1
|
Chotimol P, Lansdowne W, Machin D, Binas K, Angelini GD, Gibbison B. Hypobaric type oxygenators - physics and physiology. Perfusion 2025; 40:273-282. [PMID: 38323543 DOI: 10.1177/02676591241232824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Brain injury is still a serious complication after cardiac surgery. Gaseous microemboli (GME) are known to contribute to both short and longer-term brain injury after cardiac surgery. Hypobaric and novel dual-chamber oxygenators use the physical behaviors and properties of gases to reduce GME. The aim of this review was to present the basic physics of the gases, the mechanism in which the hypobaric and dual-chamber oxygenators reduce GME, their technical performance, the preclinical studies, and future directions. The gas laws are reviewed as an aid to understanding the mechanisms of action of oxygenators. Hypobaric-type oxygenators employ a high oxygen, no nitrogen environment creating a steep concentration gradient of nitrogen out of the blood and into the oxygenator, reducing the risk of GMEs forming. Adequately powered clinical studies have never been carried out with a hypobaric or dual-chamber oxygenator. These are required before such technology can be recommended for widespread clinical use.
Collapse
Affiliation(s)
- Phatiwat Chotimol
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - William Lansdowne
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - David Machin
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kressle Binas
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Gianni D Angelini
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Ben Gibbison
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
2
|
Kwon J, Park S, Kim S, Kim Y, Han K. Optimizing nano-sized oxygen bubble application for prolonged aerobic degradation of BTEX in contaminated groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124287. [PMID: 39879925 DOI: 10.1016/j.jenvman.2025.124287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
This study investigates the use of nano-sized oxygen bubbles (NOBs) to enhance BTEX (benzene, toluene, ethylbenzene, xylene) biodegradation in groundwater. Optimized NOBs, averaging 155 nm and at a concentration of 6.59 × 10⁸ bubbles/mL, were found to provide sustained oxygen release with a half-life of approximately 50 days. Laboratory column experiments demonstrated that NOBs released up to 380% more oxygen than initially injected, significantly boosting BTEX degradation. The repeated injection of NOBs increased the volume of trapped bubbles within soil pores, enhancing long-term oxygen release efficiency by expanding the available gas phase within the porous matrix. NOB treatment resulted in markedly lower effluent BTEX concentrations and elevated gene expression linked to BTEX-degrading enzymes. This mechanism supports the sustainability of NOBs as an oxygen source, maintaining aerobic conditions over extended periods. Compared to traditional oxygen sources, NOBs improve oxygen solubility without introducing secondary pollutants, offering a novel in situ remediation strategy for urban groundwater contamination, thereby supporting long-term monitored natural attenuation (MNA).
Collapse
Affiliation(s)
- JongBeom Kwon
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Sunhwa Park
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Sungpyo Kim
- Department of Environmental Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Young Kim
- Department of Environmental Engineering, Korea University, Sejong, 30019, Republic of Korea.
| | - Kyungjin Han
- Department of Environmental Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
3
|
Lan L, Pan Y, Zhou L, Kuang H, Zhang L, Wen B. Theoretical model of dynamics and stability of nanobubbles on heterogeneous surfaces. J Colloid Interface Sci 2025; 678:322-333. [PMID: 39208760 DOI: 10.1016/j.jcis.2024.08.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Surface nanobubbles have revealed a new mechanism of gas-liquid-solid interaction at the nanoscale; however, the nanobubble evolution on real substrates is still veiled, because the experimental observation of contact line motions at the nanoscale is too difficult. HYPOTHESIS This study proposes a theoretical model to describe the dynamics and stability of nanobubbles on heterogeneous substrates. It simultaneously considers the diffusive equilibrium of the liquid-gas interface and the mechanical equilibrium at the contact line, and introduces a surface energy function to express the substrate's heterogeneity. VALIDATION The present model unifies the nanoscale stability and the microscale instability of surface bubbles. The theoretical predictions are highly consistent to the nanobubble morphology on heterogeneous surfaces observed in experiments. As the nanobubbles grow, a lower Laplace pressure leads to weaker gas adsorption, and the mechanical equilibrium can eventually revert to the classical Young-Laplace equation above microscale. FINDINGS The analysis results indicate that both the decrease in substrate surface energy and the increase in gas oversaturation are more conducive to the nucleation and growth of surface nanobubbles, leading to larger stable sizes. The larger surface energy barriers result in the stronger pinning, which is beneficial for achieving stability of the pinned bubbles. The present model is able to reproduce the continual behaviors of the three-phase contact line during the nanobubble evolution, e.g., "pinning, depinning, slipping and jumping" induced by the nanoscale defects.
Collapse
Affiliation(s)
- Lili Lan
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yongcai Pan
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Hua Kuang
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Binghai Wen
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China; Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
4
|
Chuang CF, Lin CW, Yeh CK. Ultrasound-triggered drug release and cytotoxicity of microbubbles with diverse drug attributes. ULTRASONICS SONOCHEMISTRY 2025; 112:107182. [PMID: 39631357 PMCID: PMC11655813 DOI: 10.1016/j.ultsonch.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Ultrasound (US)-triggered cavitation of drug-loaded microbubbles (MBs) represents a promising approach for targeted drug delivery, with substantial benefits attainable through precise control over drug release dosage and form. This study investigates Camptothecin-loaded MBs (CPT-MBs) and Doxorubicin-loaded MBs (DOX-MBs), focusing on how properties such as hydrophilicity, hydrophobicity, and charged functional groups affect their interaction with the lipid surfaces of MBs, thereby influencing the fundamental characteristics and acoustic properties of the drug-loaded MBs. In comparison to DOX-MBs, CPT-MBs showed larger MB size (2.2 ± 0.3 and 1.4 ± 0.1 μm, respectively), a 2-fold increase in drug loading, and an 18 % reduction in leakage after 2 h at 37℃. Under 1 MHz US with a 100 ms pulse repetition interval (PRI), 1000 cycles, 5-minute duration, and 550 kPa acoustic pressure, CPT-MBs undergo inertial cavitation, while DOX-MBs undergo stable cavitation. Drug particles released from these MBs under US-induced cavitation were analyzed using dynamic light scattering, NanoSight, cryo-electron microscopy, and density gradient ultracentrifugation. Results showed that CPT-MBs mainly release free CPT, while DOX-MBs release multilayered DOX-lipid aggregates. The cytotoxicity to C6 cells induced by US-triggered cavitation of these two types of MBs also differed. DOX-lipid aggregates delayed initial uptake, leading to less pronounced short-term (2 h) effects compared to the rapid release of free CPT from CPT-MBs. These findings underscore the need to optimize drug delivery strategies by fine-tuning MB composition and US parameters to control drug release kinetics and achieve the best tumoricidal outcomes.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Miele L, Abate A, Taki K, Di Maio E. Bubble dynamics manipulation in polymeric foaming. SOFT MATTER 2024; 20:8845-8854. [PMID: 39470460 DOI: 10.1039/d4sm01040j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The release of pressure from a high-pressure-stable polymer/gas solution is a common method for creating gas bubbles and forming foam with a typical polyhedral cell structure. We propose a new approach to control the foaming process by pausing the bubble growth at intermediate pressure before reaching ambient pressure. This allows us to control the growth of the bubbles and investigate various physical phenomena involved in polymer foaming, such as Ostwald ripening, bubble interactions, coalescence, and different bubble growth regimes. We conducted these studies in a model system PP/N2 by subjecting the solution to non trivial pressure histories. Our method will have an impact on the study of fundamental phenomena involved in foaming and their application in creating new materials.
