1
|
Garika V, Babbar S, Samanta S, Harilal S, Eisenberg-Lerner A, Rotfogel Z, Pikhay E, Shehter I, Elkayam A, Bashouti MY, Akabayov B, Ron I, Hazan G, Roizin Y, Shalev G. Addressing the challenge of solution gating in biosensors based on field-effect transistors. Biosens Bioelectron 2024; 265:116689. [PMID: 39208511 DOI: 10.1016/j.bios.2024.116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Transistor-based biosensing (BioFET) is a long-enduring vision for next generation medical diagnostics. The study addresses a challenge associated with the BioFET solution gating. The standard BioFET sensing measurement involves sweeping of the solution gate (Vsol) with a concurrent measurement of the source-drain current (IDS). This IDS-Vsol sweep poses a great challenge, as Vsol does not only determine IDS, but also determines the pH levels, ion concentrations, and electric fields at the sensing area double layer accommodating the biomolecules. Therefore, inevitably, an IDS-Vsol sweep implies that the sensing area double layer is not in an electrochemical equilibrium, but rather in a continuous transient state as electrochemical potential gradients induce transient ion currents continuously affecting double layer hosting the biomolecules and the biological interactions. This challenge calls for a BioFET design which permits IDS sweeping from an off-state to an on-state while keeping Vsol constant and the double layer sensing area in electrochemical equilibrium. The study explores a BioFET design addressing this challenge by decoupling the solution potential from IDS gating. Specific and label-free sensing of ferritin in 0.5 μL drops of 1:100 diluted plasma is pursued. We show an excellent sensing performance once the solution potential and IDS gating are decoupled, with a limit-of-detection of 10 fg/ml, a dynamic range of 10 orders of magnitude in ferritin concentration and excellent linearity and sensitivity. In contrast, a poor sensing performance is recorded for the conventional Vsol sweep performed in parallel to the above. Extensive control measurements quantifying the non-specific signals are reported.
Collapse
Affiliation(s)
- Vijay Garika
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Shubham Babbar
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Soumadri Samanta
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Sherina Harilal
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | | | - Ziv Rotfogel
- Ophthalmology Research Laboratory, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evgeny Pikhay
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Inna Shehter
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Ayala Elkayam
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Muhammad Y Bashouti
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel; The Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry and Data Science Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Izhar Ron
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Guy Hazan
- School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Pediatric Department D, Soroka University, Medical Center, Beer-Sheva, Israel
| | - Yakov Roizin
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Gil Shalev
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel; The Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
2
|
Saad-Falcon A, Zhang Z, Ryoo D, Dee J, Westafer RS, Gumbart JC. Extraction of Dielectric Permittivity from Atomistic Molecular Dynamics Simulations and Microwave Measurements. J Phys Chem B 2022; 126:8021-8029. [PMID: 36171073 DOI: 10.1021/acs.jpcb.2c05260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design of new biotechnology depends on the prediction and measurement of the electrical properties of biomolecules. The dielectric permittivity, in particular, is highly important for the design of microwave systems for diagnostics, yet this property is rarely explicitly targeted during the development of biomolecular force fields for molecular dynamics (MD) simulations. In order to explore the ability of existing force fields to reproduce the frequency-dependent permittivity, we carried out MD simulations of various aqueous solutions, including pure water, isopropyl alcohol, alanine, and the protein ubiquitin. The TIP3P, TIP4P, TIP4P/ε, and SWM4-NDP water models were used along with the CHARMM36m and Drude protein force fields. An experimental setup using a truncated coaxial line was created to measure the permittivity of the same solutions to check for measure-model agreement. We found that one of the nonpolarizable force fields (TIP4P/ε + CHARMM36m) and the polarizable force fields (SWM4-NDP + Drude) closely agree with experimental results. This demonstrates the strength of the tuned TIP4P/ε water model, as well as the physical validity of polarizable force fields in capturing dielectric permittivity. This represents an important step toward the predictive design of biosensors.
Collapse
Affiliation(s)
- Alex Saad-Falcon
- Georgia Tech Research Institute, Atlanta, Georgia 30332, United States
| | - Zijian Zhang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James Dee
- Georgia Tech Research Institute, Atlanta, Georgia 30332, United States
| | - Ryan S Westafer
- Georgia Tech Research Institute, Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Cardoch S, Timneanu N, Caleman C, Scheicher RH. Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study. ACS NANOSCIENCE AU 2022; 2:119-127. [PMID: 37101662 PMCID: PMC10125149 DOI: 10.1021/acsnanoscienceau.1c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the large variability in size, charges, and folds of proteins. Miniproteins have a small number of residues, limited secondary structure, and stable tertiary structure, which can offer a systematic way to reduce complexity. In this computational work, we theoretically evaluated sensing two miniproteins found in the human body using a silicon nitride nanopore. We employed molecular dynamics methods to compute occupied-pore ionic current magnitudes and electronic structure calculations to obtain interaction strengths between pore wall and miniprotein. From the interaction strength, we derived dwell times using a mix of combinatorics and numerical solutions. This latter approach circumvents typical computational demands needed to simulate translocation events using molecular dynamics. We focused on two miniproteins potentially difficult to distinguish owing to their isotropic geometry, similar number of residues, and overall comparable structure. We found that the occupied-pore current magnitudes not to vary significantly, but their dwell times differ by 1 order of magnitude. Together, these results suggest a successful identification protocol for similar miniproteins.
Collapse
Affiliation(s)
- Sebastian Cardoch
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ralph H. Scheicher
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
4
|
Noriega R. Measuring the Multiscale Dynamics, Structure, and Function of Biomolecules at Interfaces. J Phys Chem B 2021; 125:5667-5675. [PMID: 34042455 DOI: 10.1021/acs.jpcb.1c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual and collective structure and properties of biomolecules can change dramatically when they are localized at an interface. However, the small spatial extent of interfacial regions poses challenges to the detailed characterization of multiscale processes that dictate the structure and function of large biological units such as peptides, proteins, or nucleic acids. This Perspective surveys a broad set of tools that provide new opportunities to probe complex, dynamic interfaces across the vast range of temporal regimes that connect molecular-scale events to macroscopic observables. An emphasis is placed on the integration over multiple time scales, the use of complementary techniques, and the incorporation of external stimuli to control interfacial properties with spatial, temporal, and chemical specificity.
