1
|
Chen S, Xie Y, Ma K, Wei Z, Ran X, Fu X, Zhang C, Zhao C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact Mater 2024; 42:478-518. [PMID: 39308550 PMCID: PMC11415839 DOI: 10.1016/j.bioactmat.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Electrospun nanofibrous membranes (eNFMs) have been extensively developed for bio-applications due to their structural and compositional similarity to the natural extracellular matrix. However, the emergence of antibiotic resistance in bacterial infections significantly impedes the further development and applications of eNFMs. The development of antibacterial nanomaterials substantially nourishes the engineering design of antibacterial eNFMs for combating bacterial infections without relying on antibiotics. Herein, a comprehensive review of diverse fabrication techniques for incorporating antibacterial nanomaterials into eNFMs is presented, encompassing an exhaustive introduction to various nanomaterials and their bactericidal mechanisms. Furthermore, the latest achievements and breakthroughs in the application of these antibacterial eNFMs in tissue regenerative therapy, mainly focusing on skin, bone, periodontal and tendon tissues regeneration and repair, are systematically summarized and discussed. In particular, for the treatment of skin infection wounds, we highlight the antibiotic-free antibacterial therapy strategies of antibacterial eNFMs, including (i) single model therapies such as metal ion therapy, chemodynamic therapy, photothermal therapy, and photodynamic therapy; and (ii) multi-model therapies involving arbitrary combinations of these single models. Additionally, the limitations, challenges and future opportunities of antibacterial eNFMs in biomedical applications are also discussed. We anticipate that this comprehensive review will provide novel insights for the design and utilization of antibacterial eNFMs in future research.
Collapse
Affiliation(s)
- Shengqiu Chen
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingwu Ran
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Endocrinology and Metabolism, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Mamidi N, Delgadillo RM. New Zein Protein Composites with High Performance in Phosphate Removal, Intrinsic Antibacterial, and Drug Delivery Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37468-37485. [PMID: 38938118 DOI: 10.1021/acsami.4c04718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Herein, poly(N-(4-aminophenyl)methacrylamide)-carbon nano-onions [abbreviated as PAPMA-CNOs (f-CNOs)] integrated gallic acid cross-linked zein composite fibers (ZG/f-CNOs) were developed for the removal/recovery of phosphate from wastewater along with controlled drug delivery and intrinsic antibacterial characteristics. The composite fibers were produced by Forcespinning followed by a heat-pressure technique. The obtained ZG/f-CNOs composite fibers presented several favorable characteristics of nanoadsorbents and drug carriers. The composite fibers exhibited excellent adsorption capabilities for phosphate ions. The adsorption assessment demonstrated that composite fibers process highly selective sequestration of phosphate ions from polluted water, even in the presence of competing anions. The ZG/f-CNOs composite fibers presented a maximum phosphate adsorption capacity (qmax) of 2500 mg/g at pH 7.0. This represents the most efficient phosphate adsorption system among all of the reported nanocomposites to date. The isotherm studies and adsorption kinetics of the adsorbent showed that the adsorption experiments followed the pseudo-second-order and Langmuir isotherm model (R2 = 0.9999). After 13 adsorption/desorption cycles, the adsorbent could still maintain its adsorption efficiency of 96-98% at pH 7.0 while maintaining stability under thermal and chemical conditions. The results mark significant progress in the design of composite fibers for removing phosphates from wastewater, potentially aiding in alleviating eutrophication effects. Owing to the f-CNOs incorporation, ZG/f-CNOs composite fibers exhibited controlled drug delivery. An antibiotic azithromycin drug-encapsulated composite fibers presented a pH-mediated drug release in a controlled manner over 18 days. Furthermore, the composite fibers displayed excellent antibacterial efficiency against Gram-positive and Gram-negative bacteria without causing resistance. In addition, zein composite fibers showed augmented mechanical properties due to the presence of f-CNOs within the zein matrix. Nonetheless, the robust zein composite fibers with inherent stimuli-responsive drug delivery, antibacterial properties, and phosphate adsorption properties can be considered promising multifunctional composites for biomedical applications and environmental remediation.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for NanoBioSystmes, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Ramiro Manuel Delgadillo
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| |
Collapse
|
3
|
Erdoğan N, Şen Karaman D, Yıldız Ö, Özdemir GD, Ercan UK. Mesoporous silica nanoparticles accommodating electrospun nanofibers as implantable local drug delivery system processed by cold atmospheric plasma and spin coating approaches. Biomed Mater 2024; 19:025015. [PMID: 38181435 DOI: 10.1088/1748-605x/ad1bb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Nanofibers (NF) and nanoparticles are attractive for drug delivery to improve the drug bioavailability and administration. Easy manipulation of NF as macroscopic bulk material give rise to potential usages as implantable local drug delivery systems (LLDS) to overcome the failures of systemic drug delivery systems such as unmet personalized needs, side effects, suboptimal dosage. In this study, poly(ethylene glycol) polyethyleneimine (mPEG:PEI) copolymer blended polyϵ-caprolactone NFs, NFblendaccommodating mesoporous silica nanoparticles (MSN) as the implantable LLDS was achieved by employing spin coating and cold atmospheric plasma (CAP) as the post-process for accommodation on NFblend. The macroporous morphology, mechanical properties, wettability, andin vitrocytocompatibility of NFblendensured their potential as an implantable LLDS and superior features compared to neat NF. The electron microscopy images affirmed of NFblendrandom fiber (average diameter 832 ± 321 nm) alignments and accessible macropores before and after MSN@Cur accommodation. The blending of polymers improved the elongation of NF and the tensile strength which is attributed as beneficial for implantable LLDS. CAP treatment could significantly improve the wettability of NF observed by the contact angle changes from ∼126° to ∼50° which is critical for the accommodation of curcumin-loaded MSN (MSN@Cur) andin vitrocytocompatibility of NF. The combined CAP and spin coating as the post-processes was employed for accommodating MSN@Cur on NFblendwithout interfering with the electrospinning process. The post-processing aided fine-tuning of curcumin dosing (∼3 µg to ∼15 µg) per dose unit and sustained zero-order drug release profile could be achieved. Introducing of MSN@Cur to cells via LLDS promoted the cell proliferation compared to MSN@Cur suspension treatments and assigned as the elimination of adverse effects by nanocarriers by the dosage form integration. All in all, NFblend-MSN@Cur was shown to have high potential to be employed as an implantable LLDS. To the best of our knowledge, this is the first study in which mPEG:PEI copolymer blend NF are united with CAP and spin coating for accommodating nano-drug carriers, which allows for NF both tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Nursu Erdoğan