Collapse
Affiliation(s)
- Lorenzo Miele
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Naples, Italy.
- Foamlab, University of Naples Federico II, Naples, Italy
| | - Antonio Abate
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Naples, Italy.
| | - Kentaro Taki
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.
| | - Ernesto Di Maio
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Naples, Italy.
- Foamlab, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Prudhomme M, Lakhdar C, Fattaccioli J, Addouche M, Chollet F. Functionalization of microbubbles in a microfluidic chip for biosensing application. Biomed Microdevices 2024; 26:39. [PMID: 39287824 DOI: 10.1007/s10544-024-00721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.
Collapse
Affiliation(s)
- Marc Prudhomme
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Chaimaa Lakhdar
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, F-75005, Paris, France
| | - Mahmoud Addouche
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Franck Chollet
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France.
| |
Collapse
|
7
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
8
|
Jelenčič M, Orthaber U, Mur J, Petelin J, Petkovšek R. Evidence of laser-induced nanobubble formation mechanism in water. ULTRASONICS SONOCHEMISTRY 2023; 99:106537. [PMID: 37531836 PMCID: PMC10415793 DOI: 10.1016/j.ultsonch.2023.106537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Principles of laser-induced nanobubble formation in water are studied and presented. Nanobubbles were generated by laser light at intensities below threshold for laser-induced breakdown and subsequently expanded by a rarefaction wave to facilitate their observation and analysis. Different methods were used to study nanobubble formation and characteristics. Firstly, probability of nanobubble formation as a function of water sample purity was examined. Secondly, relation between laser fluence at different wavelengths and the number of generated nanobubbles was investigated. Thirdly, measurements of nanobubble lifetime were conducted indicating a contradiction to the Epstein-Plesset equation-based prediction of free bubble dissociation. Accumulated evidence suggests that the presence of physical impurities is a prerequisite for nanobubble formation. Consequently, a lack of impurities results in the absence of nanobubbles in contrast to assumptions by existing studies. The findings presented in this paper provide new insights into the fundamental properties of laser-induced nanobubbles in water.
Collapse
Affiliation(s)
- Miha Jelenčič
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, SI-1000 Ljubljana, Slovenia
| | - Uroš Orthaber
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, SI-1000 Ljubljana, Slovenia
| | - Jaka Mur
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, SI-1000 Ljubljana, Slovenia
| | - Jaka Petelin
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, SI-1000 Ljubljana, Slovenia
| | - Rok Petkovšek
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Ingram S, Jansen S, Schenk HJ. Lipid-Coated Nanobubbles in Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1776. [PMID: 37299679 PMCID: PMC10254470 DOI: 10.3390/nano13111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
One of the more surprising occurrences of bulk nanobubbles is in the sap inside the vascular transport system of flowering plants, the xylem. In plants, nanobubbles are subjected to negative pressure in the water and to large pressure fluctuations, sometimes encompassing pressure changes of several MPa over the course of a single day, as well as wide temperature fluctuations. Here, we review the evidence for nanobubbles in plants and for polar lipids that coat them, allowing nanobubbles to persist in this dynamic environment. The review addresses how the dynamic surface tension of polar lipid monolayers allows nanobubbles to avoid dissolution or unstable expansion under negative liquid pressure. In addition, we discuss theoretical considerations about the formation of lipid-coated nanobubbles in plants from gas-filled spaces in the xylem and the role of mesoporous fibrous pit membranes between xylem conduits in creating the bubbles, driven by the pressure gradient between the gas and liquid phase. We discuss the role of surface charges in preventing nanobubble coalescence, and conclude by addressing a number of open questions about nanobubbles in plants.
Collapse
Affiliation(s)
- Stephen Ingram
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, 00560 Helsinki, Finland
| | - Steven Jansen
- Institute of Botany, Ulm University, 89081 Ulm, Germany
| | - H. Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831-3599, USA
| |
Collapse
|
10
|
Rosselló JM, Ohl CD. Clean production and characterization of nanobubbles using laser energy deposition. ULTRASONICS SONOCHEMISTRY 2023; 94:106321. [PMID: 36774673 PMCID: PMC9945800 DOI: 10.1016/j.ultsonch.2023.106321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
We have demonstrated the production of laser bulk nanobubbles (BNB) with ambient radii typically below 500 nm. The gaseous nature of the nanometric objects was confirmed by a focused acoustic pulse that expands the gas cavities to a size that can be visualized with optical microscopy. The BNBs were produced on demand by a collimated high-energy laser pulse in a "clean" way, meaning that no solid particles or drops were introduced in the sample by the generation method. This is a clear advantage relative to the other standard BNB production techniques. Accordingly, the role of nanometric particles in laser bubble production is discussed. The characteristics of the nanobubbles were evaluated with two alternative methods. The first one measures the response of the BNBs to acoustic pulses of increasing amplitude to estimate their rest radius through the calculation of the dynamics Blake threshold. The second one is based on the bubble dissolution dynamics and the correlation of the bubble's lifetime with its initial size. The high reproducibility of the present system in combination with automated data acquisition and analysis constitutes a sound tool for studying the effects of the liquid and gas properties on the stability of the BNBs solution.
Collapse
Affiliation(s)
- Juan Manuel Rosselló
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany; Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
12
|
Experimental evidence of the effect of solute concentration on the collective evolution of bubbles in a regular pore-network. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Kalayeh K, Fowlkes JB, Claflin J, Fabiilli ML, Schultz WW, Sack BS. Ultrasound Contrast Stability for Urinary Bladder Pressure Measurement. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:136-151. [PMID: 36244919 DOI: 10.1016/j.ultrasmedbio.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The goal of this study was to evaluate ultrasound contrast microbubbles (MB) stability during a typical cystometrogram (CMG) for bladder pressure measurement application using the subharmonic-aided pressure estimation technique. A detailed study of MB stability was required given two unique characteristics of this application: first, bulk infusion of MBs into the bladder through the CMG infusion system, and second, duration of a typical CMG which may last up to 30 min. To do so, a series of size measurement and contrast-enhanced ultrasound imaging studies under different conditions were performed and the effects of variables that we hypothesized have an effect on MB stability, namely, i) IV bag air headspace, ii) MB dilution factor, and iii) CMG infusion system were investigated. The results verified that air volume in intravenous (IV) bag headspace was not enough to have a significant effect on MB stability during a CMG. We also showed that higher MB dosage results in a more stable condition. Finally, the results indicated that the CMG infusion system adversely affects MB stability. In summary, to ensure MB stability during the entire duration of a CMG, lower filling rates (limited by estimated bladder capacity in clinical applications) and/or higher MB dosage (limited by FDA regulations and shadowing artifact) and/or the consideration of alternative catheter design may be needed.