Collapse
Affiliation(s)
- Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Fereiro JA, Pecht I, Sheves M, Cahen D. Inelastic Electron Tunneling Spectroscopic Analysis of Bias-Induced Structural Changes in a Solid-State Protein Junction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008218. [PMID: 33783130 DOI: 10.1002/smll.202008218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 05/25/2023]
Abstract
A central issue in protein electronics is how far the structural stability of the protein is preserved under the very high electrical field that it will experience once a bias voltage is applied. This question is studied on the redox protein Azurin in the solid-state Au/protein/Au junction by monitoring protein vibrations during current transport under applied bias, up to ≈1 GV m-1 , by electrical detection of inelastic electron transport effects. Characteristic vibrational modes, such as CH stretching, amide (NH) bending, and AuS (of the bonds that connect the protein to an Au electrode), are not found to change noticeably up to 1.0 V. At >1.0 V, the NH bending and CH stretching inelastic features have disappeared, while the AuS features persist till ≈2 V, i.e., the proteins remain Au bound. Three possible causes for the disappearance of the NH and CH inelastic features at high bias, namely, i) resonance transport, ii) metallic filament formation, and iii) bond rupture leading to structural changes in the protein are proposed and tested. The results support the last option and indicate that spectrally resolved inelastic features can serve to monitor in operando structural stability of biological macromolecules while they serve as electronic current conduit.
Collapse
Affiliation(s)
- Jerry A Fereiro
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Israel Pecht
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - David Cahen
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Thermodynamic perturbation theory for rotational degrees of freedom. Application to the Mercedes–Benz water model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Ogrin P, Urbic T. Integral equation study of the effects of rotational degrees of freedom on properties of the Mercedes–Benz water model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Průša J, Ayoub AT, Chafai DE, Havelka D, Cifra M. Electro-opening of a microtubule lattice in silico. Comput Struct Biotechnol J 2021; 19:1488-1496. [PMID: 33815687 PMCID: PMC7985272 DOI: 10.1016/j.csbj.2021.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022] Open
Abstract
Modulation of the structure and function of biomaterials is essential for advancing bio-nanotechnology and biomedicine. Microtubules (MTs) are self-assembled protein polymers that are essential for fundamental cellular processes and key model compounds for the design of active bio-nanomaterials. In this in silico study, a 0.5 μs-long all-atom molecular dynamics simulation of a complete MT with approximately 1.2 million atoms in the system indicated that a nanosecond-scale intense electric field can induce the longitudinal opening of the cylindrical shell of the MT lattice, modifying the structure of the MT. This effect is field-strength- and temperature-dependent and occurs on the cathode side. A model was formulated to explain the opening on the cathode side, which resulted from an electric-field-induced imbalance between electric torque on tubulin dipoles and cohesive forces between tubulin heterodimers. Our results open new avenues for electromagnetic modulation of biological and artificial materials through action on noncovalent molecular interactions.
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague 18251, Czech Republic
| | - Ahmed Taha Ayoub
- Biomolecular Simulation Center, Department of Chemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11777, Egypt
| | - Djamel Eddine Chafai
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague 18251, Czech Republic
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague 18251, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague 18251, Czech Republic
| |
Collapse
|
9
|
Catacuzzeno L, Sforna L, Franciolini F, Eisenberg RS. Multiscale modeling shows that dielectric differences make NaV channels faster than KV channels. J Gen Physiol 2021; 153:211724. [PMID: 33502441 PMCID: PMC7845922 DOI: 10.1085/jgp.202012706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
The generation of action potentials in excitable cells requires different activation kinetics of voltage-gated Na (NaV) and K (KV) channels. NaV channels activate much faster and allow the initial Na+ influx that generates the depolarizing phase and propagates the signal. Recent experimental results suggest that the molecular basis for this kinetic difference is an amino acid side chain located in the gating pore of the voltage sensor domain, which is a highly conserved isoleucine in KV channels but an equally highly conserved threonine in NaV channels. Mutagenesis suggests that the hydrophobicity of this side chain in Shaker KV channels regulates the energetic barrier that gating charges cross as they move through the gating pore and control the rate of channel opening. We use a multiscale modeling approach to test this hypothesis. We use high-resolution molecular dynamics to study the effect of the mutation on polarization charge within the gating pore. We then incorporate these results in a lower-resolution model of voltage gating to predict the effect of the mutation on the movement of gating charges. The predictions of our hierarchical model are fully consistent with the tested hypothesis, thus suggesting that the faster activation kinetics of NaV channels comes from a stronger dielectric polarization by threonine (NaV channel) produced as the first gating charge enters the gating pore compared with isoleucine (KV channel).
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Robert S Eisenberg
- Department of Physiology and Biophysics, Rush University, Chicago, IL.,Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL
| |
Collapse
|
10
|
Romo TD, Grossfield A, Markelz AG. Persistent Protein Motions in a Rugged Energy Landscape Revealed by Normal Mode Ensemble Analysis. J Chem Inf Model 2020; 60:6419-6426. [PMID: 33103888 DOI: 10.1021/acs.jcim.0c00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins are allosteric machines that couple motions at distinct, often distant, sites to control biological function. Low-frequency structural vibrations are a mechanism of this long-distance connection and are often used computationally to predict correlations, but experimentally identifying the vibrations associated with specific motions has proved challenging. Spectroscopy is an ideal tool to explore these excitations, but measurements have been largely unable to identify important frequency bands. The result is at odds with some previous calculations and raises the question what methods could successfully characterize protein structural vibrations. Here we show the lack of spectral structure arises in part from the variations in protein structure as the protein samples the energy landscape. However, by averaging over the energy landscape as sampled using an aggregate 18.5 μs of all-atom molecular dynamics simulation of hen egg white lysozyme and normal-mode analyses, we find vibrations with large overlap with functional displacements are surprisingly concentrated in narrow frequency bands. These bands are not apparent in either the ensemble averaged vibrational density of states or isotropic absorption. However, in the case of the ensemble averaged anisotropic absorption, there is persistent spectral structure and overlap between this structure and the functional displacement frequency bands. We systematically lay out heuristics for calculating the spectra robustly, including the need for statistical sampling of the protein and inclusion of adequate water in the spectral calculation. The results show the congested spectrum of these complex molecules obscures important frequency bands associated with function and reveal a method to overcome this congestion by combining structurally sensitive spectroscopy with robust normal mode ensemble analysis.
