1
|
Willmering MM, Albert BJ, Plummer JW, Greer J, Walkup LL, Lindquist DM, Cleveland ZI. A thermally polarized, dissolved-phase 129Xe phantom for quality-control and multisite comparisons of gas-exchange imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 371:107829. [PMID: 39809025 PMCID: PMC11807756 DOI: 10.1016/j.jmr.2025.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Harmonizing and validating 129Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of 129Xe observed from human subjects in vivo and 2) has short enough T1 times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of 129Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase 129Xe phantoms yielding chemical shifts of 212.4 ppm and 193.9 ppm. By doping the solutions with iron(iii) acetylacetonate, the longitudinal relaxation time was reduced T1 = 1.2 s for both phantoms at 3 T and 7 T. There was minimal change in chemical shift (+1.58 ppm) and T1 (+1.2 %) over 1 year. In a 2D Dixon-type acquisition with 3 mm2 in-plane resolution, 129Xe dissolved-phase images yielded signal-to-noise ratios 6 and 12 for the RBC and membrane phantoms, respectively. A simple scaling of these phantoms to clinically relevant volumes of several liters would result in an SNR of 7 for the RBC phantom acquired in less than one minute. These findings demonstrate the ability to fabricate robust, quantitative, thermally polarized dissolved-phase phantoms, which will be needed to validate and harmonize gas exchange imaging in multi-site clinical trials.
Collapse
Affiliation(s)
- Matthew M Willmering
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA
| | - Brice J Albert
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Joseph W Plummer
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA
| | | | - Laura L Walkup
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Diana M Lindquist
- Department of Pediatrics, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Radiology, University of Cincinnati OH USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA.
| |
Collapse
|
2
|
Perron S, McCormack DG, Parraga G, Ouriadov A. Undersampled Diffusion-Weighted 129Xe MRI Morphometry of Airspace Enlargement: Feasibility in Chronic Obstructive Pulmonary Disease. Diagnostics (Basel) 2023; 13:diagnostics13081477. [PMID: 37189579 DOI: 10.3390/diagnostics13081477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Multi-b diffusion-weighted hyperpolarized gas MRI measures pulmonary airspace enlargement using apparent diffusion coefficients (ADC) and mean linear intercepts (Lm). Rapid single-breath acquisitions may facilitate clinical translation, and, hence, we aimed to develop single-breath three-dimensional multi-b diffusion-weighted 129Xe MRI using k-space undersampling. We evaluated multi-b (0, 12, 20, 30 s/cm2) diffusion-weighted 129Xe ADC/morphometry estimates using a fully sampled and retrospectively undersampled k-space with two acceleration-factors (AF = 2 and 3) in never-smokers and ex-smokers with chronic obstructive pulmonary disease (COPD) or alpha-one anti-trypsin deficiency (AATD). For the three sampling cases, mean ADC/Lm values were not significantly different (all p > 0.5); ADC/Lm values were significantly different for the COPD subgroup (0.08 cm2s-1/580 µm, AF = 3; all p < 0.001) as compared to never-smokers (0.05 cm2s-1/300 µm, AF = 3). For never-smokers, mean differences of 7%/7% and 10%/7% were observed between fully sampled and retrospectively undersampled (AF = 2/AF = 3) ADC and Lm values, respectively. For the COPD subgroup, mean differences of 3%/4% and 11%/10% were observed between fully sampled and retrospectively undersampled (AF = 2/AF = 3) ADC and Lm, respectively. There was no relationship between acceleration factor with ADC or Lm (p = 0.9); voxel-wise ADC/Lm measured using AF = 2 and AF = 3 were significantly and strongly related to fully-sampled values (all p < 0.0001). Multi-b diffusion-weighted 129Xe MRI is feasible using two different acceleration methods to measure pulmonary airspace enlargement using Lm and ADC in COPD participants and never-smokers.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Grace Parraga
- Robarts Research Institute, London, ON N6A 5B7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 3K7, Canada
- Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Alexei Ouriadov
- Robarts Research Institute, London, ON N6A 5B7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
3
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
4
|
Gas exchange and ventilation imaging of healthy and COPD subjects using hyperpolarized xenon-129 MRI and a 3D alveolar gas-exchange model. Eur Radiol 2022; 33:3322-3331. [PMID: 36547671 DOI: 10.1007/s00330-022-09343-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the utility of hyperpolarized xenon-129 (HPX) gas-exchange magnetic resonance imaging (MRI) and modeling in a chronic obstructive pulmonary disease (COPD) cohort in comparison to a minimal CT-diagnosed emphysema (MCTE) cohort and a healthy cohort. METHODS A total of 25 subjects were involved in this study including COPD (n = 8), MCTE (n = 3), and healthy (n = 14) subjects. The COPD subjects were scanned using HPX ventilation, gas-exchange MRI, and volumetric CT. The healthy subjects were scanned using the same HPX gas-exchange MRI protocol with 9 of them scanned twice, 3 weeks apart. The coefficient of variation (CV) was used to quantify image heterogeneities. A three-dimensional computational fluid dynamic (CFD) model of gas exchange was used to derive functional volumes of pulmonary tissue, capillaries, and veins. RESULTS The CVs of gas distributions in the images showed that there was a statistically significant difference between the COPD and healthy subjects (p < 0.0001). The functional volumes of pulmonary tissue, capillaries, and veins were significantly lower in the subjects with COPD than in the healthy subjects (p < 0.001). The functional volume of pulmonary tissue was found to be (i) statistically different between the healthy and MCTE groups (p = 0.02) and (ii) dependent on the age of the subjects in the healthy group (p = 0.0008) while their CVs (p = 0.13) were not. CONCLUSION The novel HPX gas-exchange MRI and CFD model distinguished the healthy cohort from the MCTE and COPD cohorts. The proposed technique also showed that the functional volume of pulmonary tissue decreases with aging in the healthy group. KEY POINTS • The ventilation and gas-exchange imaging with hyperpolarized xenon-129 MRI has enabled the identification of gas-exchange variation between COPD and healthy groups. • This novel technique was promising to be sensitive to minimal CT-diagnosed emphysema and age-related changes in gas-exchange parameter in a small pilot cohort.
Collapse
|
5
|
Bryden N, McHugh CT, Kelley M, Branca RT. Longitudinal nuclear spin relaxation of 129 Xe in solution and in hollow fiber membranes at low and high magnetic field strengths. Magn Reson Med 2022; 88:2005-2013. [PMID: 35726363 PMCID: PMC9420755 DOI: 10.1002/mrm.29362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To measure dissolved-phase 129 Xe T1 values at high and low magnetic fields and the field dependence of 129 Xe depolarization by hollow fiber membranes used to infuse hyperpolarized xenon in solution. METHODS Dissolved-phase T1 measurements were made at 11.7T and 2.1 mT by bubbling xenon in solution and by using a variable delay to allow spins to partially relax back to thermal equilibrium before probing their magnetization. At high field, relaxation values were compared to those obtained by using the small flip angle method. For depolarization studies, we probed the magnetization of the polarized gas diffusing through an exchange membrane module placed at different field strengths. RESULTS Total loss of polarization was observed for xenon diffusing through hollow fiber membranes at low field, while significant polarization loss (>20%) was observed at magnetic fields up to 2T. Dissolved-phase 129 Xe T1 values were found consistently shorter at 2.1 mT compared to 11.7T. In addition, both O2 and Xe gas concentrations in solution were found to significantly affect dissolved-phase 129 Xe T1 values. CONCLUSION Dissolved-phase 129 Xe measurements are feasible at low field, but to assess the feasibility of in vivo dissolved-phase imaging and spectroscopy the T1 of xenon in blood will need to be measured. Both O2 and Xe concentrations in solution are found to greatly affect dissolved-phase 129 Xe T1 values and may explain, along with RF miscalibration, the large discrepancy in previously reported results.