Collapse
Affiliation(s)
- Kourosh Kalayeh
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jake Claflin
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - William W Schultz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Bryan S Sack
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Inoue S, Kimura Y, Uematsu Y. Ostwald ripening of aqueous microbubble solutions. J Chem Phys 2022; 157:244704. [PMID: 36586988 DOI: 10.1063/5.0128696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bubble solutions are of growing interest because of their various technological applications in surface cleaning, water treatment, and agriculture. However, their physicochemical properties, such as the stability and interfacial charge of bubbles, are not fully understood yet. In this study, the kinetics of radii in aqueous microbubble solutions are experimentally investigated, and the results are discussed in the context of Ostwald ripening. The obtained distributions of bubble radii scaled by mean radius and total number were found to be time-independent during the observation period. Image analysis of radii kinetics revealed that the average growth and shrinkage speed of each bubble is governed by diffusion-limited Ostwald ripening, and the kinetic coefficient calculated using the available physicochemical constants in the literature quantitatively agrees with the experimental data. Furthermore, the cube of mean radius and mean volume exhibit a linear time evolution in agreement with the Lifshitz-Slezov-Wagner (LSW) theory. The coefficients are slightly larger than those predicted using the LSW theory, which can be qualitatively explained by the effect of finite volume fraction. Finally, the slowdown and pinning of radius in the shrinkage dynamics of small microbubbles are discussed in detail.
Collapse
Affiliation(s)
- Sota Inoue
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasuyuki Kimura
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuki Uematsu
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| |
Collapse
|
15
|
Bai M, Liu Z, Zhan L, Liu Z, Fan Z. A comparative study of removal efficiency of organic contaminant in landfill leachate-contaminated groundwater under micro-nano-bubble and common bubble aeration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87534-87544. [PMID: 35821314 DOI: 10.1007/s11356-022-21805-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Landfill leachate-contaminated groundwater is widespread all over the world. In order to study the organic contaminant removal efficiency of landfill leachate-contaminated groundwater under oxygen micro-nano-bubble (MNB) aeration, a series of lab-scale experiments of oxygen MNB aeration as well as common bubble (CB) aeration were conducted. Firstly, the difference in mass transfer, microbial activity enhancement, and contaminant removal efficiency between MNB and CB aeration was estimated. Then, the composition variations of dissolved organic matter (DOM) in groundwater treated by MNB or CB aeration were characterized by ultraviolet-visible (UV-VIS) absorption spectrum and fluorescence excitation-emission matrix (EEM). The test results showed that the oxygen utilization efficiency and volumetric oxygen transfer coefficient of MNB aeration were 10 and 50 times that of oxygen CB aeration, respectively. On the 30th day after MNB aeration, the dehydrogenase activity (DHA) of groundwater increased by 101.25%. Compared with CB aeration, the chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD5), and ammonia nitrogen removal efficiency under MNB aeration increased by 29.72%, 13.43%, and 138.59%, respectively. With the biodegradation effect of MNB aeration, a large number of protein-like and soluble microbial by-product substances were degraded, and humic and fulvic acid-like substances were degraded to a certain level. Oxygen MNB aeration played a chemical oxidation effect while enhancing the biodegradation of groundwater, and it was an energy-efficient landfill leachate-contaminated groundwater treatment method.
Collapse
Affiliation(s)
- Mei Bai
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| | - Zhibin Liu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China.
| | - Liangtong Zhan
- Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Zhejiang Province, Hangzhou, 310058, China
| | - Zhu Liu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| | - Zhanhuang Fan
- Cecep Dadi (Hangzhou) Environmental Remediation Co., Ltd., Zhejiang Province, Hangzhou, 310020, China
| |
Collapse
|
16
|
Fang H, Geng Z, Guan N, Zhou L, Zhang L, Hu J. Controllable generation of interfacial gas structures on the graphite surface by substrate hydrophobicity and gas oversaturation in water. SOFT MATTER 2022; 18:8251-8261. [PMID: 36278324 DOI: 10.1039/d2sm00849a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spherical nanobubbles and flat micropancakes are two typical states of gas aggregation on solid-liquid surfaces. Micropancakes, which are quasi-two-dimensional gaseous structures, are often produced accompanied by surface nanobubbles. Compared with surface nanobubbles, the intrinsic properties of micropancakes are barely understood due to the challenge of the highly efficient preparation and characterization of such structures. The hydrophobicity of the substrate and gas saturation of solvents are two crucial factors for the nucleation and stability of interfacial gas domains. Herein, we investigated the synergistic effect of the surface hydrophobicity and gas saturation on the generation of interfacial gas structures. Different surface hydrophobicities were achieved by the aging process of highly oriented pyrolytic graphite (HOPG). The results indicated that higher surface hydrophobicity and gas oversaturation could create surface nanobubbles and micropancakes with higher efficiency. Strong surface hydrophobicity could promote nanobubble nucleation and higher gas saturation would induce bigger nanobubbles. Degassed experiments could remove most of these structures and prove that they are actually gaseous domains. Finally, we draw a region diagram to describe the formation conditions of nanobubbles, micropancakes based on observations. These results would be very helpful for further understanding the formation of interfacial gas structures on the hydrophobic surface under different gas saturation.
Collapse
Affiliation(s)
- Hengxin Fang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Guan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
17
|
Gennari G, Jefferson-Loveday R, Pickering SJ. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
A fully dynamical theory for the rate of arterial gas embolism growth and dissolution. Math Biosci 2022; 345:108793. [DOI: 10.1016/j.mbs.2022.108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/02/2022] [Accepted: 02/01/2022] [Indexed: 11/23/2022]
|
19
|
Saha S, Pagaud F, Binks BP, Garbin V. Buckling versus Crystal Expulsion Controlled by Deformation Rate of Particle-Coated Air Bubbles in Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1259-1265. [PMID: 35023336 PMCID: PMC8793140 DOI: 10.1021/acs.langmuir.1c03171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Oil foams stabilized by crystallizing agents exhibit outstanding stability and show promise for applications in consumer products. The stability and mechanics imparted by the interfacial layer of crystals underpin product shelf life, as well as optimal processing conditions and performance in applications. Shelf life is affected by the stability against bubble dissolution over a long time scale, which leads to slow compression of the interfacial layer. In processing flow conditions, the imposed deformation is characterized by much shorter time scales. In practical situations, the crystal layer is therefore subjected to deformation on extremely different time scales. Despite its importance, our understanding of the behavior of such interfacial layers at different time scales remains limited. To address this gap, here we investigate the dynamics of single, crystal-coated bubbles isolated from an oleofoam, at two extreme time scales: the diffusion-limited time scale characteristic of bubble dissolution, ∼104 s, and a fast time scale characteristic of processing flow conditions, ∼10-3 s. In our experiments, slow deformation is obtained by bubble dissolution, and fast deformation in controlled conditions with real-time imaging is obtained using ultrasound-induced bubble oscillations. The experiments reveal that the fate of the interfacial layer is dramatically affected by the dynamics of deformation: after complete bubble dissolution, a continuous solid layer remains; after fast, oscillatory deformation of the layer, small crystals are expelled from the layer. This observation shows promise toward developing stimuli-responsive systems, with sensitivity to deformation rate, in addition to the already known thermoresponsiveness and photoresponsiveness of oleofoams.
Collapse
Affiliation(s)
- Saikat Saha
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Francis Pagaud
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Bernard P. Binks
- Department
of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Valeria Garbin
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Nonuniform Collective Dissolution of Bubbles in Regular Pore Networks. Transp Porous Media 2022. [DOI: 10.1007/s11242-021-01740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractUnderstanding the evolution of solute concentration gradients underpins the prediction of porous media processes limited by mass transfer. Here, we present the development of a mathematical model that describes the dissolution of spherical bubbles in two-dimensional regular pore networks. The model is solved numerically for lattices with up to 169 bubbles by evaluating the role of pore network connectivity, vacant lattice sites and the initial bubble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution time of the lattice, and the strength of the phenomenon depends on the network connectivity. The extension of the final dissolution time relative to the unbounded (bulk) case follows the power-law function, $${B^k/\ell }$$
B
k
/
ℓ
, where the constant $$\ell$$
ℓ
is the inter-bubble spacing, B is the number of bubbles, and the exponent k depends on the network connectivity. The solute concentration field is both the consequence and a factor affecting bubble dissolution or growth. The geometry of the pore network perturbs the inward propagation of the dissolution front and can generate vacant sites within the bubble lattice. This effect is enhanced by increasing the lattice size and decreasing the network connectivity, yielding strongly nonuniform solute concentration fields. Sparse bubble lattices experience decreased collective effects, but they feature a more complex evolution, because the solute concentration field is nonuniform from the outset.