Collapse
Affiliation(s)
- Tod D Romo
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Andrea G Markelz
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - Novel perspectives on food and potential health implications. Food Res Int 2020; 137:109709. [PMID: 33233283 DOI: 10.1016/j.foodres.2020.109709] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/29/2022]
Abstract
Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. The biological function of a protein depends on its tridimensional structure/conformation, and latest research evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, aggregation and interaction patterns. This review aims at bringing together these recent findings as well as providing novel perspectives about how EF can shape the behavior of proteins towards the development of innovative foods, aiming at consumers' health and wellbeing.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zita Avelar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís Machado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Pandey G, Ramakrishnan V. Invasive and non-invasive therapies for Alzheimer's disease and other amyloidosis. Biophys Rev 2020; 12:1175-1186. [PMID: 32930962 PMCID: PMC7575678 DOI: 10.1007/s12551-020-00752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Advancements in medical science have facilitated in extending human lives. The increased life expectancy, though, has come at a cost. The cases of an aging population suffering from degenerative diseases like Alzheimer's disease (AD) are presently at its all-time high. Amyloidosis disorders such as AD are triggered by an abnormal transition of soluble proteins into their highly ordered aggregated forms. The landscape of amyloidosis treatment remains unchanged, and there is no cure for such disorders. However, an increased understanding of the mechanism of amyloid self-assembly has given hope for a possible therapeutic solution. In this review, we will discuss the current state of molecular and non-molecular options for therapeutic intervention of amyloidosis. We highlight the efficacy of non-invasive physical therapies as possible alternatives to their molecular counterparts. Graphical abstract.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
13
|
Elucidating the Effect of Static Electric Field on Amyloid Beta 1-42 Supramolecular Assembly. J Mol Graph Model 2020; 96:107535. [PMID: 31978828 DOI: 10.1016/j.jmgm.2020.107535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Amyloid-β (Aβ) aggregation is recognized to be a key toxic factor in the pathogenesis of Alzheimer disease, which is the most common progressive neurodegenerative disorder. In vitro experiments have elucidated that Aβ aggregation depends on several factors, such as pH, temperature and peptide concentration. Despite the research effort in this field, the fundamental mechanism responsible for the disease progression is still unclear. Recent research has proposed the application of electric fields as a non-invasive therapeutic option leading to the disruption of amyloid fibrils. In this regard, a molecular level understanding of the interactions governing the destabilization mechanism represents an important research advancement. Understanding the electric field effects on proteins, provides a more in-depth comprehension of the relationship between protein conformation and electrostatic dipole moment. The present study focuses on investigating the effect of static Electric Field (EF) on the conformational dynamics of Aβ fibrils by all-atom Molecular Dynamics (MD) simulations. The outcome of this work provides novel insight into this research field, demonstrating how the Aβ assembly may be destabilized by the applied EF.
Collapse
|
14
|
Průša J, Cifra M. Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci Rep 2019; 9:19721. [PMID: 31873109 PMCID: PMC6928163 DOI: 10.1038/s41598-019-56052-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic.,Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 16628, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic.
| |
Collapse
|
15
|
Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 2019; 9:10477. [PMID: 31324834 PMCID: PMC6642143 DOI: 10.1038/s41598-019-46636-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin’s C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
Collapse
|
16
|
Zheng Z, Ma D, Rashidi S, Li B. Study of denaturation and composition‐dependent poly(ethylene oxide)–soy protein interactions: Structures and dielectric polarization. J Appl Polym Sci 2018. [DOI: 10.1002/app.46561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhuoyuan Zheng
- Department of Mechanical EngineeringWichita State UniversityWichita, Kansas 67260‐0133
| | - Da Ma
- Department of Mechanical EngineeringWichita State UniversityWichita, Kansas 67260‐0133
| | - Soheil Rashidi
- Department of Mechanical EngineeringWichita State UniversityWichita, Kansas 67260‐0133
| | - Bin Li
- Department of Mechanical EngineeringWichita State UniversityWichita, Kansas 67260‐0133
| |
Collapse
|
17
|
Santelices IB, Friesen DE, Bell C, Hough CM, Xiao J, Kalra A, Kar P, Freedman H, Rezania V, Lewis JD, Shankar K, Tuszynski JA. Response to Alternating Electric Fields of Tubulin Dimers and Microtubule Ensembles in Electrolytic Solutions. Sci Rep 2017; 7:9594. [PMID: 28851923 PMCID: PMC5574899 DOI: 10.1038/s41598-017-09323-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Microtubules (MTs), which are cylindrical protein filaments that play crucial roles in eukaryotic cell functions, have been implicated in electrical signalling as biological nanowires. We report on the small-signal AC (“alternating current”) conductance of electrolytic solutions containing MTs and tubulin dimers, using a microelectrode system. We find that MTs (212 nM tubulin) in a 20-fold diluted BRB80 electrolyte increase solution conductance by 23% at 100 kHz, and this effect is directly proportional to the concentration of MTs in solution. The frequency response of MT-containing electrolytes exhibits a concentration-independent peak in the conductance spectrum at 111 kHz (503 kHz FWHM that decreases linearly with MT concentration), which appears to be an intrinsic property of MT ensembles in aqueous environments. Conversely, tubulin dimers (42 nM) decrease solution conductance by 5% at 100 kHz under similar conditions. We attribute these effects primarily to changes in the mobility of ionic species due to counter-ion condensation effects, and changes in the solvent structure and solvation dynamics. These results provide insight into MTs’ ability to modulate the conductance of aqueous electrolytes, which in turn, has significant implications for biological information processing, especially in neurons, and for intracellular electrical communication in general.
Collapse
Affiliation(s)
- Iara B Santelices
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Douglas E Friesen
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Clayton Bell
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Cameron M Hough
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.,Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jack Xiao
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Aarat Kalra
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Piyush Kar
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Holly Freedman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta, T5J 4S2, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada. .,NRC National Institute for Nanotechnology, Edmonton, Alberta, T6G 2M9, Canada.
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada. .,Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
18
|
Dutta D, Palmer XL, Asmar A, Stacey M, Qian S. Nanosecond pulsed electric field induced changes in cell surface charge density. Micron 2017; 100:45-49. [PMID: 28494437 DOI: 10.1016/j.micron.2017.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations.