Collapse
Affiliation(s)
- Nicholas Bryden
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christian T McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
7
|
Plummer JW, Emami K, Dummer A, Woods JC, Walkup LL, Cleveland ZI. A semi-empirical model to optimize continuous-flow hyperpolarized 129Xe production under practical cryogenic-accumulation conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106845. [PMID: 33070086 PMCID: PMC7655637 DOI: 10.1016/j.jmr.2020.106845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 05/05/2023]
Abstract
Continuous-flow spin exchange optical pumping (SEOP) with cryogenic accumulation is a powerful technique to generate multiple, large volumes of hyperpolarized (HP) 129Xe in rapid succession. It enables a range of studies, from dark matter tracking to preclinical and clinical MRI. Multiple analytical models based on first principles atomic physics and device-specific design features have been proposed for individual processes within HP 129Xe production. However, the modeling efforts have not yet integrated all the steps involved in practical, large volume HP 129Xe production process (e.g., alkali vapor generation, continuous-flow SEOP, and cryogenic accumulation). Here, we use a simplified analytical model that couples both SEOP and cryogenic accumulation, incorporating only two system-specific empirical parameters: the longitudinal relaxation time of the polycrystalline 129Xe "snow', T1snow, generated during cryogenic accumulation, and 2) the average Rb density during active, continuous-flow polarization. By fitting the model to polarization data collected from >140 L of 129Xe polarized across a range of flow and volume conditions, the estimates for Rb density and T1snow were 1.6 ± 0.1 × 1013 cm-3 and 84 ± 5 min, respectively - each notably less than expected based on previous literature. Together, these findings indicate that 1) earlier polarization predictions were hindered by miscalculated Rb densities, and 2) polarization is not optimized by maximizing SEOP efficiency with a low concentration 129Xe, but rather by using richer 129Xe-buffer gas blends that enable faster accumulation. Accordingly, modeling and experimentation revealed the optimal fraction of 129Xe, f, in the 129Xe-buffer gas blend was ~2%. Further, if coupled with modest increases in laser power, the model predicts liter volumes of HP 129Xe with polarizations exceeding 60% could be generated routinely in only tens of minutes.
Collapse
Affiliation(s)
- Joseph W Plummer
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | | | | | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
8
|
Berthault P, Boutin C, Martineau-Corcos C, Carret G. Use of dissolved hyperpolarized species in NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:74-90. [PMID: 32883450 DOI: 10.1016/j.pnmrs.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Hyperpolarization techniques that can transiently boost nuclear spin polarization are generally carried out at low temperature - as in the case of dynamic nuclear polarization - or at high temperature in the gaseous state - as in the case of optically pumped noble gases. This review aims at describing the various issues and challenges that have been encountered during dissolution of hyperpolarized species, and solutions to these problems that have been or are currently proposed in the literature. During the transport of molecules from the polarizer to the NMR detection region, and when the hyperpolarized species or a precursor of hyperpolarization (e.g. parahydrogen) is introduced into the solution of interest, several obstacles need to be overcome to keep a high level of final magnetization. The choice of the magnetic field, the design of the dissolution setup, and ways to isolate hyperpolarized compounds from relaxation agents will be presented. Due to the non-equilibrium character of the hyperpolarization, new NMR pulse sequences that perform better than the classical ones will be described. Finally, three applications in the field of biology will be briefly mentioned.