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| | - Özlem Yıldız
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Gizem Dilara Özdemir
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
4
|
Romero LM, Araya N, Palacio DA, Sánchez-Sanhueza GA, Pérez EG, Solís FJ, Meléndrez MF, Medina C. Study of the Antibacterial Capacity of a Biomaterial of Zeolites Saturated with Copper Ions (Cu 2+) and Supported with Copper Oxide (CuO) Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2140. [PMID: 37513151 PMCID: PMC10384100 DOI: 10.3390/nano13142140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
In this work, copper (II) ions were saturated and copper oxide nanoparticles (CuO NPs) were supported in natural zeolite from Chile; this was achieved by making the adsorbent material come into contact with a copper ion precursor solution and using mechanical agitation, respectively. The kinetic and physicochemical process of the adsorption of copper ions in the zeolite was studied, as well as the effect of the addition of CuO NPs on the antibacterial properties. The results showed that the saturation of copper (II) ions in the zeolite is an efficient process, obtaining a 27 g L-1 concentration of copper ions in a time of 30 min. The TEM images showed that a good dispersion of the CuO NPs was obtained via mechanical stirring. The material effectively inhibited the growth of Gram-negative and Gram-positive bacteria that have shown resistance to methicillin and carbapenem. Furthermore, the zeolite saturated with copper at the same concentration had a better bactericidal effect than the zeolite supported with CuO NPs. The results suggested that the ease of processing and low cost of copper (II) ion-saturated zeolitic material could potentially be used for dental biomedical applications, either directly or as a bactericidal additive for 3D printing filaments.
Collapse
Affiliation(s)
- Lina M Romero
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Nicolas Araya
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, 129 Edmundo Larenas, Concepcion 4070409, Chile
| | - Gabriela A Sánchez-Sanhueza
- Department of Restorative Dentistry, Faculty of Dentistry, Universidad de Concepción, Concepcion 4070409, Chile
| | - Eduardo G Pérez
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo Leon 66451, Mexico
| | - Francisco J Solís
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo Leon 66451, Mexico
| | - Manuel F Meléndrez
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
- Unidad de Desarrollo Tecnológico, 2634 Av. Cordillera, Parque Industrial Coronel, Box 4051, Concepcion 4191996, Chile
| | - Carlos Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepcion 4070409, Chile
| |
Collapse
|
5
|
Haider MK, Kharaghani D, Yoshiko Y, Kim IS. Lignin-facilitated growth of Ag/CuNPs on surface-activated polyacryloamidoxime nanofibers for superior antibacterial activity with improved biocompatibility. Int J Biol Macromol 2023; 242:124945. [PMID: 37211079 DOI: 10.1016/j.ijbiomac.2023.124945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Nanofibers are one of the role-playing innovations of nanotechnology. Their high surface-to-volume ratio allows them to be actively functionalized with a wide range of materials for a variety of applications. The functionalization of nanofibers with different metal nanoparticles (NPs) has been studied widely to fabricate antibacterial substrates to battle antibiotic-resistant bacteria. However, metal NPs show cytotoxicity to living cells, thereby restricting their application in biomedicine. OBJECTIVES To minimize the cytotoxicity of NPs, biomacromolecule lignin was employed as both a reducing and capping agent to green synthesize silver (Ag) and copper (Cu) NPs on the surface of highly activated polyacryloamidoxime nanofibers. The activation of polyacrylonitrile (PAN) nanofibers via amidoximation was employed for enhanced loading of NPs to achieve superior antibacterial activity. METHODOLOGY At first, electrospun PAN nanofibers (PANNM) were activated to produce polyacryloamidoxime nanofibers (AO-PANNM) by immersing PANNM in a solution of Hydroxylamine hydrochloride (HH) and Na2CO3 under controlled conditions. Later, Ag and Cu ions were loaded by immersing AO-PANNM in different molar concentrations of AgNO3 and CuSO4 solutions in a stepwise manner. The reduction of Ag and Cu ions into NPs to fabricate bimetal-coated PANNM (BM-PANNM) was carried out via alkali lignin at 37 °C for 3 h in a shaking incubator with ultrasonication every 1 h. RESULTS AO-APNNM and BM-PANNM hold their nano-morphology except for some changes in fiber orientation. XRD analysis demonstrated the formation of Ag and CuNPs as evident from their respective spectral band. Maximum 8.46 ± 0.14 wt% and 0.98 ± 0.04 wt% Ag and Cu species were loaded on AO-PANNM, respectively as revealed by ICP spectrometric analysis. The hydrophobic PANNM turned into super hydrophilic, having WCA of 14 ± 3.32° after amidoximation which further reduced to 0° for BM-PANNM. However, the swelling ratio of PANNM reduced from 13.19 ± 0.18 g/g to 3.72 ± 0.20 g/g for AO-PANNM. Even at the third cycle test against S. aureus strains, 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM displayed bacterial reduction of 71.3 ± 1.64 %, 75.2 ± 1.91 %, and 77.24 ± 1.25 %, respectively. On 3rd cycle test against E. coli, above 82 % bacterial reduction was noticed for all BM-PANNM. Amidoximation increased COS-7 cell viability up to 82 %. The cell viability of 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM was found to be ~68 %, ~62, and 54 %, respectively. In LDH assay, almost no release of LDH was detected, suggesting the compatibility of the cell membrane in contact with BM-PANNM. The improved biocompatibility of BM-PANNM even at higher loading (%) of NPs must be ascribed to the controlled release of metal species in the early stage, antioxidant, and biocompatible lignin capping of NPs. CONCLUSIONS BM-PANNM displayed superior antibacterial activity against E. coli and S. aureus bacterial strains and acceptable biocompatibility of COS-7 cells even at higher loading (%) of Ag/CuNPs. Our findings suggest that BM-PANNM can be used as a potential antibacterial wound dressing and other antibacterial applications where sustained antibacterial activity is needed.