Collapse
Affiliation(s)
- Diganta Dutta
- Physics and Astronomy, University of Nebraska at Kearney, NE, USA.
| | | | - Anthony Asmar
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Michael Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Shizhi Qian
- Institute of Micro & Nanotechnology, Mechanical & Aerospace Engineering Department, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
19
|
Urbic T, Mohoric T. Effects of translational and rotational degrees of freedom on properties of the Mercedes–Benz water model. J Chem Phys 2017. [DOI: 10.1063/1.4977214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
| | - T. Mohoric
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
English NJ, Waldron CJ. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys 2016; 17:12407-40. [PMID: 25903011 DOI: 10.1039/c5cp00629e] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, the application of a wide variety of external electric fields in molecular simulation shall be discussed, including time-varying and electromagnetic, as well as the utility and potential impact and prospects for exploitation of such simulations for real-world and industrial end use. In particular, non-equilibrium molecular dynamics will be discussed, as well as challenges in addressing adequate thermostatting and scaling field amplitudes to more experimentally relevant levels. Attention shall be devoted to recent progress and advances in external fields in ab initio molecular simulation and dynamics, as well as elusive challenges thereof (and, to some extent, for molecular dynamics from empirical potentials), such as timescales required to observe low-frequency and intensity field effects. The challenge of deterministic molecular dynamics in external fields in sampling phase space shall be discussed, along with prospects for application of fields in enhanced-sampling simulations. Finally, the application of external electric fields to a wide variety of aqueous, nanoscale and biological systems will be discussed, often motivated by the possibility of exploitation in real-world applications, which serve to underpin our molecular-level understanding of field effects in terms of microscopic mechanisms, and possibly with a view to control thereof.
Collapse
Affiliation(s)
- Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
21
|
Lugli F, Toschi F, Biscarini F, Zerbetto F. Electric Field Effects on Short Fibrils of Aβ Amyloid Peptides. J Chem Theory Comput 2015; 6:3516-26. [PMID: 26617101 DOI: 10.1021/ct1001335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid fibrils are highly ordered protein aggregates, which are associated with many neurodegenerative diseases. The assembling dynamics of monomeric beta-amyloid peptides, Aβ, into small aggregates (and then into long fibrils) is still debated and has become a hot topic. In this study, we conducted molecular dynamics simulations in explicit water of small Aβ protofibrils (from monomer to pentamer) under the perturbation of an externally applied electric field with the aim of investigating the fundamental molecular interactions involved in the aggregation mechanism. Dynamics of small adducts of Aβ(16-42) in the presence of an electric field, which was shown before to accelerate the conformational change of a single molecule, indicate that the structural resilience increases with the number of molecules in the aggregate. In particular, for 50 ns, the pentamer shows an enhanced stability in secondary structure, number of hydrogen bonds, and number of salt bridges, even in the presence of the field perturbation. The resilience to the field perturbation is linked to the variation of the induced dipole moment of the aggregates that tends to level off very rapidly with the growing number of molecules, thereby reducing the energy available per molecule to produce structural changes. The results also show that in the presence of the field the stability of the hydrophobic second β-sheet (β2, residues 31-42) is higher than that of the first one (β1, residues 18-26). In particular, we identify Gly33, Gly37, and Met35 as the most important residues that stabilize the intermolecular packing and may act as nucleation sites for fibrillization. Furthermore, dynamics of the full-length Aβ(1-42) pentameric aggregate, which include the highly charged random coil residues 1-15, confirmed the key role of the second hydrophobic core in the protofibril structure.
Collapse
Affiliation(s)
- Francesca Lugli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy and ISMN CNR, V. Gobetti, Bologna, Italy
| | - Francesca Toschi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy and ISMN CNR, V. Gobetti, Bologna, Italy
| | - Fabio Biscarini
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy and ISMN CNR, V. Gobetti, Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy and ISMN CNR, V. Gobetti, Bologna, Italy
| |
Collapse
|
22
|
Barba FJ, Grimi N, Vorobiev E. New Approaches for the Use of Non-conventional Cell Disruption Technologies to Extract Potential Food Additives and Nutraceuticals from Microalgae. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9095-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Favi PM, Zhang Q, O'Neill H, Mamontov E, Diallo SO. Dynamics of lysozyme and its hydration water under an electric field. J Biol Phys 2014; 40:167-78. [PMID: 24664796 DOI: 10.1007/s10867-014-9343-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/04/2014] [Indexed: 11/28/2022] Open
Abstract
The effects of a static electric field on the dynamics of lysozyme and its hydration water are investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D2O) to capture the protein dynamics and with light water (H2O), to probe the dynamics of the hydration shell, in the temperature range from 210 < T < 260 K. The hydration fraction in both cases was about ∼ 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm (~2 × 10(6) V/m) for the protein hydrated with D2O and 0 kV and 1 kV/mm for the H2O-hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of an electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value Ec ~2-3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.
Collapse
Affiliation(s)
- P M Favi
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | | | | | | |
Collapse
|
24
|
Ontogenic expression of the amino acid transporter b0,+AT in suckling Huanjiang piglets: effect of intra-uterine growth restriction. Br J Nutr 2013; 110:823-30. [DOI: 10.1017/s0007114512005843] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intestinal amino acid (AA) transport is critical for the supply of AA to other tissues. Few studies regarding AA intestinal transport systems during the period from postnatal intense development of piglets until weaning are available. In the present study, we measured the intestinal expression of b0,+AT according to developmental stage using the suckling Huanjiang piglet model, and documented the effect of intra-uterine growth restriction (IUGR) on such expression using real-time PCR and Western blot analysis. Suckling piglets that recovered after IUGR and those with normal body weights (NBW) were used after birth or at 7, 14 and 21 d of age. Blood samples were used for the measurement of plasma AA concentrations, and the jejunum was collected for the measurement of b0,+AT expression. In NBW piglets, b0,+AT expression was markedly decreased from days 0 to 21 (P< 0·01) and remained at a low level during all the suckling periods. In IUGR piglets, there was a marked decrease in b0,+AT expression at birth, which remained lower, when compared with NBW piglets, during the suckling period. These results coincided with decreased plasma arginine concentration at birth and decreased lysine concentration in 21-d-old piglets (P< 0·05). It is concluded that the high expression of b0,+AT at birth decreases during the suckling period, and that IUGR is associated with decreased expression of this apical AA transporter. The possible causal relationship between decreased b0,+AT expression and lower body weight of IUGR piglets in the suckling period is discussed.