Collapse
Affiliation(s)
- Patrick Berthault
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Charlotte Martineau-Corcos
- ILV, UMR CNRS 8180, Université de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Guillaume Carret
- Cortecnet, 15 rue des tilleuls, 78960 Voisins-le-Bretonneux, France
| |
Collapse
|
9
|
Niederländer B, Blümler P, Brotin T, van Dusschoten D, Offenhäusser A, Krause HJ, Heil W. Optimized Continuous Application of Hyperpolarized Xenon to Liquids. J Phys Chem A 2018; 122:9359-9369. [PMID: 30403866 DOI: 10.1021/acs.jpca.8b09479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, NMR with hyperpolarized (HP) xenon inside functionalized host structures (e.g., cryptophanes) have become a potential candidate for the direct observation of metabolic processes (i.e., molecular imaging). A critical issue for real applications is the dissolution of the HP-gas in the liquid which contains the host. In this work, we present recent developments for an improved and controlled dissolution of HP-Xe in liquids using hollow fiber membranes and different compressor systems. The designed apparatus consists of a compressor and a membrane unit. The compressor provides HP-129Xe continuously at small adjustable pressures and in a polarization-preserving way. The membrane unit enables a molecular solution of the HP-gas in aqueous liquids, avoiding the formation of bubbles or even foams. Two different types of compressors were tested in terms of function and useful materials. Special emphasis was put on a systematic reduction of transfer losses in the gas and liquid phase. In order to optimize the system parameters, several physical models were developed to describe the transport and the losses of nuclear polarization. Finally, the successful implementation was demonstrated in several experiments. HP-Xe was dissolved in an aqueous cryptophane-A-(OCH2COOH)6 solution, and stable Xe signals could be measured over 35 min, only limited by the size of the gas reservoir. Such long and stable experimental conditions enabled the study of chemical exchange of xenon between cryptophane and water environments even for a time-consuming 2D NMR experiment. The good signal stability over the measurement time allowed an exact determination of the residence time of the Xe atom inside the cryptophane, resulting in an average residence time of 44.5 ± 2.7 ms.
Collapse
Affiliation(s)
- B Niederländer
- Institute of Physics , University of Mainz , 55122 Mainz , Germany.,ICS-8 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - P Blümler
- Institute of Physics , University of Mainz , 55122 Mainz , Germany
| | - T Brotin
- Laboratoire de Chimie, CNRS UMR 5182, Université Lyon 1 , Ecole Normale Supérieure de Lyon , 46 allée d'Italie , F69364 , Lyon , France
| | | | - A Offenhäusser
- ICS-8 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - H-J Krause
- ICS-8 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - W Heil
- Institute of Physics , University of Mainz , 55122 Mainz , Germany
| |
Collapse
|
10
|
Norquay G, Leung G, Stewart NJ, Wolber J, Wild JM. 129 Xe chemical shift in human blood and pulmonary blood oxygenation measurement in humans using hyperpolarized 129 Xe NMR. Magn Reson Med 2017; 77:1399-1408. [PMID: 27062652 PMCID: PMC5363245 DOI: 10.1002/mrm.26225] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the dependency of the 129 Xe-red blood cell (RBC) chemical shift on blood oxygenation, and to use this relation for noninvasive measurement of pulmonary blood oxygenation in vivo with hyperpolarized 129 Xe NMR. METHODS Hyperpolarized 129 Xe was equilibrated with blood samples of varying oxygenation in vitro, and NMR was performed at 1.5 T and 3 T. Dynamic in vivo NMR during breath hold apnea was performed at 3 T on two healthy volunteers following inhalation of hyperpolarized 129 Xe. RESULTS The 129 Xe chemical shift in RBCs was found to increase nonlinearly with blood oxygenation at 1.5 T and 3 T. During breath hold apnea, the 129 Xe chemical shift in RBCs exhibited a periodic time modulation and showed a net decrease in chemical shift of ∼1 ppm over a 35 s breath hold, corresponding to a decrease of 7-10 % in RBC oxygenation. The 129 Xe-RBC signal amplitude showed a modulation with the same frequency as the 129 Xe-RBC chemical shift. CONCLUSION The feasibility of using the 129 Xe-RBC chemical shift to measure pulmonary blood oxygenation in vivo has been demonstrated. Correlation between 129 Xe-RBC signal and 129 Xe-RBC chemical shift modulations in the lung warrants further investigation, with the aim to better quantify temporal blood oxygenation changes in the cardiopulmonary vascular circuit. Magn Reson Med 77:1399-1408, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Graham Norquay
