|
Wang G, Zhang W, Lu Z, Wang P, Zhang X, Li Y. Convenient Synthesis of an N-Glycan Octasaccharide of the Bisecting Type. J Org Chem 2009; 74:2508-15. [DOI: 10.1021/jo900016j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangfa Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhichao Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiuli Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yingxia Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
46
|
Dong H, Rahm M, Brinck T, Ramström O. Supramolecular Control in Carbohydrate Epimerization: Discovery of a New Anion Host−Guest System. J Am Chem Soc 2008; 130:15270-1. [DOI: 10.1021/ja807044p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Dong
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Martin Rahm
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Tore Brinck
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|
47
|
Dong H, Pei Z, Ramström O. Supramolecular activation in triggered cascade inversion. Chem Commun (Camb) 2008:1359-61. [DOI: 10.1039/b717301f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Pei Z, Dong H, Caraballo R, Ramström O. Synthesis of Positional Thiol Analogs of β-D-Galactopyranose. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700364] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|