Collapse
|
25
|
Lin H, Kitova EN, Johnson MA, Eugenio L, Ng KKS, Klassen JS. Electrospray ionization-induced protein unfolding. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2122-2131. [PMID: 22993046 DOI: 10.1007/s13361-012-0483-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) measurements were performed under a variety of solution conditions on a highly acidic sub-fragment (B3C) of the C-terminal carbohydrate-binding repeat region of Clostridium difficile toxin B, and two mutants (B4A and B4B) containing fewer acidic residues. ESI-MS measurements performed in negative ion mode on aqueous ammonium acetate solutions of B3C at low ionic strength (I < 80 mM) revealed evidence, based on the measured charge state distribution, of protein unfolding. In contrast, no evidence of unfolding was detected from ESI-MS measurements made in positive ion mode at low I or in either mode at higher I. The results of proton nuclear magnetic resonance and circular dichroism spectroscopy measurements and gel filtration chromatography performed on solutions of B3C under low and high I conditions suggest that the protein exists predominantly in a folded state in neutral aqueous solutions with I > 10 mM. The results of ESI-MS measurements performed on B3C in a series of solutions with high I at pH 5 to 9 rule out the possibility that the structural changes are related to ESI-induced changes in pH. It is proposed that unfolding of B3C, observed in negative mode for solutions with low I, occurs during the ESI process and arises due to Coulombic repulsion between the negatively charged residues and liquid/droplet surface charge. ESI-MS measurements performed in negative ion mode on B4A and B4B also reveal a shift to higher charge states at low I but the magnitude of the changes are smaller than observed for B3C.
Collapse
Affiliation(s)
- Hong Lin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | | | | | |
Collapse
|
26
|
Comer J, Aksimentiev A. Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:3376-3393. [PMID: 22606364 PMCID: PMC3350822 DOI: 10.1021/jp210641j] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It has become possible to distinguish DNA molecules of different nucleotide sequences by measuring ion current passing through a narrow pore containing DNA. To assist experimentalists in interpreting the results of such measurements and to improve the DNA sequence detection method, we have developed a computational approach that has both the atomic-scale accuracy and the computational efficiency required to predict DNA sequence-specific differences in the nanopore ion current. In our Brownian dynamics method, the interaction between the ions and DNA is described by three-dimensional potential of mean force maps determined to a 0.03 nm resolution from all-atom molecular dynamics simulations. While this atomic-resolution Brownian dynamics method produces results with orders of magnitude less computational effort than all-atom molecular dynamics requires, we show here that the ion distributions and ion currents predicted by the two methods agree. Finally, using our Brownian dynamics method, we find that a small change in the sequence of DNA within a pore can cause a large change in the ion current, and validate this result with all-atom molecular dynamics.
Collapse
Affiliation(s)
- Jeffrey Comer
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
27
|
Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores. Methods Mol Biol 2012; 870:165-86. [PMID: 22528264 DOI: 10.1007/978-1-61779-773-6_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA-ion interactions, and the ionic current through a nanopore.
Collapse
|
28
|
Astumian RD. Stochastic Conformational Pumping: A Mechanism for Free-Energy Transduction by Molecules. Annu Rev Biophys 2011; 40:289-313. [DOI: 10.1146/annurev-biophys-042910-155355] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Freedman KJ, Jürgens M, Prabhu A, Ahn CW, Jemth P, Edel JB, Kim MJ. Chemical, Thermal, and Electric Field Induced Unfolding of Single Protein Molecules Studied Using Nanopores. Anal Chem 2011; 83:5137-44. [DOI: 10.1021/ac2001725] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Maike Jürgens
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Chi Won Ahn
- NEMS-BIO Team, National Nanofab Center, Deajeon, Korea
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joshua B. Edel
- Department of Chemistry, Imperial College London, South Kensington, London, United Kingdom
| | | |
Collapse
|
30
|
Garate JA, English NJ, MacElroy JMD. Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes. J Chem Phys 2009; 131:114508. [DOI: 10.1063/1.3227042] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Leontyev IV, Stuchebrukhov AA. Dielectric relaxation of cytochrome c oxidase: Comparison of the microscopic and continuum models. J Chem Phys 2009; 130:085103. [PMID: 19256628 DOI: 10.1063/1.3060196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have studied a charge-insertion process that models the deprotonation of a histidine side chain in the active site of cytochrome c oxidase (CcO) using both the continuum electrostatic calculations and the microscopic simulations. The group of interest is a ligand to Cu(B) center of CcO, which has been previously suggested to play the role of the proton pumping element in the enzyme; the group is located near a large internal water cavity in the protein. Using the nonpolarizable Amber-99 force field in molecular dynamics (MD) simulations, we have calculated the nuclear part of the reaction-field energy of charging of the His group and combined it with the electronic part, which we estimated in terms of the electronic continuum (EC) model, to obtain the total reaction-field energy of charging. The total free energy obtained in this MDEC approach was then compared with that calculated using pure continuum electrostatic model with variable dielectric parameters. The dielectric constant for the "dry" protein and that of the internal water cavity of CcO were determined as those parameters that provide best agreement between the continuum and microscopic MDEC model. The nuclear (MD) polarization alone (without electronic part) of a dry protein was found to correspond to an unphysically low dielectric constant of only about 1.3, whereas the inclusion of electronic polarizability increases the protein dielectric constant to 2.6-2.8. A detailed analysis is presented as to how the protein structure should be selected for the continuum calculations, as well as which probe and atomic radii should be used for cavity definition. The dielectric constant of the internal water cavity was found to be 80 or even higher using "standard" parameters of water probe radius, 1.4 A, and protein atomic radii from the MD force field for cavity description; such high values are ascribed to the fact that the standard procedure produces unphysically small cavities. Using x-ray data for internal water in CcO, we have explored optimization of the parameters and the algorithm of cavity description. For Amber radii, the optimal probe size was found to be 1.25 A; the dielectric of water cavity in this case is in the range of 10-16. The most satisfactory cavity description, however, was achieved with ProtOr atomic radii, while keeping the probe radius to be standard 1.4 A. In this case, the value of cavity dielectric constant was found to be in the range of 3-6. The obtained results are discussed in the context of recent calculations and experimental measurements of dielectric properties of proteins.