Collapse
Affiliation(s)
- Md Kaiser Haider
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
6
|
Donkey Dung–Mediated Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial, Antifungal, Anticancer, and DNA Cleavage Activities. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Liu W, Pei W, Moradi M, Zhao D, Li Z, Zhang M, Xu D, Wang F. Polyethyleneimine Functionalized Mesoporous Magnetic Nanoparticles with Enhanced Antibacterial and Antibiofilm Activity in an Alternating Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18794-18805. [PMID: 35420412 DOI: 10.1021/acsami.1c24148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite a lot of research on the antibacterial effect of Fe3O4 nanoparticles, their interactions with biofilm matrix have not been well understood. The surface charge of nanoparticles mainly determines their ability to adhere on the biofilm. In this work, negatively charged Fe3O4 nanoparticles were synthesized via a trisodium citrate-assisted solvothermal method and then the surfaces were functionalized using polyethyleneimine (PEI) to obtain positively charged Fe3O4 nanoparticles. The antibacterial and antibiofilm activities of both negatively and positively charged Fe3O4 nanoparticles in an alternating magnetic field were then systematically investigated. The positively charged Fe3O4 nanoparticles showed a strong self-adsorbed attachment ability to the planktonic and sessile cells, resulting in a better antibacterial activity and enhanced biofilm eradication performance compared to the conventional Fe3O4 nanoparticles with negative charges. Fe3O4@PEI nanoparticles produced physical stress and thermal damage in response to an alternating magnetic field, inducing the accumulation of intracellular reactive oxygen species into live bacterial cells, bacterial membrane damage, and biofilm dispersion. Utilizing an alternating magnetic field along with positively charged nanoparticles leads to a synergistic antibacterial approach to improve the antibiofilm performance of magnetic nanoparticles.
Collapse
Affiliation(s)
- Wenhui Liu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Wenli Pei
- Key Laboratory of Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Masoumeh Moradi
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Dong Zhao
- Key Laboratory of Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Zhong Li
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Mingxing Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| |
Collapse
|
8
|
Mohamed AF, Nasr M, Amer ME, Abuamara TMM, Abd-Elhay WM, Kaabo HF, Matar EER, El Moselhy LE, Gomah TA, Deban MAEF, Shebl RI. Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study. Infect Agent Cancer 2022; 17:4. [PMID: 35120563 PMCID: PMC8817517 DOI: 10.1186/s13027-022-00416-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to antibiotics and anticancer therapy is a serious global health threat particularly in immunosuppressed cancer patients. Current study aimed to estimate the antibacterial and anticancer potentials of short-term exposure to extremely low frequency electromagnetic field (ELF-EMF) and silver nanoparticles (AgNPs) either in sole or combined form. METHODS Antibacterial activity was evaluated via determination of the bacterial viable count reduction percentage following exposure, whereas their ability to induce apoptosis in breast cancer (MCF-7) cell line was detected using annexin V-fluorescein isothiocyanate and cell cycle analysis. Also, oxidative stress potential and molecular profile were investigated. RESULTS ELF-EMF and AgNPs significantly (p < 0.01) reduced K. pneumonia viable count of compared to that of S. aureus in a time dependent manner till reaching 100% inhibition when ELF-EMF was applied in combination to 10 µM/ml AgNPs for 2 h. Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination recording significantly (p < 0.001) induced apoptosis as indicated by elevated level of MCF-7 cells in the Pre G1 phase compared to control. S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively. Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment. CONCLUSIONS The antibacterial and anticancer potentials of these agents might be related to their ability to induce oxidative stress, suggesting their potentials as novel candidates for controlling infections and triggering cancer cells towards self-destruction.
Collapse
Affiliation(s)
- Aly Fahmy Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E Amer
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Tamer M M Abuamara
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wagih M Abd-Elhay
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hassan Fathy Kaabo
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Emad Eldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Laila E El Moselhy
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | | | | - Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Zone, Banks Complex, 6th October City, Cairo, Egypt.
| |
Collapse
|
9
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
10
|
Antibacterial Synergism of Electrospun Nanofiber Mats Functioned with Silver Nanoparticles and Pulsed Electromagnetic Waves. Polymers (Basel) 2021; 13:polym13020277. [PMID: 33467752 PMCID: PMC7829770 DOI: 10.3390/polym13020277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
The over-reliance on antibiotics and their enormous misuse has led to warnings of a future without effective medicines and so, the need for alternatives to antibiotics has become a must. Non-traditional antibacterial treatment was performed by using an aray of nanocomposites synergised with exposure to electromagnetic waves. In this manuscript, electrospun poly(vinyl alcohol) (PVA) nanofiber mats embedded with silver nanoparticles (Ag NPs) were synthesized. The nanocomposites were characterized by Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Current-Voltage (I-V) curves, and Thermogravimetric analysis (TGA) along with analysis of antibacterial impact against E. coli and S. aureus bacteria, studied by bacterial growing analysis, growth kinetics, and cellular cytotoxicity. The results indicated a spherical grain shape of silver of average size 20 nm and nanofibers' mean diameter of less than 100 nm. The nanocomposite mats showed good exposure to bacteria and the ability to sustain release of silver for a relatively long time. Moreover, the applied electromagnetic waves (EMWs) were shown to be a synergistic co-factor in killing bacteria even at low concentrations of Ag NPs. This caused pronounced alterations of the bacterial preserved packing of the cell membrane. Thereby, the treatment with nanocomposite mats under EM wave exposure elucidated maximum inhibition for both bacterial strains. It was concluded that the functioning of nanofiber with silver nanoparticles and exposure to electromagnetic waves improved the antibacterial impact compared to each one alone.