Collapse
|
21
|
Needham D. The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections. Pharm Res 2022; 39:115-141. [PMID: 34962625 PMCID: PMC8713544 DOI: 10.1007/s11095-021-03112-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 11/03/2022]
Abstract
MOTIVATION With the coronavirus pandemic still raging, prophylactic-nasal and early-treatment throat-sprays could help prevent infection and reduce viral load. Niclosamide has the potential to treat a broad-range of viral infections if local bioavailability is optimized as mucin-penetrating solutions that can reach the underlying epithelial cells. EXPERIMENTAL pH-dependence of supernatant concentrations and dissolution rates of niclosamide were measured in buffered solutions by UV/Vis-spectroscopy for niclosamide from different suppliers (AK Sci and Sigma), as precipitated material, and as cosolvates. Data was compared to predictions from Henderson-Hasselbalch and precipitation-pH models. Optical-microscopy was used to observe the morphologies of original, converted and precipitated niclosamide. RESULTS Niclosamide from the two suppliers had different polymorphs resulting in different dissolution behavior. Supernatant concentrations of the "AKSci-polymorph" increased with increasing pH, from 2.53μM at pH 3.66 to 300μM at pH 9.2, reaching 703μM at pH 9.63. However, the "Sigma-polymorph" equilibrated to much lower final supernatant concentrations, reflective of more stable polymorphs at each pH. Similarly, when precipitated from supersaturated solution, or as cosolvates, niclosamide also equilibrated to lower final supernatant concentrations. Polymorph equilibration though was avoided by using a solvent-exchange technique to make the solutions. CONCLUSIONS Given niclosamide's activity as a host cell modulator, optimized niclosamide solutions could represent universal prophylactic nasal and early treatment throat sprays against COVID19, its more contagious variants, and other respiratory viral infections. They are the simplest and potentially most effective formulations from both an efficacy standpoint as well as manufacturing and distribution, (no cold chain). They now just need testing.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina, 27708, USA.
- Professor of Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
22
|
Xue S, Zhang Y, Marhaba T, Zhang W. Aeration and dissolution behavior of oxygen nanobubbles in water. J Colloid Interface Sci 2021; 609:584-591. [PMID: 34815086 DOI: 10.1016/j.jcis.2021.11.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Nanobubbles (NBs) in water elicit unique physicochemical and colloidal properties (e.g., high stability and longevity). Aeration kinetics and dissolution behavior of oxygen (O2) NBs are assumed to be bubble size dependent. EXPERIMENTS As an indicator for aeration efficiency, volumetric mass transfer coefficient (KL·a) was assessed by measuring the dissolved oxygen (DO) levels during aeration using O2 NBs with different sizes. Mass transfer coefficient (KL) was estimated by correlation analysis. Moreover, a modified Epstein-Plesset (EP) model was developed to predict the dissolution behavior by monitoring the DO and size changes during the dissolution of O2 NBs in water. FINDINGS A higher rate of DO increase and a higher equilibrium DO level were both observed after aeration with NBs that present higher surface areas for the mass transfer of O2 and a higher vapor pressure of O2 to drive the partitioning equilibrium. Dissolution kinetics of O2 NBs were highly dependent on the initial bubble size as indicated by the changes of bubble size and DO. Smaller NBs raised up DO faster, whereas larger NBs could lead to higher equilibrium DO levels. Moreover, the rate of DO decline and the quasi-steady DO levels both decreased when the dilution ratio increased, confirming that O2 NBs dictates the DO level in water. Finally, the dissolving NBs may either swell or shrink according to the model prediction.
Collapse
Affiliation(s)
- Shan Xue
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| | - Yihan Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| | - Taha Marhaba
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
23
|
Sharma A, Khamar D, Cullen S, Hayden A, Hughes H. Innovative Drying Technologies for Biopharmaceuticals. Int J Pharm 2021; 609:121115. [PMID: 34547393 DOI: 10.1016/j.ijpharm.2021.121115] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 01/30/2023]
Abstract
In the past two decades, biopharmaceuticals have been a breakthrough in improving the quality of lives of patients with various cancers, autoimmune, genetic disorders etc. With the growing demand of biopharmaceuticals, the need for reducing manufacturing costs is essential without compromising on the safety, quality, and efficacy of products. Batch Freeze-drying is the primary commercial means of manufacturing solid biopharmaceuticals. However, Freeze-drying is an economically unfriendly means of production with long production cycles, high energy consumption and heavy capital investment, resulting in high overall costs. This review compiles some potential, innovative drying technologies that have not gained popularity for manufacturing parenteral biopharmaceuticals. Some of these technologies such as Spin-freeze-drying, Spray-drying, Lynfinity® Technology etc. offer a paradigm shift towards continuous manufacturing, whereas PRINT® Technology and MicroglassificationTM allow controlled dry particle characteristics. Also, some of these drying technologies can be easily scaled-up with reduced requirement for different validation processes. The inclusion of Process Analytical Technology (PAT) and offline characterization techniques in tandem can provide additional information on the Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs) during biopharmaceutical processing. These processing technologies can be envisaged to increase the manufacturing capacity for biopharmaceutical products at reduced costs.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland.
| | - Dikshitkumar Khamar
- Sanofi, Manufacturing Science, Analytics and Technology (MSAT), IDA Industrial Park, Waterford X91TP27, Ireland
| | - Sean Cullen
- Gilead Sciences, Commercial Manufacturing, IDA Business & Technology Park, Carrigtwohill, Co. Cork T45DP77, Ireland
| | - Ambrose Hayden
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland
| | - Helen Hughes
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland
| |
Collapse
|
24
|
Pham VN, Radajewski D, Rodríguez-Ruiz I, Teychene S. Microfluidics: A Novel Approach for Dehydration Protein Droplets. BIOSENSORS 2021; 11:bios11110460. [PMID: 34821675 PMCID: PMC8615364 DOI: 10.3390/bios11110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
The equation of state of colloids plays an important role in the modelling and comprehension of industrial processes, defining the working conditions of processes such as drying, filtration, and mixing. The determination of the equation is based on the solvent equilibration, by dialysis, between the colloidal suspension and a reservoir with a known osmotic pressure. In this paper, we propose a novel microfluidic approach to determine the equation of state of a lysozyme solution. Monodispersed droplets of lysozyme were generated in the bulk of a continuous 1-decanol phase using a flow-focusing microfluidic geometry. In this multiphasic system and in the working operation conditions, the droplets can be considered to act as a permeable membrane system. A water mass transfer flow occurs by molecule continuous diffusion in the surrounding 1-decanol phase until a thermodynamic equilibrium is reached in a few seconds to minutes, in contrast with the standard osmotic pressure measurements. By changing the water saturation of the continuous phase, the equation of state of lysozyme in solution was determined through the relation of the osmotic pressure between protein molecules and the volume fraction of protein inside the droplets. The obtained equation shows good agreement with other standard approaches reported in the literature.