Collapse
Affiliation(s)
- I V Leontyev
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
32
|
Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry. Proc Natl Acad Sci U S A 2009; 106:6495-500. [PMID: 19351899 DOI: 10.1073/pnas.0812318106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polar molecules align in electric fields when the dipole energy (proportional to field intensity E x dipole moment p) exceeds the thermal rotational energy. Small molecules have low p and align only at inordinately high E or upon extreme cooling. Many biomacromolecules and ions are strong permanent dipoles that align at E achievable in gases and room temperature. The collision cross-sections of aligned ions with gas molecules generally differ from orientationally averaged quantities, affecting ion mobilities measured in ion mobility spectrometry (IMS). Field asymmetric waveform IMS (FAIMS) separates ions by the difference between mobilities at high and low E and hence can resolve and identify macroion conformers based on the mobility difference between pendular and free rotor states. The exceptional sensitivity of that difference to ion geometry and charge distribution holds the potential for a powerful method for separation and characterization of macromolecular species. Theory predicts that the pendular alignment of ions in gases at any E requires a minimum p that depends on the ion mobility, gas pressure, and temperature. At ambient conditions used in current FAIMS systems, p for realistic ions must exceed approximately 300-400 Debye. The dipole moments of proteins statistically increase with increasing mass, and such values are typical above approximately 30 kDa. As expected for the dipole-aligned regime, FAIMS analyses of protein ions and complexes of approximately 30-130 kDa show an order-of-magnitude expansion of separation space compared with smaller proteins and other ions.
Collapse
|
33
|
Paulo PMR, Lopes JNC, Costa SMB. Molecular dynamics simulations of porphyrin-dendrimer systems: toward modeling electron transfer in solution. J Phys Chem B 2009; 112:14779-92. [PMID: 18954105 DOI: 10.1021/jp806849y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have performed computational simulations of porphyrin-dendrimer systems--a cationic porphyrin electrostatically associated to a negatively charged dendrimer--using the method of classical molecular dynamics (MD) with an atomistic force field. Previous experimental studies have shown a strong quenching effect of the porphyrin fluorescence that was assigned to electron transfer (ET) from the dendrimer's tertiary amines (Paulo, P. M. R.; Costa, S. M. B. J. Phys. Chem. B 2005, 109, 13928). In the present contribution, we evaluate computationally the role of the porphyrin-dendrimer conformation in the development of a statistical distribution of ET rates through its dependence on the donor-acceptor distance. We started from simulations without explicit solvent to obtain trajectories of the donor-acceptor distance and the respective time-averaged distributions for two dendrimer sizes and different initial configurations of the porphyrin-dendrimer pair. By introducing explicit solvent (water) in our simulations, we were able to estimate the reorganization energy of the medium for the systems with the dendrimer of smaller size. The values obtained are in the range 0.6-1.5 eV and show a linear dependence with the inverse of the donor-acceptor distance, which can be explained by a two-phase dielectric continuum model taking into account the medium heterogeneity provided by the dendrimer organic core. Dielectric relaxation accompanying ET was evaluated from the simulations with explicit solvent showing fast decay times of some tens of femtoseconds and slow decay times in the range of hundreds of femtoseconds to a few picoseconds. The variations of the slow relaxation times reflect the heterogeneity of the dendrimer donor sites which add to the complexity of ET kinetics as inferred from the experimental fluorescence decays.
Collapse
Affiliation(s)
- Pedro M R Paulo
- Centro de Química Estrutural-Complexo I, Instituto Superior Técnico, Lisboa, Portugal.
| | | | | |
Collapse
|
34
|
Toschi F, Lugli F, Biscarini F, Zerbetto F. Effects of Electric Field Stress on a β-Amyloid Peptide. J Phys Chem B 2008; 113:369-76. [DOI: 10.1021/jp807896g] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Toschi
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy, and ISMN CNR, V. Gobetti, Bologna, Italy
| | - Francesca Lugli
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy, and ISMN CNR, V. Gobetti, Bologna, Italy
| | - Fabio Biscarini
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy, and ISMN CNR, V. Gobetti, Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy, and ISMN CNR, V. Gobetti, Bologna, Italy
| |
Collapse
|
35
|
|
36
|
Budi A, Legge FS, Treutlein H, Yarovsky I. Electric field effects on insulin chain-B conformation. J Phys Chem B 2007; 109:22641-8. [PMID: 16853947 DOI: 10.1021/jp052742q] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The response of proteins to different forms of stress continues to be a topic of major interest, especially with the proliferation of electromagnetic devices conjectured to have detrimental effects on human health. In this paper, we have performed molecular dynamics simulations on insulin chain-B under the influence of both static and oscillating electric fields, ranging from 10(7) to 10(9) V/m. We have found that both variants have an effect on the normal behavior of the protein, with oscillating fields being more disruptive to the structure as compared to static fields of similar effective strength. The application of a static field had a stabilizing effect on the secondary structure, restricting the inherent flexibility that is crucial for insulin's biological activity.
Collapse
Affiliation(s)
- Akin Budi
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria, 3001, Australia
| | | | | | | |
Collapse
|
37
|
Kar R, Chandrakumar KRS, Pal S. The Influence of Electric Field on the Global and Local Reactivity Descriptors: Reactivity and Stability of Weakly Bonded Complexes. J Phys Chem A 2006; 111:375-83. [PMID: 17214475 DOI: 10.1021/jp065580m] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The response of the global and local reactivity density-based descriptors (chemical potential, hardness, softness, Fukui function, and local softness) in the presence of external electric field has been studied for some of the simple prototype molecular systems. In addition to the analysis on the reactivity of these systems, the influence of the electric field on the interaction energy of the complexes formed by these systems has also been studied using the recently proposed semiquantitative model based on the local hard-soft acid-base principle. By using the inverse relationship between the global hardness and softness parameters, a simple relationship is obtained for the variation of hardness in terms of the Fukui function under the external electric field. It is shown that the increase in the hardness values for a particular system in the presence of external field does not necessarily imply that the reactivity of the system would be deactivated or vice versa.