- Unit of Academic Radiology, Department of Cardiovascular ScienceUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
| | - General Leung
- Unit of Academic Radiology, Department of Cardiovascular ScienceUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
| | - Neil J. Stewart
- Unit of Academic Radiology, Department of Cardiovascular ScienceUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
| | - Jan Wolber
- Unit of Academic Radiology, Department of Cardiovascular ScienceUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
- GE HealthcareAmershamBuckinghamshireUnited Kingdom
| | - Jim M. Wild
- Unit of Academic Radiology, Department of Cardiovascular ScienceUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
| |
Collapse
|
11
|
Yablonskiy DA, Sukstanskii AL, Quirk JD. Diffusion lung imaging with hyperpolarized gas MRI. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3448. [PMID: 26676342 PMCID: PMC4911335 DOI: 10.1002/nbm.3448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 05/28/2023]
Abstract
Lung imaging using conventional 1 H MRI presents great challenges because of the low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2 * is about 1-2 ms). MRI with hyperpolarized gases (3 He and 129 Xe) provides a valuable alternative because of the very strong signal originating from inhaled gas residing in the lung airspaces and relatively slow gas T2 * relaxation (typical T2 * is about 20-30 ms). However, in vivo human experiments should be performed very rapidly - usually during a single breath-hold. In this review, we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of the results of modeling of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows the extraction of quantitative information on the lung microstructure at the alveolar level. From an MRI scan of less than 15 s, this approach, called in vivo lung morphometry, allows the provision of quantitative values and spatial distributions of the same physiological parameters as measured by means of 'standard' invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). In addition, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure: average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiment based on the in vivo lung morphometry technique combined with quantitative computed tomography measurements, as well as with gradient echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume and length of the acinar airways, and allow the evaluation of lung parenchymal and non-parenchymal tissue. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - James D Quirk
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
12
|
Truxal AE, Slack CC, Gomes MD, Vassiliou CC, Wemmer DE, Pines A. Nondisruptive Dissolution of Hyperpolarized
129
Xe into Viscous Aqueous and Organic Liquid Crystalline Environments. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ashley E. Truxal
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Clancy C. Slack
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Muller D. Gomes
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Christophoros C. Vassiliou
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - David E. Wemmer
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Alexander Pines
- Department of Chemistry University of California Berkeley CA 94720-1460 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| |
Collapse
|
13
|
Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Proc Natl Acad Sci U S A 2016; 113:3164-8. [PMID: 26961001 DOI: 10.1073/pnas.1600379113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.
Collapse
|
14
|
Truxal AE, Slack CC, Gomes MD, Vassiliou CC, Wemmer DE, Pines A. Nondisruptive Dissolution of Hyperpolarized (129)Xe into Viscous Aqueous and Organic Liquid Crystalline Environments. Angew Chem Int Ed Engl 2016; 55:4666-70. [PMID: 26954536 DOI: 10.1002/anie.201511539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Indexed: 01/14/2023]
Abstract
Studies of hyperpolarized xenon-129 (hp-(129)Xe) in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. Herein a device is reported that can be reliably used to dissolve hp-(129)Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes (<60 μL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments show that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy.