Collapse
Affiliation(s)
- Van Nhat Pham
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam;
- Department of Advanced Materials Science and Nanotechnology, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi (USTH), Hanoi 10072, Vietnam
| | - Dimitri Radajewski
- Laboratoire de Génie Chimique, UMR 5503, 4 allée Emile Monso, 31432 Toulouse, France; (D.R.); (I.R.-R.)
| | - Isaac Rodríguez-Ruiz
- Laboratoire de Génie Chimique, UMR 5503, 4 allée Emile Monso, 31432 Toulouse, France; (D.R.); (I.R.-R.)
| | - Sebastien Teychene
- Laboratoire de Génie Chimique, UMR 5503, 4 allée Emile Monso, 31432 Toulouse, France; (D.R.); (I.R.-R.)
- Correspondence:
| |
Collapse
|
25
|
Ho THM, Yang J, Tsai PA. Microfluidic mass transfer of CO 2 at elevated pressures: implications for carbon storage in deep saline aquifers. LAB ON A CHIP 2021; 21:3942-3951. [PMID: 34636830 DOI: 10.1039/d1lc00106j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon capture and sequestration (CCS) in a deep saline aquifer is one of the most promising technologies to mitigate anthropologically emitted carbon dioxide. Accurately quantifying the mass transport of CO2 at pore-scales is crucial but challenging for successful CCS deployment. Here, we conduct high-pressure microfluidic experiments, mimicking reservoir conditions up to 9.5 MPa and 35 °C, to elucidate the microfluidic mass transfer process of CO2 at three different states (i.e., gas, liquid, and supercritical phase) into water. We measure the size change of CO2 micro-bubbles/droplets generated using a microfluidic T-junction to estimate the volumetric mass transfer coefficient (kLa), quantifying the rate change of CO2 concentration under the driving force of concentration gradient. The results show that bubbles/droplets under high-pressure conditions reach a steady state faster than low pressure. The measured volumetric mass transfer coefficient increases with the Reynolds number (based on the liquid slug) and is nearly independent of the injection pressure for both the gas and liquid phases. In addition, kLa significantly enlarges with increasing high pressure at the supercritical state. Compared with various chemical engineering applications using millimeter-sized capillaries (with typical kLa measured ranging from ≈0.005 to 0.8 s-1), the microfluidic results show a significant increase in the volumetric mass transfer of CO2 into water by two to three orders of magnitude, O (102-103), with decreasing hydrodynamic diameter (of ≈50 μm).
Collapse
Affiliation(s)
- Tsai-Hsing Martin Ho
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada.
| | - Junyi Yang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada.
| | - Peichun Amy Tsai
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9 Canada.
| |
Collapse
|
26
|
Kyzas GZ, Mitropoulos AC. From Bubbles to Nanobubbles. NANOMATERIALS 2021; 11:nano11102592. [PMID: 34685033 PMCID: PMC8540996 DOI: 10.3390/nano11102592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023]
Abstract
Nanobubbles are classified into surface and bulk. The main difference between them is that the former is immobile, whereas the latter is mobile. The existence of sNBs has already been proven by atomic force microscopy, but the existence of bNBs is still open to discussion; there are strong indications, however, of its existence. The longevity of NBs is a long-standing problem. Theories as to the stability of sNBs reside on their immobile nature, whereas for bNBs, the landscape is not clear at the moment. In this preliminary communication, we explore the possibility of stabilizing a bNB by Brownian motion. It is shown that a fractal walk under specific conditions may leave the size of the bubble invariant.
Collapse
|
27
|
|
28
|
Bader KB, Wallach EL, Shekhar H, Flores-Guzman F, Halpern HJ, Hernandez SL. Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging. Phys Med Biol 2021; 66:10.1088/1361-6560/ac155d. [PMID: 34271560 PMCID: PMC10680990 DOI: 10.1088/1361-6560/ac155d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
Mechanical ablation with the focused ultrasound therapy histotripsy relies on the generation and action of bubble clouds. Despite its critical role for ablation, quantitative metrics of bubble activity to gauge treatment outcomes are still lacking. Here, plane wave imaging was used to track the dissolution of bubble clouds following initiation with the histotripsy pulse. Information about the rate of change in pixel intensity was coupled with an analytic diffusion model to estimate bubble size. Accuracy of the hybrid measurement/model was assessed by comparing the predicted and measured dissolution time of the bubble cloud. Good agreement was found between predictions and measurements of bubble cloud dissolution times in agarose phantoms and murine subcutaneous SCC VII tumors. The analytic diffusion model was extended to compute the maximum bubble size as well as energy imparted to the tissue due to bubble expansion. Regions within tumors predicted to have undergone strong bubble expansion were collocated with ablation. Further, the dissolution time was found to correlate with acoustic emissions generated by the bubble cloud during histotripsy insonation. Overall, these results indicate a combination of modeling and high frame rate imaging may provide means to quantify mechanical energy imparted to the tissue due to bubble expansion for histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Emily L Wallach
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Himanshu Shekhar
- Discipline of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | | | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL United States of America
| | - Sonia L Hernandez
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
29
|
Rosselló JM, Ohl CD. On-Demand Bulk Nanobubble Generation through Pulsed Laser Illumination. PHYSICAL REVIEW LETTERS 2021; 127:044502. [PMID: 34355964 DOI: 10.1103/physrevlett.127.044502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate the temporally and spatially controlled nucleation of bulk nanobubbles in water through pulsed laser irradiation with a collimated beam. Transient bubbles appear within the light exposed region once a tension wave passes through. The correlation between illumination and cavitation nucleation provides evidence that gaseous nanobubbles are nucleated in the liquid by a laser pulse with an intensity above 58 MW/cm^{2}. We estimate the radius of the nanobubbles through microscopic high-speed imaging and by solving the diffusion equation to be below 420 nm for ∼80% of the bubble population. This technique may provide a novel approach to test theories on existence of stable bulk nanobubbles.
Collapse
Affiliation(s)
- Juan Manuel Rosselló
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
30
|
McHugh CT, Durham PG, Kelley M, Dayton PA, Branca RT. Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent. Chemphyschem 2021; 22:1219-1228. [PMID: 33852753 PMCID: PMC8494452 DOI: 10.1002/cphc.202100183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Indexed: 11/06/2022]
Abstract
Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129 Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129 Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.
Collapse
Affiliation(s)
- Christian T. McHugh
- Department of Physics & Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Phillip G. Durham
- Department of Pharmacoengineering and Molecular Pharmaceutics, The University of North arolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michele Kelley
- Department of Physics & Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paul A. Dayton
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rosa T. Branca
- Department of Physics & Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
31
|
Eklund F, Alheshibri M, Swenson J. Differentiating bulk nanobubbles from nanodroplets and nanoparticles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
|
33
|
Henshaw CA, Dundas AA, Cuzzucoli Crucitti V, Alexander MR, Wildman R, Rose FRAJ, Irvine DJ, Williams PM. Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants. Molecules 2021; 26:3302. [PMID: 34072733 PMCID: PMC8197901 DOI: 10.3390/molecules26113302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polymeric surfactants. Here, micropipette manipulation methods were used to optimise the concentration of bespoke polymeric surfactants to produce biodegradable (poly(d,l-lactic acid) (PDLLA)) microparticles with unique, bio-instructive surface chemistries. The effect of these three-dimensional surfactants on the interfacial tension of the system was analysed. It was determined that to provide adequate stabilisation, a low level (0.1% (w/v)) of poly(vinyl acetate-co-alcohol) (PVA) was required. Optimisation of the PVA concentration was informed by micropipette manipulation. As a result, successful, monodisperse particles were produced that maintained the desired bio-instructive surface chemistry.