Collapse
|
11
|
Nanodecoration of electrospun polymeric fibers with nanostructured silver coatings by ionized jet deposition for antibacterial tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110998. [PMID: 32487406 DOI: 10.1016/j.msec.2020.110998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022]
Abstract
Silver-based nanomaterials are used as antibacterial agents in a number of applications, including wound dressing, where electrospun materials can effectively promote wound healing and tissue regeneration thanks to their biomimicry, flexibility and breathability. Incorporation of such nanomaterials in electrospun nonwovens is highly challenging if aiming at maximizing stability and antibacterial efficacy and minimizing silver detachment, without neglecting process straightforwardness and scalability. In this work nanostructured silver coatings were deposited by Ionized Jet Deposition (IJD) on Polylactic acid, a medical grade polyester-urethane and Polyamide 6,6 nanofibers. The resulting materials were thoroughly characterized to gain an in-depth view of coating morphology and substrate resistance to the low-temperature deposition process used. Morphology of silver coatings with well-cohesive grains having dimensions from a few tens to a few hundreds of nanometers was analyzed by SEM, TEM and AFM. TGA, DSC, FTIR and GPC showed that the polymers well withstand the deposition process with negligible effects on their properties, the only exception being the polylactic acid that resulted more susceptible to degradation. Finally, the efficacy against S. aureus and E. coli bacterial strains was demonstrated, indicating that electrospun fibers decorated with nanostructured silver by IJD represent a breakthrough solution in the field of antibacterial devices.
Collapse
|
12
|
Bardania H, Mahmoudi R, Bagheri H, Salehpour Z, Fouani MH, Darabian B, Khoramrooz SS, Mousavizadeh A, Kowsari M, Moosavifard SE, Christiansen G, Javeshghani D, Alipour M, Akrami M. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci Rep 2020; 10:6129. [PMID: 32273549 PMCID: PMC7145826 DOI: 10.1038/s41598-020-63032-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
To eliminate the microbial infection from an injury site, various modalities have been developed such as dressings and human skin substitutes. However, the high amount of reactive oxygen species, microbial infection, and damaging extracellular matrix remain as the main challenges for the wound healing process. In this study, for the first time, green synthesized silver nanoparticles (AgNPs) using Teucrium polium extract were embedded in poly lactic acid/poly ethylene glycol (PLA/PEG) film to provide absorbable wound dressing, with antioxidant and antibacterial features. The physicochemical analysis demonstrated, production of AgNPs with size approximately 32.2 nm and confirmed the presence of phytoconstituents on their surface. The antibacterial assessments exhibited a concentration-dependent sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa toward biosynthesized AgNPs, which showed a suitable safety profile in human macrophage cells. Furthermore, oxidant scavenging assays demonstrated exploitation of plant extract as a reducing agent, endows antioxidant activity to biogenic AgNPs. The formation of PLA/PEG nanofilm and entrapment of AgNPs into their matrix were clearly confirmed by scanning electron microscopy. More importantly, antibacterial examination demonstrated that the introduction of biogenic AgNPs into PLA/PEG nanofibers led to complete growth inhibition of P. aeruginosa and S. aureus. In summary, the simultaneous antioxidant activity and antimicrobial activity of the novel biogenic AgNPs/PLA/PEG nanofilm showed its potential for application as wound dressing.
Collapse
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Bagheri
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Salehpour
- Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Darabian
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Majid Kowsari
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Seyyed Ebrahim Moosavifard
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Danesh Javeshghani
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ma F, Yan Y, Yu Z, Wu Y, Liu X. Freestanding flexible molecularly imprinted nanocomposite membranes for selective separation applications: an imitated core–shell PEI@SiO 2-based MIM design. NEW J CHEM 2020. [DOI: 10.1039/d0nj03489d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of molecularly imprinted membranes (MIMs) has promoted applications of membrane-based separation technology, which has shown considerable advantages in water treatment, chemical separation and drug purification.
Collapse
Affiliation(s)
- Faguang Ma
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- China
- Institute of Green Chemistry and Chemical Technology
| | - Yan Yan
- Institute of Green Chemistry and Chemical Technology
- Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
| | - Zhixin Yu
- Institute of Green Chemistry and Chemical Technology
- Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology
- Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
| | - Xinlin Liu
- School of Energy and Power Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
14
|
Echeverría C, Muñoz-Bonilla A, Cuervo-Rodríguez R, López D, Fernández-García M. Antibacterial PLA Fibers Containing Thiazolium Groups as Wound Dressing Materials. ACS APPLIED BIO MATERIALS 2019; 2:4714-4719. [DOI: 10.1021/acsabm.9b00923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| | - Rocío Cuervo-Rodríguez
- Facultad de Ciencias Químicas (UCM), Av. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| |
Collapse
|
15
|
Borandeh S, Abdolmaleki A, Zamani nekuabadi S, Sadeghi M. Poly(vinyl alcohol)/methoxy poly(ethylene glycol) methacrylate-TiO2 nanocomposite as a novel polymeric membrane for enhanced gas separation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1529-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Electrospun antibacterial polyacrylonitrile nanofiber membranes functionalized with silver nanoparticles by a facile wetting method. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
|
18
|
Kurtz IS, Schiffman JD. Current and Emerging Approaches to Engineer Antibacterial and Antifouling Electrospun Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1059. [PMID: 29932127 PMCID: PMC6073658 DOI: 10.3390/ma11071059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
From ship hulls to bandages, biological fouling is a ubiquitous problem that impacts a wide range of industries and requires complex engineered solutions. Eliciting materials to have antibacterial or antifouling properties describes two main approaches to delay biofouling by killing or repelling bacteria, respectively. In this review article, we discuss how electrospun nanofiber mats are blank canvases that can be tailored to have controlled interactions with biologics, which would improve the design of intelligent conformal coatings or freestanding meshes that deliver targeted antimicrobials or cause bacteria to slip off surfaces. Firstly, we will briefly discuss the established and emerging technologies for addressing biofouling through antibacterial and antifouling surface engineering, and then highlight the recent advances in incorporating these strategies into electrospun nanofibers. These strategies highlight the potential for engineering electrospun nanofibers to solicit specific microbial responses for human health and environmental applications.