Collapse
Affiliation(s)
- Rahul Kar
- Theoretical Chemistry Group, Physical Chemistry Division, National Chemical Laboratory, Pune 400008, India
| | | | | |
Collapse
|
38
|
Shvartsburg AA, Bryskiewicz T, Purves RW, Tang K, Guevremont R, Smith RD. Field Asymmetric Waveform Ion Mobility Spectrometry Studies of Proteins: Dipole Alignment in Ion Mobility Spectrometry? J Phys Chem B 2006; 110:21966-80. [PMID: 17064166 DOI: 10.1021/jp062573p] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approaches to separation and characterization of ions based on their mobilities in gases date back to the 1960s. Conventional ion mobility spectrometry (IMS) measures the absolute mobility, and field asymmetric waveform IMS (FAIMS) exploits the difference between mobilities at high and low electric fields. However, in all previous IMS and FAIMS experiments ions experienced an essentially free rotation; thus the separation was based on the orientationally averaged cross-sections Omega(avg) between ions and buffer gas molecules. Virtually all large ions are permanent electric dipoles that will be oriented by a sufficiently strong electric field. Under typical FAIMS conditions this will occur for dipole moments >400 D, found for many macroions including most proteins above approximately 30 kDa. Mobilities of aligned dipoles depend on directional cross-sections Omega(dir) (rather than Omega(avg)), which should have a major effect on FAIMS separation parameters. Here we report the FAIMS behavior of electrospray-ionization-generated ions for 10 proteins up to approximately 70 kDa. Those above 29 kDa exhibit a strong increase of mobility at high field, which is consistent with predicted ion dipole alignment. This effect expands the useful FAIMS separation power by an order of magnitude, allowing separation of up to approximately 10(2) distinct protein conformers and potentially revealing information about Omega(dir) and ion dipole moment that is of utility for structural characterization. Possible approaches to extending dipole alignment to smaller ions are discussed.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, PO Box 999, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Knab J, Chen JY, Markelz A. Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys J 2006; 90:2576-81. [PMID: 16428275 PMCID: PMC1403182 DOI: 10.1529/biophysj.105.069088] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 12/29/2005] [Indexed: 11/18/2022] Open
Abstract
Dielectric response of hen egg white lysozyme is measured in the far infrared (5-65 cm-1, 0.15-1.95 THz, 0.6-8.1 meV) as a function of hydration. The frequency range is associated with collective vibrational modes of protein tertiary structure. The observed frequency dependence of the absorbance is broad and glass-like. For the entire frequency range, there is a slight increase in both the absorbance and index of refraction with increasing hydration for <0.27 h (mass of H2O per unit mass protein). At 0.27 h, the absorbance and index begin to increase more rapidly. This transition corresponds to the point where the first hydration shell is filled. The abrupt increase in dielectric response cannot be fully accounted for by the additional contribution to the dielectric response due to bulk water, suggesting that the protein has not yet achieved its fully hydrated state. The broad, glass-like response suggests that at low hydrations, the low frequency conformational hen egg white lysozyme dynamics can be described by a dielectric relaxation model where the protein relaxes to different local minima in the conformational energy landscape. However, the low frequency complex permittivity does not allow for a pure relaxational mechanism. The data can best be modeled with a single low frequency resonance (nu approximately 120 GHz=4 cm-1) and a single Debye relaxation process (tau approximately .03-.04 ps). Terahertz dielectric response is currently being considered as a possible biosensing technique and the results demonstrate the required hydration control necessary for reliable biosensor applications.
Collapse
Affiliation(s)
- Joseph Knab
- Physics Department, University at Buffalo, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
40
|
Heng JB, Aksimentiev A, Ho C, Marks P, Grinkova YV, Sligar S, Schulten K, Timp G. The electromechanics of DNA in a synthetic nanopore. Biophys J 2006; 90:1098-106. [PMID: 16284270 PMCID: PMC1367096 DOI: 10.1529/biophysj.105.070672] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022] Open
Abstract
We have explored the electromechanical properties of DNA on a nanometer-length scale using an electric field to force single molecules through synthetic nanopores in ultrathin silicon nitride membranes. At low electric fields, E < 200 mV/10 nm, we observed that single-stranded DNA can permeate pores with a diameter >/=1.0 nm, whereas double-stranded DNA only permeates pores with a diameter >/=3 nm. For pores <3.0 nm diameter, we find a threshold for permeation of double-stranded DNA that depends on the electric field and pH. For a 2 nm diameter pore, the electric field threshold is approximately 3.1 V/10 nm at pH = 8.5; the threshold decreases as pH becomes more acidic or the diameter increases. Molecular dynamics indicates that the field threshold originates from a stretching transition in DNA that occurs under the force gradient in a nanopore. Lowering pH destabilizes the double helix, facilitating DNA translocation at lower fields.
Collapse
Affiliation(s)
- J B Heng
- Department of Electrical and Computer Engineering, Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pompa PP, Bramanti A, Maruccio G, Cingolani R, De Rienzo F, Corni S, Di Felice R, Rinaldi R. Retention of nativelike conformation by proteins embedded in high external electric fields. J Chem Phys 2005; 122:181102. [PMID: 15918683 DOI: 10.1063/1.1902903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this Communication, we show that proteins embedded in high external electric fields are capable of retaining a nativelike fold pattern. We have tested the metalloprotein azurin, immobilized onto SiO2 substrates in air with proper electrode configuration, by applying static fields up to 10(6)-10(7) Vm. The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. Such results are also discussed and supported by theoretical predictions of the inner protein fields.
Collapse
Affiliation(s)
- P P Pompa
- National Nanotechnology Laboratories of INFM, University of Lecce, Via per Arnesano 73100 Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kundu S, Gupta-Bhaya P. Electrostatic energy in fields provides a route to dielectric permittivity of proteins. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.theochem.2003.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Astumian RD. Adiabatic pumping mechanism for ion motive ATPases. PHYSICAL REVIEW LETTERS 2003; 91:118102. [PMID: 14525458 DOI: 10.1103/physrevlett.91.118102] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2002] [Indexed: 05/24/2023]
Abstract
An ion motive ATPase is a membrane protein that pumps ions across the membrane at the expense of the chemical energy of adenosine triphosphate (ATP) hydrolysis. Here we describe how an external electric field, by inducing transitions between several protein configurations, can also power this pump. The underlying mechanism may be very similar to that of a recently constructed adiabatic electron pump [Science 283, 1905 (1999)]].