Collapse
Affiliation(s)
- Charlotte A. Henshaw
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (A.A.D.); (M.R.A.)
| | - Adam A. Dundas
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (A.A.D.); (M.R.A.)
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Morgan R. Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (A.A.D.); (M.R.A.)
| | - Ricky Wildman
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Felicity R. A. J. Rose
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Derek J. Irvine
- Centre for Additive Manufacturing, Department for Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (V.C.C.); (R.W.)
| | - Philip M. Williams
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
34
|
Vehmas T, Makkonen L. Metastable Nanobubbles. ACS OMEGA 2021; 6:8021-8027. [PMID: 33817461 PMCID: PMC8014917 DOI: 10.1021/acsomega.0c05384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/04/2021] [Indexed: 05/06/2023]
Abstract
Water containing suspended nanobubbles is utilized in various applications. The observed lifetime of suspended nanobubbles is several weeks, whereas, according to the classical theory of bubble stability, a nanosized bubble should dissolve within microseconds. Explanations for the longevity of nanosized bubbles have been proposed but none of them has gained general acceptance. In this study, we derive an explanation for the existence of metastable nanobubbles solely from the thermodynamic principles. According to our analysis, the dissolution of nanosized aqueous bulk bubbles is nonspontaneous below 180 nm diameter due to the energy requirement of gas dissolution. Hydrophobic surfaces have a further stabilizing effect, and the dissolution becomes nonspontaneous in surface nanobubbles having a diameter below 600 nm.
Collapse
|
35
|
|
36
|
Phan AHT, Le KCM, Le TH, Nguyen AV, Nguyen KT. Evidence of surfactant sub-monolayer adsorption at the air/water interface provided by laser scattering measurements of ultrafine gas bubbles. NEW J CHEM 2021. [DOI: 10.1039/d1nj02802b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the SDS concentration increases in bubble rich solutions, the surfactant layer alters its size and refractive index. The scattered light enhancement and SFG signal cancellation prove that sub-monolayer adsorption exists at the air/water interface.
Collapse
Affiliation(s)
- An Hoang Thien Phan
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| | - Khoa Cong Minh Le
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| | - Thi Ho Le
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| | - Anh Van Nguyen
- School of Chemical Engineering
- The University of Queensland
- Brisbane
- Australia
| | - Khoi Tan Nguyen
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| |
Collapse
|
37
|
Fujioka S, Mizuno K, Terasaka K. Dissolution and Shrinking of a Single Microbubble in Stationary Liquid with Surfactants. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoko Fujioka
- Keio University Department of Applied Chemistry Faculty of Science and Technology 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama Kanagawa Japan
| | - Kanako Mizuno
- Graduate School of Keio University School of Science for Open and Environmental Systems 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama Kanagawa Japan
| | - Koichi Terasaka
- Keio University Department of Applied Chemistry Faculty of Science and Technology 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama Kanagawa Japan
| |
Collapse
|
38
|
Smith SH, Somsen GA, van Rijn C, Kooij S, van der Hoek L, Bem RA, Bonn D. Aerosol persistence in relation to possible transmission of SARS-CoV-2. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2020; 32:107108. [PMID: 33154612 PMCID: PMC7607904 DOI: 10.1063/5.0027844] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
Transmission of SARS-CoV-2 leading to COVID-19 occurs through exhaled respiratory droplets from infected humans. Currently, however, there is much controversy over whether respiratory aerosol microdroplets play an important role as a route of transmission. By measuring and modeling the dynamics of exhaled respiratory droplets, we can assess the relative contribution of aerosols to the spreading of SARS-CoV-2. We measure size distribution, total numbers, and volumes of respiratory droplets, including aerosols, by speaking and coughing from healthy subjects. Dynamic modeling of exhaled respiratory droplets allows us to account for aerosol persistence times in confined public spaces. The probability of infection by inhalation of aerosols when breathing in the same space can then be estimated using current estimates of viral load and infectivity of SARS-CoV-2. The current known reproduction numbers show a lower infectivity of SARS-CoV-2 compared to, for instance, measles, which is known to be efficiently transmitted through the air. In line with this, our study of transmission of SARS-CoV-2 suggests that aerosol transmission is a possible but perhaps not a very efficient route, in particular from non-symptomatic or mildly symptomatic individuals that exhibit low viral loads.
Collapse
Affiliation(s)
- Scott H. Smith
- Van der Waals-Zeeman Institute, Institute of
Physics, University of Amsterdam, 1098 XH Amsterdam, The
Netherlands
| | - G. Aernout Somsen
- Cardiology Centers of the
Netherlands, 1073 TB Amsterdam, The Netherlands
| | - Cees van Rijn
- Van der Waals-Zeeman Institute, Institute of
Physics, University of Amsterdam, 1098 XH Amsterdam, The
Netherlands
| | - Stefan Kooij
- Van der Waals-Zeeman Institute, Institute of
Physics, University of Amsterdam, 1098 XH Amsterdam, The
Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of
Medical Microbiology, Amsterdam UMC, Location AMC, University of
Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Reinout A. Bem
- Department of Pediatric Intensive Care, Emma
Children’s Hospital, Amsterdam University Medical Centers, Location AMC,
1105 AZ Amsterdam, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of
Physics, University of Amsterdam, 1098 XH Amsterdam, The
Netherlands
| |
Collapse
|
39
|
Yang Y, Biviano MD, Guo J, Berry JD, Dagastine RR. Mass transfer between microbubbles. J Colloid Interface Sci 2020; 571:253-259. [PMID: 32203761 DOI: 10.1016/j.jcis.2020.02.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
HYPOTHESIS The role of interfacial coatings in gas transport dynamics in foam coarsening is often difficult to quantify. The complexity of foam coarsening measurements or gas transport measurements between bubbles requires assumptions about the liquid thin film thickness profile in order to explore the effects of interfacial coatings on gas transport. It should be possible to independently quantify the effects from changes in film thickness and interfacial permeability by using both atomic force microscopy and optical microscopy to obtain time snapshots of this dynamic process. Further, it is expected that the surfactant and polymer interfacial coatings will affect the mass transfer differently. EXPERIMENTS We measure the mass transfer between the same nitrogen microbubbles pairs in an aqueous solution using two methods simultaneously. First, we quantify the bubble volume changes with time via microscopy and second, we use Atomic Force Microscopy to measure the film thickness and mass transfer resistances using a model for the gas transport. FINDINGS Modelling of the interface deformation, surface forces and mass transfer across the thin film agrees with independent measurements of changes in bubble size. We demonstrate that an anionic surfactant does not provide a barrier to mass transfer, but does enhance mass transfer above the critical micelle concentration. In contrast, a polymer monolayer at the interface does restrict mass transfer.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Heavy Oil Processing at Karamay, China University of Petroleum-Beijing at Karamay, Karamay 834000, China; Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing 102249, China
| | - Matthew D Biviano
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - Jixiang Guo
- Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing 102249, China
| | - Joseph D Berry
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia.
| | - Raymond R Dagastine
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
40
|
Stride E, Segers T, Lajoinie G, Cherkaoui S, Bettinger T, Versluis M, Borden M. Microbubble Agents: New Directions. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1326-1343. [PMID: 32169397 DOI: 10.1016/j.ultrasmedbio.2020.01.027] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 05/24/2023]
Abstract
Microbubble ultrasound contrast agents have now been in use for several decades and their safety and efficacy in a wide range of diagnostic applications have been well established. Recent progress in imaging technology is facilitating exciting developments in techniques such as molecular, 3-D and super resolution imaging and new agents are now being developed to meet their specific requirements. In parallel, there have been significant advances in the therapeutic applications of microbubbles, with recent clinical trials demonstrating drug delivery across the blood-brain barrier and into solid tumours. New agents are similarly being tailored toward these applications, including nanoscale microbubble precursors offering superior circulation times and tissue penetration. The development of novel agents does, however, present several challenges, particularly regarding the regulatory framework. This article reviews the developments in agents for diagnostic, therapeutic and "theranostic" applications; novel manufacturing techniques; and the opportunities and challenges for their commercial and clinical translation.