Collapse
Affiliation(s)
- Irene S Kurtz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
19
|
Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.071] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 2018; 45:5888-5924. [PMID: 27494001 DOI: 10.1039/c5cs00579e] [Citation(s) in RCA: 629] [Impact Index Per Article: 89.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.
Collapse
Affiliation(s)
- Runnan Zhang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanan Liu
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Mingrui He
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
21
|
Zargar M, Hartanto Y, Jin B, Dai S. Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.085] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Liu T, Dong JX, Liu SG, Li N, Lin SM, Fan YZ, Lei JL, Luo HQ, Li NB. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg 2+ ions detection. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:430-436. [PMID: 27773437 DOI: 10.1016/j.jhazmat.2016.10.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
A stable silver nanoparticles/carbon quantum dots (Ag/CQDs) composite was prepared by using CQDs as reducing and stabilizing agent. The CQDs synthesized with polyethyleneimine (PEI) showed an extraordinary reducibility. When Hg2+ was presented in the Ag/CQDs composite solution, a color change from yellow to colorless was observed, accompanied by a shift of surface plasmon resonance (SPR) band and decrease in absorbance of the Ag/CQDs composite. On the basis of the further studies on TEM, XPS and XRD analysis, the possible mechanism is attributed to the formation of a silver-mercury amalgam. Hence, a two dimensional sensing platform for Hg2+ detection was constructed upon the Ag/CQDs composite. Based on the change of absorbance, a good linear relationship was obtained from 0.5 to 50μM for Hg2+. And the limit of detection for Hg2+ was as low as 85nM, representing high sensitivity to Hg2+. More importantly, the proposed method also exhibits a good selectivity toward Hg2+ over other metal ions. Besides, this strategy demonstrates practicability for the detection of Hg2+ in real water samples with satisfactory results.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Jiang Xue Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Shi Gang Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Na Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Shu Min Lin
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Yu Zhu Fan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Jing Lie Lei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| |
Collapse
|
23
|
Mural PKS, Jain S, Madras G, Bose S. Antibacterial Membranes for Water Remediation with Controlled Leaching of Biocidal Silver Aided by Prior Grafting of Poly(ethylene imine) on to Ozone-Treated Polyethylene. ChemistrySelect 2017. [DOI: 10.1002/slct.201601654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prasanna Kumar S. Mural
- Center for Nano Science and Engineering; Indian Institute of Science; Bangalore- 560012 India
| | - Shubham Jain
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560012 India
| | - Giridhar Madras
- Department of Chemical Engineering; Indian Institute of Science; Bangalore- 560012 India
| | - Suryasarathi Bose
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560012 India
| |
Collapse
|
24
|
Dai X, Guo Q, Zhao Y, Zhang P, Zhang T, Zhang X, Li C. Functional Silver Nanoparticle as a Benign Antimicrobial Agent That Eradicates Antibiotic-Resistant Bacteria and Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25798-25807. [PMID: 27622986 DOI: 10.1021/acsami.6b09267] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
With the increased prevalence of antibiotic-resistant bacteria infections, there is a pressed need for innovative antimicrobial agent. Here, we report a benign ε-polylysine/silver nanoparticle nanocomposite (EPL-g-butyl@AgNPs) with polyvalent and synergistic antibacterial effects. EPL-g-butyl@AgNPs exhibited good stability in aqueous solution and effective antibacterial activity against both Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) bacteria without emergence of bacterial resistance. Importantly, the nanocomposites eradicated the antibiotic-resistant bacteria without toxicity to mammalian cells. Analysis of the antibacterial mechanism confirmed that the nanocomposites adhered to the bacterial surface, irreversibly disrupted the membrane structure of the bacteria, subsequently penetrated cells, and effectively inhibited protein activity, which ultimately led to bacteria apoptosis. Notably, the nanocomposites modulated the relative level of CD3+ T cells and CD68+ macrophages and effectively promoted infected wound healing in diabetic rats. This work improves our understanding of the antibacterial mechanism of AgNPs-based nanocomposites and offers guidance to activity prediction and rational design of effective antimicrobial nanoparticles.
Collapse
Affiliation(s)
- Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Peng Zhang
- Department of Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Tianqi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| |
Collapse
|
25
|
Rieger KA, Porter M, Schiffman JD. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E297. [PMID: 28773422 PMCID: PMC5502990 DOI: 10.3390/ma9040297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 11/16/2022]
Abstract
Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.