Collapse
Affiliation(s)
- Ashley E Truxal
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Clancy C Slack
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Muller D Gomes
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christophoros C Vassiliou
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - David E Wemmer
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA. .,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
15
|
Yablonskiy DA, Sukstanskii AL, Quirk JD, Woods JC, Conradi MS. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med 2016; 71:486-505. [PMID: 23554008 DOI: 10.1002/mrm.24729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of hyperpolarized gases ((3)He and (129)Xe) has opened the door to applications for which gaseous agents are uniquely suited-lung MRI. One of the pulmonary applications, diffusion MRI, relies on measuring Brownian motion of inhaled hyperpolarized gas atoms diffusing in lung airspaces. In this article we provide an overview of the theoretical ideas behind hyperpolarized gas diffusion MRI and the results obtained over the decade-long research. We describe a simple technique based on measuring gas apparent diffusion coefficient (ADC) and an advanced technique, in vivo lung morphometry, that quantifies lung microstructure both in terms of Weibel parameters (acinar airways radii and alveolar depth) and standard metrics (mean linear intercept, surface-to-volume ratio, and alveolar density) that are widely used by lung researchers but were previously available only from invasive lung biopsy. This technique has the ability to provide unique three-dimensional tomographic information on lung microstructure from a less than 15 s MRI scan with results that are in good agreement with direct histological measurements. These safe and sensitive diffusion measurements improve our understanding of lung structure and functioning in health and disease, providing a platform for monitoring the efficacy of therapeutic interventions in clinical trials.
Collapse
|
16
|
Causier A, Carret G, Boutin C, Berthelot T, Berthault P. 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR. LAB ON A CHIP 2015; 15:2049-2054. [PMID: 25805248 DOI: 10.1039/c5lc00193e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dissolution of hyperpolarized species in liquids of interest for NMR is often hampered by the presence of bubbles that degrade the field homogeneity. Here a device composed of a bubble pump and a miniaturized NMR cell both fitted inside the narrow bore of an NMR magnet is built by 3D printing. (129)Xe NMR experiments performed with hyperpolarized xenon reveal high and homogeneous dissolution of the gas in water.
Collapse
Affiliation(s)
- A Causier
- Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences, CEA Saclay, IRAMIS, NIMBE, UMR CEA/CNRS 3685, 91191 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
17
|
Ruppert K. Biomedical imaging with hyperpolarized noble gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:116701. [PMID: 25360484 DOI: 10.1088/0034-4885/77/11/116701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.
Collapse
|
18
|
Norquay G, Leung G, Stewart NJ, Tozer GM, Wolber J, Wild JM. Relaxation and exchange dynamics of hyperpolarized129Xe in human blood. Magn Reson Med 2014; 74:303-11. [DOI: 10.1002/mrm.25417] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Graham Norquay
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| | - General Leung
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| | - Neil J. Stewart
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| | - Gillian M. Tozer
- Department of Oncology; University of Sheffield; Sheffield South Yorkshire UK
| | - Jan Wolber
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
- GE Healthcare; Amersham Buckinghamshire UK
| | - Jim M. Wild
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| |
Collapse
|
19
|
Lilburn DM, Pavlovskaya GE, Meersmann T. Perspectives of hyperpolarized noble gas MRI beyond 3He. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:173-86. [PMID: 23290627 PMCID: PMC3611600 DOI: 10.1016/j.jmr.2012.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 05/29/2023]
Abstract
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed.
Collapse
Affiliation(s)
| | | | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
20
|
Six JS, Hughes-Riley T, Stupic KF, Pavlovskaya GE, Meersmann T. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129. PLoS One 2012; 7:e49927. [PMID: 23209620 PMCID: PMC3507956 DOI: 10.1371/journal.pone.0049927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/16/2012] [Indexed: 11/24/2022] Open
Abstract
Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process.