Collapse
Affiliation(s)
- Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Tim Segers
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Samir Cherkaoui
- Bracco Suisse SA - Business Unit Imaging, Global R&D, Plan-les-Ouates, Switzerland
| | - Thierry Bettinger
- Bracco Suisse SA - Business Unit Imaging, Global R&D, Plan-les-Ouates, Switzerland
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Mark Borden
- Mechanical Engineering Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|
41
|
Goldman S, Solano-Altamirano JM. An explicitly multi-component arterial gas embolus dissolves much more slowly than its one-component approximation. Math Biosci 2020; 326:108393. [PMID: 32497622 DOI: 10.1016/j.mbs.2020.108393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
Abstract
We worked out the growth and dissolution rates of an arterial gas embolism (AGE), to illustrate the evolution over time of its size and composition, and the time required for its total dissolution. We did this for a variety of breathing gases including air, pure oxygen, Nitrox and Heliox (each over a range of oxygen mole fractions), in order to assess how the breathing gas influenced the evolution of the AGE. The calculations were done by numerically integrating the underlying rate equations for explicitly multi-component AGEs, that contained a minimum of three (water, carbon dioxide and oxygen) and a maximum of five components (water, carbon dioxide, oxygen, nitrogen and helium). The rate equations were straight-forward extensions of those for a one-component gas bubble. They were derived by using the Young-Laplace equation and Dalton's law for the pressure in the AGE, the Laplace equation for the dissolved solute concentration gradients in solution, Henry's law for gas solubilities, and Fick's law for diffusion rates across the AGE/arterial blood interface. We found that the 1-component approximation, under which the contents of the AGE are approximated by its dominant component, greatly overestimates the dissolution rate and underestimates the total dissolution time of an AGE. This is because the 1-component approximation manifestly precludes equilibration between the AGE and arterial blood of the inspired volatile solutes (O2, N2, He) in arterial blood. Our calculations uncovered an important practical result, namely that the administration of Heliox, as an adjunct to recompression therapy for treating a suspected N2-rich AGE must be done with care. While Helium is useful for preventing nitrogen narcosis which can arise in aggressive recompression therapy wherein the N2 partial pressure can be quite high (e.g.∼5 atm), it also temporarily expands the AGE, beyond the expansion arising from the use of Oxygen-rich Nitrox. For less aggressive recompression therapy wherein nitrogen narcosis is not a significant concern, Oxygen-rich Nitrox is to be preferred, both because it does not temporarily expand the AGE as much as Heliox, and because it is much cheaper and more conservation-minded.
Collapse
Affiliation(s)
- Saul Goldman
- University of Guelph, Department of Chemistry, the Guelph-Waterloo Centre for Graduate Work in Chemistry, and the Guelph-Waterloo Physics Institute, Guelph, Ontario, Canada.
| | - J M Solano-Altamirano
- Facultad de Ciencias Químicas, Benemérita Unversidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, 72570 Puebla, Mexico.
| |
Collapse
|
42
|
Tan BH, An H, Ohl CD. How Bulk Nanobubbles Might Survive. PHYSICAL REVIEW LETTERS 2020; 124:134503. [PMID: 32302159 DOI: 10.1103/physrevlett.124.134503] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 05/23/2023]
Abstract
The existence of bulk nanobubbles has long been regarded with scepticism, due to the limitations of experimental techniques and the widespread assumption that spherical bubbles cannot achieve stable equilibrium. We develop a model for the stability of bulk nanobubbles based on the experimental observation that the zeta potential of spherical bubbles abruptly diverges from the planar value below 10 μm. Our calculations recover three persistently reported-but disputed-properties of bulk nanobubbles: that they stabilize at a typical radius of ∼100 nm, that this radius is bounded below 1 μm, and that it increases with ionic concentration.
Collapse
Affiliation(s)
- Beng Hau Tan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Low Energy Electronic Systems, Singapore-MIT Alliance for Research and Technology, 1 Create Way, 138602 Singapore
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| |
Collapse
|
43
|
Khan AH, Dalvi SV. Kinetics of albumin microbubble dissolution in aqueous media. SOFT MATTER 2020; 16:2149-2163. [PMID: 32016261 DOI: 10.1039/c9sm01516g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effectiveness of microbubbles as ultrasound contrast agents and targeted drug delivery vehicles depends on their persistence in blood. It is therefore necessary to understand the dissolution behavior of microbubbles in an aqueous medium. While there are several reports available in the literature on the dissolution of lipid microbubbles, there are no reports available on the dissolution kinetics of protein microbubbles. Moreover, shell parameters such as interfacial tension, shell resistance and shell elasticity/stiffness which characterize microbubble shells, have been reported for lipid shells but no such data are available for protein shells. Accordingly, this work was focused on capturing the dissolution behavior of protein microbubbles and estimation of shell parameters such as surface tension, shell resistance and shell elasticity. Bovine serum albumin (BSA) was used as a model protein and microbubbles were synthesized using sonication. During dissolution, a large portion of the protein shell was found to disengage from the gas-liquid interface after a stagnant dissolution phase, leading to a sudden disappearance of the microbubbles due to complete dissolution. In order to estimate shell parameters, microbubble dissolution kinetic data (radius vs. time) was fit numerically to a mass transfer model describing a microbubble dissolution process. Analysis of the results shows that the interfacial tension increases drastically and the shell resistance reduces significantly, as protein molecules leave the gas-liquid interface. Furthermore, the effect of processing conditions such as preheating temperature, microbubble size, and core gas and shell composition on the protein shell parameters was also evaluated.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
44
|
Xiao W, Xu G. Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134976. [PMID: 31757539 DOI: 10.1016/j.scitotenv.2019.134976] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
It is necessary to improve the performance and reduce the aeration cost is of wastewater treatment by aerobic biofilm systems. Nanobubble aeration is supposed to be a promising method to achieve these goals. Compared with coarse bubbles, dissolved oxygen profiling showed that the nanobubbles provided more oxygen to biofilms, offering superior oxygen supply capacity and 1.5 times higher oxygen transfer efficiency. Nanobubble aeration accelerated the growth of the biofilm and achieved better removal efficiencies of chemical oxygen demand and ammonia, with as maximum as six times higher dehydrogenase activity, and more extracellular polymeric substance content than when using the traditional aeration mode. This is attributed to the enhancement of metabolism and the proliferation of microorganisms. Confocal laser-scanning microscopy imaging confirmed that nanobubble aeration affected the components of biofilm by shifting the microbial community and changing its metabolic pathways of biofilms, such as carbohydrate synthesis. Nanobubble aeration resulted in an energy saving of approximately 80%. The assessment of nanobubble aerated biofilm growth suggests that this technique can offer a rapid-initiation, high efficiency, and low-cost strategy for aerobic biofilm systems in wastewater treatment.