Collapse
Affiliation(s)
- Katrina A Rieger
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Michael Porter
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
26
|
Hassiba AJ, El Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine (Lond) 2016; 11:715-37. [DOI: 10.2217/nnm.15.211] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Wound dressings play an important role in a patient's recovery from health problems, as unattended wounds could lead to serious complications such as infections or, ultimately, even death. Therefore, wound dressings since ancient times have been continuously developed, starting from simple dressings from natural materials for covering wounds to modern dressings with functionalized materials to aid in the wound healing process and enhance tissue repair. However, understanding the nature of a wound and the subsequent healing process is vital information upon which dressings can be tailored to ensure a patient's recovery. To date, much progress has been made through the use of nanomedicine in wound healing due to the ability of such materials to mimic the natural dimensions of tissue. This review provides an overview of recent studies on the physiology of wound healing and various wound dressing materials made of nanofibers fabricated using the electrospinning technique.
Collapse
Affiliation(s)
- Alaa J Hassiba
- Materials Science & Technology Program, College of Arts & Sciences, Qatar University, Doha 2713, Qatar
| | | | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
- Department of Health Sciences, College of Arts & Sciences, Qatar University, Doha 2713, Qatar
| | - Thomas J Webster
- Department of Chemical Engineering & Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Center of Excellence for Advanced Material Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adriaan S Luyt
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | | | - Ahmed A Elzatahry
- Materials Science & Technology Program, College of Arts & Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
27
|
Rieger KA, Birch NP, Schiffman JD. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation. Carbohydr Polym 2016; 139:131-8. [DOI: 10.1016/j.carbpol.2015.11.073] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/28/2015] [Indexed: 11/15/2022]
|
28
|
Rieger KA, Cho HJ, Yeung HF, Fan W, Schiffman JD. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3032-40. [PMID: 26788882 DOI: 10.1021/acsami.5b10130] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites.
Collapse
Affiliation(s)
- Katrina A Rieger
- Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States
| | - Hong Je Cho
- Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States
| | - Hiu Fai Yeung
- Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States
| | - Wei Fan
- Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
29
|
Kolewe KW, Peyton SR, Schiffman JD. Fewer Bacteria Adhere to Softer Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19562-9. [PMID: 26291308 PMCID: PMC4631609 DOI: 10.1021/acsami.5b04269] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were 20 times thicker than the cumulative size of bacterial cell appendages, as a function of Young's moduli. Soft (44.05-308.5 kPa), intermediate (1495-2877 kPa), and stiff (5152-6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 h incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 h incubation period, there were 52 and 82% fewer E. coli adhered to soft PEGDMA hydrogels than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62 and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 h incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that could potentially be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion and therefore the occurrence of biofilm-associated infections.
Collapse
Affiliation(s)
- Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003–9303
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003–9303
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003–9303
| |
Collapse
|
30
|
de Faria AF, Perreault F, Shaulsky E, Arias Chavez LH, Elimelech M. Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide-Silver Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12751-9. [PMID: 25980639 DOI: 10.1021/acsami.5b01639] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functionalization of electrospun mats with antimicrobial nanomaterials is an attractive strategy to develop polymer coating materials to prevent bacterial colonization on surfaces. In this study we demonstrated a feasible approach to produce antimicrobial electrospun mats through a postfabrication binding of graphene-based nanocomposites to the nanofibers' surface. A mixture of poly(lactide-co-glycolide) (PLGA) and chitosan was electrospun to yield cylindrical and narrow-diameter (356 nm) polymeric fibers. To achieve a robust antimicrobial property, the PLGA-chitosan mats were functionalized with graphene oxide decorated with silver nanoparticles (GO-Ag) via a chemical reaction between the carboxyl groups of graphene and the primary amine functional groups on the PLGA-chitosan fibers using 3-(dimethylamino)propyl-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as cross-linking agents. The attachment of GO-Ag sheets to the surface of PLGA-chitosan fibers was successfully revealed by scanning and transmission electron images. Upon direct contact with bacterial cells, the PLGA-chitosan mats functionalized with GO-Ag nanocomposites were able to effectively inactivate both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our results suggest that covalent binding of GO-Ag nanocomposites to the surface of PLGA-chitosan mats opens up new opportunities for the production of cost-effective, scalable, and biodegradable coating materials with the ability to hinder microbial proliferation on solid surfaces.
Collapse
Affiliation(s)
- Andreia F de Faria
- †Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - François Perreault
- †Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Evyatar Shaulsky
- †Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Laura H Arias Chavez
- ‡Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Menachem Elimelech
- †Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
31
|
Madhavan P, Hong PY, Sougrat R, Nunes SP. Silver-enhanced block copolymer membranes with biocidal activity. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18497-18501. [PMID: 25286186 DOI: 10.1021/am505594c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.
Collapse
Affiliation(s)
- Poornima Madhavan
- Water Desalination and Reuse Center and ‡Imaging and Characterization Lab, King Abdullah University of Science and Technology , 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
32
|
Antibacterial properties of tough and strong electrospun PMMA/PEO fiber mats filled with Lanasol--a naturally occurring brominated substance. Int J Mol Sci 2014; 15:15912-23. [PMID: 25207601 PMCID: PMC4200796 DOI: 10.3390/ijms150915912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
A new type of antimicrobial, biocompatible and toughness enhanced ultra-thin fiber mats for biomedical applications is presented. The tough and porous fiber mats were obtained by electrospinning solution-blended poly (methyl methacrylate) (PMMA) and polyethylene oxide (PEO), filled with up to 25 wt % of Lanasol—a naturally occurring brominated cyclic compound that can be extracted from red sea algae. Antibacterial effectiveness was tested following the industrial Standard JIS L 1902 and under agitated medium (ASTM E2149). Even at the lowest concentrations of Lanasol, 4 wt %, a significant bactericidal effect was seen with a 4-log (99.99%) reduction in bacterial viability against S. aureus, which is one of the leading causes of hospital-acquired (nosocomial) infections in the world. The mechanical fiber toughness was insignificantly altered up to the maximum Lanasol concentration tested, and was for all fiber mats orders of magnitudes higher than electrospun fibers based on solely PMMA. This antimicrobial fiber system, relying on a dissolved antimicrobial agent (demonstrated by X-ray diffraction and Infrared (IR)-spectroscopy) rather than a dispersed and “mixed-in” solid antibacterial particle phase, presents a new concept which opens the door to tougher, stronger and more ductile antimicrobial fibers.