Collapse
|
44
|
Simonson T. Gaussian fluctuations and linear response in an electron transfer protein. Proc Natl Acad Sci U S A 2002; 99:6544-9. [PMID: 12011418 PMCID: PMC124439 DOI: 10.1073/pnas.082657099] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Indexed: 11/18/2022] Open
Abstract
In response to charge separation or transfer, polar liquids respond in a simple linear fashion. A similar linear response for proteins might be expected from the central limit theorem and is postulated in widely used theories of protein electrostatics, including the Marcus electron transfer theory and dielectric continuum theories. Although these theories are supported by a variety of experimental data, the exact validity of a linear protein dielectric response has been difficult to determine. Molecular dynamics simulations are presented that establish a linear dielectric response of both protein and surrounding solvent over the course of a biologically relevant electron transfer reaction: oxido-reduction of yeast cytochrome c in solution. Using an umbrella-sampling free energy approach with long simulations, an accurate treatment of long-range electrostatics and both classical and quantum models of the heme, good agreement is obtained with experiment for the redox potential relative to a heme-octapeptide complex. We obtain a reorganization free energy that is only half that for heme-octapeptide and is reproduced with a dielectric continuum model where the heme vicinity has a dielectric constant of only 1.1. This value implies that the contribution of protein reorganization to the electron transfer free energy barrier is reduced almost to the theoretical limit (a dielectric of one), and that the fluctuations of the electrostatic potential on the heme have a simple harmonic form, in accord with Marcus theory, even though the fluctuations of many individual protein groups (especially at the protein surface) are anharmonic.
Collapse
Affiliation(s)
- Thomas Simonson
- Département de Biologie et Génomique Structurales, Institut de Génétique et Biologie Moléculaire et Cellulaire (CNRS), 1 Rue Laurent Fries, 67404 Illkirch-Strasbourg, France.
| |
Collapse
|
45
|
Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K. Steered molecular dynamics investigations of protein function. J Mol Graph Model 2002; 19:13-25. [PMID: 11381523 DOI: 10.1016/s1093-3263(00)00133-9] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular recognition and mechanical properties of proteins govern molecular processes in the cell that can cause disease and can be targeted for drug design. Single molecule measurement techniques have greatly advanced knowledge but cannot resolve enough detail to be interpreted in terms of protein structure. We seek to complement the observations through so-called Steered Molecular Dynamics (SMD) simulations that link directly to experiments and provide atomic-level descriptions of the underlying events. Such a research program has been initiated in our group and has involved, for example, studies of elastic properties of immunoglobulin and fibronectin domains as well as the binding of biotin and avidin. In this article we explain the SMD method and suggest how it can be applied to the function of three systems that are the focus of modern molecular biology research: force transduction by the muscle protein titin and extracellular matrix protein fibronectin, recognition of antibody-antigene pairs, and ion selective conductivity of the K+ channel.
Collapse
Affiliation(s)
- B Isralewitz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
46
|
Yamamoto S, Wasada H, Kakitani T, Yamato T. Ab initio MO study on the potential energy surfaces for twisting around the C11C12 bond of the protonated Schiff base of retinal. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0166-1280(98)00437-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K. Steered Molecular Dynamics. COMPUTATIONAL MOLECULAR DYNAMICS: CHALLENGES, METHODS, IDEAS 1999. [DOI: 10.1007/978-3-642-58360-5_2] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Yamato T, Niimura N, Go N. Molecular dynamics study of femtosecond events in photoactive yellow protein after photoexcitation of the chromophore. Proteins 1998; 32:268-75. [PMID: 9715903 DOI: 10.1002/(sici)1097-0134(19980815)32:3<268::aid-prot2>3.0.co;2-e] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Molecular dynamics simulations were carried out to study what happens in a photoreceptor protein, photoactive yellow protein (PYP), immediately after the vertical transition of the chromophore from the ground to the excited state. A photon absorption simulation was performed to investigate the movement of amino acid residues upon photoexcitation. To calculate the excited state of the chromophore, SCF-CI calculation was carried out with INDO/S Hamiltonian. We observed that some amino acid residues have strong interactions with the chromophore. Most of these amino acid residues are conserved in PYPs from three different species of bacteria. This observation indicates the biological importance of these residues.
Collapse
Affiliation(s)
- T Yamato
- Graduate School of Science, Nagoya University, Japan.
| | | | | |
Collapse
|
49
|
Kakitani T, Akiyama R, Hatano Y, Imamoto Y, Shichida Y, Verdegem P, Lugtenburg J. Deuterium Substitution Effect on the Excited-State Dynamics of Rhodopsin†. J Phys Chem B 1998. [DOI: 10.1021/jp973191+] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Xu D, Lin SL, Nussinov R. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J Mol Biol 1997; 265:68-84. [PMID: 8995525 DOI: 10.1006/jmbi.1996.0712] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role of hydrophilic bridges between charged, or polar, atoms in protein associations has been examined from two perspectives. First, statistical analysis has been carried out on 21 data sets to determine the relationship between the binding free energy and the structure of the protein complexes. We find that the number of hydrophilic bridges across the binding interface shows a strong positive correlation with the free energy; second, the electrostatic contribution of salt bridges to binding has been assessed by a continuum electrostatics calculation. In contrast to protein folding, we find that salt bridges across the binding interface can significantly stabilize complexes in some cases. The different contributions of hydrophilic bridges to folding and to binding arise from the different environments to which the involved hydrophilic groups are exposed before and after the bridges are formed. These groups are more solvated in a denatured protein before folding than on the surface of the combining proteins before binding. After binding, they are buried in an environment whose residual composition can be much more hydrophilic than the one after folding. As a result, the desolvation cost of a hydrophilic pair is lower, and the favorable interactions between the hydrophilic pair and its surrounding residues are generally stronger in binding than in folding. These results complement our recent finding that while hydrophobic effect in protein-protein interfaces is significant, it is not as strong as that observed in the interior of monomers. Taken together, these studies suggest that while the types of forces in protein-protein interaction and in protein folding are similar, their relative contributions differ. Hence, association of protein monomers which do not undergo significant conformational change upon binding differs from protein folding, implying that conclusions (e.g. statistics, energetics) drawn from investigating folding may not apply directly to binding, and vice versa.
Collapse
Affiliation(s)
- D Xu
- Laboratory of Mathematical Biology, SAIC Frederick NCI-FCRDC, MD 21702-1201, USA
| | | | | |
Collapse
|