Collapse
Affiliation(s)
- Joseph S. Six
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Karl F. Stupic
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 66:40-69. [PMID: 22980033 DOI: 10.1016/j.pnmrs.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/20/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Rodolfo H Acosta
- FAMAF, Universidad Nacional de Córdoba, IFEG - CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
22
|
Bagno A, Saielli G. Understanding the Extraordinary Deshielding of129Xe in a Permetallated Cryptophane by Relativistic DFT. Chemistry 2012; 18:7341-5. [DOI: 10.1002/chem.201103979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/06/2012] [Indexed: 11/05/2022]
|
23
|
Cleveland ZI, Möller HE, Hedlund LW, Nouls JC, Freeman MS, Qi Y, Driehuys B. In vivo MR imaging of pulmonary perfusion and gas exchange in rats via continuous extracorporeal infusion of hyperpolarized 129Xe. PLoS One 2012; 7:e31306. [PMID: 22363613 PMCID: PMC3283644 DOI: 10.1371/journal.pone.0031306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (>10%) and large chemical shift range (>200 ppm) in tissues allow HP (129)Xe to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP (129)Xe in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP (129)Xe as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP (129)Xe signal. METHODS AND PRINCIPAL FINDINGS Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse (129)Xe into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase (129)Xe signal is sufficient to generate diffusive gas exchange- and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2×2×2 mm(3). We also show that the (129)Xe signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation. CONCLUSIONS Extracorporeal infusion of HP (129)Xe enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow (129)Xe to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP (129)Xe.
Collapse
Affiliation(s)
- Zackary I. Cleveland
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Harald E. Möller
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Laurence W. Hedlund
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John C. Nouls
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew S. Freeman
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Graduate Program in Medical Physics, Duke University, Durham, North Carolina, United States of America
| | - Yi Qi
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bastiaan Driehuys
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Duewel M, Vogel N, Weiss CK, Landfester K, Spiess HW, Münnemann K. Online Monitoring of Styrene Polymerization in Miniemulsion by Hyperpolarized 129Xenon NMR Spectroscopy. Macromolecules 2012. [DOI: 10.1021/ma202605n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mathis Duewel
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Nicolas Vogel
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Clemens K. Weiss
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Hans-Wolfgang Spiess
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
25
|
Möller HE, Cleveland ZI, Driehuys B. Relaxation of hyperpolarized 129Xe in a deflating polymer bag. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:109-15. [PMID: 21752680 PMCID: PMC3163736 DOI: 10.1016/j.jmr.2011.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 05/09/2023]
Abstract
In magnetic resonance imaging with hyperpolarized (HP) noble gases, data is often acquired during prolonged gas delivery from a storage reservoir. However, little is known about the extent to which relaxation within the reservoir will limit the useful acquisition time. For quantitative characterization, 129Xe relaxation was studied in a bag made of polyvinyl fluoride (Tedlar). Particular emphasis was on wall relaxation, as this mechanism is expected to dominate. The HP 129Xe magnetization dynamics in the deflating bag were accurately described by a model assuming dissolution of Xe in the polymer matrix and dipolar relaxation with neighboring nuclear spins. In particular, the wall relaxation rate changed linearly with the surface-to-volume ratio and exhibited a relaxivity of κ=0.392±0.008 cm/h, which is in reasonable agreement with κ=0.331±0.051 cm/h measured in a static Tedlar bag. Estimates for the bulk gas-phase 129Xe relaxation yielded T1bulk=2.55±0.22 h, which is dominated by intrinsic Xe-Xe relaxation, with small additional contributions from magnetic field inhomogeneities and oxygen-induced relaxation. Calculations based on these findings indicate that relaxation may limit HP 129Xe experiments when slow gas delivery rates are employed as, for example, in mouse imaging or vascular infusion experiments.
Collapse
Affiliation(s)
- Harald E. Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding author: Prof. Dr. Harald E. Möller, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany, Fax: +49 341 9940 2448
| | - Zackary I. Cleveland
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
26
|
Stupic KF, Elkins ND, Pavlovskaya GE, Repine JE, Meersmann T. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation. Phys Med Biol 2011; 56:3731-48. [PMID: 21628780 DOI: 10.1088/0031-9155/56/13/001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.
Collapse
Affiliation(s)
- K F Stupic
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | |
Collapse
|