Collapse
|
33
|
Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:31-7. [DOI: 10.1016/j.msec.2014.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/30/2014] [Accepted: 05/06/2014] [Indexed: 11/15/2022]
|
34
|
Rieger KA, Schiffman JD. Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 2014; 113:561-8. [PMID: 25256519 DOI: 10.1016/j.carbpol.2014.06.075] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 11/30/2022]
Abstract
Due to the persistent spread of antibiotic resistance, commercial antibiotic treatments are proving ineffective. Cinnamaldehyde (CA), a volatile essential oil, eradicates pathogens non-specifically. However, the ability to incorporate essential oils into nanofiber mats has not yet been demonstrated, and, only six studies have electrospun two immiscible phases. Here, CA (0.5 and 5.0%) was incorporated into chitosan/poly(ethylene oxide) (PEO) solutions that were successfully electrospun into mats with ∼ 50 nm fiber diameters. Solid-state NMR results corroborated with release studies wherein the 5.0% CA mats released a statistically higher amount of CA-liquid (545% more) and CA-vapor (279% more) than the 0.5% CA mats. In time dependent cytotoxicity studies, the intrinsic antibacterial activity of chitosan along with the quick release of CA enabled high inactivation rates against Escherichia coli and Pseudomonas aeruginosa. For the first time we have demonstrated chitosan/CA/PEO nanofiber mats can serve as CA delivery vehicles that potentially eradicate pseudomonas infections.
Collapse
Affiliation(s)
- Katrina A Rieger
- Department of Chemical Engineering, University of Massachusetts Amherst, N533 Life Sciences Laboratories, 240 Thatcher Road, MA 01003-930, USA
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, N533 Life Sciences Laboratories, 240 Thatcher Road, MA 01003-930, USA.
| |
Collapse
|
35
|
Kai D, Liow SS, Loh XJ. Biodegradable polymers for electrospinning: towards biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:659-70. [PMID: 25491875 DOI: 10.1016/j.msec.2014.04.051] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Electrospinning has received much attention recently due to the growing interest in nano-technologies and the unique material properties. This review focuses on recent progress in applying electrospinning technique in production of biodegradable nanofibers to the emerging field of biomedical. It first introduces the basic theory and parameters of nanofibers fabrication, with focus on factors affecting the morphology and fiber diameter of biodegradable nanofibers. Next, commonly electrospun biodegradable nanofibers are discussed, and the comparison of the degradation rate of nanoscale materials with macroscale materials are highlighted. The article also assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay. Future perspectives of biodegradable nanofibers are discussed in the last section, which emphasizes on the innovation and development in electrospinning of hydrogels nanofibers, pore size control and scale-up productions.
Collapse
Affiliation(s)
- Dan Kai
- Institute of Materials Research and Engineering (IMRE) Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE) Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore.
| |
Collapse
|
36
|
Longo VM, De Foggi CC, Ferrer MM, Gouveia AF, André RS, Avansi W, Vergani CE, Machado AL, Andrés J, Cavalcante LS, Hernandes AC, Longo E. Potentiated Electron Transference in α-Ag2WO4 Microcrystals with Ag Nanofilaments as Microbial Agent. J Phys Chem A 2014; 118:5769-78. [DOI: 10.1021/jp410564p] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Valéria M. Longo
- INCTMN-USP, Universidade de São Paulo, Instituto de Física de São Carlos, 13560-970 São Carlos, SP, Brazil
| | - Camila C. De Foggi
- Department
of Dental Materials and Prosthodontics, UNESP − Univ. Estadual Paulista, P.O. Box 355, 14801-903 Araraquara, SP, Brazil
| | - Mateus M. Ferrer
- INCTMN-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
| | - Amanda F. Gouveia
- INCTMN-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
| | - Rafaela S. André
- INCTMN-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
| | - Waldir Avansi
- INCTMN-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
| | - Carlos E. Vergani
- Department
of Dental Materials and Prosthodontics, UNESP − Univ. Estadual Paulista, P.O. Box 355, 14801-903 Araraquara, SP, Brazil
| | - Ana L Machado
- Department
of Dental Materials and Prosthodontics, UNESP − Univ. Estadual Paulista, P.O. Box 355, 14801-903 Araraquara, SP, Brazil
| | - Juan Andrés
- Department
of Química-Física-Analítica, Universitat Juame I, 12071 Castello, Spain
| | - Laécio S. Cavalcante
- CCN-DQ-GERATEC, Universidade Estadual do Piauí, P.O. Box 381, 64002-150 Teresina, PI, Brazil
| | - Antonio C. Hernandes
- INCTMN-USP, Universidade de São Paulo, Instituto de Física de São Carlos, 13560-970 São Carlos, SP, Brazil
| | - Elson Longo
- INCTMN-UNESP, Universidade Estadual Paulista, P.O. Box 355, CEP 14801-907 Araraquara, SP, Brazil
| |
Collapse
|
37
|
Rahaman MS, Thérien-Aubin H, Ben-Sasson M, Ober CK, Nielsen M, Elimelech M. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. J Mater Chem B 2014; 2:1724-1732. [DOI: 10.1039/c3tb21681k] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Masilela N, Antunes E, Nyokong T. Axial coordination of zinc and silicon phthalocyanines to silver and gold nanoparticles: an investigation of their photophysicochemical and antimicrobial behavior. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work reports on the axial coordination of zinc phthalocyanine and bis-(1,6-hexanedithiol) silicon phthalocyanine to silver and gold nanoparticles. Red shifting of absorption spectra of the phthalocyanine complexes was observed after conjugation with the nanoparticles. An improvement in the photophysicochemical behavior and antimicrobial activity was achieved in the presence of metal nanoparticles for both complexes. A decrease in triplet lifetimes was observed for all the phthalocyanine metal nanoparticle conjugates. The Zn phthalocyanine complex gave the highest triplet and singlet oxygen quantum yield in the presence of gold nanoparticles. On the other hand, the bacterial inhibition was found to be best for the Si phthalocyanine derivative in the presence of nanoparticles compared to the Zn phthalocyanine counterpart. The highest antimicrobial activity was achieved for both conjugates against B. subtilis compared to S. aureaus both in the dark and under illumination with light.