Collapse
Affiliation(s)
- Wanting Xiao
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
45
|
Browning RJ, Aron M, Booth A, Rademeyer P, Wing S, Brans V, Shrivastava S, Carugo D, Stride E. Spectral Imaging for Microbubble Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:609-617. [PMID: 31855435 DOI: 10.1021/acs.langmuir.9b03828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbubbles stabilized by an outer lipid shell have been studied extensively for both diagnostic and therapeutic applications. The shell composition can significantly influence microbubble behavior, but performing quantitative measurements of shell properties is challenging. The aim of this study is to investigate the use of spectral imaging to characterize the surface properties of a range of microbubble formulations representing both commercial and research agents. A lipophilic dye, C-laurdan, whose fluorescence emission varies according to the properties of the local environment, was used to compare the degree and uniformity of the lipid order in the microbubble shell, and these measurements were compared with the acoustic response and stability of the different formulations. Spectral imaging was found to be suitable for performing rapid and hence relatively high throughput measurements of microbubble surface properties. Interestingly, despite significant differences in lipid molecule size and charge, all of the different formulations exhibited highly ordered lipid shells. Measurements of liposomes with the same composition and the debris generated by destroying lipid microbubbles with ultrasound (US) showed that these exhibited a lower and more varied lipid order than intact microbubbles. This suggests that the high lipid order of microbubbles is due primarily to compression of the shell as a result of surface tension and is only minimally affected by composition. This also explains the similarity in acoustic response observed between the formulations, because microbubble dynamics are determined by the diameter and shell viscoelastic properties that are themselves a function of the lipid order. Within each population, there was considerable variability in the lipid order and response between individual microbubbles, suggesting the need for improved manufacturing techniques. In addition, the difference in the lipid order between the shell and lipid debris may be important for therapeutic applications in which shedding of the shell material is exploited, for example, drug delivery.
Collapse
Affiliation(s)
- Richard J Browning
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Miles Aron
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Anna Booth
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
- Department of Chemistry , University of Oxford , Oxford OX1 3QR , U.K
| | - Paul Rademeyer
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Sarah Wing
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Veerle Brans
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Shamit Shrivastava
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Dario Carugo
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
- Faculty of Engineering and Physical Sciences , University of Southampton , Highfield, Southampton SO17 1BJ , U.K
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| |
Collapse
|
46
|
Abstract
Ultrasound and magneto-responsive nanosized drug delivery systems have been designed as novel carriers for controlled release. Colloidal bubbles (CBs) could be designed to incorporate different materials, such as protein, lipid, polymer, surfactants, and even nanoparticles in their shell, which makes them suitable for a wide range of drug delivery applications. The interior of CBs may be filled with different gases, which is essential for conferring the characteristics of an ultrasounds contrasting agent. Manipulating the core of CBs enhances features such as stability and duration of the echogenic effect. Thus CBs derivatized with nanoparticles combine functional properties of CBs and NPs to yield a versatile theranostics platform technology.
Collapse
|
47
|
Midtvedt D, Eklund F, Olsén E, Midtvedt B, Swenson J, Höök F. Size and Refractive Index Determination of Subwavelength Particles and Air Bubbles by Holographic Nanoparticle Tracking Analysis. Anal Chem 2019; 92:1908-1915. [DOI: 10.1021/acs.analchem.9b04101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Midtvedt
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Fredrik Eklund
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Erik Olsén
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Benjamin Midtvedt
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Jan Swenson
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Fredrik Höök
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
48
|
Fu J, Huang Y, Liao Q, Xia A, Fu Q, Zhu X. Photo-bioreactor design for microalgae: A review from the aspect of CO 2 transfer and conversion. BIORESOURCE TECHNOLOGY 2019; 292:121947. [PMID: 31466821 DOI: 10.1016/j.biortech.2019.121947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Photobioreactor (PBR) is the most critical equipment for microalgal photosynthetic fixation of CO2. It provides suitable environmental conditions, such as CO2, light and nutrients, for microalgal growth. As the major carbon source for microalgae, CO2 gas is pumped into PBR with the formation of bubbles and formed gas-liquid flow. The gas-liquid flow affects CO2 and nutrients transmission as well as microalgae cells distribution in PBR, thereby affecting the biochemical reaction of microalgae. While the migration and transport of biochemical reaction products affect the two-phase flow, phase distribution and flow resistance in the PBR in return, thus affecting the transport of light and nutrients. Therefore, microalgal photosynthetic rate is determined synthetically by two-phase flow and the transport of CO2, light and nutrients in PBR. Deep understanding of gas-liquid two-phase flow, energy and mass transfer coupling with microalgal growth in PBR is the cornerstone for the design of an efficient microalgae PBR.
Collapse
Affiliation(s)
- Jingwei Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
49
|
Shelf-Life Evaluation and Lyophilization of PBCA-Based Polymeric Microbubbles. Pharmaceutics 2019; 11:pharmaceutics11090433. [PMID: 31454967 PMCID: PMC6781551 DOI: 10.3390/pharmaceutics11090433] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.
Collapse
|
50
|
Oeffinger BE, Vaidya P, Ayaz I, Shraim R, Eisenbrey JR, Wheatley MA. Preserving the Integrity of Surfactant-Stabilized Microbubble Membranes for Localized Oxygen Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10068-10078. [PMID: 30827115 PMCID: PMC7041305 DOI: 10.1021/acs.langmuir.8b03725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound contrast agents consist of stabilized microbubbles. We are developing a surfactant-stabilized microbubble platform with a shell composed of Span 60 (Sorbitan monostearate) and an emulsifying agent, water-soluble vitamin E (α-tocopheryl poly(ethylene glycol) succinate, abbreviated as TPGS), named SE61. The microbubbles act both as an imaging agent and a vehicle for delivering oxygen to hypoxic areas in tumors. For clinical use, it is important that a platform be stable under storage at room temperature. To accomplish this, a majority of biologicals are prepared as freeze-dried powders, which also eliminates the necessity of a cold chain. The interfaces among the surfactants, gas, and liquids are subject to disruption in both the freezing and drying phases. Using thermocouples to monitor temperature profiles, differential scanning calorimetry to determine the phase transitions, and acoustic properties to gauge the degree of microbubble disruption, the effects of the freezing rate and the addition of different concentrations of lyoprotectants were determined. Slower cooling rates achieved by freezing the samples in a -20 °C bath were found to be reproducible and produce contrast agents with acceptable acoustical properties. The ionic strength of the solutions and the concentration of the lyoprotectant determined the glass-transition temperature (Tg') of the frozen sample, which determines at what temperature samples can be dried without collapse. Crucially, we found that the shelf stability of surfactant-shelled oxygen microbubbles can be enhanced by increasing the lyoprotectant (glucose) concentration from 1.8 to 5.0% (w/v), which prevents the melt temperature (Tm) of the TPGS phase from rising above room temperature. The increase in glucose concentration results in a lowering of Tm of the emulsifying agent, preventing a phase change in the liquid-crystalline phase and allowing for more stable bubbles. We believe that preventing this phase change is necessary to producing stabilized freeze-dried microbubbles.
Collapse
Affiliation(s)
- Brian E. Oeffinger
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Purva Vaidya
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Iman Ayaz
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Rawan Shraim
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Margaret A. Wheatley
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|