Collapse
Affiliation(s)
| | - Edith Antunes
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
39
|
Ho CH, Odermatt EK, Berndt I, Tiller JC. Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1589-600. [PMID: 23574366 DOI: 10.1080/09205063.2013.782803] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The goal of this study was to develop a long-term active antimicrobial coating for surgical sutures. To this end, two water-insoluble polymeric nanocontainers based on hyperbranched polylysine (HPL), hydrophobically modified by either using glycidyl hexadecyl ether, or a mixture of stearoyl/palmitoyl chloride, were synthesized. Highly stabilized silver nanoparticles (AgNPs, 2-5 nm in size) were generated by dissolving silver nitrate in the modified HPL solutions in toluene followed by reduction with L-ascorbic acid. Poly(glycolic acid)-based surgical sutures were dip-coated with the two different polymeric silver nanocomposites. The coated sutures showed high efficacies of more than 99.5% reduction of adhesion of living Staphylococcus aureus cells onto the surface compared to the uncoated specimen. Silver release experiments were performed on the HPL-AgNP modified sutures by washing them in phosphate buffered saline for a period of 30 days. These coatings showed a constant release of silver ions over more than 30 days. After this period of washing, the sutures retained their high efficacies against bacterial adhesion. Cytotoxicity tests using L929 mouse fibroblast cells showed that the materials are basically non-cytotoxic.
Collapse
Affiliation(s)
- Chau Hon Ho
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry, Albert-Ludwigs-Universitaet Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
40
|
Bugatti V, Livi S, Hayrapetyan S, Wang Y, Estevez L, Vittoria V, Giannelis EP. Deposition of LDH on plasma treated polylactic acid to reduce water permeability. J Colloid Interface Sci 2013; 396:47-52. [DOI: 10.1016/j.jcis.2013.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/13/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
41
|
The interaction of silver nanoparticles with low symmetry cysteinyl metallophthalocyanines and their antimicrobial effect. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Electrospun Chitosan-graft-PLGA nanofibres with significantly enhanced hydrophilicity and improved mechanical property. Colloids Surf B Biointerfaces 2013; 102:674-81. [DOI: 10.1016/j.colsurfb.2012.09.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 11/19/2022]
|
43
|
Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing – a review. J Mater Chem B 2013; 1:4531-4541. [DOI: 10.1039/c3tb20795a] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE. Quantifying the origin of released Ag+ ions from nanosilver. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15929-36. [PMID: 23072572 DOI: 10.1021/la303370d] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanosilver is most attractive for its bactericidal properties in modern textiles, food packaging, and biomedical applications. Concerns, however, about released Ag(+) ions during dispersion of nanosilver in liquids have limited its broad use. Here, nanosilver supported on nanostructured silica is made with closely controlled Ag size both by dry (flame aerosol) and by wet chemistry (impregnation) processes without any surface functionalization that could interfere with its ion release. It is characterized by electron microscopy, atomic absorption spectroscopy, and X-ray diffraction, and its Ag(+) ion release in deionized water is monitored electrochemically. The dispersion method of nanosilver in solutions affects its dissolution rate but not the final Ag(+) ion concentration. By systematically comparing nanosilver size distributions to their equilibrium Ag(+) ion concentrations, it is revealed that the latter correspond precisely to dissolution of one to two surface silver oxide monolayers, depending on particle diameter. When, however, the nanosilver is selectively conditioned by either washing or H(2) reduction, the oxide layers are removed, drastically minimizing Ag(+) ion leaching and its antibacterial activity against E. coli . That way the bactericidal activity of nanosilver is confined to contact with its surface rather than to rampant ions. This leads to silver nanoparticles with antibacterial properties that are essential for medical tools and hospital applications.
Collapse
Affiliation(s)
- Georgios A Sotiriou
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Song J, Kahveci D, Chen M, Guo Z, Xie E, Xu X, Besenbacher F, Dong M. Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6157-6162. [PMID: 22397625 DOI: 10.1021/la300469s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Use of biocatalysis for industrial synthetic chemistry is on the verge of significant growth. Enzyme immobilization as an effective strategy for improving the enzyme activity has emerged from developments especially in nanoscience and nanotechnology. Here, lipase from Burkholderia cepacia (LBC), as an example of the luxuriant enzymes, was successfully encapsulated in polycaprolactone (PCL) nanofibers, proven by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Evaluated in both organic and aqueous medium, the activation factor of the encapsulated enzymes in the hydrolysis reaction was generally higher than that in the transesterification reaction. Enhanced catalytic activities were found when 5-20 w/w % of LBC was loaded. The effect of different solvents pretreatment on the activity of immobilized LBC was also investigated. The highest activation factor was found up to 14 for the sample containing acetone-treated LBC/PCL (10 w/w %). The encapsulated lipase reserved 50% of its original activity after the 10th run in the transesterification reaction in hexane medium. The mechanism of activation of lipase catalytic ability based on active PCL nanofiberous matrix is proposed.
Collapse
Affiliation(s)
- Jie Song
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nisola GM, Park JS, Beltran AB, Chung WJ. Silver nanoparticles in a polyether-block-polyamide copolymer towards antimicrobial and antifouling membranes. RSC Adv 2012. [DOI: 10.1039/c2ra01231f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|